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a b s t r a c t

In this paper, we develop a stable and fast numerical scheme for relativistic dissipative
hydrodynamics based on Israel–Stewart theory. Israel–Stewart theory is a stable and causal
description of dissipation in relativistic hydrodynamics although it includes relaxation pro-
cess with the timescale for collision of constituent particles, which introduces stiff equa-
tions and makes practical numerical calculation difficult. In our new scheme, we use
Strang’s splitting method, and use the piecewise exact solutions for solving the extremely
short timescale problem. In addition, since we split the calculations into inviscid step and
dissipative step, Riemann solver can be used for obtaining numerical flux for the inviscid
step. The use of Riemann solver enables us to capture shocks very accurately. Simple
numerical examples are shown. The present scheme can be applied to various high energy
phenomena of astrophysics and nuclear physics.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, various high energy astrophysical phenomena are extensively studied by using the relativistic fluid
approximation; for example, ultra relativistic jet [1,2], GRB [3,4], Neutron star merger [5,6], pulsar wind [7,8], and accretion
flows around massive compact objects [9,10]. In addition, because of the recent finding of the strongly coupled quark-gluon
plasma (sQGP) in the Relativistic Heavy-Ion Collider (RHIC), description by relativistic hydrodynamics equations have been
vigorously studied in the context of nuclear physics [11]. As is well known, relativistic fluid equations are highly nonlinear
because of the Lorentz factor and enthalpy, and the high energy astrophysical phenomena are studied mainly by numerical
simulation except for simplified cases. For this reason, various numerical formulations of relativistic fluid are investigated.
However, most of the existing numerical schemes assume ideal fluid approximation, and there are only few studies taking
into account the dissipation [12–15].

Relativistic fluid equation can be obtained by tensor decomposition of the particle flux vector and energy-momentum
tensor [16]. When one considers ideal fluid, those tensors are decomposed by assuming homogeneity and isotropy in the
comoving frame of each fluid element, and dissipation variables are defined as the deviation from the ideal part of those ten-
sors. However, relativistic fluid includes independent two characteristic directions, the particle flux vector and energy flux
vector, and this results in uncertainty of the definition of the fluid 4-vector. For the direction of fluid 4-vector, Eckart [17]
adopted that of particle flux vector, and his decomposition is called Eckart formalism; Landau and Lifshitz [18] adopted that
of energy flux, and their decomposition is called Landau–Lifshitz formalism. In addition to these well-known formalisms,
various formalisms are proposed [19–21].
. All rights reserved.
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If one considers the dissipative fluid equations, dissipation variables have to be expressed by the fluid variables, density,
pressure, and fluid velocity. Eckart, Landau, and Lifshitz presented as the expression of dissipation variables the relativistic
extension of Navier–Stokes approximation. However, it is well-known that the Navier–Stokes equation is parabolic partial
differential equations. This means that the Navier–Stokes equation is acausal, and not appropriate for the relativistic equa-
tion. In addition, Hiscock and Lindblom [22,23] have shown that the relativistic Navier–Stokes equations includes unphysical
exponentially growing modes, and unstable for small perturbation. For this problem, Israel and Stewart [24] proposed new
relativistic dissipation fluid theory called Israel–Stewart theory, which takes into account the second-order deviation terms
for entropy. This theory is hyperbolic equations, and has been shown to be causal and stable. However, the equations of Is-
rael–Stewart theory include 14 variables, and extremely complex in contrast to relativistic ideal fluid equations. In addition,
the evolution equations of dissipation variables include parameters corresponding to relaxation timescales that are much
shorter than hydrodynamical timescale, and the resultant stiff equations make it difficult to integrate numerically. For these
reasons, applications of Israel–Stewart theory to physical problems are very limited.

The first numerical scheme of Israel–Stewart theory is proposed by Molnar et al. (2010) [25]. They integrate fluid equation
by using SHASTA as a shock capturing scheme, and integrate evolution equations of dissipation variables by using the ordin-
ary explicit difference scheme. As explained above, evolution equations of dissipation variables are very stiff, and they have
to use sufficiently high resolution to resolve both the macroscopic and relaxation timescale, which demands a exceedingly
high numerical cost.

We develop a new numerical scheme for relativistic dissipative hydrodynamics that can integrate accurately and effi-
ciently. We split the fluid equations into inviscid part and dissipation part. The inviscid part corresponds to ideal relativistic
fluid equations, and can be solved accurately by using a relativistic Riemann solver [26–34]. The Riemann solver is a method
to calculate numerical flux by using exact solution of the Riemann problems at the interfaces separating numerical grid cells,
and can be used to describe the flows with strong shocks and sharp discontinuity stably and highly accurately. When the
dissipation terms are small, the dynamics of fluid is dominated by the inviscid part, and we can obtain more accurate numer-
ical results by means of the Riemann solver. As for the evolution equations of dissipation variables, we use the Piecewise
Exact Solution method (PES) [35–37]. PES is a numerical method for solving the stiff equation by using the formal solution.
The use of formal solutions for those stiff equations eliminates the Courant condition for relaxation timescale. In this way,
our new numerical scheme can describe relativistic dissipative hydrodynamic equations highly accurately and efficiently.
Recently, similar methods were applied to solving resistive RMHD [14,15].

This paper is organized as follows. In Section 2, we present the basic equations of relativistic hydrodynamics. We present ex-
plicit forms for relaxation timescale parameters near the equilibrium. In Section 3, detailed explanation of our new scheme is
presented. In Section 4, analyses on stability and causality of relativistic dissipation hydrodynamics equations are presented
by using simple scalar equation. In Section 5, some results of one-dimensional and multi-dimensional simulations are presented.
2. Basic equations

Throughout this paper, we use the units c = 1, and Cartesian coordinates where the Minkowski metric tensor glm is given
by glm = diag(�1,1,1,1). Variables indicated by Greek letters take values from0 to 3, and those indicated by Roman letters
take values from 1 to 3.

We define the convective time derivative bD and the spatial gradient operator ra as follows
bDAl1 ...ln � ubAl1 ...ln
;b ; ð1Þ

raAl1 ...ln � cb
aAl1 ...ln

;b ; ð2Þ
where the tensor clm is a projection operator on the hyperplane normal to ul
clm ¼ glm þ ulum: ð3Þ
2.1. Ideal fluid

The relativistic hydrodynamic equations can be obtained from the conservation of particle number, momentum, and
energy.
Nl
;l ¼ 0; ð4Þ

Tlm
;l ¼ 0; ð5Þ
where Nl is the particle number density current and Tlm the energy-momentum tensor. When we consider the ideal fluid,
they are given by
Nl ¼ nul; ð6Þ
Tlm ¼ qhulum þ pglm; ð7Þ
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where n denotes the proper particle number density, p is the pressure, h = 1 + � + p/q is the specific enthalpy, � is the specific
internal energy, q �m n is the proper rest-mass density, and m is the rest-mass of the constituent particle. ul is the four-
velocity of the fluid, satisfying the normalization condition: ulul = �1.

When we use Cartesian coordinates, the evolution equations of a relativistic fluid are
@

@t

D

mi

E

0B@
1CAþ @

@xj

Dv j

miv j þ pIij

mj

0BB@
1CCA ¼ 0; ð8Þ
where v is the fluid three-velocity, D, m, E are the mass, momentum, and energy density relative to the laboratory frame, and
Iij is the unit tensor. In the laboratory frame, D, m, E are given by
D ¼ cq; ð9Þ

m ¼ qhc2v; ð10Þ

E ¼ qhc2 � p; ð11Þ
where c = (1 � v2)�1/2 is the Lorentz factor. This is the most common form of perfect fluid equations for the numerical
hydrodynamics.

2.2. Causal dissipative fluid

When one considers relativistic dissipative fluid, the system is neither homogeneous nor isotropic, and the decomposition
of the particle number density current Nl and the energy momentum tensor Tlm will change. In addition, since the dissipa-
tive fluid has two different characteristic direction Nl and T0l, the definition of the four velocity ul is generally not unique,
that is, there is an uncertainty or freedom for our choice of the direction of ul. Since one decomposes Nl and Tlm with respect
to ul, this means the form of relativistic dissipative fluid equation is not unique. In this paper, we consider only Eckart
decomposition whose four velocity ul is parallel to Nl. For Landau–Lifshitz decomposition and other decompositions, see
the following references [18–21].

In the Eckart decomposition, the particle number density current Nl and the energy-momentum tensor Tlm are written as
Nl ¼ nul; ð12Þ
Tlm ¼ qhulum þ pglm þ qlum þ qmul þ slm; ð13Þ
where ql is the heat flux vector and slm is the viscosity tensor.
From Eqs. (4) and (5), the evolution equations of relativistic dissipative fluid are given by
@

@t

D

mi þ q0ui þ qiu0 þ s0i

Eþ 2q0u0 þ s00

0BB@
1CCAþ @

@xj

Dv j

miv j þ pIij þ qiuj þ qjui þ sij

mj þ q0uj þ qju0 þ s0j

0BB@
1CCA ¼ 0: ð14Þ
In contrast to the non-relativistic case, dissipation variables are differentiated with respect to time. For example, time deriv-
ative of the heat flux vector remains in the second line of Eq. (14) even in the fluid rest frame. This is because the energy flux
is identified with the momentum density. Then, if one uses the relativistic Navier–Stokes terms as the dissipative ones, the
fluid equations becomes parabolic, and the characteristic velocity of this theory becomes infinity. This means that the dis-
sipation variables evolve into equilibrium values within infinitely short time, and the time derivative of them diverges. His-
cock and Lindblom [22,23] proved that the relativistic Navier–Stokes theory adopting any definitions of four-velocity is
unstable in the sense that small perturbation will diverge exponentially with time in any frame except for Landau–Lifshitz
theory in its rest frame. In order to find stable and causal theory, Israel and Stewart developed the following second-order
theory from relativistic Boltzmann equation
bDP ¼ 1
sP
ðPNS �PÞ � IP; ð15Þ

bDplm ¼ 1
sp
ðplm

NS � plmÞ � Ilm
p ; ð16Þ

bDql ¼ 1
sq
ðql

NS � qlÞ � Ilq ; ð17Þ
where plm and P are the shear viscosity and bulk viscosity defined as the traceless part and trace part of the viscosity tensor
slm respectively,
slm � Pclm þ plm; ð18Þ
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sq, sP, and sp are the relaxation times, and I is second-order terms, which are the product of dissipation variables and deriv-
ative of fluid variables. Note that they can be neglected in the astrophysical application, since the gradient of fluid variables
are not so steep. If one considers the application to the QGP, one can use the following abbreviations [25]
IP ¼
1
2

P rkuk þ D ln
b0

T

� �
; ð19Þ

Ilm
p ¼ ðpklum þ pkmulÞDuk; ð20Þ

þ 1
2
plm rkuk þ D ln

b2

T

� �
; ð21Þ

þ plkxm
k þ pmkxl

k ; ð22Þ
where x is the rotational part of ul
;m defined as
xl
m �

1
2
clacb

mðua;b � ub;aÞ: ð23Þ
When one adopts Landau–Lifshitz frame as is often the case with QGP applications, Iq vanishes [25].
The ‘‘second-order’’ means that the entropy current contains second-order terms in deviations from equilibrium [38,24].

The above equations take into account time derivative of dissipation variables, that is, relaxation effect. Owing to these
terms, the relativistic dissipative fluid equations become hyperbolic, and it allows the equations become stable and causal
if one uses appropriate parameters. We discuss these appropriate parameters in Section 4.

The Navier–Stokes terms are given by
ql
NS ¼ �jclm T ;m þ Tuqum;q

� �
; ð24Þ

slm
NS ¼ plm

NS þPNSclm ¼ �clqcmr g uq;r þ ur;q �
2
3
gqruk

;k

� �� �
� fuk

;kc
lm; ð25Þ
where j is the heat conduction coefficient, g is the shear viscosity coefficient, and f is the bulk viscosity coefficient. The sub-
script NS means ‘‘Navier–Stokes’’ terms. If dissipation terms are small, we can rewrite Eq. (24) by substituting ideal equation
of motion into uqum,q, and obtain
ql
NS ¼ �jclm T ;m �

T
qh

p;m

� �
: ð26Þ
In this paper, we use Eq. (26) as the Navier–Stokes heat flux vector.
Heat flux vector has 4 components, and viscosity tensor 10 components. However, these are constrained by the following

orthogonality conditions:
si0u0 ¼ �sijuj; ð27Þ

s00u0 ¼ �s0juj; ð28Þ

q0u0 ¼ �qjuj: ð29Þ
As a result, the number of physical degrees of freedom reduces to 3 and 6 respectively.
Eqs. (25) and (26) are given in the covariant form. When one considers the flat Cartesian coordinate and one-dimensional

problem, they reduce to
s0x
NS ¼ �c0qcxr gð@qur þ @ruqÞ þ f� 2

3
g

� �
gqr@kuk

� �
¼ � g uxut@tut þ ð�1þ ðutÞ2Þ@tux þ ð1þ ðuxÞ2Þ@xut þ utux@xux

n o
þ f� 2

3
g

� �
u0uxh

� �
; ð30Þ

s0?
NS ¼ �c0qc?r gð@qur þ @ruqÞ þ f� 2

3
g

� �
gqr@kuk

� �
¼ � g u?ut@tut þ ð�1þ ðutÞ2Þ@tu? þ u?ux@xut þ utux@xu?

n o
þ f� 2

3
g

� �
u0u?h

� �
; ð31Þ

syz
NS ¼ �cyqczr gð@qur þ @ruqÞ þ f� 2

3
g

� �
gqr@kuk

� �
¼ � g uyut@tuz þ uzut@tuy þ uyux@xuz þ uzux@xuy

� 	
þ f� 2

3
g

� �
uyuzh

� �
; ð32Þ
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sx?
NS ¼ �cxqc?r gð@qur þ @ruqÞ þ f� 2

3
g

� �
gqr@kuk

� �
¼ � g u?ut@tux þ uxut@tu? þ u?ux@xux þ ð1þ ðuxÞ2Þ@xu?

n o
þ f� 2

3
g

� �
uxu?h

� �
; ð33Þ

sxx
NS ¼ �cxqcxr gð@qur þ @ruqÞ þ f� 2

3
g

� �
gqr@kuk

� �
¼ �g@xux � f� 2

3
g

� �
ð1þ ðuxÞ2Þh; ð34Þ

qx
NS ¼ �cxlj @l �

T
qh

@lp
� �

¼ �j uxut @tT �
T
qh

@tp
� �

þ ð1þ ðuxÞ2Þ @xT � T
qh

@xp
� �� �

; ð35Þ

q?NS ¼ �c?lj @l �
T
qh

@lp
� �

¼ �ju? ut @tT �
T
qh

@tp
� �

þ ux @xT � T
qh

@xp
� �� �

; ð36Þ
where h is the expansion of the fluid defined as
h � rlul ¼ @lul þ Cl
alua: ð37Þ
In the above expressions, the viscosity tensor includes both shear viscosity and bulk viscosity. This is because this form is
useful for the directional splitting explained in Section 3.4.

2.3. Explicit forms of relaxation time

Israel–Stewart theory includes some transport coefficients, that is, dissipation coefficients and relaxation times, and their
values depend on distribution functions and the cross sections of collisions between constituent particles. Since we are inter-
ested in the fluid approximation, we consider only the cases close to the equilibrium [24,16].

In this case, the explicit forms of relaxation time can be expressed as follows:
sP ¼
fb0

3
; sq ¼ jTb1; sp ¼ 2gb2; ð38Þ
where
C=ðC� 1Þ ¼ b2ð1þ 5h=b� h2Þ; ð39Þ
a0 ¼ ðC� 1ÞX��=CXp; a1 ¼ �ðC� 1ÞCp; ð40Þ

b0 ¼
3X�

h2X2p
; b1 ¼

C� 1
C

� �2 b
hp

5h2 � C
C� 1

� �
; ð41Þ

b2 ¼
1þ 6h=b

2h2p
; a1 ¼ �

1þ hbðC� 1Þ=C
h2p

; ð42Þ

X ¼ 3C� 5þ 3C=hb; X� ¼ 5� 3Cþ 3ð10� 7CÞh=b; ð43Þ
X�� ¼ 5� 3Cþ 3C2=ðC� 1Þh2b2; ð44Þ
b = m/T, and h is the enthalpy.
Asymptotic forms of relaxation time are:

1. In the non-relativistic limit (b ?1,C = 5/3)
sP ¼
2
5

fb2

p
; sq ¼

2jTb
5p

; sp ¼
g
p
; ð45Þ
2. In the ultra-relativistic limit (b ? 0,C = 4/3)
sP ¼
72f

b4p
; sq ¼

5jT
4p

; sp ¼
3g
2p

: ð46Þ
The explicit forms of dissipation coefficients j, g, f depend on the particle interaction, and one can use appropriate dis-
sipation coefficients for each problems.

3. Numerical scheme

In this section, we start description of our scheme for one-dimensional case. Multi-dimensional case is shown in
Section 3.4.
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3.1. Strang splitting method

The relativistic dissipative fluid equation is the hyperbolic-relaxation one, and this has different difficulty for the inviscid
and dissipation part respectively. The difficulty of inviscid part of fluid equation results from the non-linearity of the fluid
equation, and this exists even in non-relativistic ideal fluid equation; the difficulty of dissipation part is that the evolution
equations of dissipation Eqs. (15)–(17) are stiff equations. When one solves stiff equation by using explicit differentiation, Dt
must be shorter than relaxation timescale parameters for stability. However, relaxation timescale parameters sP, sp, sq are
generally much shorter than dynamical timescale of fluid, and it needs a heavy computational cost.

In order to address these problems separately, we apply Strang splitting method and split the relativistic dissipative fluid
equation as follows
@

@t

D

mi

E

0B@
1CAþ @

@xj

Dv j

miv j þ pIij

mj

0BB@
1CCA ¼ 0; ð47Þ

@

@t

D

mi þ q0ui þ qiu0 þ s0i

Eþ 2q0u0 þ s00

0B@
1CAþ @

@xj

0

qiuj þ qjui þ sij

q0uj þ qju0 þ s0j

0B@
1CA ¼ 0: ð48Þ
First, the inviscid part Eq. (47) can be solved accurately by using the Riemann solver. The Riemann solver is a method that
calculates numerical flux by using exact or approximate solution of the Riemann problem at the cell boundary, and it is
known that this method is stable and accurate.

Next, we consider the dissipation part Eq. (48). The second terms of Eq. (48) are the remaining part of the flux of Eq. (14),
and includes dissipation variables and four velocity ul. For the second-order accuracy in time, one must use states evolved
half time-step Dt/2. The first terms of Eq. (48) are conserved variables, and they includes dissipation variables unlike non-
relativistic case. In order to calculate stably, one has to substitute for these dissipation variables not the Navier–Stokes terms,
but evolved ones by Eqs. (15)–(17). Then, the first terms of Eq. (48) includes four velocity ul. For this reason, one has to cal-
culate them before the calculation of inviscid part, and save them until the dissipation part.

In summary, we split the conserved variables U of Eq. (48) as follows
U ¼ Uideal þ Udissip; ð49Þ
where
Uideal ¼
D

mi

E

0B@
1CA; Udissip ¼

0

q0ui þ qiu0 þ s0i

2q0u0 þ s00

0B@
1CA: ð50Þ
First, we calculate U = Uideal + Udissip. Then, we evolve Uideal by using Riemann solver. Next, we calculate eUideal þ Udissip as the
initial value of U of dissipation step, and integrate Eq. (48) over the full time-step. eUideal is the ideal part of conserved variable
evolved by using Riemann solver. By using the conservation-law form for Eqs. (47) and (48), this method satisfies the con-
servation law of mass, momentum, and energy within machine round-off error.

In addition, we adopt qx, qy, qz, s0x, s0y, s0z, syz, szx, sxy for the primitive variables of the dissipation. This selection is based
on the equality of the spatial direction, and is useful for the directional split. The other variables can be calculated by the
orthogonality conditions Eqs. (27)–(29). Since the dissipation variables are necessary for the primitive recovery procedure,
we define the variables at the cell-center. For the calculation of the numerical flux at the cell-boundary, we use the average of
the dissipation variables, and evolve timestep Dt/2 at the cell-boundary.

3.2. Stiff equation

When one describes relativistic dissipative fluid by using the Israel–Stewart theory, one has to take into account the
evolution of dissipation variables. However, those equations are stiff-equations, that is, the form of those equations are
given by
@tU ¼
SðUÞ
srelax

; ð51Þ
where srelax is the relaxation time, and this is the characteristic timescale of the evolution of U. If this timescale s is much
shorter than the fluid timescale sfluid, Eq. (51) is called ‘‘stiff-equation’’, and the stability of an explicit scheme is achieved
only with a timestep size Dt [ srelax� sfluid. In general, this constraint is more restrictive than the Courant–Friedrichs–Lewy
(CFL) condition Dt 6 Dx/ccharact, where ccharact is the characteristic velocity of fluid, for example, sound velocity, Alfvén veloc-
ity, and so on. This increases the computational cost exceedingly, which hinders the use of simple explicit scheme. For avoid-
ing this timestep restriction, we apply the Strang-splitting technique.
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First, rewriting Eqs. (15)–(17) in the coordinate dependent forms, they reduce to
c
@

@t
þ v j @

@xj

� �
P ¼ 1

sP
ðPNS �PÞ � IP; ð52Þ

c
@

@t
þ v j @

@xj

� �
plm ¼ 1

sp
ðplm

NS � plmÞ � Ip; ð53Þ

c
@

@t
þ v j @

@xj

� �
ql ¼ 1

sq
ðql

NS � qlÞ � Iq: ð54Þ
Then, we split the above equations as follows
@

@t
þ v j @

@xj

� �
P ¼ � IP

c
; ð55Þ

@

@t
þ v j @

@xj

� �
plm ¼ � Ip

c
; ð56Þ

@

@t
þ v j @

@xj

� �
ql ¼ � Iq

c
; ð57Þ
and
@

@t
P ¼ 1

csP
ðPNS �PÞ; ð58Þ

@

@t
plm ¼ 1

csp
ðplm

NS � plmÞ; ð59Þ

@

@t
ql ¼ 1

csq
ðql

NS � qlÞ: ð60Þ
Eqs. (55)–(57) are the first-order advection equation with source terms, and one can solve them by upwind scheme. Eqs.
(58)–(60) are stiff equation that requires special care. In our new method, we solve the stiff equations by using the PES meth-
od [35–37]. Since we use Strang-splitting technique, one can obtain the formal solutions of Eqs. (58)–(60) as follows:
P ¼ ðP0 �PNSÞ exp � t � t0

sP

� �
þPNS; ð61Þ

plm ¼ ðplm
0 � plm

NSÞ exp � t � t0

sp

� �
þ plm

NS; ð62Þ

ql ¼ ðql
0 � ql

NSÞ exp � t � t0

sq

� �
þNSql; ð63Þ
where subscript 0 means the initial value. Since these are the formal solution, numerical calculation of these terms remains
stable irrespective of the timestep. In this way, the time-step of our scheme is not restricted by the stiff equations Eqs. (58)–
(60) those correspond to relaxation. In this way, we solve the stiff equation by using piecewise exact solution Eqs. (61)–(63).
Thus, this procedure is called PES method. Note that the terms I; I in Eqs. (19) and (22) include dissipation variables, which
might complicate the actual exact solution. In this paper, we recommend to assume that the dissipation variables in these
terms are constant, and simply add them to the Eqs. (61)–(63). If this procedure results in bad approximation, it means that
one should not use fluid approximation but the kinetic equation. This is because these terms should be small compare to the
other dissipation terms when fluid approximation is justified.

The Navier–Stokes terms Eqs. (30)–(36) include not only spatial derivatives but also time derivatives unlike non-relativ-
istic case. We calculate time derivatives by using the following form of first-order explicit finite differentiation
@tU
n ¼

bUnþ1
ideal � Un

Dt
; ð64Þ
where bUnþ1
ideal is the variable evolved by the inviscid step, and Un is the initial value of the n-th step. For this reason, one has to

save initial fluid variables until dissipation step. In addition, we approximate the spatial derivatives of the Navier–Stokes
terms with the centered finite differences. This is because the physical meanings of the dissipation variables are the diffu-
sion. For other part of the spatial derivatives, we use the MUSCL scheme by Van Leer [40] for the second-order accuracy in
space.

3.3. Primitive recovery

When one uses conservation-law form, updated variables are not primitive variables but conserved variables, and one has
to obtain the primitive variables from conserved variables. In the case of relativistic fluid, one has to solve a non-linear alge-
braic equation for this primitive recovery even in the ideal fluid case. In the case of relativistic dissipative fluid, the primitive
recovery is more complicated, since the conserved variables include dissipation terms. In this section, we explain a method
that makes the primitive recovery somewhat simple.
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The dissipation variables in the conserved ones are obtained by using relaxation equations Eqs. (15)–(17). Then, a major
cause of the complexity of the primitive recovery is four velocity ul multiplied by dissipative variables. If the effect of the
dissipation is small enough, one can expect that the change of four velocity ul during dissipation step is smaller than during
inviscid step. For this reason, we use four velocity ul obtained after inviscid step as the initial guess, and this enable us to
calculate the dissipation part of conserved variables Udissip. We can obtain ideal part Uideal by subtracting Udissip from con-
served variables U, and we can obtain primitive variables by using the primitive recovery for ideal fluid part. Then, we re-
place the initial guess for ul in Udissip with the obtained four velocity, and carry out the primitive recovery again. We
repeat this procedure until the primitive variables converge. In this way, one can obtain primitive variables consistently.

In summary,

1. Calculate Udissip using ul obtained by the inviscid step as an initial guess, and evolve dissipative variables.
2. Calculate Uideal = U � Udissip, and obtain primitive variables by using ordinary primitive recovery of relativistic ideal fluid.

For the stability of the numerical calculation, we have imposed the stability condition jUj > cjUdissipj, where c is some con-
stant number smaller than unity.

3. Replace the initial guess for ul in Udissip with the obtained four velocity, and carry out the primitive recovery again.
4. Repeat this procedure until the primitive variables converge.

From test calculations, this approach seems to work well even for large dissipation coefficients and discontinuous profiles
for physical variables, and converges within less than five iterations.

3.4. Multi-dimensional case

We have explained one-dimensional scheme so far. For multidimensional calculation, we can apply the directional split-
ting method [39] where one applies one-dimensional operator in each spatial direction successively. To achieve second-or-
der accuracy in time, one has to apply one-dimensional operator in the following order for two-dimensional case
Unþ1 ¼ L1=2
x LyL1=2

x Un ð65Þ
and for three-dimensional case
Unþ1 ¼ L1=6
x L1=6

y L1=3
z L1=6

y L1=3
x L1=6

z L1=3
y L1=6

x L1=3
z L1=6

x L1=3
y L1=6

z L1=6
x Un: ð66Þ
The Dt can be determined by Courant–Friederichs–Lewy (CFL) condition presented in the next section.

4. Causality and stability

The Israel–Stewart theory is known as the stable and causal relativistic dissipative fluid theory. Strictly speaking, one has
to use the appropriate parameters for the stability and causality. However, in order to guarantee the stability and causality,
the values of the various dissipation coefficients should be limited to certain ranges. In this section, we discuss these
parameters.

4.1. Stability of the telegrapher equation

The essential structure of the Israel–Stewart theory can be analyzed by the following simple equations
@tQ þr � F ¼ 0; ð67Þ

@tF ¼ �
1
s
ðFþ grQÞ: ð68Þ
Eliminating F from the above equations, one obtains the following telegrapher equation
@2
t Q þ 1

s
@tQ �

g
s
MQ ¼ 0: ð69Þ
Then, the characteristic velocity of Eq. (69) is given by
vc ¼
ffiffiffi
g
s

r
: ð70Þ
For the causality, the characteristic velocity must be lower than the maximum physical velocity. Thus, the relaxation time-
scale parameter s has the following physical lower limit
s P smin �
g

v2
max

; ð71Þ
where vmax is the maximum velocity of the physical system, that is smaller than the speed of light.
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Next, we consider the stability condition. Israel and Stewart [24] indicates that the Israel–Stewart theory is stable and
causal theory if one considers the Boltzmann gas, that is, near the equilibrium distribution. When one uses a simple explicit
finite difference scheme, the CFL condition is that the timestep size Dt is less than the relaxation time s: Dt < s. In the fol-
lowing, we consider the stability condition of PES method for Eqs. (67) and (68) by using the von Neumann’s stability anal-
ysis and numerical simulation.

In this case, the basic equations can be written as follows.
F

@tQ þ @xF ¼ 0; ð72Þ

F ¼ �g@xQ þ ðF0 þ g@xQÞe�Dt
s : ð73Þ
Since we use PES, the relaxation equation of F is replaced by the formal solution. Then, we differentiate Eqs. (72) and (73). In
the case of the second-order accuracy in time,
Q nþ1
j � Q n

j

Dt
þ

Fnþ1=2
jþ1=2 � Fnþ1=2

j�1=2

Dx
¼ 0; ð74Þ

Fnþ1
j ¼ �g

Qnþ1=2
jþ1=2 � Q nþ1=2

j�1=2

Dx
þ Fn

j þ g
Q nþ1=2

jþ1=2 � Q nþ1=2
j�1=2

Dx

" #
e�

Dt
s : ð75Þ
We substitute into the above equations the following forms of Qn
j and Fn

j

Qn
j ¼ Rneijh; Fn

j ¼ Gneijh; ð76Þ
where Rn and Gn are the nth power of the constants R and G. Then, they reduce to
Rnþ1 � Rn þ 2
Dt
Dx

i sin
h
2

Gnþ1=2 ¼ 0; ð77Þ

Gnþ1 ¼ �2g
Dx

i sin
h
2

Rnþ1=2 þ Gne�
Dt
s þ 2g

Dx
i sin

h
2

Rnþ1=2e�
Dt
s : ð78Þ
From these equations, we can obtain the following forms of equation
Rnþ1 � 1þ e�
Dt
s � 4

Dt
Dx2 gð1� e�

Dt
s Þ sin2 h

2

� �
Rn þ e�

Dt
s Rn�1 ¼ 0: ð79Þ
By solving this equation, we obtain
R ¼ 1
2

1þ e�
Dt
s � 4

Dt
Dx2 gð1� e�

Dt
s Þ sin2 h

2

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4

1þ e�Dt
s � 4

Dt
Dx2 g sin2 h

2
ð1� e�Dt

s Þ
� �2

� e�Dt
s

s
: ð80Þ
For the stability, it is necessary to satisfy the criterion jRj 6 1. In order to obtain the stability restriction, we substitute jRj = 1
for Eq. (80), and the equation reduces to
Dtmin ¼

Dx2

2g sin2 h
2

if Dt � s;

Dx
sinh

2

ffiffi
s
g

q
if Dt � s:

8><>: ð81Þ
ig. 1. Numerical solution of Eq. (80) when jRj = 1. This figure shows that Dt/s is proportional to Dx when Dt/s� 1, and Dx2 when Dt/s� 1.



Fig. 2. Numerical solution of telegrapher equation Eq. (69). A snapshot at t = 1.0 is shown. Diffusion smooths the initial discontinuity . For this test problem,
a cell size Dx = 0.005 is used, and we set dt = 5.0 	 10�3, s = 2.0 	 10�3, and g = 1.0 	 10�3.
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The exact relation is given in Fig. 1. Eq. (81) and Fig. 1 show that the stability restriction of the upper limit for Dt for our
numerical scheme with PES is the same dependence on Dx as that of the parabolic equation Dt < Dx2/g when Dt P s,
and it becomes the same dependence on Dx as that of the hyperbolic equation Dt < Dx

ffiffiffiffiffiffiffiffi
s=g

p
when Dt 6 s. 1

Next, we solve the telegrapher equation Eq. (69) numerically by using PES method for the relaxation equation Eq. (68),
and study the dependence on the parameters. We take the number of grid points N = 400, and use the CFL number 0.4.
For the stability restriction, we use Eq. (81). The initial left and right states are given by
1 In a
Q L ¼ 3:0 for x < 1; ð82Þ

Q R ¼ 1:0 for x P 1: ð83Þ
We set the initial value of F as F = 0.
First, we set the relaxation timescale s = 2.0 	 10�3, and the dissipation coefficient g = 1.0 	 10�3. Fig. 2 is the numerical

result of PES method, and it reproduces the diffusion of the Q very well.
Next, we consider the case of violating the stability restriction Eq. (81). In this case, we set the relaxation timescale s

= 2.0 	 10�3, the dissipation coefficient g = 1.0 	 10�3, and set the timestep Dt = 1.1Dx2/2g. Fig. 3 is the numerical result,
and it shows that the solution diverges when one violates the stability restriction obtained by the von Neumann’s stability
analysis.

4.2. Stability conditions of new numerical scheme for Israel–Stewart theory

The results of previous section will be able to be applied to the new numerical scheme for the Israel–Stewart theory, since
the structure of the equations of the Israel–Stewart theory are telegrapher equations. For this reason, we impose the follow-
ing stability conditions as the CFL condition
Dt ¼ Ca

min Dx=cs;aqhDx2=maxfj;g; fg
� 	

if Dt > s;

min Dx=cs;Dx
ffiffiffiffiffiffiffiffi
s=g

pn o
if Dt < s;

8<: ð84Þ
where cs is the sound velocity, a is 1/2 when second-order accuracy in time and 1/4 when first-order accuracy in time, and
0 < Ca < 1 is the Courant number. The above stability conditions are just provisional ones, since the dissipative RHD equations
are highly non-linear equations, and it is difficult to obtain the exact conditions. Practically, the above conditions work well
in our calculation.

Next, when one solves the Israel–Stewart theory by using conservation-law form, one has to recover primitive variables
from conservative ones. Then, if one considers large dissipation coefficients, the dissipation part of conservative variables
Udissip can be in general equal or larger than Uideal. This makes the primitive recovery unstable, since the error of dissipation
variables affects considerably conserved variables U similar to the low b case of MHD equation. This may happen when the
previous condition Dx <

ffiffiffiffiffiffisgp
is violated. This is because

ffiffiffiffiffiffisgp
is equivalent to the mean free path in ideal gas, and Dx <

ffiffiffiffiffiffisgp

means that one resolves length scale shorter than the mean free path. Since the Israel–Stewart theory is approximation of the
Boltzmann equation, the approximation becomes bad in this region. For this reason, one cannot use Israel–Stewart theory in
such parameters. In contrast, if one considers effective theory, we recommend to impose the following restrictions on the
dissipation coefficients
ddition, when one adopts first-order accuracy in time, the stability restriction becomes Dt < Dx2/4g when Dt > s.



Fig. 3. Numerical solution of telegrapher equation Eq. (69) in the case of violating the stability condition (Dt > D tmin). A snapshot at t = 0.25 is shown. The
unstable modes grow quickly. For this test problem, a cell size Dx = 0.005 is used, and we set dt = 1.375 	 10�2, s = 2.0 	 10�3, and g = 1.0 	 10�3.
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qi < qhccscs; ð85Þ
sij < qhc2

csc
2
s ; ð86Þ
where cs is the sound velocity, and ccs � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

s

p
. We recommend to impose this restriction during the evolution step of

dissipation variables, the calculation of the numerical flux, and the primitive recovery procedure. Similar conditions can be
found in the previous studies [25].

In addition, if one adopts s0x, s0y, s0z, syz, szx, sxy for the primitive variables, one needs sxx for the numerical flux. In this
case, if one calculates sxx by the orthogonality condition Eq. (27), the numerical calculation sometimes becomes unstable,
since the calculation includes the division by the velocity. In order to prevent this numerical divergence, we use the Na-
vier–Stokes term for sxx. This approximation becomes bad when the timestep Dt is close to the relaxation time. However,
if one considers the region where the fluid approximation is not so bad valid, the relaxation time is small and the above
approximation gives accurate value for sxx.

5. Test calculations

In this section, results of several one-dimensional and multi-dimensional test simulations are presented. In the following
test problems, we use CFL number 0.4, and we consider an ideal equation of state h � 1 + C/(C � 1)p/q.

5.1. 1D test

5.1.1. Shear flow
For the stability and causality, the Israel–Stewart theory adds 9 variables to the 5 fluid variables, and it is very difficult to

obtain exact solutions. However, relaxation of tangential velocity by the shear viscosity can be expected that the solution
approaches to the exact solution of the non-relativistic case if one uses sufficiently low velocity. Thus, we consider the fol-
lowing initial condition
ðqL; pL; vyLÞ ¼ ð1:0;1:0;�0:1Þ for x < 0:0; ð87Þ
ðqR;pR;vyRÞ ¼ ð1:0;1:0;0:1Þ for x P 0:0: ð88Þ
All the other fields are set to 0.
In this case, the relativistic Euler equation is given by
qh@t½c2vy
 þ @xsxy ¼ 0: ð89Þ
Since we consider sufficiently low velocity, the Lorentz factor c is nearly unity. The viscous tensor slm reduces to
sxy ¼ �g@xvy: ð90Þ
Using Eqs. (89) and (90), the following exact solution can be obtained
vy ¼ vy
0erf

jx� x0j
vt

� �
; ð91Þ

v ¼ g
qh

ð92Þ
Fig. 4 is the numerical results at t = 4.0. We use an ideal equation of state with C = 4/3, a cell size Dx = 0.01 is used, and the
viscosity coefficient g = 0.01. Fig. 4 shows that the numerical solution reproduces the exact solution very well. The conver-
gence test shows that it is consistent with the second-order accuracy.



Fig. 4. Numerical solution of the relaxation of a shear flow. Crosses denote a snapshot at t = 4.0. The analytical solution Eq. (91) is shown as a solid curve.
Our scheme for Israel–Stewart theory reproduces the analytical solution very well. For this test problem, a cell size Dx = 0.01 is used, and we set C = 4/3, and
g = 0.01.
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5.1.2. Shock tube test
In this section, we consider the shock tube problem. When one describes hydrodynamics including shock waves by using

‘‘ideal’’ fluid solver, the thickness of the discontinuities are determined by the numerical dissipation. In reality, the thickness
of the shock wave front is determined by dissipation coefficients. In the following, we show that the thickness of the discon-
tinuities depends on the dissipation coefficients of our code. The exact Riemann Solver for ideal fluid part is based on the
solution by Martı́ and M€uller [32].

We prescribe the initial left and right states
Fig. 5.
differen
discont
ðqL; pL; vyLÞ ¼ ð10:0;10:0; 0:2Þ for x < 0:5; ð93Þ
ðqR; pR; vyRÞ ¼ ð1:0;1:0;�0:2Þ for x P 0:5; ð94Þ
with an ideal equation of state with C = 5/3, and all the other fields are set to 0. Integration is carried until t = 0.4, and a cell
size Dx = 0.0025 is used. The dissipation coefficients thermal conductivity j, shear viscosity g, and bulk viscosity f are as-
sumed constant, and set 10�15 unless stated otherwise.

First, Fig. 5 is the numerical results of the tangential velocity vy that changes the shear viscosity g = 0.01, 0.05, 10�15 com-
pared to the RHD exact solution. It shows that both contact discontinuity and shock are diffused, and the width of the dis-
continuity of g = 0.05 is about 5 times greater than g = 0.01.

Next, Fig. 6 is the numerical results of the temperature T � p/q for various values of the thermal conductivity j = 0.01,
0.05, 10�15 compared to the RHD exact solution. It shows that the heat flows from high temperature region to low temper-
ature region, and both contact discontinuity and shock are smoothed, and the width of the discontinuity of j = 0.05 is about
5 times greater than j = 0.01.

Fig. 7 is the numerical results of the velocity vx for various value of the bulk viscosity f = 0.01, 0.04, 10�15 compared to the
RHD exact solution. The bulk viscosity diffuses the fluid expansion h ¼ ul

l, and in the one-dimensional case the expansion
reduces to h = @xu

x. Fig. 7 shows that the gradient of vx in x-direction is smoothed out.
The numerical solution for the relativistic shock tube problem. Tangential velocity profile at t = 0.4 are shown by crosses in the cases of three
t shear viscosity coefficients: g = 10�15, 0.01, 0.05. The result of ideal gas is also shown by a solid line. In this test problem, the widths of
inuities are determined by the physical viscosity. For this test problem, a cell size Dx = 0.0025 is used, and we set C = 5/3, and the CFL number 0.4.



Fig. 6. The numerical solution for the relativistic shock tube problem. Temperature profiles at t = 0.4 are shown by crosses in the cases of three different
thermal conduction coefficients: j = 10�15, 0.01, 0.05. All the profiles are similar near the shock wave, but the width of contact discontinuity is determined
by the thermal conductivity. For this test problem, a cell size Dx = 0.0025 is used, and we set C = 5/3, and the CFL number 0.4.

Fig. 7. The numerical solution for the relativistic shock tube problem. The profile of longitudinal velocity vx at t = 0.4 is shown for three different shear
viscosity coefficients: f = 10�15, 0.01, 0.05. The widths of discontinuities and rarefaction fronts are determined by the physical viscosity. For this test
problem, a cell size Dx = 0.0025 is used, and we set C = 5/3, and the CFL number 0.4.

Fig. 8. Non-linear development of Kelvin–Helmholtz instability in two-dimensional simulations without viscosity. The density profile at t = 30 is presented.
Numerical integration has been performed with Dt = 0.2Dx/cs. Rolling up of the interface (tangential discontinuity) is the non-linear consequence of the
rapid growth of the initial perturbation of ‘‘sine’’ function, characteristics of the KH instability. However, numerical cell-size-scale perturbations also grow,
and contaminate the result.
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5.2. Two-dimensional Kelvin–Helmholtz instability

In this section, we present the numerical results of the two-dimensional Kelvin–Helmholtz instability (KH instability) for
the multidimensional numerical test problem. Multidimensional extension can be achieved simply via directional splitting
explained in Section 3.4.



Fig. 9. Non-linear development of Kelvin–Helmholtz instability in two-dimensional simulation with viscosity. The density profile at t = 30 is presented.
Numerical integration has been performed with Dt = 0.2Dtmin, where Dtmin is presented in Eq. (81). We set the shear viscosity g = 5 	 10�3 for the upper
fluid, and g = 10�3 for the lower fluid. Numerical cell-size-scale perturbations are stabilized by the viscosity.
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KH instability is that of a tangential discontinuity between parallel flows. It is well-known from the linear perturbation
analyses that this instability arises when the Lorentz factor of fluid is not so high, and the growth rate is proportional to the
wave number. Second property means that the numerical simulation of KH instability does not converge in the ideal fluid
case; if one increases the number of grid points, grid-size-scale perturbations grow most rapidly, and this prevents numerical
convergence of KH instability in the ideal fluid case. However, if one considers dissipation, the numerical convergence is pos-
sible since the perturbations shorter than the characteristic scale of dissipation are smoothed out.

The initial condition is prescribed as
ðq;p; vx;vyÞ ¼ ð1;0:3; 0:1;0:0Þ for y > 0:0; ð95Þ
ðq;p; vx;vyÞ ¼ ð2;0:3;�0:1;0:0Þ for y 6 0:0: ð96Þ
To trigger the KH instability, we perturb the shear flow by the position of tangential discontinuity ytangential
ytangential ¼ 0:01 sinðkxxÞ; ð97Þ
kx ¼ 2p: ð98Þ
We use an equation of state with C = 5/3, and the non-relativistic limit of relaxation time Eq. (45). The computational do-
main covers the region [ � 1,1] 	 [ � 1,1] with 1024 	 1024 grid points. The CFL number is 0.2, and the integration is carried
out until t = 30, that is, about 1.5 fluid crossing time. We set periodic boundary condition for x-direction, and reflecting
boundary condition for y-direction for simplicity.

Fig. 8 is the result of ideal fluid case carried by using a relativistic Godunov scheme [34] for the sake of comparison. This
figure shows that the rolling up of the interface results from the KH instability. Note that numerical grid-size-scale pertur-
bations grow in addition to the initial perturbation of sin function mode. Figs. 9 are the result of our new code of Israel–Stew-
art theory. In this simulation, we consider only shear viscosity, and use g = 0.005 and g = 0.001 as the dissipation coefficient.
Figs. 9 show that numerical grid-size-scale perturbations are stabilized, and only the initial perturbation of sine mode forms



Fig. 10. L1 norm errors of the density of the 2-dimensional shear flow calculated by the new dissipation code in the case of g = 0.001. This figure shows that
the numerical solutions converge to the result of 1024 grid points with the second-order accuracy.

Fig. 11. Evolution of the amplitude of vy as a function of time comparing to the analytical solution of the linear perturbation obtained by Turland and
Scheuer [41]. The numerical integration is calculated by the new dissipation code in the case of g = 0.005, 0.001, and inviscid case. This figure shows that the
numerical solutions reproduce the analytical theory in the linear growth region.
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vortices. Note that for avoiding the numerical grid-size-scale perturbation in inviscid case, one has to introduce a sufficiently
large scale of gradient a to the profile of fluid variables d, vx as follows:
Q ¼ Q þ DQ tanhðy=aÞ; ð99Þ
where Q ¼ ðQy>0 þ Qy<0Þ=2 and DQ = jQy>0 � Qy<0j.
Fig. 10 is L1 norm errors of the density under different grid points carried out by the new dissipation code in the case of

g = 0.005. The solutions are compared to the result of 1024 grid points. This figure shows that the numerical results converge
to the result of 1024 grid points with the second-order accuracy because of the shear viscosity.

In Fig. 11, we compare the time evolution of the amplitude of �vy that is a square root of the sum total of v2
y to the ana-

lytical solution of the linear perturbation obtained by Turland and Scheuer [41]. The numerical integration is carried out by
the new dissipation code in the case of g = 0.005, 0.001, and inviscid case. During the initial phase, the evolution of vy repro-
duces the prediction of the linear theory well. After the linear phase, the numerical solutions grow non-linearly, and start to
deviate from linear theory because of the effect of shear viscosity and numerical grid-size-scale perturbation. Note that when
the shear viscosity g takes larger value, the growth of vy saturates faster, and decay in time.
6. Conclusion

In this paper, we have presented a new numerical scheme for relativistic dissipative hydrodynamics, that is, Israel–Stew-
art theory. Israel–Stewart theory is a stable and causal relativistic dissipation theory. However, for the stability and causality,
this theory includes relaxation equations of dissipation variables. In general, relaxation timescales of dissipation variables
are much shorter than characteristic timescale of hydrodynamics. This means that relaxation equations of dissipation vari-
ables are stiff equations, and this makes it difficult to integrate Israel–Stewart theory numerically. In our new scheme, we
use Strang’s splitting method, and obtain formal solution of the relaxation equation for solving this extremely short time-
scale problem. By using the formal solution, the Courant condition of relaxation time disappear, since we do not use explicit
finite difference scheme. In addition, since we split the calculation of inviscid step and dissipation step, Riemann solver can
be used for obtaining numerical flux of inviscid part, and this enables us to obtain more accurate solution.
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In astrophysical application, it is very important to take into account dissipation terms, since dissipation terms transform
kinetic energy of bulk fluid into thermal energy, which becomes observable as thermal radiation. In addition, if one considers
the dynamics of accretion disk, a viscosity is often used for the phenomenological models of angular momentum transfer,
and our new scheme can be used for those modeling. In recent years, the strongly coupled quark-gluon plasma (QGP) in
the Relativistic Heavy-Ion Collider (RHIC) has been vigorously studied by using description by relativistic dissipative hydro-
dynamics equations in nuclear physics, and our scheme will be useful for such calculations.
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