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In this paper we present a strategy for correcting model deficiency using observational 
data. We first present the model correction in a general form, involving both external 
correction and internal correction. The model correction problem is then parameterized 
and casted into an optimization problem, from which the parameters are determined. 
More importantly, we discuss the incorporation of physical constraints from the underlying 
physical problem. Several representative examples are presented, where the physical 
constraints take very different forms. Numerical tests demonstrate that the physics 
constrained model correction is an effective way to address model-form uncertainty.
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1. Introduction

The field of uncertainty quantification (UQ) has undergone rapid developments in the last decade. While tremendous 
progresses have been made in the quantification of parametric uncertainty, much less has been accomplished in the front 
of model-form uncertainty. One of the primary goals of model-form uncertainty analysis is to quantify the deficiency of 
the simulation models, as it is widely accepted that all models are approximations to the physical truth. To this end, 
the approach developed by Kennedy and O’Hagan [8] has found its use in a variety of applications. See, for example, 
[1,4,5,11,13], and the references therein. In this approach, the simulation model is corrected by adding a discrepancy term. 
Then, both the simulation model and the discrepancy term are parameterized by Gaussian processes. The hyper-parameters 
in the Gaussian processes are then estimated using Bayesian inference based on observational data. While effective in many 
cases, the explicit introduction of the additive discrepancy term often destroys certain important physical properties of the 
underlying problem, which are often built into the simulation model via tremendous effort. This undesirable side effect has 
been recognized in the literature, and efforts have been made to mitigate it, for example, via constrained prior construction 
in the Bayesian inference [2]. Another approach to preserve the physical properties of the model is to directly embed the 
model discrepancy in the model, as opposed to treating it as an external additive term. This was proposed in [12], where 
random parameters are introduced inside the model to allow one to tune the model using data. The random variables 
are then parameterized by polynomial chaos expansion [3,14] and Bayesian inference is then employed to estimate the 
expansion coefficients.

In this paper, we first frame the model correction problem in a general manner, using model discrepancy terms both 
external and internal to the model. More importantly, we discuss a means of explicitly incorporating the physical constraints 
that the underlying problem should satisfy. This is vital to the corrected model, as it is intended to be an improved model 
to the underlying physical phenomenon. Upon parameterizing the model correction terms, our model correction problem 
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is formulated as an optimization problem, where the distance between the corrected model predictions and observation 
data is minimized. The physical constraints are also parameterized and then incorporated in the optimization problem 
as constraints. This results in the core contribution of this paper — the method of physics constrained model correction 
(PCMC). A general discussion about the physical constraints is difficult, as they can take vastly different forms depending 
on the underlying physical problems. Instead, we then proceed to use several representative examples to illustrate the 
effects of the physical constraints. The examples include a diffusion problem with imperfect modeling of the diffusivity 
and boundary conditions, a mechanical system with conservation of energy, a differential equation model with missing 
boundary layer transition, and a two-dimensional Navier–Stokes equations model with incompressibility constraint. Using 
extensive numerical tests, we demonstrate that the PCMC is an effective method to produce improved model predictions and 
performs better than the unconstrained model correction (UMC) which does not enforce the important physical constraints. 
We remark that by “better” we merely refer to the fact that PCMC is able to directly incorporate the physical constraints, if 
desired, into the prediction. Ultimately, the quality of a model should be judged by its predictability and how it compares 
against the ground truth. Just because one model incorporates certain physical constraints does not necessarily imply it 
has better predictability. How to judge the predictability of a model is, however, not the scope of this paper. Here we 
focus exclusively on the numerical implementations of the incorporation of the physical constraints, if one deems their 
incorporation necessary. Whether and how the incorporation of the physical constraints improves the model prediction is a 
problem dependent issue and should be decided prior to the model correction procedure.

This paper is organized as follows. In Section 2 we discuss the general forms of model correction. These include external 
model correction, internal model correction, and mixed model correction using both external and internal corrections. The 
physics constrained model correction (PCMC) is then presented in Section 3. Several representative examples of the physical 
constraints are discussed in Section 4. Then, in Section 5, we present extensive numerical tests for these representative 
systems and demonstrate the effectiveness of the PCMC framework.

2. Model correction

Throughout this paper, we use M(x; p(x)) to denote the simulation model. Here x ∈ D is the coordinate in a physical 
domain, and p(x) represents an important process embedded in the model. For example, it can be the diffusivity field of 
a diffusion model. For notational convenience, we do not include the time variable. This is done without loss of generality, 
as the incorporation of time is straightforward by introducing (x, t) ∈ D × [0, T ] for some T > 0. Our numerical examples 
shall include a time dependent problem to demonstrate the applicability to time domain. We also restrict ourselves to the 
discussion of deterministic models.

We denote yt the “true” (and unknown) output of the underlying physical system, and let

d = yt + e, (2.1)

be the observation data with noise e. Let y = M(x; p) be the model output, we seek to construct a corrected model M̂ such 
that it is a better approximation of the truth yt . While there may exist a variety of ways to introduce model corrections, 
here we focus on the approaches that can be broadly classified as external correction and internal correction.

2.1. External model correction

In external model correction, we seek to introduce the correction terms outside the simulation model M . The most 
obvious approach is of additive type, that is,

M̂ = M(x; p) + δ(x), (2.2)

where δ(x) is the correction term, and M̂ stands for the corrected model. This is the most widely used model correction 
form. For example, the well known Kennedy–O’Hagan method [8] takes this form.

One may also consider a multiplicative correction and seek

M̂ = δ(x)M(x; p). (2.3)

Obviously, the two can be combined into a more general form of external correction.

M̂ = δm(x)M(x; p) + δa(x), (2.4)

where δm stands for the multiplicative correction factor and δa for the additive correction term.

2.2. Internal model correction

In internal model correction, we seek to “correct” the important internal modeling process p(x), in order to improve the 
model prediction. The similar correction form used in the external correction, (2.4), can now be employed to the internal
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process p(x):

p̂(x) = δm(x)p(x) + δa(x), M̂ = M(x; p̂(x)), (2.5)

where, again, δm and δa stand for the multiplicative factor and the additive correction term, respectively, for the internal 
process p. An additive internal model correction can be obtained by setting δm(x) ≡ 1; whereas a multiplicative internal 
model correction can be obtained by setting δa(x) ≡ 0.

2.3. Mixed model correction

Obviously, one can combine both the internal and external correction and construct a more general mixed type model 
correction. It shall take the following form,

p̂(x) = δ
(i)
m (x)p(x) + δ

(i)
a (x),

M̂ = δ
(e)
m (x)M(x; p̂(x)) + δ

(e)
a (x), (2.6)

where the superscripts (i) and (e) stand for the internal and the external corrections, respectively, and the subscripts a
and m stand for the additive term and the multiplicative factor, respectively. The simplifications to the special cases of the 
external correction form (2.4) and the internal correction form (2.5) are obvious. Throughout this paper, we will often write 
(2.6) in a more compact form,

ŷ = M̂(x; δ(x)), δ(x) = (δ
(i)
m , δ

(i)
a , δ

(e)
m , δ

(e)
a ), (2.7)

where δ(x) includes all the correction terms in the external and/or the internal form.
We remark that even though this form is general, in practice one shall prefer “simpler” models, in order to reduce the 

complexity of both the modeling efforts and the simulation burden. To this end, intuition and experience of the underlying 
physical problems and the properties of the existing model M are critical in the construction of the model corrections.

3. Model correction with physical constraint

In this section we present the strategies for implementing the model correction methods (2.6). In particular, we introduce 
physics constrained model correction (PCMC) and discuss its numerical implementations.

3.1. Physical constraints

For many practical problems, the underlying physical problem possesses certain properties that need to be satisfied. 
For example, conservation of certain quantities, positivity of some variables, etc. Let us denote the constraints as a set of 
(nonlinear) functions

Ci(yt) = 0, i = 1, . . . ,nc, (3.1)

where nc is the number of equality constraints the true solution yt satisfies, and a set of inequality constraints

Fi(yt) ≤ 0, i = 1, . . . ,n f , (3.2)

where n f is the number of the inequality constraints.

3.2. Physics constrained model correction (PCMC)

Let (x j, d j), j = 1, . . . , nd , be a set of observational data (2.1). By following the traditional approach, we assume the 
observation error e has zero mean. We now seek to determine the correction term δ in (2.7) using the observational data.

Let V δ be a linear space from which the correction δ is constructed. Let dim(V δ) = nδ and (b1, . . . , bnδ ) be a set of basis 
for V δ . We can then express δ(x) as

δ(x) =
nδ∑

i=1

αibi(x), (3.3)

and further write the corrected model (2.7) as

ŷ = M̂(x;α), α = (α1, . . . ,αnδ )
T , (3.4)

where the dependence of the corrected model M̂ on the coefficients α of the correction function δ is explicitly shown. The 
corrected model M̂ is now parameterized via the introduction of the basis in V δ . We remark that it is reasonable to use 
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different linear spaces for the internal correction term and the external correction term in (2.6). The space V δ is then the 
superposition of the different spaces.

Let ŷ j(α) = M̂(x j; α) be the corrected simulation data at x j , j = 1, . . . , nd , where the observations are made. Let d =
(d1, . . . , dnd ) and ŷ = ( ŷ1, . . . , ŷnd ) be the observational data vector and the simulation data vector, respectively, and C =
(C1, . . . , Cnc ) be the set of the equality constraint functions in (3.1). We then seek to solve the following optimization 
problem

α† = argmin
α

‖d − ŷ(α)‖, subject to

Ci( ŷ(α)) = 0, i = 1, . . . ,nc,

F j( ŷ(α)) ≤ 0, j = 1, . . . ,n f . (3.5)

Alternatively, one can absorb the equality constraints into the objective function and rewrite (3.5) as

α† = argmin
α

‖d − ŷ(α)‖ + λ‖C( ŷ(α))‖w , subject to

F j( ŷ(α)) ≤ 0, j = 1, . . . ,n f , (3.6)

where, for a set of non-negative weights w = (w1, . . . , wnc ) satisfying w1 + · · · + wnc = 1,

‖C‖w =
nc∑

i=1

wi‖Ci‖ (3.7)

is a weighted norm for the constraint functions. Both (3.5) and (3.6) are viable choices mathematically. In practice, one may 
wish to choose one of them depending on the problem at hand.

Note that in (3.5) and (3.6) the norms are left unspecified. In practice, they can be chosen based on the specific problem 
at hand. For the distance between d and ŷ, one can use a standard vector norm, e.g., the 2-norm. The norms in the weighted 
norm of C in (3.7) are more subtle. Since each constraint Ci may be vastly different, the norms must be chosen properly 
based on the specific forms of each Ci .

Upon solving the optimization problem (3.6) or (3.5), we can construct the physics constrained model correction (PCMC) 
term as

δ†(x) =
nδ∑

i=1

α
†
i bi(x), (3.8)

and consequently, the new physics constrained model

M̂ = M̂(x; δ†(x)) (3.9)

in the form of (2.7).

3.3. Unconstrained model correction (UMC)

One obvious simplification of PCMC is the removal of the physical constraints. Or, in certain cases, the physical con-
straints do exist, but they do not impose any effective constraints on the model corrections. The PCMC is then reduced to 
unconstrained model correction (UMC)

α† = argmin
α

‖d − ŷ(α)‖. (3.10)

Most of the existing model correction methods do not explicitly incorporate physical constraints and can be loosely classified 
as UMC. In this approach, (3.10) achieves the purpose of fitting the observational data. It is obvious that the result of UMC 
shall not preserve any physical properties in general.

3.4. Effects of physical constraints

The physical constraints have a direct impact on the solution of the PCMC optimization problem (3.5) or (3.6). In general, 
the constraints may take vastly different forms for different problems. They may also exert highly complex and nonlinear 
effects on the variable α in the PCMC optimization (3.5) or (3.6). Consequently, the effective number of constraints on the 
coefficients α may be different. This is because the potentially highly nonlinear constraint functions may possess certain 
complicated dependence structure, in term of α.

Note that in some cases one may wish to employ only the internal model correction (2.5), as in the case of [12]. If some 
physical constraints are already enforced by the simulation model M , then the corrected model M̂ = M(x; p̂(x)) in (2.5) will 
automatically satisfy these constraints. Consequently, these constraints become redundant in the PCMC formulation (3.5)
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or (3.6). The overall effective physical constraints will be less than nc + n f , which is the total number constraints. Let neff
c

be the number of the effective physical constraints on α. Obviously, neff
c ≤ nc + n f . We then distinguish the optimization 

problem (3.6) into two scenarios.

3.4.1. Over-determined case
When nd + neff

c ≥ nδ , the overall number of constraints, imposed by both the data and the physical constraints, is larger 
than the number of unknown coefficients. The PCMC optimization problem (3.6) or (3.5) essentially becomes a regression 
problem. In fact, when the vector 2-norm is employed, it can be considered a (nonlinear) constrained least squares problem.

3.4.2. Under-determined case
When nd + neff

c < nδ , the PCMC optimization problem (3.6) or (3.5) becomes under-determined, as the number of un-
knowns (nδ) is larger than the number of overall constraints. In this case, to ensure the solvability of the optimization 
problem, we introduce a regularization term and seek to solve, instead of (3.5),

α† = argmin
α

‖d − ŷ(α)‖ + β‖α‖, subject to

Ci( ŷ(α)) = 0, i = 1, . . . ,nc,

F j( ŷ(α)) ≤ 0, j = 1, . . . ,n f , (3.11)

where β > 0. Or, instead of (3.6), we solve

α† = argmin
α

‖d − ŷ(α)‖ + λ‖C( ŷ(α)‖w + β‖α‖,
subject to F j( ŷ(α)) ≤ 0, i = 1, . . . ,n f . (3.12)

We leave the norm in the regularization term ‖α‖ unspecified. In practice, one may choose the vector 1-norm (to 
enhance sparsity), 2-norm, or else. The under-determined case is more difficult numerically than the over-determined case. 
Care must be taken to ensure its solution behaves properly. In the rest of the paper we will focus exclusively on the 
over-determined case and leave the under-determined case to be reported in a separate work.

4. Representative examples of physical constraints

The general discussion of the physics constrained model correction (PCMC) method (3.6) is difficult, without specifying 
the underlying physical problem. Here we list a few representative examples of constraints. In the next section we will use 
these examples to conduct extensive numerical investigation. Note that in these examples we use fairly general-purposed 
physical constraints. In practical problems, however, one may encounter very specialized constraints. The PCMC procedure 
shall apply equally well.

4.1. Diffusion problem

Our first example is the well studied elliptic problem. Without loss of generality, we consider Dirichlet boundary condi-
tions, { −∇ · (a(x)∇u(x)) = f (x), x ∈ D,

u(x) = g(x), x ∈ ∂ D.
(4.1)

The physical constraints considered in this paper are the conservation of fluxes. More specifically, let V (i) , i = 1, . . . , nv , 
be a number of control volumes, we then impose

−
∮

∂V (i)

a(x)
∂u

∂n
dx =

∫
V (i)

f (x)dx, (4.2)

where n is the outward normal vector along the boundary ∂V (i) .
Note that if we define the control volumes to be small elements that discretize the entire computational domain, then 

the constraints (4.2) effectively recover the governing equation (without the boundary condition). This can be a useful 
property for benchmarking purpose. Also, in certain situations, the constraint become redundant, and the PCMC and UMC 
become equivalent. This shall be made clear in the different examples we present in the next section. In practice, one can 
allocate the control volumes only to a number of selective and “important” locations within the computational domain.

An obvious inequality constraint for this problem is

a(x) ≥ 0, (4.3)

which may become active if one uses internal model correction to correct the diffusivity field.
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4.2. Mechanical dynamics

We now consider the Newton’s law,

mẍ(t) = −∇V (x), x(0) = x0, ẋ(0) = v0, (4.4)

where m is the mass and V the potential energy. We are interested in the solution in a time domain t = [0, T ] for some 
T > 0.

The physical constraint is the conservation of energy, that is,

E(t) = 1

2
mẋ2 + V (x) = E(0), (4.5)

where the constant E(0) is determined by the initial condition.
Note that this is a time dependent problem. The framework discussed in the previous section can be readily applied 

by replacing the x variable by the temporal variable t and consider the time domain [0, T ]. For long time integration with 
T 	 1, a global representation/parameterization of the correction term δ(t) may not be desirable. In this case, one can adopt 
a piecewise representation of δ(t) in the time domain.

4.3. Differential equation with boundary layer

Let us now consider the following ordinary differential equation

ε yxx + (1 + ε)yx + y = 0, y(0) = 0, y(1) = 1, (4.6)

where ε > 0 is a small parameter. When ε 
 1, the solution exhibits a sharp (and smooth) transition near the left boundary 
x = 0 — the so-called boundary layer. This can be considered as a simplified model for the well known boundary layer 
problem in PDE (e.g., Navier–Stokes equations).

For this well studied problem, a straightforward asymptotic analysis shows that the solution can be decomposed into 
two parts (cf. [9]).

• Outer solution for x ∼ O (1). Upon dropping the small ε terms, one obtains yx + y = 0 and the corresponding outer 
solution yO = e1−x .

• Inner solution for x ∼ O (ε). Utilizing a change of variable τ = x/ε , one obtains a transformed equation with the leading 
terms yττ + yτ = 0. Upon solving it and matching it with the outer solution, one obtains the inner solution yI =
e − e1−x/ε .

The global solution is then a composition of the two solution, y = e(e−x −e−x/ε). It is a first order approximation of order ε .
In this paper we will use a numerical model M(x) that does not capture the boundary layer. We then require our physical 

constraint to re-introduce the “missing” physics. Realizing that inside the boundary layer the derivative terms with the ε
factor in (4.6) reach a balance, we then require that

ε yxx + yx ≈ 0, x ∼ O (ε). (4.7)

Upon integration once, this gives

ε yx + y ≈ const = e, x ∼ O (ε), (4.8)

where the constant is determined by the matching condition with the outer solution.

4.4. Incompressible flow

We finally consider the incompressible fluid flows, governed by the incompressible Navier–Stokes equations,

∇ · v = 0,

∂v

∂t
+ v · ∇v = −∇p + ν∇2 v, (4.9)

where p is the pressure and ν the viscosity.
In this paper, without considering any special cases, we will use the incompressibility as the physical constraint, i.e.,

∇ · v = 0. (4.10)
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5. Numerical examples of PCMC

In this section, we present various numerical examples to demonstrate the properties of PCMC. We will use the four 
example problems presented in the previous section. In all of the numerical tests, we use the following setup.

• The true solution yt : This will be the high resolution numerical solution of the governing equation. That is, our “true” 
solution is the numerically exact solution of the governing equation.

• The data d: We use synthesized data that are generated at selected locations by adding random noise to the true 
solution yt . The noise is i.i.d. Gaussian with zero mean value. The variance of the noise is relative to yt :

d = yt(1 + σ e), (5.1)

where e ∼ N (0, 1) is i.i.d. Gaussian with zero mean and unit variance, σ ≥ 0 is the relative standard deviation. In all 
examples, we will use the phrase 100σ% noise to refer to the value of σ . Multiple simulation runs are conducted to 
avoid coincidental matching.

• The model M: The models we use here are imperfect modeling of the governing equations (the truth). The imperfection 
takes the following forms: crude numerical approximations, incorrect modeling of the inputs (e.g., boundary conditions), 
or, simplification of the governing equations.

Note that the availability of the true solution yt here only serves the purpose of testing the numerical results. In all 
examples, the PCMC algorithms use only the synthetic data d and the model output M . The corrected model output M̂ is 
then compared to the true solution yt to gauge the effectiveness of the PCMC algorithms. In all the numerical examples, 
we keep the number of data points (nd) larger than the number of expansion coefficients (nδ ) in the correction terms. This 
ensures all of the tests are over-determined and avoids the numerical issues with respect to undersampling, which is a 
separate topic. We employ the vector 2-norm in the PCMC formulation (3.6). This essentially makes the PCMC a constrained 
(nonlinear) least squares problem, and the UMC an unconstrained least squares problem. Obviously there exist a large 
variety of numerical algorithms to solve the (nonlinear) least squares problem. Here we employ one of the most standard 
algorithms, the quasi-Newton method, to solve it. Which algorithm is best suited for this type of optimization problem is 
not the focus of this paper.

We conduct extensive tests for the diffusion problem example, where the external, internal, and mixed model corrections 
are considered. For the rest of the examples, we employ only the additive external model correction. In one example of 
the diffusion problem, we activate the inequality constraint (4.10). In all the other examples, we only consider equality 
constraints and use (3.6) to solve the PCMC optimization.

In all examples, we employ Legendre orthogonal polynomials to parameterize the correction terms. This results in better 
numerical stability, compared to monomials, at higher degrees. Obviously one is free to choose other parameterizations, e.g., 
radial basis, Gaussian process, etc. The degree of the Legendre polynomials is gradually increased till a reasonable resolution 
independent solution is reached.

5.1. Diffusion problem

For the ease of benchmarking, we consider a one-dimensional diffusion problem with Dirichlet boundary conditions{
d

dx

(
a(x)du

dx

)
= 0, x ∈ (−1,1),

u(−1) = u�, u(1) = ur,
(5.2)

where the diffusivity a(x) shall take different forms in our examples. We employ a second-order finite volume method with 
very dense uniform grids to fully resolve this simple equation. This gives us the true solution ut .

5.1.1. External model correction
We first define our true solution ut as the solution of (5.2) with

a(x) = at(x) = 1 + 1

2
sin(2πx), ut

� = −0.1, ut
r = 1.2. (5.3)

Our model M(x) is the solution of the same equation (5.2) but with

a(x) ≡ 1, u� = 0, ur = 1. (5.4)

This immediately gives us a simple analytical solution of the model

M(x) = x + 1

2
. (5.5)

Obviously, the deficiency of the model M stems from the incorrect modeling of the diffusivity a and the boundary condi-
tions.
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Fig. 5.1. External model correction for the diffusion problem without noise. The L2 errors in the corrected model M̂ with respect to the order of the 
polynomial expansion.

We then seek to construct an improved model by the additive external model correction (2.2) and use a global Legendre 
polynomial expansion to parameterize the correction term δ(x). That is, we seek

M̂(x) = M(x) + δ(x) = M(x) +
n∑

i=0

αi Li(x), (5.6)

where n is the order of the polynomial expansion. This implies that the linear space from which δ is parameterized is 
V δ = Pn , the space of polynomials of degree up to n and nδ = dim(V δ) = n + 1.

The physical constraints are the conservation of the fluxes (4.2). In this one-dimensional example and with the absence 
of the source term f , it reduces to the continuity of the fluxes across the interfaces of the representative control volumes. 
For any control volume V ( j) centered at x j , j = 1, . . . , nv , we enforce

at(x)
dM̂

dx

⏐⏐⏐⏐⏐
x=x

j− 1
2

= at(x)
dM̂

dx

⏐⏐⏐⏐⏐
x=x

j+ 1
2

, j = 1, . . . ,nv . (5.7)

The constrained PCMC optimization is then conducted to obtain the expansion coefficients α.
The synthetic data are generated at a set of uniformly distributed points in the domain. We first consider the noise-free 

case, where the data are the true solutions without the Gaussian errors. The convergence of the corrected model output M̂
to the true solution ut is shown in Fig. 5.1, with respect to the order of the Legendre expansions. Here we keep the number 
of data to be three times the number of unknown coefficients α, i.e., nd = 3nδ , to ensure the underlying least squares 
problem is well behaved. We can clearly observe the exponential convergence of the solution errors, for both the PCMC and 
UMC. Note that since the data contain no noise, the model correction (5.6), with or without the constraints (PCMC or UMC), 
essentially becomes a Legendre polynomial approximation to a smooth function (the true solution). The fast convergence of 
both PCMC and UMC is not unexpected.

We then consider noisy data, by adding 10% Gaussian noise to the true solution ut . The corrected model outputs M̂ are 
plotted in Fig. 5.2, for both PCMC and UMC at expansion order n = 9. We observe that both the PCMC and UMC are able 
to fit the observation data well. The PCMC, however, also fits the underlying physics because of the incorporation of the 
constraints. Consequently, the PCMC solution reproduces the true solution much better and overlaps with the true solution 
in most part of the domain. On the other hand, the UMC solution is a mere least squares fitting of the data and does not 
show such a strong correlation with the true solution.

We also remark that although the PCMC works well in this example, the implementation of the flux constraints (5.7)
requires the knowledge of the true diffusivity field at(x). Information like this can be difficult to acquire for complex prob-
lems. In practice, constraints without requiring too much information shall be preferred. In the next few examples for the 
same diffusion problem, the knowledge of at is no longer needed.

5.1.2. Internal model correction
We now define the true solution ut to be the solution of (5.2) with

a(x) = at(x) = 1 + 1

2
sin(2πx), ut

� = 0, ut
r = 1. (5.8)

Our model M is again the solution with a ≡ 1, u� = 0, and ur = 1 and satisfies M(x) = (x + 1)/2.
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Fig. 5.2. External model correction for the diffusion problem with 10% noise. The true solution ut and the corrected models M̂ by both PCMC and UMC, 
along with the observational data.

Fig. 5.3. Internal model correction for the diffusion problem without noise. The corrected diffusivity â(x) with respect to the order of Legendre expansion.

We now construct an internal additive model correction using Legendre expansion

â(x) = 1 + δ(x) = 1 +
n∑

i=0

αi Li(x), (5.9)

and the corrected model M̂(x; ̂a) to be the solution of (5.2) with

a(x) = â(x), u� = 0, ur = 1. (5.10)

That is, in this example, the deficiency of the model M lies solely in the “incorrect” modeling of the diffusivity a ≡ 1. 
We then seek to correct the model output by using an internal correction on the incorrect diffusivity. Note that since the 
modified solution M̂ satisfies the governing equation, it automatically satisfies the constraints. The PCMC and UMC become 
equivalent.

Again, we first test the noise-free case, where clear numerical convergence can be observed. We use nd = 41 equally 
distributed data, which are the true solution ut . In Fig. 5.3, the corrected diffusivity field â(x) (5.9) is plotted at different 
order of the Legendre polynomial expansions, along with the true diffusivity field at (x). It can be seen that the corrected 
diffusivity â converges to the true diffusivity at — the two become visually indistinguishable at order n = 11. The errors in 
the corrected diffusivity â and the corrected model solution M̂ are tabulated in Table 5.1 and then plotted in Fig. 5.4. We 
clearly see the fast convergence.

We then consider the noisy data case. The corrected diffusivity â and corrected model M̂ are plotted in Fig. 5.5. Here the 
noise level is at 5% and we used n = 5 order Legendre expansion for the internal correction term. The results agree with 
the truth well. Numerical results at higher-order polynomials do not show much improvement, as the presence of the noise 
prevents the clear convergence seen in the noiseless case.

5.1.3. Mixed model correction
We now present a more comprehensive example requiring the mixed form of model correction (2.6).
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Table 5.1
Internal model correction for the diffusion problem without noise. Errors in the modified diffusivity â and the modified model solution M̂(x).

Expansion order 3 5 7 9 11

Errors in â 4.07 × 10−1 1.70 × 10−1 4.67 × 10−2 1.59 × 10−2 6.68 × 10−3

Errors in M̂ 6.41 × 10−2 1.46 × 10−2 2.85 × 10−3 1.81 × 10−4 1.12 × 10−5

Fig. 5.4. Internal model correction for the diffusion problem without noise. Errors in the modified diffusivity â(x) and the modified model solution M̂(x).

Fig. 5.5. Internal model correction example with 5% noise at polynomial order n = 5. Left: the corrected diffusivity â(x); Right: the corrected model 
output M̂ .

The true solution ut is the solution of (5.2) subject to

a(x) = at(x) = 1 + 1

2
sin(10πx), ut

� = 0, ut
r = 1. (5.11)

Note that this results in a rather oscillatory true solution. The true diffusivity at (x) and the true solution ut(x) are shown in 
Fig. 5.6.

Our model focuses on a region of interest — a small interval I = [x�, xr] = [−0.125, 0.075], which is marked by the 
rectangle area in Fig. 5.6. This is to mimic the situation where the global solution has fine structure and is expensive to 
fully resolve. In such a case, one often resorts to study the local solution behavior in certain sub-domain. (Obviously in this 
simple example the global solution is easy to obtain for benchmarking.) The location of the particular interval I is arbitrarily 
chosen in this example.

The numerical model M(x) is the diffusion equation (5.2) restricted to x ∈ I = [x�, xr] = [−0.125, 0.075] and subject to

a ≡ 1, u|x�
= 1

2
(x� + 1), u|xr = 1

2
(xr + 1). (5.12)

That is, the numerical model M is the restriction on the interval I of the trivial solution (5.5) under the assumption (5.4).
Since both the boundary conditions and the diffusivity in the model M are incorrect, we construct the corrected model 

M̂ as a mixed type (2.6) with only additive terms. That is, we let
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Fig. 5.6. The true solution for the mixed model correction example. Left: the diffusivity field; Right: the solution. The black rectangle box indicates the 
region of interest, where the numerical model is constructed.

Fig. 5.7. Mixed model correction example without noise at na = nu = 3. Left: the corrected diffusivity â(x); Right: the corrected model output M̂ .

â(x) = 1 + δ(i)(x) = 1 +
na∑

k=0

α
(i)
k Lk(x), x ∈ I = [x�, xr], (5.13)

and the corrected model

M̂(x; â) = M(x; â) + δ(e)(x), (5.14)

where M(x; ̂a) is the solution of (5.2) restricted to x ∈ I with

a(x) = â(x), u|x�
= 1

2
(x� + 1), u|xr = 1

2
(xr + 1). (5.15)

The external correction term δ(e) is also expressed as a Legendre polynomial series

δ(e)(x) =
nu∑

k=0

α
(e)
k Lk(x). (5.16)

The continuity of the flux constraints (5.7) are then applied to M̂ in a set of small control volumes in I in the PCMC scheme. 
In this example, we use nv = 40 equally-sized control volumes to enforce the constraints.

We first study the model corrections (both PCMC and UMC) with noise-free data. In this case, the data are the true 
solution at nd = 51 equally spaced points in I . The polynomial expansion orders for both â and M̂ are kept the same, i.e., 
na = nu = n. This implies that in the PCMC optimization (3.6), there are nα = 2n + 2 number of variables to optimize. The 
solutions obtained at n = 3 are shown in Fig. 5.7 and the solutions at n = 7 are shown in Fig. 5.8. While the corrected model 
outputs by PCMC and UMC are both close to the true solution, their behaviors in the corrected diffusivity â are noticeably 
different. First, we notice that in PCMC, the corrected diffusivity â matches the true a well, and the result at n = 7 is much 
better than that at n = 3. This is expected. For UMC, however, the diffusivity field completely misses the true solution at the 
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Fig. 5.8. Mixed model correction example without noise at na = nu = 7. Left: the corrected diffusivity â(x); Right: the corrected model output M̂ .

Fig. 5.9. Mixed model corrections with 0.5% noise at polynomial order n = 7. Left: the corrected diffusivity â; Right: the corrected model M̂ .

Fig. 5.10. Mixed model corrections with 1% noise at polynomial order n = 7. Left: the corrected diffusivity â; Right: the corrected model M̂ .

higher order n = 7. This is due to the fact that the external correction term δ(e) is highly effective in correcting the solution 
discrepancy. At n = 7, the presence of δ(e) alone is able to reduce the residue of the UMC optimization (3.10) to the error 
tolerance. Consequently, the internal correction δ(i) becomes inactive. It is only at the lower order n = 3, when the external 
correction δ(e) alone is not able to fully correct the solution, that the internal correction δ(i) becomes active in the UMC 
minimization (3.10).

We then consider the problem with noisy data. More specifically, we present the cases of 0.5% and 1% noises. The results 
are shown in Fig. 5.9 and Fig. 5.10, respectively. While both PCMC and UMC are able to fit the solution data well, the fits 
to the diffusivity field are quite different. The PCMC can reproduce the diffusivity field very well, and the UMC certainly 
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Fig. 5.11. Mixed model corrections with 10% noise and near zero crossing diffusivity field at low polynomial order n = 3. Left: the corrected diffusivity â; 
Right: the corrected model M̂ . Here PCMC stands for the PCMC method without inequality constraint, and PCMC-ineq stands for PCMC with the inequality 
constraint.

cannot. This clearly indicates the need for the physical constraints in PCMC. Although the UMC can indeed match the data 
in a reasonable way, its corrected model solution can be considered “unphysical”, for it does not inherit the internal physical 
properties.

5.1.4. Mixed model correction with inequality constraint
We now repeat the same example in the previous section. The only difference is in the true diffusivity. Instead of (5.11), 

we now set

at(x) = 1 + 0.98 sin(10πx). (5.17)

We then add 10% relative noise to the true solution ut to generate the synthetic observational data. The same mixed model 
correction (5.13) to (5.16) is then applied, where we use a Legendre polynomial expansion at a low order n = 3 for the 
correction terms. Since the minimum of the true diffusivity field is dangerously close to zero, the noise level in the data is 
high (at 10%), and the polynomial fit is of low order (n = 3), we activate the inequality constraint (4.3) to avoid the zero 
crossing of the corrected diffusivity field â. The PCMC problem (3.6) with the inequality constraint is then solved. The results 
are shown in Fig. 5.11. While not visually obvious, the corrected diffusivity â(x) by UMC and PCMC without the inequality 
constraint both contain negative values, whereas the PCMC with the inequality constraint stays strictly positive. The zero 
crossing by UMC and PCMC without the inequality constraint has a more obvious impact on the corrected solutions — sharp 
oscillations are visible at the location of zero crossing. On the other hand, the PCMC with the inequality constraint is able 
to produce smooth and much better corrected solution.

5.2. Mechanical dynamics

We now turn to the mechanical dynamics example in Section 4.2. The true solution xt is the high resolution solution of 
(4.4) subject to

V (x) = −1

2
x2 + 1

4
x4, x0 = 2, v0 = 1. (5.18)

By fixing the mass at m = 1, we readily obtain the energy constant to be conserved at E(0) = 2.5.
Our model M(t) is a crude numerical discretization to the governing equation (4.4). In particular, we employ the first 

order Euler forward method with a time step 
t = 0.1. This numerical model obviously contains non-trivial numerical 
errors and does not conserve the energy constant.

We only consider the additive type external model correction (2.2), as there is no internal process p in this problem. We 
also employ a piecewise Legendre polynomial representation of the correction term. For k = 1, . . . ,

M̂(t) = M(t) + δ(k)(t) = M(t) +
n∑

i=0

α
(k)
i Li(t), t ∈ [Tk−1, Tk], (5.19)

where T0 = 0 and Tk > Tk−1. Without loss of generality, we employ uniform pieces of length 1 with Tk = k, and fix the 
polynomial order at n = 6 in each piece.

The observation data are generated at n(k)

d = 11 equal distance points inside each sub-interval [Tk−1, Tk], by adding 10%
relative error of i.i.d. Gaussian to the true solution xt .
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Fig. 5.12. Mechanical dynamics problem for time t ∈ [0,6].

Fig. 5.13. Zoomed in view of the solutions of the mechanical dynamics problem for time t ∈ [0,1].

Fig. 5.14. Mechanical dynamics problem. The evolution over time of the energy constants by PCMC and UMC.

The numerical results are shown in Fig. 5.12, where we observe a better approximation to the true solution by the 
PCMC than the UMC. The zoomed-in view of the solutions, along with the noisy data, are shown in Fig. 5.13, for the first 
time interval t ∈ [0, 1]. The time history of the energy constants E(t), obtained by PCMC and UMC, are shown in Fig. 5.14. 
We observe that the PCMC results conserve the energy constant much better. It is now clear that the use of the physical 
constraint in PCMC enforces the corrected model x̂ to not only fit the noisy observational data but also the underlying true 
physical model much better. The UMC, on the other hand, merely fits the noisy data and does not preserve the important 
physical property. We also remark that the constraint in this case, the conservation of the energy constant, is not directly 
embedded in the model M . Consequently, it is not clear how to preserve the property via internal correction.
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Fig. 5.15. Illustration of the crude numerical model M for the boundary layer example. It is a third order polynomial fit of 6 true solution data.

Fig. 5.16. Boundary layer problem. Solutions by PCMC and UMC.

5.3. Differential equation with boundary layer

We now turn to the boundary layer problem in Section 4.3. The true solution yt is the high resolution numerical solution 
to the governing equation (4.6).

We construct our model M as a very crude approximation to the true solution. More specifically, the model M is a very 
low third order polynomial fit of the true solution using 6 data points. This is shown in Fig. 5.15. It is obvious that this 
crude model completely misses the boundary layer.

Our corrected model is the additive external correction (2.2), where we use Legendre polynomial expansion of order n
to parameterize the correction term

ŷ = M̂(x) = M(x) + δ(x) = M(x) +
n∑

i=0

αi Li(x). (5.20)

The physical constraint is (4.8). It is enforced via an integral form., i.e.,

C( ŷ) =
⎛
⎝ ε∫

0

(ε ŷx + ŷ − e)2dx

⎞
⎠

1/2

. (5.21)

We choose nd = 20 equidistant data points, which are generated by adding 10% Gaussian errors to the true solution. 
The parameter ε is set to be ε = 0.01. This implies that all the data point lie outside the boundary layer. Therefore, in this 
example the data points do not provide much information about the missing physics. We do, however, enforce the corrected 
boundary condition at x = 0 in the model corrections, i.e., ŷ(0) = 0.

Fig. 5.16 shows the computational results, for polynomial order n = 10. We clearly observe that the PCMC is able to 
capture the correct boundary layer transition very well. On the other hand, the UMC does not quite capture the boundary 
layer. It does produce a transition region. However, this transition is a numerical artifact, and it is the result of the numerical 
fitting of the left boundary condition ŷ(0) = 0 and the data points. The quality of this numerical layer depends solely on 
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Fig. 5.17. The incompressible channel flow: the true boundary conditions for v1 at the top and bottom walls.

the quality and locations of first few data points. In PCMC, the boundary layer is captured by enforcing the correct physics. 
The mild oscillations in the results are numerical artifacts of using a high order polynomial to fit a function with sharp 
gradients.

5.4. Incompressible flow

Finally, we consider the incompressible flow in Section 4.4. Here, we consider a two-dimensional channel flow in a 
domain x = (x1, x2) ∈ [0, 5] × [0, 1].

The true solution vt = (vt
1, v

t
2) is the solution of the Navier–Stokes equations subject to the following boundary condi-

tions:

Inlet (x1 = 0) : vt
1 = x2(1 − x2), vt

2 = 0,

Outlet (x1 = 5) : ∂vt
1

∂x1
= 0,

∂vt
2

∂x1
= 0. (5.22)

At the top and bottom boundaries, we let vt
2 = 0 and then vt

1 be two independent realizations of a Gaussian process with 
zero mean and a very short correlation length. The profiles of vt

1 at these two boundaries are shown in Fig. 5.17. This setup 
can be considered as a model for micro-flow or nano-flow in the channel. As widely recognized, fluid flows at such small 
scales allow slippery boundary conditions (cf. [7]), as opposed to the non-slip condition at macroscopic scales. The use of 
the two particular realizations of the Gaussian process is rather arbitrary. They only serve the purpose of numerical testing. 
The true solution vt are then the steady state solution obtained by a high-order hp-spectral element method [6], via the 
software package Nektar++ [10]. The simulation domain is decomposed into five equally-sized element, each of which is of 
size 1 × 1. Inside each element, we use order 8 spectral expansion to obtain the numerically exact solution. The viscosity is 
set at ν = 0.01.

The observation data are then generated by adding i.i.d. Gaussian noises to the true solution. More specifically, in the 
interior of each element we distribute uniformly 8 × 8 points and then add the Gaussian i.i.d. noises to both vt

1 and vt
2 to 

generate the synthetic data: d1 = vt
1(1 + σ e1) and d2 = vt

2(1 + σ e2). Here σ ≥ 0 controls the relative size of the error. The 
total number of data points is nd = 8 × 8 × 5 = 320.

Our model solution M(x) = (M1, M2) is the steady state solution with the boundary conditions (5.22), along with the 
non-slip boundary conditions at the top and bottom boundaries. This results in the well known plane Poiseuille flow satis-
fying

M1 = x2(1 − x2), M2 = 0. (5.23)

This implies that the deficiency of the model M stems from the incorrect modeling of the boundary conditions.
We employ the external additive model correction (2.2) to both velocity components, i.e.,

M̂1(x) = M1(x) + δ1(x), M̂2(x) = M2(x) + δ2(x). (5.24)

The correction terms are constructed using two-dimensional Legendre polynomial series of degree of degree n.
In the PCMC optimization (3.6), the data component takes the following form.

‖d − M̂(α)‖ =
nd∑

‖d1,i − M̂1(xi)‖2 + τ‖d2,i − M̂2(xi)‖2, (5.25)

i=1
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Fig. 5.18. The incompressible channel flow. The contours of the horizontal velocity with 10% relative errors in data. Top: true solution; Middle: PCMC 
solution; Bottom: UMC solution.

Fig. 5.19. The incompressible channel flow. The contours of the vertical velocity with 10% relative errors in data. Top: true solution; Middle: PCMC solution; 
Bottom: UMC solution.

where the parameter τ > 0 is introduced to balance the contributions from the two velocity components. This is because in 
this channel flow the magnitude of the vertical velocity is much smaller than that of the horizontal velocity. We use τ = 10
in all numerical tests. The physical constraint is the incompressibility

C(M̂) = ∂ M̂1

∂x1
+ ∂ M̂2

∂x2
= ∂δ1

∂x1
+ ∂δ2

∂x2
= 0. (5.26)

Note that since the model M already satisfies the incompressibility, the constraint is effectively on the external correction 
terms. We enforce this constraint in the PCMC optimization (3.6) at a set of selected points x j , j = 1, . . . , nc . The points are 
uniformly distributed in the domain with 40 × 20 points in each element. This is a dense set of points. They do not cause 
additional computational burden, as the constraint is evaluated on the correction terms. They can be readily evaluated using 
the analytical form of the correction terms. The polynomial order of the model corrections is fixed at n = 12.

The numerical solutions with 10% relative noise are shown in Figs. 5.18 and 5.19, for the horizontal and vertical velocities, 
respectively. All contour lines are plotted at the same levels, for the true solution, PCMC solution and UMC solution. We 
observe that the PCMC produces better results, particularly visible in the horizontal velocity. The results in the vertical 
velocity are much less clear, primarily because the magnitude of the vertical solution is rather small. This reinforces our early 
statement that the incorporation of certain physical constraints does not necessarily lead to better predictability. However, 
the incorporation of the important physical constraints, the incompressibility in this case, is indeed much preferred in 
practice and leads to more “realistic” result. In this particular case, the incompressibility is measured by the ‖∇ · u‖∞ norm 
over a set of dense grids uniformly in the domain. For PCMC, ‖∇ ·u‖∞ = 1.58 ×10−6; while for UMC, ‖∇ ·u‖∞ = 2.93 ×10−3. 
Results at different noise levels are similar and thus not shown.

6. Summary

In this paper we present a framework of physics constrained model correction (PCMC), for addressing model-form un-
certainty. Unlike the existing limited methods for model correction, the PCMC method explicitly incorporates the important 
physical constraints of the underlying physical problems. A variety of examples are presented in the paper. It is shown 
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that the PCMC method consistently produces more desirable model outputs, in the sense that its prediction embeds the 
preferred physical constraints. This suggests that the PCMC can be a viable tool for model-form uncertainty analysis.
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