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We have undertaken the simulation of hydrodynamic flows with bulk Lorentz factors in the
range 102–106. We discuss the application of an existing relativistic, hydrodynamic prim-
itive variable recovery algorithm to a study of pulsar winds, and, in particular, the refine-
ment made to admit such ultra-relativistic flows. We show that an iterative quartic root
finder breaks down for Lorentz factors above 102 and employ an analytic root finder as a
solution. We find that the former, which is known to be robust for Lorentz factors up to
at least 50, offers a 24% speed advantage. We demonstrate the existence of a simple
diagnostic allowing for a hybrid primitives recovery algorithm that includes an automatic,
real-time toggle between the iterative and analytical methods. We further determine the
accuracy of the iterative and hybrid algorithms for a comprehensive selection of input
parameters and demonstrate the latter’s capability to elucidate the internal structure of
ultra-relativistic plasmas. In particular, we discuss simulations showing that the interac-
tion of a light, ultra-relativistic pulsar wind with a slow, dense ambient medium can give
rise to asymmetry reminiscent of the Guitar nebula leading to the formation of a relativistic
backflow harboring a series of internal shockwaves. The shockwaves provide thermalized
energy that is available for the continued inflation of the PWN bubble. In turn, the bubble
enhances the asymmetry, thereby providing positive feedback to the backflow.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Hydrodynamic simulations have been widely used to model a broad range of physical systems. When the velocities in-
volved are a small fraction of the speed of light and gravity is weak, the classical Newtonian approximation to the equations
of motion may be used. However, these two conditions are violated for a host of interesting scenarios, including, for example,
heavy ion collision systems [19], relativistic laser systems [11], and many from astrophysics [22, and references therein], that
call for a fully relativistic, hydrodynamic (RHD) treatment. The methods of solution of classical hydrodynamic problems have
been successfully adapted to those of a RHD nature, albeit giving rise to significant complication; in particular, the physical
quantities of a hydrodynamic flow (the rest-frame mass density, n, pressure, p, and velocity, v) are coupled to the conserved
quantities (the laboratory-frame mass density, R, momentum density, M, and energy density, E) via the Lorentz transforma-
tion. The fact that modern RHD codes typically evolve the conserved quantities necessitates the recovery of the physical
quantities (often referred to as the ‘‘primitive variables”) from the conserved quantities in order to obtain the flow velocity.
Thus, the calculation of the primitives from the conserved variables has become a critical element of modern RHD codes [27].
. All rights reserved.
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Indeed, this is an active area of research with significant attention given to the general relativistic, magnetohydrodynamic
(GRMHD) case (e.g. [32]) and varying equations of state within the context of RMHD (e.g. [30]) and RHD (e.g. [37]). This work
is concerned with the RHD case for a fixed adiabatic index and so we refer the reader to the above-mentioned papers for a
discussion of those studies.

In this paper, we present a method for recovering the primitive variables from the conserved quantities representing spe-
cial relativistic, hydrodynamic (SRHD) flows with bulk Lorentz factors (c ¼ ð1� v2Þ�1=2, where v is the bulk flow velocity –
the speed of light is normalized to unity throughout this paper) up to 106. We started with a module from an existing SRHD
code used to simulate flows with c 6 50 as described in [12]. Admitting flows with such ultra-relativistic Lorentz factors as
106 required significant refinement to the method used in the existing code to calculate the flow velocity from the conserved
quantities. In particular, such extreme Lorentz factors lead to severe numerical problems such as effectively dividing by zero
and subtractive cancellation. In Section 2, we discuss the formalism of recovering the primitives within the context of the
Euler equations. In Section 3, we elucidate the details of the refinement to this formalism necessitated by ultra-relativistic
flows. We present the refined primitives algorithm in Section 4 and our application in Section 5. We discuss our results and
conclusions in Sections 6 and 7, respectively.

2. Recovering the primitive variables from R;M, and E

In general, recovering the primitives from the conserved quantities reduces to solving a quartic equation, QðvÞ ¼ 0, for the
flow velocity in terms of R;M, and E. Implementation typically involves a numerical root finder to recover the velocity via
Newton–Raphson iteration which is very efficient and provides robustness because it is straightforward to ensure that
the computed velocity is always less than the speed of light. This is a powerful method that is independent of dimensionality
and symmetry. The latter point follows directly from the fact that symmetry is manifest only as a source term in the Euler
equations and does not enter into the derivation of QðvÞ (see the axisymmetric example below). Dimensional generality
arises because regardless of the coordinate system, one may always write M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
M2

xi

q
, where the Mxi

are the components
of the momentum density vector along the orthogonal coordinates xi. In the case of magnetohydrodynamic (MHD) flows,
there are, of course, additional considerations. However, non-magnetic (RHD) simulations still have a significant role to play
in astrophysics, e.g. extragalactic jets [20] and pulsar wind nebulae [44].

As an example, consider the case of the axisymmetric, relativistic Euler equations, which we apply to pulsar winds.
This type of formalism enjoys diverse application, in both special and general relativistic settings, from 3D simulations of
extragalactic jets [21], to theories of the generation of gamma-ray bursts [48] and the collapse of massive stars to neu-
tron stars and black holes [39]. In cylindrical coordinates q and z, and defining the evolved-variable, flux, and source
vectors
U ¼ ðR;Mq;Mz; EÞT ;

Fq ¼ Rvq;Mqvq þ p;Mzvq; ðEþ pÞvq� �T
;

Fz ¼ Rvz;Mqvz;Mzvz þ p; ðEþ pÞvz
� �T

;

S ¼ ð0;p=q; 0;0ÞT

ð1Þ
the Euler equations may be written in almost-conservative form as:
@U
@t
þ 1

q
@

@q
ðqFqÞ þ @

@z
ðFzÞ ¼ S:
The pressure is given by the ideal gas equation of state p ¼ ðC� 1Þðe� nÞ, where e and C are the rest-frame total energy den-
sity and the adiabatic index. Note that the velocity and pressure appear explicitly in the relativistic Euler equations, in addi-
tion to the evolved variables, and pressure and rest density are needed for the computation of the wave speeds that form the
basis of typical numerical hydrodynamic solvers, such as that due to [17]. We obtain these values by performing a Lorentz
transformation where the rest-frame values are required:
R ¼ cn;

Mq ¼ c2ðeþ pÞvq;

Mz ¼ c2ðeþ pÞvz;

E ¼ c2ðeþ pÞ � p;

c ¼ ð1� v2Þ�1=2
;

ð2Þ
where v2 ¼ ðvqÞ2 þ ðvzÞ2 and M2 ¼ c4ðeþ pÞ2½ðvqÞ2 þ ðvzÞ2� ¼ c4ðeþ pÞ2v2. When the adiabatic index is constant, combining
the above equations with the equation of state creates a closed system which yields the following quartic equation for v in
terms of Y � M=E and Z � R=E:
QðvÞ ¼ ðC� 1Þ2ðY2 þ Z2Þv4 � 2CðC� 1ÞYv3 þ ½C2 þ 2ðC� 1ÞY2 � ðC� 1Þ2Z2�v2 � 2CYv þ Y2 ¼ 0: ð3Þ
Component velocities, and the rest-frame total energy and mass densities are then given by:
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vq ¼ Mq

M
v;

vz ¼ Mz

Mq
vq;

e ¼ E�Mqvq �Mzvz;

n ¼ R
c
:

3. Refinement of the root finder to admit ultra-relativistic flows

A particular implementation of the above has been previously applied to relativistic galactic jets with c 6 50 [12]. The
ultra-relativistic nature of pulsar winds necessitated an investigation of the behavior of the primitives algorithm upon taking
c� 1. We found that, beyond c � 102, the algorithm suffers a severe degradation in accuracy that worsens with increasing
Lorentz factor until complete breakdown occurs due to the failure of the Newton–Raphson iteration process used to calculate
the flow velocity.

The problem lies in the shape of the quartic, QðvÞ, one must solve to calculate the primitive variables. The quartic
equation as derived using the velocity as a variable exhibits two roots for typical physical parameters of the flow (see
Fig. 1). In general, for c < 102, the two roots are sufficiently separated on the velocity axis such that the Newton–Raphson
(N–R) iteration method converges to the correct zero very quickly and accurately (for Y < 0:9 and Z > 10�5, corresponding
to c < 2, the roots approach each other sufficiently such that the incorrect root is selected; see Section 4.3). In fact, N–R
iteration can be so efficient that it is more desirable to use this method than it is to calculate the roots of the quartic
analytically (see Section 4.2). However, as the Lorentz factor of the flow increases, the roots move progressively closer
together and the minimum in QðvÞ approaches zero. Eventually, the minimum equals zero to machine accuracy
which causes dQ=dv ¼ 0 to machine accuracy resulting in a divide by zero and the Newton–Raphson method fails (see
Fig. 2).
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The left-hand plots show the shape of the Lorentz factor quartic over a run of Lorentz factors for a mildly relativistic flow ðco ¼ 1:5Þ and an ultra-
stic flow ðco ¼ 106Þ. The right-side plots show the shape of the velocity quartic over a run of velocity for a mildly relativistic flow ðco � 1:5Þ and a
but not ultra) relativistic flow ðco � 102Þ. The crosses mark the location of the physical root. From the plot in the lower right, one can see the onset of
derivative problem as the roots are not distinguishable from each other or the local minimum even on a scale of 10�13, which begins to encroach on

it of 8-byte accuracy.
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A simple and highly effective solution (see Section 4.3 for details) is to rewrite the velocity quartic, QðvÞ (Eq. (3)), in terms
of the Lorentz factor (i.e. make the substitution v2 ¼ 1� c�2) to obtain the quartic equation in c (recall Y � M=E and Z � R=E):
Table 1
The dep

Solution

All real
All real
One rea
QðcÞ ¼ C2ð1� Y2Þc4 � 2CðC� 1ÞZc3 þ ½2CðC� 1ÞY2 þ ðC� 1Þ2Z2 � C2�c2 þ 2CðC� 1ÞZc� ðC� 1Þ2ðY2 þ Z2Þ ¼ 0:

ð4Þ

As Fig. 1 exemplifies, QðcÞ exhibits a single root for the physical range c P 1. However, Newton–Raphson iteration also fails
in this case at high Lorentz factors because of the steepness of the rise in QðcÞ through the root. Thus, we are forced to use an
analytical method of solving a quartic. Below, we discuss our implementation.

3.1. Solving a quartic equation

We use the prescription due to [2] in order to analytically solve for the roots of a quartic. We chose this method because it
provides equations for the roots of the quartic that are the most amenable (of the methods surveyed) to integration into a
computational environment. In order to provide a complete picture of our method, which includes steps not found in [2], we
reproduce some sections of that text. We procede as follows.

Given a quartic equation in x:
a4x4 þ a3x3 þ a2x2 þ a1xþ a0 ¼ 0; an 2 R; a4–0 ð5Þ
normalizing the equation (dividing by a4) and making the substitution y ¼ xþ a3
4a4

results in the reduced form:
y4 þ Py2 þ Qyþ R ¼ 0;
where defining ~an � an=a4:
P � �3
8

~a2
3 þ ~a2;

Q �
~a3

2

� �3

�
~a3

2

� �
~a2 þ ~a1;

R � �3
~a3

4

� �4

þ
~a3

4

� �2

~a2 �
~a3

4

� �
~a1 þ ~a0:
These coefficients allow the definition of the cubic resolvent:
u3 þ 2Pu2 þ ðP2 � 4RÞu� Q 2 ¼ 0 ð6Þ
upon whose solutions the solutions of the original quartic (Eq. (5)) depend. The product of the solutions of the cubic resol-
vent is u1u2u3 ¼ Q2 (Vieta’s theorem), which clearly must be positive. The characteristics of the quartic’s roots depend on the
nature of the roots of the cubic resolvent (see Table 1).

Given the solutions of the cubic resolvent u1; u2, and u3, the solutions of the quartic (Eq. (5)) are
x1 ¼
1
2
ð
ffiffiffiffiffi
u1
p

þ
ffiffiffiffiffi
u2
p

þ
ffiffiffiffiffi
u3
p
Þ � a3

4a4
;

x2 ¼
1
2
ð
ffiffiffiffiffi
u1
p

�
ffiffiffiffiffi
u2
p

�
ffiffiffiffiffi
u3
p
Þ � a3

4a4
;

x3 ¼
1
2
ð�

ffiffiffiffiffi
u1
p

þ
ffiffiffiffiffi
u2
p

�
ffiffiffiffiffi
u3
p
Þ � a3

4a4
;

x4 ¼
1
2
ð�

ffiffiffiffiffi
u1
p

�
ffiffiffiffiffi
u2
p

þ
ffiffiffiffiffi
u3
p
Þ � a3

4a4
:

ð7Þ
3.2. Solving a cubic equation

The equations of the previous section reduce the problem of solving a quartic equation to that of solving a cubic equation
(i.e. the cubic resolvent of Eq. (6)).

Once again following [2] (note the similarity to the method in the previous section), given a cubic equation:
endence of the solutions to the parent quartic on the solutions to the cubic resolvent.

s of the cubic resolvent Solutions of the quartic equation

and positive All real
, one positive Two complex conjugate (cc) pairs
l, one cc pair Two real, one cc pair



Table 2
The dep

D

Positive
Negativ
=0
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b3u3 þ b2u2 þ b1uþ b0 ¼ 0; bn 2 R; b3–0 ð8Þ
normalizing the equation and making the substitution v ¼ uþ b2=3b3 results in the reduced form:
v3 þ pv þ q ¼ 0;
where defining ~bn � bn=b3:
p � �1
3

~b2
2 þ ~b1;

q � 2
~b2

3

 !3

�
~b2

3

 !
~b1 þ ~b0:
These coefficients allow the definition of the discriminant:
D � p
3

� �3
þ q

2

� �2
ð9Þ
upon which the characteristics of the solutions of the cubic equation depend (see Table 2).
Given p; q, and D, Cardando’s formula for the reduced form of the cubic leads to the solutions of the original cubic (Eq. (8)):
u1 ¼ sþ t � b2

3b3
;

u2 ¼ �
1
2
ðsþ tÞ � b2

3b3
þ i

ffiffiffi
3
p

2
ðs� tÞ;

u3 ¼ �
1
2
ðsþ tÞ � b2

3b3
� i

ffiffiffi
3
p

2
ðs� tÞ;

ð10Þ
where
s �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

2
qþ

ffiffiffiffi
D
p3

r
;

t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

2
q�

ffiffiffiffi
D
p3

r
;

i �
ffiffiffiffiffiffiffi
�1
p

:

If D 6 0, the cubic has three real roots, subject to the following two subcases, and the four real roots of the quartic follow
directly from Eq. (7). If D ¼ 0, then s ¼ t and the cubic has three real solutions that follow directly from Eq. (10) from which
one can see that two are degenerate. If D < 0, the cubic has three distinct real roots. Obtaining these solutions via Eq. (10)
requires intermediate complex arithmetic. However, this may be circumvented by making the substitutions:
r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� p

3

� �3
r

;

cosð/Þ ¼ � q
2r
in which case the solutions of the cubic (Eq. (8)) are:
u1 ¼ 2
ffiffiffi
r3
p

cos
/
3

� �
� b2

3b3
;

u2 ¼ 2
ffiffiffi
r3
p

cos
/þ 2p

3

� �
� b2

3b3
;

u3 ¼ 2
ffiffiffi
r3
p

cos
/þ 4p

3

� �
� b2

3b3
:

ð11Þ
endence of the solutions of a cubic equation on the sign of the discriminant (assuming a real variable).

Solutions of the cubic equation

One real, one complex conjugate pair
e All real and distinct

All real, two (one, if p ¼ q ¼ 0) distinct
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If D > 0, then the cubic has one real root and a pair of complex conjugate roots and the quartic has two real roots and a pair of
complex conjugate roots (see Table 1). Finding the roots of the quartic involves intermediate complex arithmetic which may
be circumvented as follows. Defining:
Fig. 2.
hatched
ðR2=E2 P
M=E <
failures
unaccep
within
R � �1
2
ðsþ tÞ � b2

3b3
;

C �
ffiffiffi
3
p

2
ðs� tÞ:
Eq. (10) may be rewritten as:
u1 ¼ sþ t � b2

3b3
;

u2 ¼ Rþ iC;

u3 ¼ R� iC:
Next, we have u2;3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
e�iC=R. We then obtain the roots of the quartic from Eq. (7):
x1;2 ¼
ffiffiffiffiffi
u1
p

2
� a3

4a4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C24

q
cos

C
2R

� �
;

x3;4 ¼
� ffiffiffiffiffi

u1
p

2
� a3

4a4
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C24

q
sin

C
2R

� �
:

ð12Þ
Note that x1 and x2 are the two real solutions.
4. The refined primitives algorithm

Using the method above, we created a SRHD primitive algorithm called ‘‘REST_FRAME”. Given the speed advantage of the
iterative root finder (see Section 4.2), it is a desirable choice over the analytical method within its regime of applicability, i.e.
for low Lorentz factors. As Fig. 2 shows, the iterative root finder is accurate to order 10�4 (see Section 4.3) for a sizable region
of parameter space including all R=E above the diagonal line between the points (0,-7) & (9,0) in the logðR=EÞ vs.
� logð1�M=EÞ plane (i.e. for logðR=EÞP �ð7=9Þ 	 logð1�M=EÞ � 7). Therefore, for a given M=E and R=E, we check if this
inequality is true; if (not) so, we call the (analytical) iterative root finder (see Section 4.1).
The accuracy (estimated as dE=E) of the Newton–Raphson (N–R) iterative primitives algorithm where white, light grey, medium grey, dark grey, and
regions correspond, respectively, to an accuracy of order at least 10�4, at least 10�3, worse than 10�3, failure, and unphysical input
1�M2=E2Þ. Note that the Lorentz factor varies from order 1 at the far left to order 106 at the far right. There is a sizable white region representing

0:999999ðc < 500Þ and R=E > 5	 10�8 within which accuracy is generally significantly better than 10�4. N–R iteration is unreliable due to sporadic
for all M=E and R=E such that R=E < 5	 10�8 and for an ever increasing fraction of R=E > 5	 10�8 as M=E increases until accuracy becomes
table or the code fails outright for M=E and R=E such that M=E > 0:999999. Failures are due to divide by zero (see Section 3) or nonconvergence

a reasonable number of iterations.
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4.1. Pseudo-code

REST_FRAME calculates the primitive variables given the conservative variables and the adiabatic index as represented in
the following pseudo-code (note this is a 2D example):

PROCEDURE REST_FRAME
RECEIVED FROM PARENT PROGRAM: Y ; Z
RETURNED TO PARENT PROGRAM: c;v ;C

Comment: recall Y � M=E and Z � R=E
Comment: C is returned < 0 for code failures

GLOBAL VARIABLE: C
SET VALUE OF munderflow

SET VALUE OF v tol

Comment: determines iterative method velocity accuracy
Comment: we set v tol ¼ 10�8;10�10;10�12;10�14

Comment: for � logð1� YÞ < 8:3; < 10:3; < 12:3, otherwise, respectively
SET M =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x þM2
y

q
IF M < munderflow THEN

v ¼ 0; c ¼ 1
Comment: avoids code failure if v is numerically zero

ELSE
TEST FOR UNPHYSICAL PARAMETERS
IF PASSED, SET C NEGATIVE AND RETURN
IF logðZÞP �ð7=9Þ 	 logð1� YÞ � 7, THEN

Comment: check to see if input parameters are within the acceptable
Comment: accuracy region of the iterative routine

CALL ITERATIVE_QUARTIC ðY; Z;v tol; v;CÞ
Comment: updates vn�1 to vn using n cycles of Newton–Raphson iteration
Comment: returns v ¼ vn when jvn � vn�1j 6 v tol

IF C < 0, THEN
Comment: this means the iteration failed to converge

RETURN
ELSE

c ¼
ffiffiffiffiffiffiffiffi

1
1�v2

q
END IF

ELSE
CALL ANALYTICAL_QUARTIC ðY ; Z; cÞ

Comment: calculates c using analytical solution – see below
v ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

c2

q
END IF

END IF
END PROCEDURE REST_FRAME

PROCEDURE ANALYTICAL_QUARTIC

Comment: see Section 3.1 for equations

RECEIVED FROM PARENT PROGRAM: Y ; Z
RETURNED TO PARENT PROGRAM: c
GLOBAL VARIABLE: C
~a3 ¼ 2CðC� 1ÞZðY�2 þ 1Þ
~a2 ¼ ðC2 � 2CðC� 1ÞY2 � ðC� 1Þ2Z2ÞðY�2 þ 1Þ
~a1 ¼ �a3

~a0 ¼ ðC� 1Þ2ðY2 þ Z2ÞðY�2 þ 1Þ
~a4 ¼ 1þ Y2 � a0 � a2

Comment: coefficients recast to counter subtractive cancellation – see Section 4.3
NORMALIZE COEFFICIENTS TO a4

Comment: e.g., a3N ¼ a3=a4

CALCULATE CUBIC RESOLVENT COEFFICIENTS
CALCULATE DISCRIMINANT, D
IF D 6 0 THEN

WRITE ERROR MESSAGE AND STOP
Comment: exploration suggests D 6 0 is unphysical but formal proof is elusive
Comment: thus, we leave D 6 0 uncoded with a error flag just in case
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ELSE
Comment: D > 0) QðcÞ has 2 real roots (see Tables 1 and 2)

CALCULATE ROOTS OF CUBIC RESOLVENT
Comment: the cubic has one real root and a pair of complex conjugate roots

IF REAL ROOT < 0, SET REAL ROOT = 0
Comment: the real root cannot be less than zero analytically
Comment: numerically, however, it can have a very small negative value

CALCULATE THE TWO REAL ROOTS OF THE QUARTIC
TEST FOR TWO OR NO PHYSICAL ROOTS
IF PASSED, WRITE ERROR MESSAGE, AND RETURN
IF FAILED, SET c = PHYSICAL ROOT

END IF
END PROCEDURE ANALYTICAL_QUARTIC

4.2. Code timing

Using the Intel Fortran library function CPU_TIME, we calculated the CPU time required to execute 5 	 107 calls to
REST_FRAME for Y ¼ 0:9975 & Z ¼ 1	 10�4 ðc � 10Þ using the Newton–Raphson iterative method with QðvÞ and 8-byte
arithmetic, and the analytical method with QðcÞ and both 8-byte & 16-byte arithmetic (we investigated the use of 16-byte
arithmetic due to an issue with subtractive cancellation – see Section 4.3). The CPU time for each of these scenarios was 29.5,
36.5 (averaged over 10 runs and rounded to the nearest half second), and �11,650 s (one run only), respectively. This
indicates that while using the 8-byte analytical method is satisfactory, it is advantageous to use the iterative method when
Lorentz factors are sufficiently low, and that the use of 16-byte arithmetic is a non-viable option. This result is not surprising
as the accuracy of Newton–Raphson iteration improves by approximately one decimal place per iterative step [12] and the
relative inefficiency of 16-byte arithmetic is a known issue (e.g. [34]).
4.3. Solver accuracy

The input parameters for our primitives algorithm are the ratios of the laboratory-frame momentum and mass densities
to the laboratory-frame energy density (recall Y � M=E and Z � R=E) both of which must be less than unity in order for solu-
tions of Eq. (2) to exist. In addition, the condition Y2 þ Z2 < 1 must be met. Along with the fact that Y and Z must also be
positive, this defines the comprehensive and physical input parameter space to be 0 < Y; Z < 1 such that Y2 þ Z2 < 1 (we
identify a particular region of parameter space applicable to pulsar winds in the next section). We tested the accuracy of
our iterative and hybrid primitives algorithms within this space as follows.

First, as we are most interested in light, highly relativistic flows (i.e. Z small and Y close to unity), to define the accuracy-
search space we elected to use the quantities � logð1� YÞ, which for values greater than unity gives 0:9 < Y < 1, and logðZÞ,
which for values less than negative unity gives Z 
 1. We selected 0 < � logð1� YÞ < 13 and �13 < logðZÞ < 0 correspond-
ing to Lorentz factors (c) between 1 and 2 	 106. We chose a range with a maximal c slightly above 1 	 106 in order to com-
pletely bound the pulsar wind nebula parameter space defined in the next section.

Choosing a relativistic equation of state C ¼ 4=3 and using 1300 points for both � logð1� YÞ and logðZÞ, we tested the
accuracy of REST_FRAME by passing it Y and Z, choosing E ¼ 1, and using the returned primitive quantities to derive the cal-
culated energy density Ec, and calculating the difference j1� Ec=Ej � dE=E. We chose this estimate of the error because
dE=E � dc=c and dc=c is tied to the accuracy of the numerical, hydrodynamic technique (see the final paragraph in this
section).

Our results for the Newton–Raphson (N–R) and hybrid methods are given in Figs. 2 and 3 which show where the accuracy
is of order at least 10�4, at least 10�3, worse than 10�3, failure, and unphysical input ðZ2 P 1� Y2Þ, respectively. We chose an
accuracy of order 10�4 as the upper cutoff because N–R iteration returns accuracies on this order for c < 50 and relativistic,
hydrodynamic simulations of galactic jets by Duncan and Hughes [12] produced robust results for Lorentz factors of at least
50 using N–R iteration. An additional result of interest is that the ultra-relativistic approximation for v (i.e. taking R ¼ 0
thereby reducing QðvÞ ¼ 0 to a quadratic equation) manages an accuracy of at least 10�4 for a large portion of the physical
Y � Z plane (see Fig. 4).

Fig. 2 shows the accuracy of the N–R iterative method. There are several noteworthy features. First is the presence of a
sizable region corresponding to c < 500 within which accuracy is generally significantly better than 10�4. Second is that N–R
iteration is unreliable due to sporadic failures for increasing Lorentz factors until accuracy becomes unacceptable or the code
fails outright due to divide by zero (see Section 3) or non-convergence within a reasonable number of iterations. In addition,
though N–R iteration has been widely established as the primitives recovery method of choice for flows with Lorentz factors
less than order 102, we found that for a subset of parameters, corresponding to c < 2, our N–R algorithm suffered an unac-
ceptable degradation in accuracy. The key to this problem lies in the how the flow velocity (v) is initially estimated for the
first iterative cycle as follows:



Fig. 3. The accuracy (estimated as dE=E) of the hybrid primitives algorithm where white, light grey, and hatched regions correspond, respectively, to an
accuracy of order at least 10�4, at least 10�3, and non-physical input ðR2=E2 P 1�M2=E2Þ. Note that the Lorentz factor varies from order 1 at the far left to
order 106 at the far right. The space between the parallel lines represents PWNe input parameter space. The accuracy degradation at the extreme right is due
to subtractive cancellation in the fourth-order coefficient of the Lorentz-factor quartic as M=E! 1.

Fig. 4. The accuracy (estimated as dE=E) of the ultra-relativistic approximation of the flow velocity where white, light grey, medium grey, and hatched
regions correspond to an accuracy of order at least 10�4, at least 10�3, worse than 10�3, and unphysical input (R2=E2 P 1�M2=E2), respectively. Note that
the Lorentz factor varies from order 1 at the far left to order 106 at the far right. The accuracy degradation at the extreme right is due to the fact that the
fractional error in the Lorentz factor is proportional to the fractional error in the velocity divided by 1� v2 which diverges as v ! 1.
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(1) The established approach [12,38] is to bracket v with
vmax ¼ minð1;Y þ dÞ;

vmin ¼
C�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � 4ðC� 1ÞY2

q
2YðC� 1Þ ;

ð13Þ
where d � 10�6 and vmin is derived by taking the ultra-relativistic limit (i.e. R ¼ 0).
(2) The initial velocity is then v i ¼ ðvmin þ vmaxÞ=2þ g, where g ¼ ð1� ZÞðvmin � vmaxÞ for vmax > � and g ¼ 0 otherwise (�

order 10�9).
(3) This method fails due to selection of the incorrect root when the roots converge.
(4) Thus, we make a simpler initial estimate of v i ¼ vmax, which guarantees that v i is ‘‘uphill” from v for all physical Y � Z

space and that N–R iteration converges on v.
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Fig. 3 shows that our hybrid algorithm REST_FRAME is accurate to at least 10�4 for all but a smattering of the highest
Lorentz factors. In fact, it is significantly more accurate over the majority of the physical portion of the Y � Z plane. The space
between the parallel lines represents the PWN input parameters discussed in the next section. We find that multiplying QðcÞ
by ðY2 � Y�2Þ and rewriting the new a4ð~a4Þ in terms of the new a2ð~a2Þ and new a0ð~a0Þ, e.g. ~a4 ¼ 1þ Y2 � ~a0 � ~a2, improves the
accuracy somewhat, but does not entirely mitigate the problem. The issue of accuracy loss at large Lorentz factors in 8-byte
primitives algorithms is a known issue (e.g. [31]) for which we know of no complete 8-byte solution. Employing 16-byte
arithmetic provides spectacular accuracy, but introduces an unacceptable increase in run time (see Section 4.2).

The issue of what constitutes an acceptable error in the calculated Lorentz factor is decided by the fact that a fractional
error in c translates to the same fractional error in p and n which are needed to calculate the wave speeds that form the basis
of the numerical, hydrodynamic technique, a Godunov scheme [17] which approximates the solution to the local Riemann
problem by employing an estimate of the wave speeds. We do not know a priori how accurate this estimate needs to be, and
so procede with 8-byte simulations of pulsar winds with the expectation of using shock-tube tests [40] to validate the accu-
racy of the computation of well-defined flow structures as we approach the highest Lorentz factors. It is also noteworthy that
while c ¼ 106 is the canonical bulk Lorentz factor for pulsar winds, c ¼ 104 and 105 are still in the ultra-relativistic regime,
and it may very well prove to be that these Lorentz factors are high enough to elucidate the general ultra-relativistic, hydro-
dynamic features of such a system. The hybrid algorithm achieves accuracies of at least 10�6 for c � 105, which is safely in
the acceptable accuracy regime.
5. Application to bow-shock pulsar wind nebulae

At the end of a massive star’s life, the collapse of its core to a compact object, i.e. a neutron star or black hole, drives a
shockwave into its outer layers, thereby heating and ejecting them into the interstellar medium (ISM) in a supernova
(SN) explosion. Subsequently, the shockwave overtakes the ejecta, expanding into the ISM, and forming a supernova rem-
nant (SNR). Typically, a SN releases � 1051 erg of mechanical energy that drives expansion of the SNR, sweeping up ISM
material, heating it to X-ray temperatures and infusing it with fusion products beyond lithium.

In a subclass of SNRs, for progenitor masses between 10 and 25 solar masses (e.g. [18]), the compact object formed in the
SN explosion is a rapidly-spinning, highly-magnetized neutron star surrounded by a magnetosphere of charged particles. The
combination of the rotation and the magnetic field gives rise to extremely powerful electric fields that accelerate charged
particles to high velocities. The magnetic field interacts with the charged particles resulting in the spin-down of the neutron
star, and the release of spin-down energy. A relatively small fraction of this energy is converted into beamed emission, man-
ifest as an apparent pulse if the neutron star’s rotation sweeps the beam across the Earth, leading to the designation ‘‘pulsar”.
The bulk of the spin-down energy is converted into a pulsar wind [28] which is terminated at a strong shock, downstream of
which the flow is indistinguishable from being spherically symmetric (e.g. [5]). The wind particles interact with the magnetic
field causing them to emit synchrotron radiation, forming a pulsar wind nebula (PWN). The Crab Nebula, formed in the SN
explosion of 1054 CE, is the canonical object of this type. The Crab exhibits pulsations from the radio, all the way up to X-
rays, and is a prodigious source of c-rays.

The wind in the immediate vicinity of the pulsar is a diffuse, relativistic gas unlikely to be directly observable. However,
the classic structure of forward and reverse shocks separated by a contact surface [47] arises from the wind interaction with
the SNR or ISM. A probe of this interaction is provided by optical emission from the swept-up ambient ISM, thermal X-ray
emission from the SNR and/or the shocked ISM, and X-ray synchrotron emission from the shocked wind. Furthermore, the
high space velocity that is typical of pulsars [6] implies an asymmetric ram pressure on the pulsar wind from the denser
ambient medium. The details of the morphology and of the distribution of the density, pressure, and velocity within the
PWN depends upon the density, speed, momentum, and energy flux of the pulsar wind. Thus, comparison of PWN simula-
tions with observational data can provide an unparalleled method for investigating pulsar winds and, hence, how the sur-
rounding medium taps the rotational energy of the pulsar.

Pacini and Salvati [33] and Rees and Gunn [35] pioneered the basic model of PWNe; a model further developed by Kennel
and Coroniti [24,25] and Emmering and Chevalier [13]. Gaensler and Slane [15] and Bucciantini [3] are excellent reviews on
observational and theoretical studies of PWNe, respectively. For a number of reasons, a detailed, quantitative study of PWNe
is now particularly timely. First, there is a cornucopia of high-quality data from space-born observatories such as the Chandra
X-ray Observatory and XMM-Newton. Second, the total energy radiated by PWNe accounts for only a small fraction of the
spin-down energy, leaving a large energy reservoir available for interaction with the SNR and acceleration of ions, the par-
titioning of which is not well understood.

Efforts to model PWNe span three decades (with seminal papers [35,24,25,13]). While the case for a non-isotropic pulsar
wind energy flux has long been made [29], it has only been recently that a theoretical explanation of the mechanism behind
the jet/torus structure interior to the termination shock has been put forward, and that the predictions of Michel [29] have
been confirmed [3]. In particular, Bucciantini [3] highlighted that a detailed description has been made possible by the in-
crease in the efficiency and robustness of relativistic, numerical MHD codes stemming from the work of Komissarov [26], Del
Zanna et al. [10] and Gammie et al. [16]. Simulations by Del Zanna et al. [8] indicate that where jet formation in PWNe takes
place is tied to where the magnetic field attains equipartition, at which point the magnetic filed can no longer be com-
pressed. If this happens close to the termination shock, then, due to the mildly relativistic nature of the post-shock flow,
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hoop stresses can become efficient and most of the flow is diverted back toward the axis and collimated. The magnitude of
the magnetization is key: if it is too small, the equipartition is reached outside the nebula, hoop stresses remain inefficient,
and no collimation is produced.

Other modeling, for example, that presented herein, is concerned with the global structure of PWNe. The enormous accel-
eration of the wind at the termination shock smears out asymmetries leaving an essentially spherically symmetric shocked
flow to produce large scale PWN features. In particular, Bucciantini et al. [4] and Vigelius et al. [45] are two recent examples
of simulations addressing the structures that arise in bow-shock PWNe (see below). Bucciantini et al. [4] were the first to
apply a fully-relativistic MHD code [10,9], and, for an axisymmetric geometry, obtained a relativistic backflow behind the
pulsar, as predicted by Wang et al. [46] for PSR1929+10. However, the wind Lorentz factor and pulsar velocity were 10
and 9000 km s�1, respectively, which are far from the typical values of 106 and 500 km s�1 (indeed, the Guitar pulsar, the
fastest known, has a transverse velocity of �1700 km s�1). In addition, the paper does not address the ‘‘bubble” in the Guitar
(see Fig. 5). [45] performed non-relativistic, hydrodynamic simulations with a relaxation to cylindrical symmetry. The full 3-
D FLASH code [14] was employed and an anisotropic pulsar wind, cooling of the shocked ISM, ISM density gradients, and ISM
walls were considered. While the authors employed a realistic pulsar velocity of 400 km s�1, the non-relativistic nature of
the simulations limited the Lorentz factor to order unity. In this section, we present fully-relativistic, axisymmetric, hydro-
dynamic simulations of bow-shock PWNe for a realistic pulsar velocity and wind Lorentz factor. In particular, we address the
origin of relativistic backflows leading to a persistent nebular bubble.

5.1. Bow-shock formation

The evolution of PWNe can be broken into four broad phases: (1) free-expansion, (2) SNR reverse shock interaction, (3)
expansion inside a Sedov SNR, and (4) bow-shock formation (for a detailed discussion, see [15, and references therein]. In
this work, we investigate the last stage of evolution. The time it takes for the pulsar to cross the SNR was obtained by
van der Swaluw et al. [42]:
Fig. 5.
Credit:
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where vpsr is the velocity of the pulsar. Once the PWN-SNR system has evolved to the Sedov–Taylor stage, the time elapsed is
sufficiently large that is possible for the pulsar to have reached the edge of the nebula, or even beyond [43]. Thus, the pulsar
escapes its original wind bubble, leaving behind a ‘‘relic” PWN, and traverses the SNR while inflating a new PWN. As the pul-
sar moves away from the center of the remnant, the sound speed decreases. Following van der Swaluw et al. [41,44] calcu-
lated the Mach number of the pulsar, Mpsr , and found that Mpsr exceeds unity after a time t ¼ 0:5tcr , at which point the pulsar
has travelled a distance Rpsr ’ 0:677Rsnr , and the nebula is deformed into a bow shock. The condition on the pulsar velocity
for this transition to occur while the remnant is in the Sedov–Taylor phase is given by [44, and references therein]:
vpsr P 325
E0

1051 erg

 !1=17
n0

1 cm�3

� �2=17
km s�1 ð15Þ
a relation showing a strikingly weak dependence on the physical parameters. A significant fraction (30–40% depending on
the velocity distribution model) of the pulsars compiled by Arzoumanian et al. [1] satisfy this condition. van der Swaluw
A 1995 Hale Telescope Ha image of the Guitar nebula (20 Å filter at 6564 Å). The cometary neck connecting to a spherical bubble is clearly evident.
Chatterjee and Cordes [5].



J.P. Bernstein, P.A. Hughes / Journal of Computational Physics 228 (2009) 6212–6230 6223
et al. [42] showed that once the pulsar reaches the edge of the remnant, its Mach number is Mpsr ’ 3:1. Subsequently, the
pulsar moves through the ISM where its velocity corresponds to a hypersonic Mach number typically on the order of 102.

The most famous example of a PWN in this stage of evolution is the Guitar nebula [7] (see Fig. 5) so named because of its
cometary neck connecting to a nearly spherical bubble. Numerous other examples are shown in [23]. A case of particular
import to this work is that of the X-ray emission associated with PSR1929+10 (see Fig. 6). Wang et al. [46] posited that
the morphology is due to a relativistic backflow behind the pulsar, a suggestion that has gone unconfirmed for realistic wind
Lorentz factors and pulsar velocities, and was a prime motivator for this project. The simulations in this section directly
probe the morphology and interior structure of PWNe during this phase, motivate how the shape of the Guitar nebula per-
sists, without resorting to tailored ISM geometry, and confirm the interpretation of Wang et al. [46].

5.2. Identifying suitable input parameters

The outflow streams relativistically into the ambient medium generating a strong shock. We derive a value for the out-
flow pressure, po, from the assumption that the outflow is interacting with the ambient medium requiring that the momen-
tum flux be comparable on either side of this shock; if the fluxes were not comparable, then either the ambient flow or
outflow would dominate and the problem would be uninteresting. The momentum flux of the non-relativistic ambient med-
ium and ultra-relativistic outflow are, respectively:
Fig. 6.
accelera
FM;a ¼ nav2
a þ pa;

FM;o ¼ c2
oðeo þ poÞv2

o þ po:
For an ultra-relativistic outflow, po � no ) eo ! 3po, and vo ! 1, and, for the ambient medium, nav2
a � pa. Applying these

conditions, and noting that c2
opo � po, gives:
po � na
va

2co

� �2

� 10�19 for co ¼ 106; na ¼ 1:
We are then free to pick any no meeting the conditions of a light, relativistic outflow, i.e. na; po � no. This condition is moti-
vated by the fact that the flow is very fast ðc > 104Þ. Well below the length scale of this study, the flow will be stabilized by
the strong magnetic field, synchrotron cooling will be strong, and adiabatic losses due to expansion across the orders of mag-
nitude in scale between the pulsar and the termination shock will sap internal energy. This will conspire to effectively stop
energy from being converted into thermal motions. Under those conditions, the flow might be cold. However, on the scale of
the termination shock the field is much weaker meaning far less synchrotron cooling, instability is less inhibited, and inter-
esting evolution will occur over fewer adiabatic loss scale lengths. Indeed, the flow might well be influenced by waves gen-
erated both upstream and downstream of the shock(s). The scales relevant to this work correspond to the region of ‘‘hot”
post-termination shock plasma (e.g. [3]) within a PWN. Therefore, a hot flow seems significantly more plausible than does
ROSAT X-ray surface brightness in the field of PSR1929+10 showing the X-ray tail. Wang et al. [46] suggested that the X-ray morphology is due to the
tion of particles behind the pulsar forming a relativistic backflow. North is up and East is left. Credit: Wang et al. [46].
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a cold flow and we select no ¼ 10�lpo;3 < l < 6. This clearly satisfies po � no and one may verify it satisfies na � no by noting
that the equation for po implies na � po since c2

o � v2
a for the flows of interest here.

5.3. A relativistic backflow

Fig. 7 shows a simulation of a co ¼ 105 outflow interacting with an ambient flow with velocity
va ¼ 0:00583ð� 1750 km s�1Þ. The outflow pressure was calculated for an ambient-flow velocity of 500 km s�1 in order to
match the typical value for pulsars in general. The outflow originates inside the circular region to the left of the evolving
structure and the ambient flow streams in along the left edge of the computational domain. Fig. 8 shows the limited extent
of the refined grid, supporting the choice of a maximum number of refinement level of Lmax ¼ 1. Recall the Ha image of the
Guitar Nebula (see Fig. 5), a well-known pulsar wind nebula with the most rapidly moving pulsar ever observed, with a
transverse velocity of (1.7 ± 0.4) 	 103 km s�1 [5]. The simulation qualitatively resembles the nebula. This result constitutes
compelling motivation for the conclusion that interstellar-medium flows set up by the space motion of pulsars can indeed
produce ‘‘cometary” nebulae.

We believe this simulation to be the first demonstrating asymmetry arising from a spherically-symmetric, light, ultra-rel-
ativistic flow interacting with a dense, slow ambient flow. The lines labeled ‘‘1” and ‘‘2” on the density map in Fig. 7 mark
one-dimensional cuts (hereafter ‘‘cut-h1” and ‘‘cut-h2”, respectively) made to probe the state of the simulation. Cut-h1 spans
the entire structure while cut-h2 spans the interior space occupied by the pressure enhancements clearly visible in the pres-
sure map. Fig. 9 shows the values of the flow parameters along these cuts. These plots clearly show the outer bounding
Fig. 7. An 871,200-iteration simulation of a light, ultra-relativistic outflow interacting with a dense, slow ambient flow. The input parameters are:
va ¼ 0:00583 ð� 1750 km s�1Þ;M ¼ 300; na ¼ 1; co ¼ 105;po ¼ 7	 10�16, and no ¼ 10�3po. The upper and lower panels show a linear color map of the rest-
frame pressure and lab-frame mass density, respectively. Both have been reflected along the symmetry axis. The outflow originates within the circular
region to the left of the evolving structure and the ambient flow streams in along the left edge of the domain. The lines labeled ‘‘1” and ‘‘2” are 1-D data cuts
(hereafter ‘‘cut-h1”and ‘‘cut-h2”, respectively) with flow parameters plotted in Fig. 9.



Fig. 8. Plotted in red overlaying the pressure map for the simulation shown in Fig. 7 is the refined grid at level L = 1. The bottom half of the map is a
reflection of the top half and has the same refined grid even though it is not shown. Note that the red lines trace the outlines of the meshes of refined cells,
but not the cells themselves. While the boundary shock is well-refined, the axial shocks within the nebula are not refined at all. Flagging is determined by
the largest difference in R between adjacent cells for all cells at level L. The refinement only follows the boundary shock because R differences inside the
nebula are small compared to the difference between the nebula and the ambient medium. We will investigate refinement flagging in more detail in a
future study. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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shockwave represented by the red boundary in the density map as well as a series of weaker internal on-axis shocks visible
in the pressure map. The x-component of the flow velocity shows that a relativistic back flow harboring a series of weak
shocks has arisen down stream. This validates the interpretation by Wang et al. [46] of the origin of the X-ray trail behind
PSR1929+10, and demonstrates the ability of the refined solver to elucidate the internal structure of diffuse, ultra-relativistic
pulsar wind nebulae which is often difficult to observe directly.

It is noteworthy that the termination shock of the wind is not evident in the simulation discussed above. This is due to
numerical shocking of the wind as it emerges from the on-axis hemisphere, as follows. Consider the cells depicted in Fig. 10.
Let the angle of the line connecting the center of the hemisphere and the center of a cell 1, 2, 3, or 4 be hi; i ¼ 1;2;3;4. Since
we have taken the pulsar wind to be spherically symmetric as it emerges from the hemesphere, we may calculate the relative
flow velocities Dv12 and Dv34 (normalized to the speed of light) at the centers of cells 1 & 2 and 3 & 4:
Dv12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h1 � cos h2

1� cos h1 cos h2

� �2

þ sin h1 � sin h2

1� sin h1 sin h2

� �2
s

� 0:80;

Dv34 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h3 � cos h4

1� cos h3 cos h4

� �2

þ sin h3 � sin h4

1� sin h3 sin h4

� �2
s

� 0:03:
This shows that the relative velocity between vertically adjacent on-axis cells just outside the hemisphere is supersonic rel-
ative to the pulsar outflow sound speed of 0.57 (for the parameters relevant to Fig. 7). Thus, the wind near the axis shocks
immediately and is thermalized producing a post-termination shock flow. Given that at early times the wind shows no devi-
ation from spherical symmetry (see Fig. 11), it is clear that this asymmetric numerical shocking of the wind is smeared out by
the interaction with the ambient flow and does not impact the global evolution of the simulation.

Additional refinement levels, perhaps needed only at early simulation times, will mitigate the numerical shocking issue.
However, since tests have shown such shocking is present with 3 levels, and the significant results discussed below were
possible with 2 (i.e. Lmax ¼ 1), we leave explorations of additional refinement levels to future studies. When these studies
result in unshocked, ultra-relativistic wind flows entering the computational domain, and the resolution of the termination
shock, we will perform new shock-tube tests. However, while the refined REST_FRAME routine is essential for proper han-
dling of the c� 1 outflow, in the simulations presented here there are no structures involving Lorentz factors higher than
those previously explored by Duncan and Hughes [12] and Hughes et al. [21] with the RHLLE solver for which shock-tube
validation was performed. All structures referenced below originated in the computational domain where the the tried-
and-true Newton–Raphson iterative solver was toggled into action (recall Section 4). Therefore, we procede with firm con-
fidence rooted in the previous shock-tube tests.

6. Discussion

The physics behind the formation of the structure observed in Fig. 7 is as follows. The wind streams outward and sweeps up
ambient material which drives pressure waves (weakly at first) into the shocked wind. As the nebula expands, the pressure



Fig. 9. The run of the laboratory-frame mass (R), momentum (M), and total energy (E) densities, rest-frame mass (n), and total energy (e) densities, and
pressure (p), Lorentz factor ðcÞ, x- and y-components of the flow velocity ðvx; vyÞ, the flow velocity (v), sound speed ðcsÞ, and generalized Mach number ðMÞ
along (a) cut-h1 and (b) cut-h2 in Fig. 7.
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inside decreases. Fig. 11 shows a series of pressure maps comprising a time development sequence for the simulation depicted
in Fig. 7. The sequence clearly indicates that once the pulsar crosses the boundary of the initially spherical nebula, an inflection
point develops along the leading edge at approximately 45� from the axis as measured from W to N.1 The pressure waves are
1 This is sensible as it is the location where the wind velocity transitions from having its largest component at 180� to the inflow direction to having it at 90�.



Fig. 11. A time sequence of linear pressure maps for the simulation shown in Fig. 7. The sequence indicates that the appearance of the inflection point is
preceded by a pressure drop inside the nebula. Note the finer time steps between 240 and 360 K iterations and that the color map is relative to the
minimum and maximum for each plot individually. However, the minimum is the same and the maximum is similar for all plots, so the variation is
minimal.

Fig. 10. Schematic geometric cell layout pertaining to numerical shocking of the pulsar wind. The arc represents the on-axis hemisphere with radius 37.5
fine cells. Cell 1 is on-axis and is centered at 41.5 fine cells from the center of the hemisphere (relative center coordinates (x,y) = (41.5,0.5). The center
coordinates of cells 2, 3, and 4 are (41.5,1.5), (29.5,29.5), and (29.5,30.5), respectively.
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intensified and propagate to the axis and reflect, leading to the formation of a relativistic backflow harboring internal shockwaves
reminiscent of shock diamonds. The fact that the backflow does not develop until after the inflection point supports this picture.
The internal shockwaves, in turn, thermalize energy, allowing the flow to expand and inflate the trailing spherical bubble. As the
bubble inflates, it ‘‘pinches” the inflection point enhancing the cuspy shape, maintaining the pressure-wave influx that sets up the
energy-thermalizing backflow responsible for inflating the bubble. Such a feedback cycle is relevent to the Guitar nebula even
though the pulsar was not born at the center of the trailing bubble – given its proper motion, the pulsar moves a distance



Table 3
The dependence of the Guitar-like inflection point on the number of simulation iterations. As expected, the higher the ambient-flow velocity, the sooner the
inflection point develops due to the increased rate at which ambient material is swept-up.

Wind Lorentz factor (unitless) Ambient-flow velocity ðkm s�1Þ Iterations until inflection (104)

105

1750 30
1500 39
1250 54
1000 81

750 Unseen at 74

104

5500 4
4250 6
3000 12
1750 30
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corresponding to the entire nebula in less than 500 yr [36], a time orders of magnitude too short for the age of a pulsar powering a
bow-shock nebula – because it explains how the bubble persists. Such a scenario is analogous to the formation of structure in
relativistic galactic jets, where the evolution is driven by Kelvin–Helmholtz modes long the contact surface that separates the
shocked ambient medium from the shocked jet material (e.g. [21]).

The evolution of the Guitar-like shape is rather sensitive to the choice of parameters. As Table 3 shows, the appearance of
the inflection point marking the onset of the formation of the ‘‘neck” of the Guitar takes a significantly larger number of com-
putational iterations as the ambient-flow velocity decreases. This is expected as the asymmetry of the nebula should evolve
more slowly in this scenario: a decreased ambient-flow velocity is equivalent to a lower pulsar space motion and so it takes
more time for the pulsar to reach the nebula boundary thereby delaying the formation of the inflection point. If the inflection
point is not induced while the expanding nebula is small enough such that the ensuing neck is of significant scale, then no
Guitar-like structure will be apparent. If a pulsar velocity of 1500, 1250, or 1000 km s�1 is required for observable Guitar-like
morphology to arise, then the velocity distribution of Arzoumanian et al. [1] implies that <5%, 7–8%, or �15% of radio pulsars,
respectively, have the possibility of developing such features depending on the nature of their ambient environment.

7. Conclusion

We discussed the application of an existing special relativistic, hydrodynamic (SRHD) primitive variable recovery algo-
rithm to ultra-relativistic flows (Lorentz factor, c, of 102–106) and the refinement necessary for the numerical velocity root
finder to work in this domain. We found that the velocity quartic, QðvÞ, exhibits dual roots in the physical velocity range that
move progressively closer together for larger c leading to a divide by zero and the failure of the Newton–Raphson iteration
method employed by the existing primitives algorithm. Our solution was to recast the quartic to be a function, QðcÞ, of c. We
demonstrated that QðcÞ exhibits only one physical root. However, Newton–Raphson iteration also failed in this case at high
c, due to the extreme slope of the quartic near the root, necessitating the use there of an analytical numerical root finder.

Our timing analysis indicated that using QðcÞ with the 8-byte analytical root finder increased run time by only 24% com-
pared to using QðvÞwith the 8-byte iterative root finder (based on 10 trial runs), while using QðcÞwith the 16-byte analytical
root finder ballooned run time by a factor of approximately 400. The iterative root finder is accurate to order 10�4 for a siz-
able region of parameter space corresponding to Lorentz factors on the order of 102 and smaller. Therefore, we implemented
a computational switch that checks the values of M=E and R=E and calls the iterative or analytical root finder accordingly
thereby creating a hybrid primitives recovery algorithm called REST_FRAME.

In addition, our exploration of parameter space suggests that the discriminant of the cubic resolvent (as defined by Eq. (9)
in Section 3.1) will always be positive for physical flows. Therefore, we did not include code for negative discriminants in our
routine. Formal proof remains elusive, however, leaving potential for future work.

We have shown that REST_FRAME is capable of calculating the primitive variables from the conserved variables to an
accuracy of at least Oð10�4Þ for Lorentz factors up to 106 with significantly better accuracy for Lorentz factors 6 105, and
slightly worse (order 10�3) for a small portion of the space corresponding to the highest Lorentz factors. We traced the
degradation in accuracy for larger Lorentz factors to the effect of subtractive cancellation. Past studies have shown that
an accuracy of order 10�4 is capable of robustly capturing hydrodynamic structures. We have applied the refined solver
to an ultra-relativistic problem and have shown that it is capable of reproducing observed structures and is well-suited
to our study of the internal structure of diffuse pulsar wind nebulae.

Our main conclusions are as follows:

� Relativistic, hydrodynamic simulations have shown that the relatively slow, dense ISM flow resulting from the space
motion of a pulsar can set up an interaction with the extremely light, ultra-relativistic pulsar wind leading to an asymmet-
ric nebula with a morphology reminiscent of the Guitar nebula.
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� Simulations have validated the interpretation that a relativistic backflow behind PSR1929+10 is responsible for the X-ray
morphology. Results further show that the backflow can harbor a series of internal shockwaves that inflates a nebular
bubble, and that the bubble provides positive feedback to the backflow, explaining how the Guitar bubble persists.

� The evolution of the bubble/backflow structure is sensitive to the choice of input parameters justifying a future series of
simulation runs that will determine what pulsar velocities and wind/ISM density ratios are required for the bubble/back-
flow feedback loop to arise.
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