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The f-plane and b-plane wave propagation properties are examined for discretisations of
the linearised rotating shallow-water equations using the P1DG–P2 finite element pair on
arbitrary triangulations in planar geometry. A discrete Helmholtz decomposition of the
functions in the velocity space based on potentials taken from the pressure space is used
to provide a complete description of the numerical wave propagation for the discretised
equations. In the f-plane (planar geometry, Coriolis force independent of space) case, this
decomposition is used to obtain decoupled equations for the geostrophic modes, the iner-
tia-gravity modes, and the inertial oscillations. As has been noticed previously, the geo-
strophic modes are steady. The Helmholtz decomposition is used to show that the
resulting inertia-gravity wave equation is third-order accurate in space. In general the
P1DG–P2 finite element pair is second-order accurate, so this leads to very accurate wave
propagation. It is further shown that the only spurious modes supported by this discretisa-
tion are spurious inertial oscillations which have frequency f, and which do not propagate.
A restriction of the P1DG velocity space is proposed in which these modes are not present,
leading to a finite element discretisation which is completely free of spurious modes. The
Helmholtz decomposition also allows a simple derivation of the quasi-geostrophic limit of
the discretised P1DG–P2 equations in the b-plane (planar geometry, Coriolis force linear in
space) case resulting in a Rossby wave equation which is also third-order accurate. This
means that the dispersion relation for the wave propagation is very accurate; an illustra-
tion of this is provided by a numerical dispersion analysis in the case of a triangulation con-
sisting of equilateral triangles.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Recently there has been growing interest in developing more general horizontal discretisation schemes for numerical
weather prediction (NWP) models with computational meshes constructed from triangles or hexagons. There are two principal
motivations for this. Firstly, geodesic grids (which are obtained by iterative refinement of an icosahedron using triangles, some-
times transforming to the dual grid which is a mesh of hexagons with exactly 12 pentagons located at the vertices of the original
icosahedron) provide similar grid cell areas over the entire sphere, which has possible advantages for accurate representation of
wave propagation. Furthermore, geodesic grids also avoid the very fine grid cells obtained near the North and South poles on
latitude–longitude grids, which lead to large Courant numbers, and cause bottlenecks in communication between processors
on parallel systems. This has led to a number of groups developing weather and climate models which use geodesic grids
[14,11,17]. Secondly, triangles facilitate the implementation of adaptive mesh refinement. This allows nested regional models
. All rights reserved.
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within a global model, and further allows dynamic mesh refinement in which the mesh resolution is locally modified in re-
sponse to the dynamics in the course of a forecast. The development of new numerical schemes that correctly represent the
qualitative properties of wave propagation on these grids, and under adaptive-mesh refinement, is crucial.

Possible discretisations on triangular or hexagonal meshes are obtained using three different approaches: finite difference
methods, finite volume methods and finite element methods. To eliminate spurious pressure modes, finite difference meth-
ods use a C-grid in which the edge-normal velocity is stored at the edge-centres, and the pressure is stored at the cell-cen-
tres. On quadrilateral grids, the wave propagation is observed to be well represented provided that the Rossby radius is well-
resolved [1,6,12]. On triangular and hexagonal grids the problem lies in finding a scheme for reconstructing the Coriolis force
(which requires the tangential velocity) from the normal velocity. Recently, a reconstruction scheme was found which re-
sults in steady geostrophic modes for C-grid discretisations on the regular hexagonal grid in the plane [19]. In the same paper
it was shown that the resulting discrete system on the b-plane has a spurious extra Rossby wave branch, with very slow East-
ward phase velocities. This reconstruction was extended to arbitrarily structured C-grids in Thuburn et al. [20]. The finite
element method provides a great degree of flexibility in the choices of discretisation for velocity and pressure. Amongst
the many finite element pairs that have been proposed for the rotating shallow-water equations are the P1NC–P1 and P1–
iso P2–P1 elements (investigated and compared to several other element pairs in Le Roux et al. [10]), the RT0 elements
(introduced in Raviart [13] and proposed for the shallow-water equations in Walters and Casulli [22]) and equal-order ele-
ments with stabilisation (also proposed in Walters and Casulli [22]).

In this paper we study the wave propagation properties of the recently proposed P1DG–P2 finite element discretisation.
The P1DG–P2 finite element discretisation was introduced in Cotter et al. [5], and was designed to accommodate the geo-
strophic balance relation between pressure and velocity without introducing spurious pressure modes. This is achieved
by using a quadratic (P2) continuous finite element basis for pressure, and a linear discontinuous (P1DG) finite element basis
for velocity (hence the name P1DG–P2). The pressure polynomials are one order higher than the velocity polynomials, which
accommodates the geostrophic balance relation since the pressure gradient and the velocity are both linear within each ele-
ment. Making the velocity basis discontinuous increases the number of velocity degrees of freedom so that there are no spu-
rious pressure modes. The lack of pressure modes was investigated numerically in Cotter et al. [5] and subsequently proved
in Cotter et al. [4], where it was also shown that this combination of spaces means that geostrophically balanced states are
exact steady states of the linear equations on arbitrary unstructured meshes (this property can also be obtained for C-grid
finite difference methods as described in Thuburn et al. [20], with the added restriction that the meshes satisfy an orthog-
onality property). In this paper we go further and produce a complete description of the numerical wave propagation prop-
erties of P1DG–P2, which is facilitated by the construction of a discrete Helmholtz decomposition of the P1DG space.

The rest of this paper is organised as follows. In Section 2, we show that P1DG–P2 has a discrete Helmholtz decomposition.
In Section 3 we use this decomposition to analyse the wave propagation on the f-plane. We show that there are three types of
modes: steady geostrophic modes, inertia–gravity modes, and inertial oscillations (of which only one is a physical mode). We
show that the inertial oscillations do not propagate and can be filtered out by solving two discretised elliptic equations. We
also show that the velocity may be eliminated to obtain a third-order accurate inertia–gravity wave equation, and hence
claim that the wave propagation is very accurate on arbitrary unstructured meshes. In Section 4, we use the Helmholtz
decomposition to analyse the Rossby wave propagation on the b-plane in the quasi-geostrophic limit (following the ap-
proach of Thuburn [19]). We obtain a third-order accurate Rossby wave equation, and hence claim that the Rossby wave
equation is also very accurate. Finally, in Section 5 we give a summary and outlook.

2. Discrete Helmholtz decomposition for P1DG–P2

In this section we show that the P1DG–P2 finite element discretisation has a discrete Helmholtz decomposition for P1DG–P2.
We shall adopt the notation that the d superscript indicates a numerical approximation in a finite element space; functions
without subscripts indicate continuous fields. We start by stating two properties of P1DG–P2 which we shall use throughout.

Definition 1 (Embedding conditions). Let V be the chosen vector space of finite element velocity fields (in the case of P1DG–
P2, V is the space P1DG of velocity fields ud that are linear in each triangular element, with no continuity constraints across
element boundaries), and let H be the chosen vector space of finite element pressure fields (in the case of P1DG–P2, H is the
space P2 of pressure fields hd that are quadratic in each triangular element and are constrained to be continuous across
element boundaries).
1. The operator r defined by the pointwise gradient
qdðxÞ ¼ rhdðxÞ
maps from H into V.
2. The skew operator \ defined by the pointwise formula
qdðxÞ ¼ ðudðxÞÞ? ¼ ð�ud
2;u

d
1Þ
maps from V into itself.
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These are the only conditions that we use in the paper and hence any properties extend to any other finite element pair
that satisfies these conditions (P0–P1 or PnDG–P(n + 1) with any n > 1, for example).

These conditions are most definitely not satisfied by all possible pairs (V,H), as illustrated by the following examples.

Example 2 (P1–P1). The finite element pair known as P1–P1 (which may be used for the shallow-water equations but
requires stabilisation as described in Walters and Casulli [22]) is defined as follows:

� The mesh M is composed of triangular elements.
� H is the space of elementwise-linear functions hd which are continuous across element boundaries.
� V is the space of vector fields ud with both of the Cartesian components (ud,vd) in H.

Condition 1 of Definition 1 is not satisfied by the P1–P1 pair since gradients of functions in H are discontinuous across ele-
ment boundaries. Condition 2 is satisfied since the same continuity conditions are required for normal and tangential
components.
Example 3 (RT0). The lowest order Raviart–Thomas [13] velocity space (known as RT0) is constructed on a meshM com-
posed of triangular elements. It consists of elementwise constant vector fields which are constrained to have continuous nor-
mal components across element boundaries. RT0 does not satisfy condition 2 of Definition 1 since the \ operator transforms
vector fields with discontinuities in the tangential component (which are permitted in RT0) into vector fields with discon-
tinuities in the normal component (which are not).

We now describe some examples of finite element pairs which do satisfy the conditions in Definition 1.

Example 4 (P0–P1). The finite element pair known as P0–P1 (applied to ocean modelling in Umgiesser et al. [21], and
analysed in [16,15]) is defined as follows:

� The mesh M is composed of triangular elements.
� H is the space of elementwise-linear functions hd which are continuous across element boundaries.
� V is the space of elementwise-constant vectors with discontinuities across element boundaries permitted.
Example 5 (P1DG–P2). The finite element pair known as P1DG–P2 [5] is defined as follows:

� The mesh M is composed of triangular elements.
� H is the space of elementwise-quadratic functions hd which are continuous across element boundaries.
� V is the space of elementwise-linear vectors with discontinuities across element boundaries permitted.

Each of these examples satisfy both conditions in Definition 1: condition 1 holds because taking the gradient of a element-
wise polynomial n + 1 which is continuous across element boundaries results in a vector field which is discontinuous across
element boundaries and is composed of elementwise polynomials of degree n, and condition 2 holds since the velocity space
uses the same continuity constraints for normal and tangential components i.e. both components are allowed to be discon-
tinuous. This defines a whole sequence of high-order PnDG–P(n + 1) element pairs. Similar elements can be constructed on
quadrilateral elements. Since we only require these two conditions to prove our optimal balance property which holds on
arbitrary meshes, we can also construct finite element spaces on mixed meshes composed of quadrilaterals and triangles,
for example. It is also possible to use p-adaptivity in which different orders of polynomials are used in different elements,
as long as the conditions are satisfied. To make the rest of the paper less abstract, we shall only discuss P1DG–P2, but all
of the results are easily extended (with the appropriate orders of accuracy) to any element pair satisfying Definition 1.

Next we note that the gradient of and skew-gradient of any two pressure fields /d, wd in the pressure space P2 are orthog-
onal in the L2 inner product,
hrwd;r?/di ¼
Z

X
rwd � r?/ddV ¼ 0;
where X is the solution domain which is either the sphere, or a domain with periodic boundary conditions. This was proved
by direct computation in Cotter et al. [4]. Hence, any velocity field ud in P1DG can be written uniquely in an orthogonal
decomposition
ud ¼ �ud þr/d þr?wd þ ûd; ð1Þ
where �ud is independent of space, where /d and wd are both in the space P2, which consists of P2 functions with mean zero,
i.e.
h/d;1i ¼
Z

X
/ddV ¼ 0; hwd;1i ¼

Z
X

wddV ¼ 0
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and where ûd is orthogonal to the gradient or skew-gradient of any P2 function ad, i.e.
hûd;radi ¼ hûd;r?adi ¼ 0:
Furthermore, if any such ûd satisfies
hûd; ûdi ¼ 0;
then ûd ¼ 0, since ûd is obtained from orthogonal completion. In general the dimension of the orthogonal subspace contain-
ing the vector fields of the form ûd is non-zero, since there are more than twice as many degrees of freedom in the velocity
space V as the pressure space H. The dimension of V is 6nf (where nf is the number of elements), and the dimension of H is
nv + ne (where nv is the number of vertices and ne is the number of edges). For doubly periodic boundary conditions, Euler’s
polyhedral formula on the torus then gives dim(H) = nv + ne = 2ne � nf. For a triangulation, 2ne = 3nf since each triangle has
three edges which are each shared between two faces, so dim(H) = 2nf < 3nf = dim(V)/2. Since 2dim(H) < dim(V) it is not pos-
sible to span V entirely with functions of the form r\wd +r/d, wd, /d 2 H, and so components of the form ûd will always be
present.

Eq. (1) is identical to the Helmholtz decomposition for arbitrary continuous velocity fields in which any continuous veloc-
ity field u can be written as a constant plus a gradient of a potential plus the skew gradient of a streamfunction; the only
difference in the discrete P1DG–P2 case is the extra component ûd. This extra component gives rise to spurious inertial oscil-
lations in the P1DG–P2 finite element discretisation applied to the rotating shallow-water equations. It is possible to describe
a reduced velocity space, which we call H(P2), consisting of velocity fields which can be written as
vd ¼ �vd þr/d þr?wd;
where �vd is independent of space, where /d and wd are both in the space P2, i.e. we have removed the spurious velocity com-
ponent. It is possible to project a P1DG velocity field ud into H(P2), by first computing the mean component,
�ud ¼
R

X uddVR
X dV
and then extracting the velocity potential and streamfunction by solving
hrad;r/di ¼ hrad;udi
and
hrad;rwdi ¼ hr?ad;udi
for all P2 functions ad. This amounts to solving elliptic problems for /d and wd. Then, the projection of ud into H(P2) is given
by
�ud þr/d þr?wd:
3. Discrete wave propagation on the f-plane

In this section we describe all of the numerical solutions obtained from P1DG–P2 applied to the f-plane.

3.1. Discrete wave equation on the f-plane

The P1DG–P2 spatial discretisation of the rotating shallow-water equations (see Cotter et al. [4] for a derivation) is
d
dt
hwd;udi þ hf wd; ðudÞ?i ¼ �c2hwd;rgdi; ð2Þ

d
dt
h/d;gdi ¼ hr/d;udi; ð3Þ
where the velocity ud is in P1DG, the layer depth gd = H(1 + gd) is in P2, for all test functions wd in P1DG and /d in P2, and where
c ¼

ffiffiffiffiffiffi
gH

p
is the non-rotating wave propagation speed, g is the acceleration due to gravity, H is the mean layer depth and f is

the Coriolis parameter.
On the f-plane, f is a constant, and so we may take it outside the Coriolis integral. Applying the discrete Helmholtz decom-

position to the velocity ud and the velocity test functions wd, i.e.,
ud ¼ �ud þr/d þr?wd þ ûd; wd ¼ �wd þrad þr?bd þ ŵd;
where ad and bd are in P2.
Eqs. (2) and (3) become (after removing products of orthogonal quantities)
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d
dt
hrad;r/di � f hrad;rwdi þ c2hrad;rgdi ¼ 0; ð4Þ

d
dt
hrad;rwdi þ f hrad;r/di ¼ 0; ð5Þ

d
dt
had;gdi � hrad;r/di ¼ 0; ð6Þ

d
dt
h �wd; �udi þ f h �wd; �udi ¼ 0; ð7Þ

d
dt
hŵd; ûdi þ f hŵd; ðûdÞ?i ¼ 0: ð8Þ
These solutions exhibit four types of orthogonal modes: geostrophic balance, inertia gravity waves, the physical inertial
oscillation, and spurious inertial oscillations due to the presence of û. We shall now describe these modes one by one.

3.2. Geostrophic balance

For the continuous equations before discretisation, geostrophically balanced modes are obtained from non-zero steady
solutions of the equations. As shown in Cotter et al. [4], in the P1DG–P2 discretisation solutions which satisfy the geostrophic
balance relation are also exactly steady. To see this within the framework of this paper, assume a steady state, then Eqs. (4)–
(8) become
� f hrad;rwdi þ c2hrad;rgdi ¼ 0; ð9Þ
f hrad;r/di ¼ 0; ð10Þ
� hrad;r/di ¼ 0; ð11Þ
f h �wd; �udi ¼ 0; ð12Þ
f hŵd; ðûdÞ?i ¼ 0: ð13Þ
Eqs. (10) and (11) both imply that /d = 0 since they are the usual continuous finite element discretisations of the Laplace
equation which has no non-zero solutions because /d and ad are both restricted to P2. Similarly Eqs. (12) and (13) imply that
�ud ¼ ûd ¼ 0. Eq. (9) is the discrete geostrophic balance relation between wd and gd, and the Laplace operator can be inverted
(since the finite element discretisation of the Poisson equation has a unique solution for solutions in P2) to obtain the point-
wise geostrophic balance relation
fwd ¼ c2gd;
as noted in Cotter et al. [4]. This means that P1DG–P2 has an excellent representation of geostrophic balance.

3.3. Inertia gravity waves

The physical wave variables /d, wd and gd are uncoupled from the mean velocity component �ud and the spurious velocity
component ûd. To obtain the discrete inertia gravity wave equation, the time derivative applied to Eq. (4) gives
d2

dt2 hrad;r/di � f
d
dt
hrad;rwdi þ d

dt
c2hrad;rgdi ¼ 0:
Substitution of Eqs. (5) and (6) then give
d2

dt2 þ f 2

 !
d
dt
had;gdi þ d

dt
c2hrad;rgdi ¼ 0: ð14Þ
This is the usual continuous finite element discretisation of the inertia–gravity wave equation
@2

@t2 þ f 2

 !
@

@t
g� c2r2 @g

@t
¼ 0: ð15Þ
Since only P2 functions are present, the solution gd is third-order accurate, as opposed to the second-order accuracy expected
with a first-order velocity discretisation. This higher-than-expected accuracy means that P1DG–P2 has a very accurate rep-
resentation of inertia–gravity wave propagation. In particular, it should be expected that the phase velocity is more indepen-
dent of mesh orientation than other second-order methods. The equivalent property for P0–P1 was noted in Roux et al. [16],
namely that the inertia–gravity dispersion relation was one order more accurate than expected, namely second-order. The
above proof extends this result to both arbitrary meshes, and to any finite element pair that satisfies the embedding prop-
erties above.
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A numerical verification of this third-order convergence is shown in Fig. 1. Care must be taken to obtain third-order con-
vergence: if the initial conditions for the P1DG velocity are obtained by P1DG collocation, i.e. evaluating the analytic initial
condition at the node points and using those values as nodal basis coefficients, then the truncation error in the initial con-
dition for the velocity is second-order, and hence second-order accuracy is the most that can be expected after time-integrat-
ing the equations. However, a third-order accurate velocity initial condition can be obtained by first constructing a higher-
order finite element approximation to the velocity field by collocation (we used a P2 approximation in the calculations in
Fig. 1), and then applying the L2 projection to obtain a P1DG velocity field. This results in third-order convergence of the free
surface elevation over fixed time, since the free surface elevation equation is the P2 finite element approximation to the iner-
tia–gravity wave equation, as shown above. To see that this procedure leads to a third-order accurate velocity field initial
condition, first write the analytic initial condition for the velocity as
Fig. 1.
is a sin
propaga
velocity
obtaine
uðx;0Þ ¼ r/0 þr?w0 þ �u0:
By standard approximation theory, the pth-order collocated finite element approximation to the initial condition satisfies
up ¼ uðx;0Þ þ OðDxpþ1Þ. The P1DG–P2 initial condition ud satisfies
Z

vd � uddV ¼
Z

vd � updV
for all P1DG test functions vd. After subsitution of the Helmholtz decomposition for u(x,0) and the discrete Helmholtz decom-
position for ud, this becomes
Z

rad � r/ddV ¼
Z
rad � r/0dV þOðDxpþ1Þ;Z

rad � rwddV ¼
Z
rad � rw0dV þOðDxpþ1Þ;

�ud ¼ �u0 þOðDxpþ1Þ
and the potentials /d and wd converge to /0 and w0 as OðDx3Þ following standard convergence theory for finite element dis-
cretisations of elliptic problems (see [2], for example). Third-order convergence for the P1DG–P2 discretisation applied to
inertia–gravity waves on the f-plane was demonstrated in Comblen et al. [3] in which various partly-discontinuous finite
element pairs were benchmarked against a high-order discontinuous Galerkin reference solution. Since the initial conditions
were obtained by L2 projection from the high-order solution, third-order convergence was observed.

3.4. Physical inertial oscillation

Since the integration is performed over spatially-independent functions, Eq. (7) may be written as
�wd � d
dt

�ud þ f ð�udÞ?
� �

¼ 0
Plot showing convergence rates for the P1DG–P2 discretisation applied to the linear rotating shallow-water equations on an f-plane. The test problem
gle propagating sinusoidal wave in periodic boundary conditions, with the L2 error in the free surface elevation computed after the wave has
ted all the way around the periodic domain. Second-order convergence for the free surface elevation is obtained when the initial conditions for
are obtained by collocation at node points; third-order convergence for the free surface elevation is obtained when the initial conditions are

d by collocation with a quadratic P2 basis for velocity and reduced to the P1DG space by L2 projection.
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and since it must hold for all �wd, we obtain
d
dt

�ud þ f ð�udÞ? ¼ 0;
which is the usual inertial oscillation equation which has spatially-independent solutions which rotate with frequency f.

3.5. Spurious inertial oscillations

Eq. (8) describes the dynamics of the spurious velocity component ûd. If ûd is a spurious velocity (i.e. is orthogonal to all
rad and r\ad), then so is ðûdÞ? and so Eq. (8) does not involve any projection and hence can be written as
d
dt

ûd þ f ðûdÞ? ¼ 0
these solutions also simply rotate with frequency f and hence must be interpreted as spurious inertial oscillations which do
not propagate as waves.

If we replace the velocity space P1DG with the restricted space H(P2), as described in Section 2, then we obtain the finite
element pair which we call H(P2)–P2. we still have Eqs. (4)–(7) but without the spurious inertial oscillations in Eq. (8), hence
the H(P2)–P2 discretisation has no spurious modes.

3.6. Discrete dispersion relation for inertia-gravity waves

In this section, we compute the discrete dispersion relation for the P1DG–P2 discretisation applied to the rotating shallow-
water equations on the f-plane for the special case of a structured mesh in a regular hexagonal domain with edge length L
centred on the origin, with periodic boundary conditions for opposing faces, tiled with equilateral triangles with edge
lengths Dx = L/N for some positive integer N, and use this to define a continuous P2 finite element mesh. The discrete dis-
persion relation is developed by searching for time-harmonic solutions of (14). Assuming such a time-harmonic solution
gd / eixt, Eq. (14) becomes
ð�x2 þ f 2Þhad;gdi þ c2hrad;rgdi ¼ 0: ð16Þ
If gd is an eigensolution of Eq. (16), then so is Tzgd(x) = gd(x � z) for any z in the set V of translations that map vertices in the
mesh to other vertices. Hence, eigenfunctions of Eq. (16) are all eigenfunctions of Tz, i.e. they take the form
gdðxÞjx2Xz
¼ ĝdðnÞeik�z; nDxþ z ¼ x; 8z 2 V; ð17Þ
where Xz is the translation of the hexagon formed from the six equilateral triangles surrounding the vertex at the origin by
z; ĝdðnÞ is defined on the reference hexagon Xe with edge length 1 and centred at the origin, n is the local coordinate in Xe,
and k 2 R2 is the wave vector satisfying k�z = 2pl with l an integer. The wave vector k is contained in the first Brillouin zone
of the periodic hexagonal domain which is bounded by the lines
k � ðcosðhnÞ; sinðhnÞÞT ¼
2ffiffiffi
3
p p; hn ¼ nþ 1

2

� �
p=3; for n ¼ 1;2; . . . ;6:
For more details of functions on periodic lattices, see [8], for example.
Let us now fix an arbitrary wave vector k satisfying the conditions above. We note that the integral in Eq. (16) can be

performed by integrating over all hexagons Xz and dividing by three (since each equilateral triangle is covered by three
hexagons). Given a test function ad, Eq. (16) (multiplied by three) becomes
0 ¼
X
z2V

Z
Xz

ð�x2 þ f 2ÞadðxÞgdðxÞ þ c2radðxÞ � rgdðxÞdVðxÞ

¼
X
z2V

Z
Xe

ðDx2ð�x2 þ f 2ÞadðnDxþ zÞĝdðnÞ þ rnadðnDxþ zÞ � rnĝdðnÞÞeik�zdVðnÞ

¼
Z

Xe

Dx2ð�x2 þ f 2ÞâdðnÞĝdðnÞ þ c2râdðnÞ � rĝdðnÞdVðnÞ;
where âd is defined on Xe with
âdðnÞ ¼
X
z2V

adðnDx� zÞeik�z:
We have now written the dispersion relation in such a way that all the computations can be done over one single reference
hexagon Xe. The boundary conditions for ĝd on the reference hexagon can be computed from the condition that ĝd is con-
tinuous at the boundaries, meaning that on each edge of the hexagon Xe, denoted @Xe,n (with 1 6 n 6 6),
ĝdðnÞ ¼ eiDxk�Dnĝdðnþ DnÞ;



Fig. 2. Diagram showing the reference domain Xe which is used to perform the numerical dispersion relation calculations. After considering the boundary
conditions for ĝd which are the consequence of requiring that gd is continuous, there are four degrees of freedom for ĝd , which we denote f~gng4

n¼0. Each node
in the diagram is labelled with a number n, indicating that ĝd ¼ ~gneik�nDx at that node.
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where Dn is the vector from @Xe,n to the opposing face. Fig. 2 illustrates the consequences of this for the basis coefficients of
ĝd when a nodal basis1 is used.

We can similarly use continuity of ad to obtain boundary conditions for âdðnÞ on @Xe. On the boundary @Xe,n,
1 A n
continu
âdðnÞ ¼
X
z2V

adðnDx� zÞeik�z;

¼
X
z2V

adððnþ DnÞDx� ðz þ DxDnÞÞeik�z;

¼
X
z2V

adððn� DnÞDx� zÞeik�ðz�DxDnÞ;

¼ e�iDxk�nâdðeDn þ DnÞ:
This means that âd has boundary conditions which are the complex conjugate of the boundary conditions for ĝd.
We adopt a nodal basis for functions inside Xe. There are 19 P2 nodes on Xe (see Fig. 2), and so we write
ĝd ¼
X19

n¼1

ĝnNnðnÞ;
where Nn(n), (n = 1, . . . ,19), are the nodal basis functions for P2 functions inside Xe, and gn (n = 1, . . . ,19) are the nodal basis
coefficients. The boundary conditions for ĝd described above can be expressed via a matrix S (which is a function of kDx due
to the dependence of the boundary conditions for ĝ and â on k), so that
ĝ ¼ S~g; â ¼ S�~a;
where ĝ and â are the vectors of the basis coefficients of gd and ad, respectively, and ~g and ~a are the corresponding vectors of
the independent degrees of freedom.

After substituting, the wave equation becomes
0 ¼ ð�x2 þ f 2Þhad;gdi þ ghrad;rgdi ¼ 0 ¼ Dx2âT ð�x2 þ f 2ÞMe þ
gLe

Dx2

� �
ĝ ¼ Dx2 ~aT Sy ð�x2 þ f 2ÞMe þ g

Le

Dx2

� �
S~g;
where Me is the local mass matrix
Me;ij ¼
Z

Xe

NiðnÞNjðnÞdVðnÞ
and Le is the Laplacian matrix
odal basis is a basis in which each basis function has unit value at one of the node points, e.g. the vertices and edge midpoints in the case of the
ous quadratic mesh, and vanishes on all other node points.
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Le;ij ¼
Z

Xe

rNiðnÞ � rNjðnÞdVðnÞ
and � indicates the Hermitian conjugate of a matrix. Since ~a is arbitrary, we seek non-trivial solutions of
SyðDx2ð�x2 þ f 2ÞMe þ gLeÞS~g ¼ 0
and we obtain the dispersion relation
jSyðDx2ð�x2 þ f 2ÞMe þ gLeÞSj ¼ 0; ð18Þ
which must be solved for x given k (the k dependence is in S as described above). This equation is the determinant of a 4 � 4
matrix with entries that are linear in k = Dx2(x2 � f2), so it is a quartic polynomial in k.

After lengthy calculation using SymPy [18], the following matrices are obtained:
SyMeS ¼
A B

BT C

� �
; SyLeS ¼

D E

ET F

� �
;

where
A ¼
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having written k = (k, l).
The resulting quartic equation for k = Dx2(x2 � f2) obtained from evaluating the determinant (18) is a very complicated

expression that would take up several pages. Hence, solutions to the dispersion relation Eq. (18) were obtained by numer-
ically evaluating the matrix (S�MeS)�1S�LeS for various values of k, and using the Scientific Python linalg.eig routine, which
were then sorted in numerical order. Since the equation for k = Dx2(x2 � f2) is quartic, this leads to four branches of the dis-
persion relation (this is typical for P2 schemes in two dimensions), which correspond to the fundamental exp(ik � x) modes
with k inside the first Brillouin zone, plus higher wave number solutions obtained from the second, third and fourth Brillouin
zones which have the same translation property at the triangle vertices but result in different values at the edge centres. The
plots of the four branches are given in Fig. 3. It is immediately visible that the lowest eigenvalues are very isotropic, as might
be expected from the fact that the dispersion relation is in fact third-order rather than second-order, as described in Sec-
tion 3.3. This means that resolved gravity waves of a particular wave number have a propagation speed which is largely inde-
pendent of the direction of alignment of the mesh (this is a property which is considered important and was one of the
contributing factors towards designing the hexagonal C-grid as an alternative to the triangular C-grid). It can also be seen
that the dispersion relation is monotonically-increasing with jkj with some small jumps when moving between branches
(see Cotter et al. [5] for the equivalent one-dimensional plot); there are no spurious inertia–gravity modes.



Fig. 3. Plots showing contours of Dx(x2 � f2) in the kDx plane for each of the four branches of the numerical dispersion relation for the P1DG–P2 finite
element scheme applied to the linear rotating shallow water equations on the f-plane. The lowest branch is shown top-left, with contours of the exact
dispersion relation superimposed using dashed lines. This lowest branch is very accurate, and the contours are very circular, meaning that the wave
propagation is almost independent of the direction of mesh alignment. The other plots show the higher branches which represent the second, third and
fourth Brillouin zones in the kDx plane mapped in to the first Brillouin zone. For example, one can cross from the lowest branch into the branch in the top-
right branch by going through the hexagon which bounds the region, emerging from the opposite edge in the hexagon in the top-right plot, moving in the
opposite direction. It can be seen that all four branches represent physical modes from different regions of physical k-space which can be resolved on the
grid.
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4. Discrete wave propagation on the b-plane

In this section, we consider the quasi-geostrophic scaling on the b-plane, following the approach of Roux and Pouliot [15],
and Thuburn [19], in which the quasi-geostrophic approximation is applied to the spatially-discretised equations.

In the b-plane case, f = f0 + by, and after substitution of the orthogonal decomposition for the solution variables and test
functions into Eqs. (2) and (3) we obtain
d
dt
rad;r/d	 


� f0hrad;rwdi � hbyrad; �ud þ ðûdÞ? þrwd þr?/di þ c2hrad;rgdi ¼ 0;

d
dt
hrad;rwdi þ f0hrad;r/di þ hbyrad;��ud � ûd þr?/d þrwdi ¼ 0;

d
dt
had;gdi � hrad;r/di ¼ 0;

d
dt
h �wd; �udi þ f0h �wd; ð�udÞ?i þ h �wdby; ð�udÞ? þ ðûdÞ? þr?/d �rwdi ¼ 0;

d
dt
hŵd; ûdi þ f0hŵd; ðûdÞ?i þ hŵdby; ð�udÞ? þ ðûdÞ? þr?/d �rwdi ¼ 0:
At leading order in Rossby number in the quasi-geostrophic scaling, we obtain the geostrophic balance:
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� f0 rad;rwd
g

D E
þ c2 rad;rgd

g

D E
¼ 0;

f0 rad;r/d
g

D E
¼ 0;

� rad;r/d
g

D E
¼ 0;

f0 ŵd; ðûdÞ?g
D E

¼ 0;
which we have already analysed in Section 3.2, and so we know that it implies that
ûd
g ¼ 0; /d

g ¼ 0; wd
g ¼

c2

f
gd

g : ð19Þ
At the next order we obtain
d
dt
rad;r/d

ag

D E
� f0 rad;rwd

ag

D E
� byrad;rwd

g

D E
þ gH rad;rgd

ag

D E
¼ 0; ð20Þ

d
dt
rad;rwd

g

D E
þ f0 rad;r/d

ag

D E
þ byrad;r?wd

g

D E
¼ 0; ð21Þ

d
dt

ad;gd
g

D E
� rad;r/d

ag

D E
¼ 0; ð22Þ

f0 �wd; ð�udÞ?ag

D E
þ �wdby;�rwd

g

D E
¼ 0; ð23Þ

f0 ŵd; ðûdÞ?ag

D E
þ ŵdby;�rwd

g

D E
¼ 0: ð24Þ
Notice that the spurious velocity modes do not appear at this order in the physical mode Eqs. (20)–(22), and that Eq. (24)
states that the ageostrophic spurious velocity modes are slaved to the geostrophic streamfunction. Substituting Eqs. (19)
and (22) into (21) gives
d
dt

rad;rwd
g

D E
þ f 2

0

gH
ad;wd

g

D E� �
þ byrad;r?wd

g

D E
¼ 0: ð25Þ
The second term in Eq. (25) may be written as
byrad;r?wd
g

D E
¼ rðbyadÞ � badð0;1Þ;r?wd

g

D E
¼ �b ad;

@

@x
wd

g

� �
and we obtain the usual continuous finite element approximation to the Rossby wave equation using P2 elements
d
dt

rad;rwd
g

D E
þ f 2

0

gH
ad;wd

g

D E� �
� b ad;

@

@x
wd

g

� �
¼ 0: ð26Þ
Since P2 elements are used, the approximation to the Rossby wave equation is third-order accurate, rather than the second-
order accuracy one would expect with P1DG for velocity. The equivalent property for P0–P1 was shown in Roux and Pouliot
[15], namely that the Rossby wave dispersion relation is second-order. The above proof extends this result to arbitrary
meshes and to any finite element pair which satisfies the embedding properties.

We again expect that the phase velocity is more independent of mesh orientation than other second-order methods. Since
the streamfunction wd and the height variable gd are both from the P2 space and hence have the same numbers of degrees of
freedom, there are exactly twice as many inertia–gravity wave modes as Rossby wave modes. We also note that if the re-
duced space H(P2)–P2 is used instead of P1DG–P2 we obtain the same equations but with vanishing spurious inertial modes.

4.1. Discrete dispersion relation for Rossby waves

Starting from Eq. (26), and following the method described above for the obtaining the inertia-gravity wave dispersion
relation on the equilateral grid, we obtain the numerical dispersion relation
Sy ix
Le

Dx2 þ
1
L2

R

Me

 !
� b

De

Dx

 !
S












 ¼ 0; ð27Þ
where De is the local derivative matrix
De;ij ¼
Z

Xe

NiðnÞf̂ � rNjðnÞdVðnÞ
and where f̂ is the unit vector pointing in the direction of increasing f on the b-plane. We shall investigate the variation in the
dispersion relation with the alignment of the triangular grid, and hence it is convenient to write
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De;ij ¼ f̂ 1D1
e;ij þ f̂ 2D2

e;ij;
where
D1
e;ij ¼

Z
Xe

NiðnÞ
@Nj

@n1
ðnÞdVðnÞ; D2

e;ij ¼
Z

Xe

NiðnÞ
@Nj

@n2
ðnÞdVðnÞ:
After further algebraic manipulation with SymPy, we obtain
SyD1
e S ¼

P1 Q 1

QT
1 R1

� �
; SyLeS ¼
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� �
;
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The eigenvalues can then be obtained using the method used for the inertia-gravity waves i.e. by finding the eigenvalues of
the matrix for various kDx and plotting contours in k space. There is an extra difficulty in the Rossby case, because the
numerical algorithm for obtaining eigenvalues of the 4 � 4 matrix does not preserve the order of the branches when kDx
is varied. It is not possible to distinguish the branches by sorting the eigenvalues in numerical order for each k because
the branches have values which cross. However, the branches can be distinguished by examining the corresponding eigen-
vectors. If we interpolate the continuous Fourier modes to the reference hexagon, we obtain four types of solution (after nor-
malisation) for ~g, namely
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where the fundamental modes take the form of the vector on the left, and higher modes arise from the other three vectors.
Hence, we identified the various branches by inspecting the eigenvectors and associating them with the branch which has
the same sign pattern as the vectors above.

Fig. 4 shows contour plots of the frequency x for the case f̂ ¼ ð0;1Þ, with parameter values taken from Thuburn [19]. Ex-
actly as the f-plane case, we obtain four roots for x which correspond to the fundamental modes (i.e. the modes that are
possible to represent on a P1 mesh) and the higher modes which arise from the extra accuracy on a P2 mesh. All the modes
correspond to physical values after correct interpretation through the Brillouin zones as for the inertia–gravity wave case. A
comparison with the exact dispersion relation for Rossby waves is given in Fig. 5; a very close match is observed. Fig. 6 shows
contour plots for the same parameter values but with f̂ ¼ ð1;0Þ. Fig. 7 shows the corresponding comparison with the exact



Fig. 4. Contour plots showing x � 106 obtained from the solutions of Eq. (27), with parameters f0 = 1.0 � 10�4, b = 1.0 � 10�12, Dx = 1.0 � 105 and
c2 = 1.0 � 105 (these parameters are the same as those used in Thuburn [19]). f increases in the y-direction relative to the mesh. The lowest branch of the
dispersion relation is shown top-left. The other branches are aliased higher values of kDx.

Fig. 5. Comparison between the lowest branch of the discrete dispersion relation (left) and the exact dispersion relation (right). f increases in the y-
direction relative to the mesh.
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dispersion relation; a close match is again observed. This shows that the P1DG–P2 discretisation has Rossby waves whose
speed is almost independent of the mesh orientation.

5. Summary and outlook

In this paper we analysed the P1DG–P2 finite element pair applied to the rotating shallow-water equations, by means of a
discrete Helmholtz decomposition which exists because of the embedding properties of P1DG–P2, namely gradients and skew
gradients of P2 map into P1DG. The discrete Helmholtz decomposition has some extra components, which we refer to as spu-
rious velocity components, and which can be projected out, resulting in a discretisation that we referred to as H(P2)–P2. This
decomposition was then used to show that in the f-plane, all steady states are geostrophically balanced (and vice versa). Fur-
thermore, a discrete inertia-gravity wave equation can be derived which is the same as the P2 continuous finite element
method applied to the inertia–gravity wave equation, and hence the inertia–gravity wave solutions are third-order accurate.
This should mean that the P1DG–P2 method should give very stable and accurate solutions of the linear geostrophic adjust-
ment problem. We also showed that the spurious velocity components are uncoupled from the geostrophic balance or



Fig. 6. Contour plots showing x � 106 obtained from the solutions of Eq. (27), with parameters f0 = 1.0 � 10�4, b = 1.0 � 10�12, Dx = 1.0 � 105 and
c2 = 1.0 � 105 (these parameters are the same as those used in Thuburn [19]). f increases in the x-direction relative to the mesh. The lowest branch of the
dispersion relation is shown top-left. The other branches are aliased higher values of kDx.

Fig. 7. Comparison between the lowest branch of the discrete dispersion relation (left) and the exact dispersion relation (right). f increases in the x-direction
relative to the mesh.
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inertia–gravity waves, and they just undergo spurious inertial oscillations which do not propagate. When the H(P2)–P2
method is used, we obtain identical equations but without the spurious inertial oscillations. The H(P2)–P2 method may
be thought of as an implementation of the P2 finite element version of the Z-grid, in which vorticity, streamfunction and
layer thickness are all collocated. Hence, the P1DG–P2 method may be thought of as a way to embed the finite element Z-grid
into a method which avoids the need to solve elliptic problems for the potential and streamfunction, at the cost of adding
spurious inertial oscillations.

We then followed the methodology of Roux and Pouliot [15], and Thuburn [19], to analyse the Rossby wave equation ob-
tained from the P1DG–P2 discretisation of the shallow-water equations on the b-plane in the quasi-geostrophic limit. It was
shown that the spurious velocity components do not couple in to the Rossby wave dynamics, in fact the geostrophic spurious
components vanish and the ageostrophic components are slaved to the geostrophic streamfunction. It was shown that the
quasi-geostrophic limit leads to a discrete Rossby wave equation which is identical to the continuous P2 finite element dis-
cretisation applied to the continuous Rossby wave equation, and hence the P1DG–P2 Rossby waves are third-order accurate.
We expect that this means that the P1DG–P2 dispersion relation is much more independent of the direction of mesh align-
ment than other methods with linear velocity (such as the lowest-order Ravier–Thomas element which is the finite element
version of the C-grid finite difference method). One seemingly negative aspect of using continuous finite element methods



2820 C.J. Cotter, D.A. Ham / Journal of Computational Physics 230 (2011) 2806–2820
for pressure is that the mass matrix is not diagonal, so a linear system must be solved even when explicit timestepping is
used. On the one hand, solving this linear system iteratively is extremely cheap since the condition number is independent
of resolution and hence the number of iterations required stays constant under mesh refinement [7]. On the other hand, one
can approximate the mass matrix M by a ‘‘lumped’’ diagonal mass matrix ML with ðMLÞii ¼

P
jMij. It was shown in [9] that

lumping the mass has minimal effect on the dispersion relations so we would expect similar properties. In particular note
that mass-lumping only affects the time-derivative terms so geostrophic states will remain steady.

It seems almost inevitable (because of the difficulty in balancing the number of velocity and pressure degrees of freedom)
that any numerical discretisation that is not based on quadrilateral meshes will result in some form of spurious modes. From
the results of this paper it appears that the P1DG–P2 method puts the spurious modes into the least harmful place: it has no
spurious pressure modes which would quickly pollute the solution and result in sub-optimal numerical convergence, it has
no spurious Rossby modes which could modify the transfer of energy from barotropic to baroclinic modes in the presence of
baroclinic instability, but it does have spurious inertial oscillations which do not propagate, and which can be filtered out
using the H(P2)–P2 projection. Whether or not these modes cause problems depends on how they are coupled to the physical
modes through nonlinear advection, and this needs to be studied in careful benchmarks before recommending the P1DG–P2
method for use in NWP. If the modes are not harmful then the other properties discussed here (super-accurate wave prop-
agation and representation of geostrophic balance on arbitrary unstructured meshes) mean that P1DG–P2 should be an ideal
choice for NWP models using adaptive mesh refinement. Here the projection filter will prove very useful, since the spurious
modes can easily be extracted and measured, and modified advection schemes can be proposed which apply the projection
before the wave step in semi-implicit splitting methods.
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