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The entropy conservative/stable staggered grid tensor-product algorithm of Parsani et al. [1]
is extended to multidimensional SBP discretizations. The required SBP preserving inter-
polation operators are proven to exist under mild restrictions and the resulting algo-
rithm is proven to be entropy conservative/stable as well as elementwise conservative. 
For 2-dimensional simplex elements, the staggered grid algorithm is shown to be more 
accurate and have a larger maximum time step restriction as compared to the collocated 
algorithm. The staggered algorithm significantly reduces the number of (computationally 
expensive) two-point flux evaluations, which is potentially important for both explicit and 
implicit time-marching schemes. Furthermore, the staggered algorithm requires fewer de-
grees of freedom for comparable accuracy, which has favorable implications for implicit 
time-marching schemes.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Efficient numerical algorithms are sought that exploit O(109) exascale concurrency on next generation hardware. Clearly, 
hardware compatibility and efficiency are of paramount importance in determining an algorithm’s viability at exascale. 
Equally important (if not more so) is algorithmic robustness, which becomes progressively more difficult to achieve as 
problem size increases.

High-order FEM methods provide an efficient approach to achieve high solution accuracy. They are amenable to H-, P-, 
and R-refinement algorithms, and have computational kernels that are arithmetically dense making them compatible with 
highly concurrent hardware. Recently, nonlinearly stable, (entropy stable) high-order FEM algorithms have been developed 
for the compressible Navier-Stokes equations [1–4]. Thus, high-order, entropy stable FEM algorithms are well positioned for 
the challenges of exascale.
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High-order methods are known to be more efficient than low-order methods for linear wave propagation [5,6]. How-
ever, without provable stability, their use can be hampered by lack of robustness. Nevertheless, a systematic procedure for 
constructing linearly stable schemes of arbitrary order is available within the summation-by-parts (SBP) framework (see the 
survey papers [7,8]). SBP operators are matrix difference operators that discretely mimic continuous integration-by-parts. As 
an example, an SBP matrix difference operator used to approximate the x derivative is generically given as

Dx ≡ H−1Qx,

where the symmetric and skew-symmetric parts of Qx are denoted 1
2 Ex and Sx , respectively. The constituent matrices of 

an SBP operator (H, Qx , Ex) are high-order approximations to continuous bilinear forms, i.e., for grid functions v and u
(constructed from continuous function V and U )

vTHu ≈
∫
�

VUd�, vTQxu ≈
∫
�

V
∂U
∂x

d�, vTExu ≈
∮
�

VUnxd�,

where nx is the x component of the unit normal. Using these relations, SBP operators can be shown to mimic integration 
by parts to high order term-by-term, i.e.,

vTQxu︸ ︷︷ ︸
≈
∫
�

V
∂U
∂x

d�

+ uTQx v︸ ︷︷ ︸
≈
∫
�

U
∂V
∂x

d�

= vTExu︸ ︷︷ ︸
≈
∮
�

VUnxd�

.

It is this mimetic property that enables the construction of linearly stable schemes of arbitrary order. Interface operators 
and boundary conditions that are compatible with SBP operators are also available, (e.g., simultaneous approximation terms 
(SATs) [9–13]), as are stable operators for linear variable coefficient problems [12].

The relative success of high-order, provably stable algorithms for linear problems motivates the search for high-order 
provably stable methods for nonlinear problems. Tadmor [14], in a pioneering effort, constructed nonlinearly stable second-
order finite-volume schemes for the compressible Euler equations in one spatial dimension. Nonlinear stability was achieved 
by discretely mimicking continuous entropy conservation through the use of conservative numerical two-point flux func-
tions that, when contracted with the entropy variables, result in a telescoping potential flux; stability is then achieved by 
introducing appropriate dissipation. This telescoping property allows the semidiscrete stability analysis to mimic the con-
tinuous L2 entropy stability analysis (for a review of these ideas see Tadmor [15]). Such schemes have been extended to 
high-order ENO by Fjordholm et al. [16] and low-order unstructured finite volume discretizations by Ray et al. [17], to name 
a few developments in this community.

Fisher and coauthors provide a generalization of Tadmor’s two-point flux function procedure. By combining Tadmor’s 
2nd-order mechanics with the SBP framework, entropy conservative operators of arbitrary order can be constructed. The 
initial synthesis appears in a series of papers within the context of classical finite-difference SBP discretizations [18–20]. 
These ideas have since been extended to include collocated spectral elements [2], multidimensional SBP operators [3,
4], modal methods using decoupled SBP operators [21], as well as to a number of PDEs besides the Euler and Navier-
Stokes equations (for example MHD [22–24] and shallow water [25–27]). The combination of SBP operators and two-point 
flux functions is attractive because it inherits all of the mechanics of linear SBP schemes for the imposition of boundary 
conditions and interelement coupling and thereby gives a systematic methodology for discretizing problems on complex ge-
ometries. Moreover, constructing schemes that discretely mimic a continuous stability proof naturally produces semi-discrete 
or fully-discrete [28] schemes that inherit an L2 entropy stability estimate; there is no need to assume exact integration, as 
is commonly done in alternative approaches [29,30].

Herein, entropy stable operators based on the multidimensional SBP framework are developed that are suitable for 
general nodal distributions that arise in tetrahedra, prisms, and pyramids. Efficient operators are critical for these element 
types because they are ubiquitous in the unstructured meshes frequently used by practitioners. Entropy-stable schemes 
for the compressible Euler equations that use multidimensional SBP operators have been previously developed. (See Crean 
et al. [4] for results on triangles and tetrahedra, and Chen and Shu [3] for results on triangles.) As will be shown, however, 
these operators have several undesirable attributes that can be easily mitigated using the present approach.

Collocated multidimensional SBP operators can be delineated into two categories: those constructed with dense E and 
those with diagonal E (see Fig. 1). Dense-E SBP operators can be constructed using minimal (or nearly minimal) nodal 
sets on triangles and tetrahedra for all practical orders [4]. Entropy conservative operators constructed with dense-E re-
quire interface coupling SATs that fully couple adjoining elements. Consequently, the extensive element-to-element coupling 
makes entropy conservative/stable schemes computationally expensive, in this case, because of the excessive number of 
two-point flux evaluations required to ensure entropy conservation. Alternatively, SBP operators with diagonal-E are con-
structed on nodal sets that include both interior and surface nodes [3,4], in order to accommodate design order surface 
cubatures. These additional constraints, however, force the dimension of diagonal-E nodal sets to be suboptimal. For ex-
ample, at polynomial orders (1, 2, 3, 4), the ratio of the nodal dimension between dense and diagonal-E nodal sets are 
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Fig. 1. Example nodal distributions.

n ∈ (3/6, 6/12, 10/18, 15/27) for triangles, and (4/13, 10/36, 20/69, 38/99) for tetrahedra, where n is the number of nodes. 
Note that the number of nodes for dense-E SBP operators is optimal for triangles [(p + 1)(p + 2)/2] and nearly optimal 
for tetrahedra [(p + 1)(p + 2)(p + 3)/6], where p is the degree of the operator. Despite having nearly twice (or thrice) the 
nodal dimension for triangles (or tetrahedra), the number of two-point flux evaluations is vastly reduced with diagonal-E
SBP operators because adjoining elements only couple on their surfaces (O(n2) vs. O(n6)). In addition, the mechanics for 
constructing entropy stable numerical boundary conditions are well understood for diagonal-E operators while it is still un-
clear how to proceed for dense-E operators. Diagonal-E operators are currently preferred when constructing entropy stable 
operators on triangles and tetrahedra [3,4].

Clearly, minimizing problem size per unit accuracy is (nearly) always desirable. Some applications, however, are much 
more sensitive to excess degrees of freedom (DOFs); implicit temporal advancement being an example. External aerody-
namic solvers typically use implicit temporal advancement algorithms to cope with the stiffness resulting from high aspect 
ratio boundary layer elements. Implicit algorithms require repeated solutions of linear/nonlinear algebraic systems at each 
stage/timestep, with the dimension scaling linearly with the number of cubature nodes, for collocated methods, since DOFs 
are one-to-one with the number of cubature nodes. Countless techniques exist for solving the linear systems resulting from 
the linearization of FEM operators, although all depend strongly on the number of DOFs. For example, on-element block 
Jacobi preconditioners require a local matrix inverse (direct or iterative), that at worst can scale cubically with the number 
of on-element cubature points. Thus, dense-E on minimal nodal sets are an attractive option for implicit time advancement 
methods (assuming comparable accuracy as with the suboptimal alternatives). If only there was a way to combine interior 
and boundary operators to exploit the desirable attributes of each!

Parsani et al. [1] recently proposed a staggered grid approach for tensor-product operators based on dense-E and 
diagonal-E nodal sets. The solution was stored and advanced in time on a dense-E nodal set (tensor product Gauss Legen-
dre points), while the inviscid (and viscous) volume and surface fluxes where computed on a diagonal-E nodal set (tensor 
product Legendre-Gauss-Lobatto points). The staggered algorithm was significantly more accurate than a collocated operator, 
the result of an “over-integration” effect. Furthermore, the number of two-point function evaluations was greatly reduced 
relative to a tensor product Gauss Legendre operator.

The present work generalizes the work of Parsani et al. [1] to multidimensional SBP operators. A staggered combination 
of dense-E and diagonal-E nodes is used such that the desirable features of each approach are realized. The solution is 
stored on a nodal set, which is minimal, or nearly minimal, in cardinality. The volume and surface integrations are carried 
out on a nodal set associated with a diagonal-E SBP operator. Thus, although the problem size is nearly optimal, the 
surface cubatures only couple surface points between adjoining elements, thereby minimizing the number of two-point 
flux evaluations. Interpolation operators that satisfy a precise prolongation/restriction relation are used to maintain the SBP 
properties and thereby ensure nonlinear entropy stability of the staggered operator.

A summary of the contributions for this work includes the following: 1) prolongation/restriction pairs are shown to exist 
between dense-and diagonal-E nodal sets under very mild assumptions. 2) staggered multidimensional SBP operators are 
shown to be more accurate than diagonal-E SBP operators although the DOFs are reduced by a factor of 2 (or 3) for triangles 
(or tetrahedra). 3) the right-hand-side residual evaluation is identical for the staggered operator and the diagonal-E operator. 
Thus, Euler equation timings for explicit time advancement algorithms is nearly equivalent for the two approaches (in 
Parsani et al. the diagonal-E node set was taken as the Legendre-Gauss-Lobatto nodes at one degree higher than necessary). 
4) the staggered operator results in a larger explicit stability limit as compared to the diagonal-E operator.

The paper is organized as follows: in Section 2, we delineate the notation used in the paper, a few definitions, and review 
multidimensional SBP operators. Next, we give a brief review of the continuous entropy stability analysis in Section 3. Exis-
tence and the construction of SBP-preserving interpolation operators (necessary for the staggered scheme that we develop) 
are detailed in Section 4. The staggered-grid discretization of the Euler equations is presented in Section 5, while entropy 
conservation is proven in Section 5.1. We prove that our semidiscrete scheme is elementwise conservative in Section 5.2
and present how to construct appropriate interface dissipation to achieve entropy stability in Section 5.3. The theoretical 
properties of the scheme are numerically verified in Section 6 and, in addition, some preliminary cost comparisons are 
performed. Finally, conclusions are draw in Section 7.
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2. Notation, definitions, and review of multidimensional SBP operators

Consider a compact connected set � ⊂R3 in Cartesian coordinates (x1, x2, x3) ⊂R3. Let the boundary of � be denoted 
by �, where it is assumed that � is piecewise smooth. We use a domain decomposition strategy and therefore, partition �
into a set of K nonoverlapping elements. The domain of the κth element is denoted by �κ and its boundary by �κ ; there-
fore, � = ⋃K

κ=1 �κ . Rather than discretizing PDEs in Cartesian coordinates, they are discretized in curvilinear coordinates 
(ξ1, ξ2, ξ3) ⊂ R3; each �κ is locally transformed to �̂κ under the following assumption (i.e., the computational reference 
space, for example, in this paper is the equilateral tetrahedron):

Assumption 1. Each element in physical space is transformed using local invertible curvilinear coordinate transformations 
that are compatible at shared interfaces, meaning that points in computational space on either side of the shared surface 
are mapped to the same physical location and therefore map back to the analogous location in computational space.

We deal with generic element types that have a finite number of smooth subsurfaces, and it is therefore convenient to 
introduce the following notation:∑

γ ⊂�κ

(·) ,

which is used to indicate a sum over all smooth subsets of �κ . In practice, γ is an individual (smooth) face for which a 
cubature rule can be defined.

Functions on a particular domain are represented using a script type and bold font is used for vector-valued functions. 
As an example, U ∈ L2(�) is a square integrable function on �, while F ∈ [

L2(�κ)
]5

is a 5-vector-valued function having 
square integrable components on the element �κ . We will reserve P, Q ∈Pd(�) for polynomials, where Pd(�) is the space 
of polynomials of total degree d on �.

Functions are discretized using their nodal values at points within elements and possibly at their boundaries. Thus, if 
the κth element has nκ nodes given by Cκ ≡ {

(ξ i
1, ξ

i
2, ξ

i
3)
}nκ

i=1 = {
ξ i

}nκ

i=1, then the function U evaluated at these nodes is 
represented by the column vector

u ≡ [
U
(
ξ1
)
, . . . ,U

(
ξnκ

)]T
.

The symbols 1 and 0 denote vectors consisting of all ones and all zeros, respectively. The number of entries in 1 and 0 can 
always be inferred from the context. We will reserve p and q for the generic polynomials P and Q evaluated at the points 
in Cκ .

Matrices are represented with an uppercase sans serif type, for example A ∈ Rn×m . The n × n identity matrix is repre-
sented by In . The Kronecker product is used to extend scalar differentiation matrices to vector differentiation matrices and 
is given in the following definition:

Definition 1. The Kronecker product between the matrix A ∈Rn×m and B ∈Rp×q is denoted by

A ⊗ B ≡
⎡⎢⎣ a1,1B . . . a1,mB

...
...

an,1B . . . an,mB

⎤⎥⎦ ,

and has the following useful properties:

• (A ⊗ B)T = AT ⊗ BT

• (A ⊗ B)−1 = A−1 ⊗ B−1

• if the products AC and BD exist then (A ⊗ B) (C ⊗ D) = AC ⊗ BD

The Hadamard product will be used in the construction of entropy conservative/stable discretizations and is defined by

Definition 2. The Hadamard product between the matrix A ∈Rn×n and B ∈Rn×n is denoted by

A ◦ B ≡
⎡⎢⎣ a11b11 . . . a1nb1n

...
...

an1bn1 . . . annbnn

⎤⎥⎦ ,

and has the useful properties
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A ◦ B = B ◦ A,

A ◦ (B ◦ C) = (A ◦ B) ◦ C,

A ◦ (B + C) = A ◦ B + A ◦ C,

(A ◦ B)T = AT ◦ BT.

SBP operators are matrix difference operators approximating derivatives at discrete nodal locations and are given by [31]

Definition 3 (Summation-by-parts operator). The matrix Dξl is a degree p SBP approximation to the first derivative ∂
∂ξl

on the 
nodes Cκ = {

ξ i

}nκ

i=1 if

1. Dξl p is equal to ∂P/∂ξl at the nodes Cκ , for all polynomials P ∈Pp(�̂κ );
2. Dξl = H−1Qξl , where H is symmetric positive-definite, and;
3. Qξl = Sξl + 1

2 Eξl , where ST
ξl

= −Sξl , E
T
ξl

= Eξl , and Eξl satisfies

pT Eξl q =
∫
�̂κ

PQ nξl d�̂,

for all polynomials P, Q ∈ Pr(�̂κ ), where r ≥ p. In the above integral, nξl is the ξl component of n = [
nξ1 ,nξ2 ,nξ3

]T , 
the outward pointing unit normal on �̂κ .

Remark 1. In this paper, we deal with diagonal-norm SBP operators, for which H is a diagonal matrix with strictly positive 
entries. In this case, the nodes Cκ and entries in H define a cubature that is exact for polynomials of degree 2p − 1, at 
least [31].

We couple adjacent elements using SATs [9–13], which can be thought of as interior penalty terms. As in the case of 
one-dimensional SBP operators [32], it is convenient to decompose the Eξl into contributions from subfaces on �̂κ . Here we 
follow the approach in [4,33,34] and construct Eξl from interpolation/extrapolation operators that interpolate/extrapolate 
the solution from the SBP nodes to nodes on the elements boundary.

Consider the κth element, and let γ ⊂ �̂κ be one of its smooth faces. Furthermore, let Cγ ≡ {
ξ i

}nγ

i=1 ⊂ γ be a set of 
cubature nodes with positive weights {bi}nγ

i=1 exact for polynomials of total degree 2r. Then, if the degree r Vandermonde 
matrix (see Definition 4) associated with Cγ has full column rank, we can construct the degree r interpolation/extrapolation 
operator Rγ κ ∈Rnγ ×nκ from the nodes Cκ to the nodes Cγ , i.e., [33]

(
Rγ κ p

)
j =

nκ∑
i=1

(Rγ κ ) jiP
(
ξ i

)= P
(
ξ j

)
, ∀ j = 1, . . . ,nγ , ∀ P ∈ Pr

(
�̂κ

)
.

The degree p Vandermonde matrix is defined by

Definition 4. The degree p Vandermonde matrix on a set of nodes Cκ = {
ξ i

}nκ

i=1 with respect to the basis functions Pi ∈Pp

is the matrix

V(:, i) = pi, i = 1,2, . . .

(
p + d

d

)
,

where pi is the ith basis function evaluated at the nodes Cκ and d is the dimension of the space in which Cκ exists (in our 
case d = 3 and so 

(p+d
d

)= (p + 3)(p + 2)(p + 1)/6).

Remark 2. We could use any convenient set of basis functions in the construction of the Vandermonde matrix, for example 
the monomials, however, in practice this could lead to ill-conditioning during the construction of the operators considered 
later. Therefore, in this paper, we use the Proriol polynomials, which are mutually orthogonal on the triangle.

The Eξl matrices in Definition 3 can be constructed from the interpolation/extrapolation operators for each γ as [33]

Eξl =
∑

γ ⊂∂�̂κ

E
γ ,κ
ξl

, where E
γ ,κ
ξl

≡ RT
γ κNξl,γ Bγ Rγ κ , (1)

where Bγ = diag(b1, b2, . . . , bnγ ) is a diagonal matrix whose entries are the positive cubature weights for face γ , and 

Nξl,γ = diag
[(

nξl

)
,
(
nξl

)
, . . . ,

(
nξl

) ]
is a diagonal matrix whose entries are the ξl component of the unit outward normal 
1 2 nγ
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to �̂κ at the cubature points of face γ . There exists at least one SBP operator whose Eξl has the decomposition (1) for a 
given Cκ and H [33], and we assume that such an SBP operator is used throughout this work.

We also use interpolation/extrapolation operators to define the coupling matrices, which are used to couple adjacent 
elements:

Eκ,ν
ξl,m,γ ≡ RT

γ κAl,m
γ Nξl,γ Bγ Rγ ν, Eν,κ

ξl,m,γ = −
(

Eκ,ν
ξl,m,γ

)T
, (2)

where Al,m
γ is a diagonal matrix with the metric term J ∂ξl

∂xm
evaluated at the cubature nodes of surface γ , that is

Al,m
γ = diag

[
J

∂ξl

∂xm
(ξ1), . . . ,J

∂ξl

∂xm
(ξnγ

)

]
,

where diag(v) is a diagonal matrix with its diagonal entries populated by the components of v . Note that when the matri-
ces (1) and (2) are left and right multiplied by grid functions, they approximate surface integrals, that is

pTEξl q ≈
∮
�̂κ

PQnξl d�̂, pTEκ,ν
ξl,m,γ q ≈

∮
γ

PQnξl d�̂.

Remark 3. We will assume that the normal is outward pointing with respect to κ in the adjacent pair of generic elements 
κ and ν .

3. Review of entropy stability

3.1. Governing equations

In this work, we will construct entropy conservative/stable discretizations of the Euler equations for a calorically perfect 
gas, which in Cartesian coordinates and in three-dimensions are given as

∂U
∂t

+
3∑

m=1

∂Fm

∂xm
= 0, ∀ x ∈ �, (3)

where well-posed data is assumed (we forgo a detailed description of the Euler equations as this can be found elsewhere, 
for example LeVeque [35]).

We transform (3) on each �κ into curvilinear coordinates and recast the resulting PDE into an average of the conservative 
and chain-rule forms, giving

∂JκUκ

∂t
+

3∑
l,m=1

1

2

∂Al,m
κ Fm

∂ξl
+ Al,m

κ

2

∂Fm

∂ξl
= 0, (4)

where Jκ is the local metric Jacobian and we have used the metric identities

3∑
l=1

∂Al,m
κ

∂ξl
= 0, Al,m

κ ≡ Jκ
∂ξl

∂xm
, m = 1,2,3. (5)

3.2. Continuous entropy analysis

The compressible Euler equations, given in form (3) or (4), have a convex extension of their original form, that when 
integrated over the physical domain �, or piecewise over the computational domains �̂κ , depend only on the boundary 
data. This convex extension results in an entropy function that provides a mechanism for proving stability in the L2 norm. 
Indeed, Dafermos [36] proved that if a system of conservation laws is endowed with a convex entropy function, S = S(U), 
then a bound on the global estimate of S can be converted into an a priori estimate on the solution vector U (see also 
Svärd [37]).

Definition 5. A scalar function S = S(U) is an entropy function of a system of conservation laws if it satisfies the following 
conditions:

• In Cartesian coordinates, the gradient of the convex function S(U), with respect to the conservative variables, simulta-
neously contracts all of the spatial fluxes as follows:
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∂S
∂U

∂Fm

∂xm
= ∂S

∂U
∂Fm

∂U
∂U
∂xm

= ∂Fm

∂U
∂U
∂xm

= ∂Fm

∂xm
, m = 1,2,3.

The components of the contracting vector ∂S/∂U , are the entropy variables and are denoted by the vector WT =
∂S/∂U . Furthermore, the scalars Fm(U) are the entropy fluxes in the m-direction.

• If W takes the role of a new set of independent variables, i.e., U = U(W), then the entropy variables symmetrize their 
associated system of conservation laws. For example, the Euler equations expressed in terms of the entropy variables 
yields

∂U
∂t

+
3∑

m=1

∂Fm

∂xm
= ∂U

∂W
∂W
∂t

+
3∑

m=1

∂Fm

∂W
∂W
∂xm

= 0,

where ∂U/∂W = (∂U/∂W)T and ∂Fm/∂W = (∂Fm/∂W)T, since the entropy is convex, the Hessian ∂2S/∂U2 is 
symmetric positive definite,

VT ∂2S
∂U2

V > 0, ∀V �= 0,

and yields a one-to-one mapping from conservative variables, U , to entropy variables, W . Similarly, ∂U/∂W is sym-
metric positive definite, since it is the inverse of ∂2S/∂U2. The entropy and corresponding entropy flux are denoted an 
entropy-entropy flux pair, (S, Fm) [15].
The fact that the matrices ∂U/∂W and ∂Fm/∂W are symmetric indicates that the conservative variables, U , and the 
fluxes, Fm , are Jacobians of scalar functions with respect to the entropy variables, i.e.,

UT = ∂Φ

∂W , FT
m = ∂Ψm

∂W ,

where, Φ , is called the potential and the Ψm are called the potential fluxes [15] and are denoted as a potential-potential 
flux pair, (Φ, Ψm) [15]. In the same way that the entropy function is convex with respect to the conservative variables, 
i.e., ∂2S/∂U2 is symmetric positive definite, the potential function is convex with respect to the entropy variables.

There is a close relation between the entropy and the potential and their associated fluxes, as shown by Godunov [38]
and Mock [39]. In particular, Godunov proves

Theorem 1. If a system of conservation laws can be symmetrized by introducing new variables W , and U is a convex function of Φ , 
then an entropy function S = S(U) is given by

Φ = WTU − S, (6)

and the entropy fluxes Fm(U) satisfy

Ψm = WTFm −Fm. (7)

Proof. The proof of this theorem can be found in references [38,40]. �
Mock proves the converse to be true:

Theorem 2. If S = S(U) is an entropy function of a system of conservation laws, then WT = ∂S/∂U symmetrizes them.

Proof. The proof of this theorem can be found in references [39,40]. �
Contracting the Cartesian form of the Euler equations (3) with the entropy variables, W , results in a new scalar differ-

ential equation for the entropy,

WT ∂U
∂t

+WT
3∑

m=1

∂Fm

∂xm
= ∂S

∂t
+

3∑
m=1

∂Fm

∂xm
= 0. (8)

Integrating (8) over the domain, �, results in a global conservation statement on the entropy in the domain,

d

dt

∫
Sd� +

∮ 3∑
m=1

Fmnxm d� = 0, (9)
� �
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Fig. 2. Staggered grid: solution nodes flux nodes.

which demonstrates that the entropy can only change in the domain based on the data that convects through the boundaries 
of �.

The integral statement of entropy conservation (9) is not strictly valid in the presence of discontinuities, e.g., shocks, and 
does not account for the dissipation of the entropy at the discontinuity. While the exact amount of entropy dissipated at 
a discontinuity is not known a priori, what is known is the sign of the jump in entropy. Thus, it is possible to construct a 
general but not sharp statement of the global behavior of the entropy in the entire domain as

d

dt

∫
�

Sd� +
∮
�

3∑
m=1

Fmnxm d� ≤ 0.

Remark 4. A sufficient condition to ensure the convexity of the entropy function S = S(U) and, therefore, a one-to-one 
mapping between the entropy variables, W , and the conservative variables, U , is that ρ, T > 0 (for the proof see for 
example, Appendix B.1 in reference [20]). Thus,

VT ∂2S
∂U2

V > 0, ∀V �= 0, ρ, T > 0.

This (physical and mathematical) restriction on density, ρ , and temperature, T , weakens the entropy proof, making it less 
than a full measure of nonlinear stability. Another mechanism must be employed to bound ρ and T away from zero to 
guarantee positivity; positivity preservation will not be considered herein.

4. SBP-preserving interpolation operator

4.1. Existence

We are interested in the development of multidimensional SBP schemes with minimal or near minimal DOFs. Such 
schemes can be advantageous for explicit time marching approaches as they reduce the number of floating point opera-
tions. Moreover, they are particularly important in the context of implicit time marching because of the reduced size of the 
Jacobian matrix. However, for multidimensional SBP schemes, the optimal nodal distributions tend to be interior only nodes 
and this results in a significant increase in the computational cost of the interelement coupling for entropy-conservative/sta-
ble discretizations.

In order to reduce the cost of interelement coupling for interior only nodal distributions, we extend the staggered entropy 
conservative/stable tensor-product SBP algorithm of Parsani et al. [1] to multidimensional SBP operators. We introduce two 

set of nodes. The first is the solution set C̃κ =
{
ξ̃ i

}̃nκ

i=1
. On this set of nodes, the conservative variables, ũκ , are stored and 

we assume that a norm matrix, H̃, of at least degree 2p − 1 exists and that the degree p Vandermonde matrix has full 
column rank. The second set, Cκ = {

ξ i

}nκ

i=1, is where the derivatives of the fluxes are evaluated and we assume an SBP 
operator of at least degree p exists, see Fig. 2. To construct our discretization, we need to introduce interpolation operators 
from the solution nodes to the flux nodes, IS2F, and from the flux nodes back to the solution nodes, IF2S. For accuracy and 
stability, we demand that the interpolation be SBP preserving (we aptly call these SBP preserving interpolation operators), 
that is they satisfy the following conditions [1]:

Accuracy: IS2FṼp = Vp, IF2SVp̂,= Ṽp̂, p̂ ≥ p − 1

Stability: H̃I H−1 = IT .
(10)
F2S S2F
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The interpolation from the flux nodes to the solution nodes need only be degree p − 1 because it acts on the derivative and 
so the combination IF2SD is of degree p. In (10), we used the degree p Vandermonde matrices Ṽp and Vp on the solution 
and flux nodes, respectively (see Definition 4).

We now discuss one of the main contributions of this paper. The entropy conservation proofs presented later rely on the 
existence of the interpolation operators IS2F and IF2S that satisfy (10). To this end, we now present a general theorem on the 
conditions required for existence of such operators.

Theorem 3. Interpolation operators that satisfy (10), under conditions to be specified shortly, can be in general constructed as,

IS2F = [
Vp,W

] [̃
Vp, W̃

]−1
,

IF2S = H̃−1ITS2FH,
(11)

where ̃Vp and Vp are the degree p Vandermonde matrices, of full column rank, on the solution and flux nodes of size ̃nκ × np and 
nκ ×np , respectively, where np = (p+d

d

)
(where 

[
Vp,W

] [̃
Vp, W̃

]−1
is to be understood as the multiplication of matrix 

[
Vp,W

]
against 

the matrix 
[̃
Vp, W̃

]−1
). Furthermore, W̃ is of size ̃nκ × (̃nκ − np) and is chosen so that [̃Vp, ̃W] is invertible. The conditions that must 

be satisfied so that (11) satisfies (10) are[
VT

pHVp−1 VT
pHX

WTHVp−1 WTHX

]
=
[

ṼT
pH̃Ṽp−1 ṼT

pH̃X̃

W̃TH̃Ṽp−1 W̃TH̃X̃

]
, (12)

where the matrices, W, X, and ̃X hold free parameters and are of size nκ × (̃nκ − np), nκ × (nκ − np + 1), and ̃nκ × (̃nκ − np + 1), 
respectively (where for simplicity, we have taken p̂ = p − 1).

If VT
pHVp−1 = ṼT

pH̃Ṽp−1 , then one possible choice is to set

X̃ = 0, X = 0, W =
[
W̃TH̃Ṽp−1

(
VT

pVp
)−1

VT
pH−1

]T
.

Proof. The proof is given in Appendix D. �
The importance of Theorem 3 is that it allows us to construct a simple set of sufficient conditions for the existence of 

the necessary interpolation operators (see the next corollary). How we construct the interpolation operators, i.e., specifying 
W and W̃, is discussed in Section 4.2.

A consequence of Theorem 3 is

Corollary 1. If the solution and flux nodes come equipped with at least degree 2p − 1 cubature rules, where both nodal distributions 
support degree p Vandermonde matrices with full column rank, then SBP preserving interpolation operators exist.

Additionally, we have

Corollary 2. Assume that the number of solution nodes is of minimum size, that is ̃nκ = (p+d
d

)
where d is the dimension of the problem, 

and a norm matrix, ̃H, of at least degree 2p can be found on the solution nodes. Furthermore, assume that a set of flux nodes can be 
found with a norm matrix, H, of at least degree 2p, then interpolation operators that satisfy (10) can be constructed as

IS2F = VpṼ−1
p , IF2S = H̃−1ITS2FH.

Moreover, they satisfy the property

IF2SIS2F = I, (13)

where I is an ̃nκ × ñκ identity matrix.

Proof. The proof is given in Appendix E. �
4.2. Construction of the SBP preserving interpolation operators

In this subsection, we give a sketch of our procedure, based on Theorem 3 and its proof, to construct the interpolation 
operators:
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• We use a full rank QR decomposition of Ṽp to construct an orthogonal basis for the null space of 
(
Ṽp

)T
and use this 

null space to populate W̃. That is

Ṽp = QR = [Q1,Q2]

[
R1
0

]
= Q1R1,

W̃ = Q2.

• We set W =
[
W̃TH̃Ṽp−1

(
VT

pVp
)−1

VT
pH−1

]T
.

• The interpolation operators are constructed as IS2F = [
Vp,W

] [̃
Vp, W̃

]−1
, IF2S = H̃−1ITS2FH.

To make clear why we call these matrices SBP preserving, we note that using these matrices, we have constructed an SBP 
operator on the solution nodes using an SBP operator on the flux nodes; that is

D̃ξl ≡ IF2SDξl IS2F,

where using the SBP preserving property we can identify the constituent matrices of the resulting SBP operator as

H̃, Q̃ξl ≡ ITS2FQξl IS2F, S̃ξl ≡ ITS2FSξl IS2F, Ẽξl ≡ ITS2FEξl IS2F.

5. Staggered-grid discretization of the Euler equations

We need to present some additional mechanics before introducing our entropy conservative discretization of the Euler 
equations. Specifically, we introduce dyadic flux functions with specific properties. Let F �

m(·, ·) : R5 × R5 → R5 denote a 
numerical flux function with the following properties

Symmetry: F�
m

(
U ,U ′)= F�

m

(
U ′,U

)
,

Consistency: F�
m (U ,U) = Fm,

Tadmor shuffle:
(
W −W ′)T F�

m

(
U ,U ′)= Ψm − Ψ ′

m.

(14)

A flux that satisfies the above conditions was first presented by Tadmor [14]. Subsequently, Ismail and Roe [41] and 
Chandrashekar [42] developed less expensive numerical fluxes that satisfy the same conditions. In this paper, we use the 
Ismail-Roe flux with the log-avg accuracy improvement suggested in [21].

The solution vector ũκ ∈R5̃nκ on the κth element is organized as

ũκ,i ≡ ũκ (5(i − 1) + 1 : 5i) = [
U1(̃ξ i),U2(̃ξ i),U3 (̃ξ i),U4(̃ξ i),U5(̃ξ i)

]T
,

where we recollect that the subscript i denotes the local node number. In addition, we will need to refer to vectors of the 
components of the solution vector over the element and use the notation ũ(i)

κ . For example, ũ(1)
κ denotes the density at the 

nodes of element κ .
We now present the entropy conservative discretization of the skew-symmetric form of the Euler equations (4), i.e., 

which is a splitting based on the metric terms:

d̃Jκ ũκ

dt
+ IF2S

3∑
l,m=1

[(
Dξl A

l,m
κ + A

l,m
κ Dξl

)
◦ Fm(uκ , uκ )

]
1 = S AT , (15)

with

S AT ≡ IF2SH
−1

3∑
l,m=1

(
Eξl A

l,m
κ

)
◦ Fm(uκ , uκ )1 − IF2SH

−1 ∑
γ ⊂∂�̂κ

3∑
l,m=1

E
κ,ν
ξl,m,γ ◦ Fm(uκ , uν)1,

H ≡ H ⊗ I5, H̃ ≡ H̃ ⊗ I5, Dξl ≡ Dξl ⊗ I5, Qξl ≡ Qξl ⊗ I5, Eξl ≡ Eξl ⊗ I5,

E
κ,ν
ξl,m,γ ≡ Eκ,ν

ξl,m,γ ⊗ I5, J̃κ ≡ J̃κ ⊗ I5, A
l,m
κ = Al,m

κ ⊗ I5, 1 ≡ 1 ⊗ 15, IF2S ≡ IF2S ⊗ I5,

where I5 is a 5 × 5 identity matrix, 15 is a vectors of ones with 5 entries, and the notation, for example, 1 denotes a 
vector of ones having nκ entries. Furthermore, the diagonal matrices, ̃Jκ and Al,m

κ are constructed from approximations to 
the analytical metric Jacobian and metric terms, respectively, and are given as

J̃κ ≈ diag
[
Jκ (ξ̃1), . . . ,Jκ (ξ̃nκ

)
]
, Al,m

κ ≈ diag
[
Al,m

κ (ξ1), . . . ,Al,m
κ (ξnκ

)
]
.
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Remark 5. In Appendix A we discuss how (15) can be recast such that we reduce floating point operations at the cost of 
memory.

The matrices Fm(uκ , uν) ∈R5nκ×5nν are defined by

Fm(uκ , uν) ≡
⎡⎢⎣ diag

[
F�

m

(
uκ,1, uν,1

)]
. . . diag

[
F�

m

(
uκ,1, uν,nν

)]
...

. . .
...

diag
[
F�

m

(
uκ,nκ , uν,1

)]
. . . diag

[
F�

m

(
uκ,nκ , uν,nν

)]
⎤⎥⎦ .

It follows from the symmetry of F �
m that Fm has the property

Fm(uκ , uν) = Fm(uν, uκ )T.

Similarly, we have a scalar version given as

F(i)
m (uκ , uν) ≡

⎡⎢⎣ F�
m

(
uκ,1, uν,1

)
(i) . . . F�

m

(
uκ,1, uν,nν

)
(i)

...
. . .

...

F�
m

(
uκ,nκ , uν,1

)
(i) . . . F�

m

(
uκ,nκ , uν,nν

)
(i)

⎤⎥⎦ , i = 1,2, . . . ,5.

The semidiscrete entropy analysis relies on the Tadmor-shuffle condition and in order for the staggered discretization to 
retain this property, the arguments of the Fm entries have to be constructed as

uκ ≡ U
(
IS2F w̃κ

)
, uν ≡U

(
IS2F w̃ν

)
.

We now present some accuracy estimates for the components of the discretization that follow directly from the work 
in [4,43]. For the nonlinear differentiation operators, we have the following theorem:

Theorem 4. Let Dξl be a degree p differentiation matrix that approximates the first derivative ∂
∂ξl

, on a set of nodes Cκ . Consider a 
PDE whose fluxes in the xm coordinate directions, m = 1, 2, 3, are continuously differentiable functions Fκ,m :R5 →R5 . In addition, 
consider metric terms Al,m

κ that satisfy the metric identities (5) and are sufficiently smooth. If the two-point flux function F�
m is 

continuously differentiable, consistent, and symmetric, then for sufficiently smooth U
3∑

l=1

[
IF2S

(
2Dξl A

l,m
κ ◦ Fm (U ,U)

)
1
]

=
3∑

l=1

∂

∂ξl

(
Al,m

κ Fm

)∣∣∣∣∣
Cκ

+O
(

hp+d
)

,

[
IF2SA

l,m
κ

(
2Dξl ◦ Fm (U ,U)

)
1
]

= Al,m
κ

∂Fm

∂ξl

∣∣∣∣
Cκ

+O
(

hp+d
)

,

(16)

where h is some appropriate measure of the mesh spacing within the element.

Proof. The proof follows from REFs. [4,43] and the accuracy properties of the interpolation operator IF2S. We note that in 
the first estimate, we have taken advantage of the metric identities since for a general variable coefficient A[

IF2S
(
2Dξl A ◦ Fm (U ,U)

)
1
]=

[
∂

∂ξl
(AFm) +Fm

∂A
∂ξl

]∣∣∣∣
Cκ

+O
(
hp+1) .

We also note that the d in estimate (16) comes from the fact that in transforming to curvilinear coordinates, we have 
multiplied the PDE by J , which is of order O

(
hd
)

and similarly, the metric terms, Al,m
κ , are of order O

(
hd−1

)
. �

For the coupling SAT, we have the following theorem:

Theorem 5. Under the same conditions as in Theorem 4, the S AT penalty in (15) satisfies

S AT = O(hr+d),

where r ≥ p is the constant that appears in Definition 3.

Proof. See Thrm. 2 Crean et al. [4] (our estimate here differs by d for the previously mentioned reason). �
As a result of Thrms. 4 and 5, we see that all components of the discretization are at least degree p. In proving ele-

mentwise conservation, we require the following theorem concerning the accuracy of the coupling matrices in the SAT (in 
a weak sense):
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Theorem 6. The coupling matrices are approximations to the following surface integrals:

vT
κ

[
Eκ,ν

ξl,m,γ ◦ F(i)
m (uκ , uν)1

]
=
∮
γ

VF xm (i)Jκ
∂ξl

∂xm
nξl d�̂ +O

(
hr+d

)
, l = 1,2,3, i = 1, . . . ,5.

Proof. The proof is given in Del Rey Fernández et al. [43]. �
5.1. Semidiscrete entropy conservation

The purpose of the nonlinear SBP differentiation matrix (and coupling mechanics) introduced in the previous section is 
to construct a scheme on which we can perform a semidiscrete entropy stability analysis that is related to the continuous 
analysis in a one-to-one fashion.

Our starting point is to construct an entropy conservative scheme (we prove entropy conservation in this section) and 
then add appropriate dissipation (discussed in Section 5.3) in order to achieve entropy stability. To prove entropy conserva-
tion, we introduce the following lemma [43]:

Lemma 1. Consider the matrix A of size n ×n′ . If the two argument matrix flux function F 
(
u, u′) is built using a two point flux function 

that is symmetric in its arguments and satisfies the Tadmor shuffle condition, then

wT (A ⊗ I5) ◦ F
(
u, u′)1

′ − 1
T
(A ⊗ I5) ◦ F

(
u′, u

)
w ′ = ψT (A ⊗ I5)1r − (

1′)T
(A ⊗ I5)ψ ′.

We can now prove the following theorem:

Theorem 7. Discretization (15) is discretely entropy conservative, that is, e.g., for the periodic problem we have that

K∑
κ=1

1̃
T
J̃κ H̃

d̃sκ

dt
= 0,

if the metric terms, Al,m
κ , are constructed such that

3∑
m=1

Dξl A
l,m
κ 1 = H−1

⎛⎝ 3∑
m=1

Eξl A
l,m
κ 1 −

∑
γ ⊂∂�̂k

3∑
l,m=1

Eκ,ν
ξl,m,γ 1

⎞⎠ , (17)

and the interpolation operators satisfy the stability condition

H̃IF2SH−1 = ITS2F. (18)

Proof. The proof is given in Appendix B. �
We use the approach of Crean et al. [4] to approximate the metrics such that (17) is satisfied. The basic idea is to solve 

a convex optimization problem such that we satisfy (17) and are optimally close, in the Cartesian norm, to the analytical 
metrics (in Crean et al. [4] it is proven that the rate of convergence of the metric terms is O

(
hp+2

)
). For two-dimensional 

problems, if the curvilinear coordinate transformation is of degree ≤ p + 1 then the equation (17) is satisfied automat-
ically because the metric terms are of degree ≤ p and therefore, the various operators involved in (17) are exact (see 
Crean et al. [4]).

5.2. Elementwise conservation

The nonlinear hyperbolic nature of the Euler equations (4) means that in finite time, nonsmooth solutions can result 
despite being closed with smooth data; therefore, in such cases, it is necessary to consider the integral form of the conser-
vation law or the space-time weak form. In this paper, we consider the weak form, which is given as

T∫
t=0

∫
�̂κ

U ∂V
∂t

+
3∑

l,m=1

Al,mFm
∂V
∂ξl

d�̂dt −
∫
�̂κ

VU |T
t=0 d�̂ −

T∫
t=0

∮
�̂κ

3∑
l,m=1

Al,mFmnξl d�̂dt = 0,

t > 0, κ = 1, . . . , K ,

(19)

for all smooth test functions V with compact support.
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The integral and weak forms are equivalent and both support a restricted class of discontinuous solutions that satisfy 
the jump conditions

s[[U ]] = [[F ]],
where s is the speed of the discontinuity and [[U ]] is the jump in U across the discontinuity. Our interest is in numerically 
approximating this restricted set of discontinuous solutions that satisfy the above jump conditions — for example, in the 
case of the Euler equations these are known as the Rankine-Hugoniot jump conditions. Thus, the class of schemes that we 
are interested in are those that are consistent approximations of (19). In this paper, we take a method of lines approach; 
thus, rather than (19), we discuss conservation in the context of∫

�̂κ

V
∂U
∂t

Jκd�̂ −
∫
�̂κ

3∑
l,m=1

Al,m
κ Fm

∂V
∂ξl

d�̂ +
∮
�̂κ

VAl,m
κ Fmnξl d�̂ = 0, κ = 1, . . . , K . (20)

Conservation of the fully discrete scheme can always be achieved with an appropriate choice of time integration scheme.
Our proof of elementwise conservation is based on the extension of the Lax-Wendroff Thrm. recently proposed by Shi 

and Shu [44] and subsequently used by Del Rey Fernández et al. [43]. The essential idea is to recast the discretization in a 
telescoping form; e.g., in one dimension, we obtain a finite-volume-like scheme

duκ

dt
+ gκ

j+1/2 − gκ
j−1/2 = 0,

where uκ is a generalized locally conserved quantity and the g ’s are unique generalized surface fluxes. In the multidimen-
sional version, we need to show that our semidiscrete equations satisfy the following:

• Telescoping form: Our scheme can be algebraically manipulated into telescoping flux form at the element level generi-
cally given as

duκ

dt
+

∑
γ ⊂∂�̂κ

gκ
γ = 0. (21)

• Consistency: Given a constant flow U = U c ,

uκ =
⎛⎜⎝ ∫

�̂κ

Jκd�̂ +O (h)

⎞⎟⎠U c,

gκ
γ =

3∑
l,m=1

⎡⎣∮
γ

JκAl,m
κ nξl d�̂ +O(h)

⎤⎦Fm.

(22)

• Boundedness: The generalized conserved quantity and fluxes are bounded in terms of the L∞ norm of the numerical 
solution:∣∣uk(i) − vκ (i)

∣∣≤ C
∥∥∥u(i)

κ − v(i)
κ

∥∥∥
L∞ ,∣∣∣(gκ

γ (uκ )
)

(i) −
(

gκ
γ (vκ )

)
(i)
∣∣∣≤ C

∥∥∥u(i)
κ − v(i)

κ

∥∥∥
L∞ ,

(23)

where vκ is another numerical solution and C is some positive constant.
• Global conservation:

K∑
κ=1

uκ (i) =
∫
�

U(i)d� +O(h).

Following the work in REF. [43], we have the following result

Theorem 8. If the coupling matrices, Eκ,ν
ξl,m,γ , on either side of a given interface are the negative transpose of each other, then the 

semidiscrete form (15) can be algebraically manipulated into elementwise telescoping form (21) where
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uκ (i) ≡ 1̃TH̃̃Jκ u(i)
κ ,

gκ
γ (i) ≡ 1T

3∑
l,m=1

Eκ,ν
ξl,m,γ ◦ F(i)

m (uκ , uν)1, i = 1,2, . . . ,5.

If in addition, they satisfy the following consistency conditions, then the scheme is elementwise conservative: for a constant state Uc

1TEκ,ν
ξl,m,γ ◦ F(i)

m (uκ , uν)1 =
⎡⎣∮

γ

Jκ
∂ξl

∂xm
nξl d�̂

⎤⎦Fm(i), i = 1,2, . . . ,5.

Proof. The proof follows directly from the work in REF. [43]; for completeness the proof is included in Appendix C. �
Finally, if the discrete metric identities are satisfied, then the scheme has the free-stream preservation property.

Theorem 9. The semidiscrete equations preserve the free stream if the discrete metric terms satisfy (17).

Proof. The proof is identical to that given in REF. [43] and is included in Appendix F for completeness. �
5.3. Entropy stable discretization of the Euler equations

While the entropy conservative scheme gives dissipation free stability, it is physically inconsistent for nonsmooth flows as 
it violates the second law of thermodynamics and we therefore need to introduce some form of dissipation. In this section, 
we consider a Lax-Friedrichs like interface dissipation augmentation of the SATs; we follow the work of Crean et al. [4] and 
add to the right-hand side of (15) the following dissipation terms:

diss ≡ −IF2SH
−1 ∑

γ ⊂∂�̂κ

R
T
γ κ
γ Bγ

(
Rγ κ wκ − Rγ ν wν

)
,

where wκ ≡ IS2F w̃κ and wν ≡ IS2F w̃ν . The added terms should be dissipative, design order, and result in an entropy stable 
and elementwise conservative scheme; this is treated in the next theorem [4].

Theorem 10. If the matrices 
γ , are composed of 5 × 5 symmetric semidefinite blocks along the diagonal, then they result in an 
addition of dissipative terms of order O

(
hr

m

)
that maintain the elementwise conservation properties of the underlying scheme.

Proof. The proof follows identically to Thrm. 5 in Crean et al. [4]. �
To construct the 
 matrices, we follow the work of Crean et al. [4] and construct them such that the ith 5 × 5 block is 

given by

|λmax| ∂U
∂W ,

where |λmax| is an approximation to the magnitude of the fastest wave speed of the flux in the (scaled) normal direction 
to the interface under consideration. The scaled normal vectors are defined as Nx = ∑3

l=1 Al,1
γ Nξl,γ in the x direction and 

similarly in the y direction. The Jacobian of the conserved variables with respect to the entropy variables, i.e., ∂U
∂W is 

evaluated at the average state of the interpolation/extrapolation of the conserved variables onto the face nodes.

6. Numerical experiments

In this section, we aim to characterize the staggered-grid approach as compared to the collocated approach as well as to 
verify the theoretical properties of the semidiscrete algorithm.

The SBP operators that we consider are displayed in Figs. 3 and 4. The SBP-� operators have interior only solution nodes 
and dense-E, while the SBP diagonal-E operators have collocated surface cubature nodes. In the numerical experiments, we 
consider staggering with solution nodes on the � nodes and the flux nodes on the diagonal-E nodes for equal p. For all 
simulations, we use LSERK54 to discretize in time [45].
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Fig. 3. SBP-� elements.

Fig. 4. SBP Diagonal-E elements.

6.1. Convergence study

To test the accuracy of the algorithm, we solve the isentropic Euler vortex propagation problem. The analytical solution 
is

f (x, y, t) = 1 −
(
(x − x0 − U∞ cos(α)t)2 + (y − y0 − U∞ sin(α)t)2

)
T (x, y, t) = 1 − ε2M2∞

γ − 1

8π2
e f (x,y,t)

ρ(x, y, t) = T
1

γ −1

u(x, y, t) = U∞ cos(α) − ε
y − y0 − U∞ sin(α)t

2π
e

f (x,y,t)
2

v(x, y, t) = U∞ sin(α) + ε
x − x0 − U∞ sin(α)t

2π
e

f (x,y,t)
2

(24)

where U∞ = 1, M∞ = 0.5, ε = 5, α = 45 degrees, and x0 = y0 = 0.0. For all problems in this paper, γ = 1.4.
We perform a mesh refinement study with meshes having 42 through 2562 elements, where subsequent meshes are 

obtained by doubling the number of elements. The domain is a square (x, y) ∈ [−5, 5] and the curvilinear coordinate trans-
formation is given by

x∗
i = xi − xi,min

xi,max − xmin

x∗
i ← x∗

i + 1

40
sin(2πx∗

i )

xi = x∗
i (xi,max − xmin) + xi,min,

where xi,max and xi,min are the maximum and minimum coordinates in the ith direction. Representative meshes are dis-
played in Fig. 6.

The CFL is set to 0.25 based on the mesh spacing on the solution grid and is computed via the following formula:

h = hnode

n

n∑
i=1

(Ji)
−d,

where hnode is the minimum distance between nodes on the reference element, Ji is the determinant of the mapping 
Jacobian at node i, n is the number of nodes in the mesh, and d is the dimensionality of the equations (either 2 or 3).

The vortex at the start of the simulation is centered and advects at a 45◦ angle to the upper right; we impose Dirichlet 
boundary conditions with a standard Roe-type SAT (see [9]). This boundary condition has not been proven to be entropy-
stable; however, previous studies such as [46] have shown this boundary condition to be stable when combined with the 
entropy stable interior scheme.
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Fig. 5. Convergence studies.

Convergence plots for the collocated algorithm (using diagonal-E operators) and the staggered algorithm are displayed 
in Fig. 5. We observe that the obtained convergence rates are approximately p + 1 and that the staggered algorithm results 
in more accurate solutions (we discuss efficiency in Section 6.3).

6.2. Discontinuous solution

To demonstrate the entropy conservative properties of the semidiscrete form, we consider a discontinuous initial condi-
tion and run our algorithm without interface dissipation. At the continuous level, shocks lead to a decrease in the integral 
of the mathematical entropy; however, our entropy conservative scheme has no mechanism for dissipation and therefore, 
entropy will remain constant. To verify that this is the case, we use the 20 × 20 rectangular linear element mesh and the 
initial condition (see Fig. 7a)
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Fig. 6. Meshes for the Euler vortex propagation problem.

Fig. 7. Discontinuous solution density.

U(x, y) = [
ρ,ρu,ρv, E

]T =

⎧⎪⎨⎪⎩
[

1.1,0.4,0.4,5.1
]T ∀ 7.5 < x < 12.5,−1.25 < y < 1.25[

1.0,0.3,0.3,5.0
]T

otherwise,

on a domain x ∈ [0, 20], y ∈ [−5, 5]. The problem is simulated to a maximum time of 60 nondimensional units using a CFL 
of 0.01 with periodic boundary conditions (see Fig. 7b and 7c). Figs. 8a and 8c plot

K∑
κ=1

wT
κRHS (uκ ),

where RHS (uκ ) is the spatial residual and wκ is the vector of entropy variables. We see that the entropy remains small for 
all time verifying that the spatial discretization is entropy conserving (we have plotted p = 1 for an extended time range to 
verify that the spatial entropy is oscillating about machine zero, see Fig. 9). Figs. 8b and 8d plot the change in the discrete 
integral of the entropy function S over time, i.e.,
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Fig. 8. Discontinuous solution entropy conservative results.

Fig. 9. Spatial entropy for p = 1 extended run.

change in entropy ≡
K∑

κ=1

1̃TH̃̃Jκ (̃sκ (0) − s̃κ (t)) ,

for which we see a decrease in the entropy, which results from the fact that the time discretization is not entropy conser-
vative.
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Table 1
Cost Comparison.

Operator degree Cost per time step (s) Ratio

NonStaggered Staggered

p = 1 0.0353 0.0485 1.38
p = 2 0.0770 0.103 1.34
p = 3 0.150 0.255 1.70
p = 4 0.307 0.375 1.22

Table 2
Maximum stable time-step comparison.

Operator degree NonStaggered �t Staggered �t Ratio

p = 1 0.0449 0.0525 1.17
p = 2 0.0225 0.0285 1.27
p = 3 0.0136 0.0150 1.10
p = 4 0.00971 0.0122 1.15

Table 3
Cost per time unit.

Operator degree Ratio

p = 1 1.18
p = 2 1.06
p = 3 1.54
p = 4 1.06

6.3. Cost comparison

To assess the efficiency of the staggered grid algorithm, as compared to the collocated algorithm, we use the data from 
the 6th mesh (1282 elements) of the problem in 6.1. The computations were performed with version 0.5 of the code 
developed in the lab of the fourth author, which can be found at: https://github .com /OptimalDesignLab /PDESolver.jl. The 
code is written in Julia, version 0.4, which uses the LLVM compiler, version 3.3. Individual components of the code have 
been benchmarked against C implementations in order to verify the performance is competitive. The timing studies were 
done on 3 nodes of a cluster, where each node has 2 Intel Xeon E5-2650 processors and 128 GB of system memory. The 
nodes are connected via 56 Gb FDR Infiniband, and OpenMPI version 2.0.2 is used for all parallel communications. Table 1
gives the cost per time step of the two algorithms. As anticipated, the staggered-grid algorithm is more costly but by less 
than a factor of 2.

However, as displayed in Table 2, this cost is partially or fully offset by the fact that a larger time step can be taken. The 
maximum stable timestep was computed using a binary search algorithm for CFL ∈ [0.1, 5.0]. If a run failed to complete or 
the final solution contained Inf or NaN, the CFL was considered unstable.

Finally, Table 3 gives the ratio of the staggered and the collocated algorithms to integrate one time unit if each algorithm 
is run at the maximum stable timestep. We see that for degree 1 and 3 operators, the algorithm is somewhat more expen-
sive. While for even degree operators, the algorithm has comparable cost. Moreover, for degree 3 and 4, the algorithm is 
almost an order of magnitude more accurate (see Fig. 5), which gives strong indication that the staggered algorithm is more 
efficient.

While our numerical experiments have focused on explicit time marching, they demonstrate that the error in the stag-
gered algorithm is at worst the same as the collocated algorithm; this means, all else equal, that for implicit schemes the 
staggered algorithm might be an attractive alternative to the collocated algorithm as a result of the significant reduction in 
DOFs.

7. Conclusions

We extend the entropy conservative/stable staggered grid tensor-product algorithm of Parsani et al. [1] to multidimen-
sional SBP discretizations. We prove that under mild restrictions interpolation operators that preserve the SBP property exist. 
The resulting algorithm is shown to be entropy conservative/stable and elementwise conservative for curvilinear meshes. 
While the staggering incurs additional computational cost this is partially or fully offset by an improved CFL condition and 
increased accuracy for all polynomials considered except p = 2. The staggered grid algorithm is competitive for explicit time 
marching and in addition should be well suited for implicit time marching as it reduces the DOFs per element for each 
polynomial degree, while only using pointwise coupling between elements (typically not possible for minimum node SBP 
operators). Moreover, the pointwise coupling allows for the use of existing entropy stable numerical boundary conditions.

https://github.com/OptimalDesignLab/PDESolver.jl


180 D.C. Del Rey Fernández et al. / Journal of Computational Physics 392 (2019) 161–186
Appendix A. Recast of the semi-discrete form

In order to increase efficiency, at the cost of memory, we construct Cartesian derivatives as

Dxm ≡ 1

2
H

−1
3∑

l=1

⎛⎝A
l,m
κ Qξl − Q

T
ξl

A
l,m
κ +

∑
γ ⊂∂�̂κ

R
T
γ κNξl,γ Bγ A

l,m
γ Rγ κ

⎞⎠ ,

then the algorithm (15) takes the form

H̃
d̃Jκ ũκ

dt
+ I

T
S2F

3∑
m=1

Sxm ◦ Fm (uκ , uκ ) 1 = −IS2F

∑
γ ⊂∂�̂κ

3∑
l,m=1

E
κ,ν
ξl,m,γ ◦ Fm(uκ , uν)1,

which has a weak-form interpretation (see REFs. [4,43]).

Appendix B. Entropy conservation proof

The semidiscrete entropy conservation analysis follows step by step that for the continuous problem. First, we multi-
ply (15) by w̃T

κ H̃, where w̃κ is the vector of discrete entropy variables — this is equivalent to multiplying by the entropy 
variables and integrating over the domain. Doing so results in

w̃T
κ H̃

dũκ

dt
+ w̃T

κ I
T
S2F

3∑
l,m=1

(
Qξl A

l,m
κ + Al,m

κ Qξl

)
◦ Fm (uκ , uκ ) 1

= w̃T
κ I

T
S2F

3∑
l,m=1

(
Eξl A

l,m
κ

)
◦ Fm (uκ , uκ ) 1 + CT,

(B.1)

where we have used the interpolation condition (18) and

CT ≡ −w̃T
κ

∑
γ ⊂∂�̂k

3∑
l,m=1

E
κ,ν
ξl,m,γ ◦ Fm(uκ , uν)1. (B.2)

We proceed term by term; for the temporal term in (B.1), we apply the following manipulations:

w̃T
κ H̃

dũκ

dt
=1̃

T
H̃ diag

(
w̃T

κ

) dũκ

dt
= 1̃

T
H̃

d̃sκ

dt
. (B.3)

Next, we manipulate the volume terms on the left-hand side of (B.1). Defining wκ ≡ IS2F w̃κ we have that

Vol =
3∑

l,m=1

wT
κ

(
Qξl A

l,m
κ

)
◦ Fm (uκ , uκ ) 1 + wT

κ

(
A

l,m
κ Qξl

)
◦ Fm (uκ , uκ ) 1. (B.4)

Taking the transpose of the second term on the RHS of (B.4), we obtain

Vol =
3∑

l,m=1

wT
κ

(
Qξl A

l,m
κ

)
◦ Fm (uκ , uκ ) 1 + 1

T
[

Q
T
ξl

(
A

l,m
κ

)T
]

◦ Fm (uκ , uκ )T wκ . (B.5)

Noting that by symmetry Fm (uκ , uκ )T = Fm (uκ , uκ ), and 
(

A
l,m
κ

)T = A
l,m
κ , and substituting Q

T
ξl

= −Qξl + Eξl on the second 
term on the RHS of (B.5), equation (B.5) becomes

Vol =
3∑

l,m=1

wT
κ

(
Qξl A

l,m
κ

)
◦ Fm (uκ , uκ ) 1 − 1

T
(

Qξl A
l,m
κ

)
◦ Fm (uκ , uκ ) wκ + 1

T
(

Eξl A
l,m
κ

)
◦ Fm (uκ , uκ ) wκ . (B.6)

Applying Lemma 1, equation (B.6) reduces to

Vol =
3∑

l,m=1

(
ψκ

m

)T
Qξl A

l,m
κ 1 − 1TQξl A

l,m
κ ψκ

m + 1
T
(

Eξl A
l,m
κ

)
◦ Fm (uκ , uκ ) wκ . (B.7)

Substituting (B.3) and (B.7) into (B.1) and rearranging gives
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1̃
T
H̃

d̃sκ

dt
=

3∑
l,m=1

− (
ψκ

m

)T
Qξl A

l,m
κ 1 + 1TQξl A

l,m
κ ψκ

m

+
3∑

l,m=1

[
wκ

(
Eξl A

l,m
κ

)
◦ Fm (uκ , uκ ) 1 − 1

T
(

Eξl A
l,m
κ

)
◦ Fm (uκ , uκ ) wκ

]
+ CT.

(B.8)

Using Lemma 1 on the second sum of (B.8), we obtain

1̃
T
H̃

d̃sκ

dt
=

3∑
l,m=1

− (
ψκ

m

)T
Qξl A

l,m
κ 1 + 1TQξl A

l,m
κ ψκ

m +
3∑

l,m=1

[(
ψκ

m

)T
Eξl A

l,m
κ 1 − 1TEξl A

l,m
κ ψκ

m

]
+ CT. (B.9)

We expand the second the term on the RHS as

1TQξl A
l,m
κ ψκ

m = −1TQT
ξl

Al,m
κ ψκ

m + 1TEξl A
l,m
κ ψκ

m = 1TEξl A
l,m
κ ψκ

m,

where we have used the fact that 1TQξl = 0. Finally noting that QT
ξl

= −Qξl + Eξl (B.9) reduces to

1̃
T
H̃

d̃sκ

dt
=

3∑
l,m=1

(
ψκ

m

)T
QT

ξl
Al,m

κ 1 + CT. (B.10)

To simplify the analysis of the CT coupling terms (see (B.2)) on the right-hand side of (B.10), we consider one common 
surface between two elements and the contributions for one (l, m) combination from the elements on either side of this 
surface. Thus, we have the terms

CTκ
l,m + CTν

l,m ≡ −
(

wT
κE

κ,ν
ξl,m,γ ◦ Fm (uκ , uν) 1 + wT

νE
ν,κ
ξl,m,γ ◦ Fm (uν, uκ ) 1

)
=

−
(

wT
κE

κ,ν
ξl,m,γ ◦ Fm (uκ , uν) 1 + 1

T
(

E
ν,κ
ξl,m,γ

)T ◦ Fm (uκ , uν) wν

)
,

(B.11)

where the equality results from the fact that the transpose of a scalar is equal to itself and the symmetry of the dyadic flux 
matrix. Using (2), we obtain from (B.11)

CTκ
l,m + CTν

l,m = −
(

wT
κE

κ,ν
ξl,m,γ ◦ Fm (uκ , uν) 1 − 1

T
E

κ,ν
ξl,m,γ ◦ Fm (uκ , uν) wν

)
. (B.12)

Using Lemma 1, we obtain from (B.12)

CTκ
l,m + CTν

l,m = − (
ψκ

m

)T
Eκ,ν

ξl,m,γ 1 + 1TEκ,ν
ξl,m,γ ψν

m = − (
ψκ

m

)T
Eκ,ν

ξl,m,γ 1 − (
ψν

m

)T
Eν,κ

ξl,m,γ 1, (B.13)

where the last equality follows from using (2). What (B.13) demonstrates is that we can decouple the surface coupling terms 
and analyze entropy conservation element by element.

Performing an identical set of manipulations on each coupling surface term and examining the contributions to the κth 
element, we obtain from (B.10)

1̃
T
H̃

d̃sκ

dt
=

3∑
l,m=1

(
ψκ

m

)T
QT

ξl
Al,m

κ 1 −
∑

γ ⊂∂�̂κ

3∑
l,m=1

(
ψκ

m

)T
Eκ,ν

ξl,m,γ 1

thus,

1̃
T
H̃

d̃sκ

dt
= 0,

if

3∑
l=1

QT
ξl

Al,m
κ 1 =

∑
γ ⊂∂�̂κ

3∑
l=1

Eκ,ν
ξl,m,γ 1, m = 1,2,3. (B.14)

What is hidden in (B.14) is a discretization, in some sense, of the metric identities (5). This can be more clearly seen by 
using the SBP property QT

ξl
= −Qξl + Eξl and multiplying by −H−1, which gives

3∑
l=1

Dξl A
l,m
κ 1 = H−1

⎛⎝ 3∑
l=1

Eξl 1 −
∑

γ ⊂∂�̂κ

3∑
l=1

Eκ,ν
ξl,m,γ 1

⎞⎠ , m = 1,2,3. (B.15)
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Appendix C. Elementwise conservation

In the following subsections, we prove the various requirements for elementwise conservation given in Section 5.2 under 
the assumptions given in Theorem 8.

C.1. Telescoping flux form

The telescoping flux form is obtained by discretely integrating the semidiscrete form of each of the conservation laws 
over each element. To do so, we multiply the scalar semidiscrete forms obtained from (15) by 1̃TH̃, which after using the 
properties of the interpolation operators, ̃1TH̃IF2SH−1 = 1T, gives

1̃TH̃̃Jκ
du(i)

κ

dt
+ 1T

3∑
l,m=1

(
Qξl A

l,m
κ + Al,m

κ Qξl

)
◦ F(i)

m (uκ , uκ )1 = 1T
3∑

l,m=1

Eξl A
l,m
κ ◦ F(i)

m 1 − 1TC T , (C.1)

where C T are the coupling terms. Using the symmetry of F(i)
m (uκ , uκ ), Eξl and Al,m

κ , we have that

1TEξl A
l,m
κ ◦ F(i)

m 1 = 1

2
1TEξl A

l,m
κ ◦ F(i)

m 1 + 1

2
1TAl,m

κ Eξl ◦ F(i)
m 1,

and therefore, C.1 reduces to

1̃TH̃̃Jκ
du(i)

κ

dt
+ 1T

3∑
l,m=1

(
Sξl A

l,m
κ + Al,m

κ Sξl

)
◦ F(i)

m (uκ , uκ )1 = −1TC T .

The matrix 
(

Sξl A
l,m
κ + Al,m

κ Sξl

)
◦ F(i)

m (uκ , uκ ) is skew-symmetric, thus, after expanding the coupling terms and rearranging, 
we are left with

1̃TH̃̃Jκ
du(i)

κ

dt
+
∑
l,m

�∑
γ =1

1TE
γ ,κ
ξl

◦ F(i)
m (uκ , uν)1 = 0,

which is in the form (21) where we identify

uκ (i) ≡ 1̃TH̃̃Jκ u(i)
κ ,

gγ
κ (i) ≡

3∑
l,m=1

1TEκ,ν
ξl,m,γ ◦ F(i)

m (uκ , uν)1, 1,2, . . . ,5.

What we now need to show is that the flux at the element boundaries is unique, or equivalently, that the contributions 
from two abutting elements cancel. To show this, we take the sum of two coupling terms

1TC T l,m
κ + 1TC T l,m

ν = 1TEκ,ν
ξl,m,γ ◦ F(i)

m (uκ , uν)1 + 1TEν,κ
ξl,m,γ ◦ F(i)

m (uν, uκ )1.

Taking the transpose of the second term, using the symmetry of the flux function matrix and the assumption that (
Eκ,ν

ξl,m,γ

)T = −Eν,κ
ξl,m,γ , we see that the terms cancel.

C.2. Consistency

In the theorem, we assume that the coupling terms satisfy the consistency condition (this follows from Theorem 6) 
and therefore, we need only show that the generalized conserved quantity satisfies the consistency condition. This follows 
immediately because H̃ is at least a degree 2p − 1 approximation to the L2 inner product, that is for scalar functions V
and U

vTH̃u =
∫
�̂

VUd�̂ +O
(

h2p
)

.

Thus, for a constant state U c , u(i)
κ = 1U c(i) and we therefore have that

uκ (i) = 1̃TH̃̃Jκ 1̃Uκ (i) =
⎡⎢⎣∫
�̂κ

Jκd�̂ +O
(

h2p
)⎤⎥⎦Qc(i).
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C.3. Boundedness

The bounds on the generalized conserved quantities can be shown as follows:

∣∣uκ (i) − vκ (i)
∣∣= ∣∣∣̃1TH̃̃Jκ

(
u(i)

κ − v(i)
κ

)∣∣∣=
∣∣∣∣∣∣

nκ∑
j=1

H̃( j, j)
(

u(i)
κ ( j) − v(i)

κ ( j)
)∣∣∣∣∣∣

≤
nκ∑
j=1

H̃( j, j)
∣∣∣(u(i)

κ ( j) − v(i)
κ ( j)

)∣∣∣
≤ C max

j=1,...,nκ

(∣∣∣u(i)
κ − v(i)

κ

∣∣∣)= C
∥∥∥u(i)

κ − v(i)
κ

∥∥∥
L∞ .

The generalized flux is constructed from linear combinations of two-point flux functions; for the Ismail-Roe flux, these have 
been shown to be continuously differentiable (see Crean et al. [4]) and are therefore bounded in the L∞ norm.

C.4. Global conservation

Global conservation follows via the fact that the norm matrix is an approximation to the L2 inner product; thus,

K∑
κ=1

uκ (i) =
K∑

κ=1

1̃TH̃̃Jκ u(i)
κ =

K∑
κ=1

∫
�̂κ

Q(i)Jκd�̂ +O
(

h2p
)

=
∫
�

Qid� +O
(

h2p
)

.

Appendix D. Existence of the interpolation operators

We start by assuming that the matrix Ṽp has full column rank and note that Vp has full column rank as it supports a 
degree p differentiation operator. Next, we consider the augmented accuracy conditions on IS2F:

IS2F
[̃
Vp, W̃

]= [
Vp,W

]
. (D.1)

We choose W̃ such that 
[̃
Vp, W̃

]
is invertible, which can always be done (our approach to choosing W̃ is detailed in Sec-

tion 4.2), and therefore, we obtain that

IS2F = [
Vp,W

] [̃
Vp, W̃

]−1
, (D.2)

which is the form proposed in (11).
Next, we solve for IF2S from the stability condition in (10), which gives

IF2S = H̃−1ITS2FH. (D.3)

We must now show that this form of IF2S satisfies the accuracy conditions in (10) (we do so for p̂ = p − 1). As for IS2F, we 
consider the augmented accuracy conditions

IF2S
[
Vp−1,X

]= [̃
Vp−1, X̃

]
. (D.4)

Substituting (D.2) into (D.3) and substituting the result into (D.4) results in

H̃−1 [̃Vp, W̃
]−T [

Vp,W
]T

H
[
Vp−1,X

]= [̃
Vp−1, X̃

]
. (D.5)

Left multiplying (D.5) by 
[̃
Vp, W̃

]T
H̃, and converting to matrix notation gives[

VT
pHVp−1 VT

pHX

WTHVp−1 WTHX

]
=
[

ṼT
pH̃Ṽp−1 ṼT

pH̃X̃

W̃TH̃Ṽp−1 W̃TH̃X̃

]
, (D.6)

which are conditions (12). Finally, we prove that the proposed solution satisfies (D.6). We see that under the assumption 
that VT

pHVp−1 = ṼT
pH̃Ṽp−1, and choosing X̃ = 0 and X = 0, we need to only show that the choice

W =
[
W̃TH̃Ṽp−1

(
VT

pVp
)−1

VT
pH−1

]T
, (D.7)

satisfies the condition

WTHVp−1 = W̃TH̃Ṽp−1, (D.8)

which can easily be shown by substituting (D.7) into (D.8).
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Appendix E. Proof of Corollary 2

It is easy to show that as constructed, IS2F satisfies the accuracy conditions of (10). We now show that the resulting IF2S

satisfies the accuracy conditions

IF2SVp = Ṽp

H̃−1Ṽ−T
p VT

pHVp = Ṽp .
(E.1)

Multiplying both sides of the last equality in (E.1) by ṼT
pH̃ gives

VT
pHVp = ṼT

pH̃Ṽp,

which holds because both H̃ and H are at least degree 2p and therefore, IF2S satisfies the accuracy conditions.
The proof of (13) proceeds as follows:

IF2SIS2F = H̃−1Ṽ−T
p VT

pHVpṼ−1
p = I. (E.2)

Left multiplying both sides of the last equality of (E.2) by ṼT
pH̃ and right multiplying by Ṽp gives

VT
pHVp = ṼT

pH̃Ṽp,

which holds because both H̃ and H are at least degree 2p and therefore, IF2SIS2F = I.

Appendix F. Free-stream preservation

To prove that the semidiscrete scheme preserves the free stream, we insert a constant state U = U c into the numerical 
scheme by using uκ = 1 ⊗U c . By symmetry and consistency, we have that

Fm (uκ , uκ ) = 11T ⊗ diag [Fm (U c)] .

We require the following property of the Hadamard product of tensor product matrices:

(A1 ⊗ A2 ⊗ . . .An) ◦ (B1 ⊗ B2 ⊗ . . .Bn) = (A1 ◦ B1) ⊗ (A2 ◦ B2) ⊗ ... (An ◦ Bn) . (F.1)

Substituting the constant state into (15) gives

d̃Jκ 1̃ ⊗U c

dt
+ IF2S

3∑
l,m=1

(
Dξl A

l,m
κ + A

l,m
κ Dξl

)
◦ {11T ⊗ diag [Fm (U c)}

]
1 ⊗ 15

= IF2SH
−1

3∑
l,m=1

(
Eξl A

l,m
κ

)
◦ {11T ⊗ diag [Fm (U c)}

]
1 ⊗ 15

− IF2SH
−1 ∑

γ ⊂∂�̂κ

3∑
l,m=1

E
κ,ν
ξl,m,γ ◦ {11T ⊗ diag [Fm (U c)}

]
1 ⊗ 15,

(F.2)

Using the fact that the discrete operators are of the form D = D ⊗ I5 and properties (F.1), (F.2) reduces to

d̃Jκ 1̃ ⊗U c

dt
+ IF2S

3∑
l,m=1

{[(
Dξl A

l,m
κ + Al,m

κ Dξl

)
◦ 11T

]
1
}

⊗ {I5 ◦ diag [Fm (U c)]}

= IF2SH
−1

3∑
l,m=1

{[(
Eξl A

l,m
κ

)
◦ 11T

]
1
}

⊗ {I5 ◦ diag [Fm (U c)]}

− IF2SH
−1 ∑

γ ⊂∂�̂κ

3∑
l,m=1

[(
Eκ,ν

ξl,m,γ ◦ 11T
)

1
]
⊗ {I5 ◦ diag [Fm (U c)]} .

(F.3)

Using the fact that D1 = 0 and after simplifying, we obtain
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d̃Jκ 1̃ ⊗U c

dt
+ IF2S

3∑
l,m=1

(
Dξl A

l,m
κ 1

)
⊗ [Fm (U c)] = IF2SH

−1
3∑

l,m=1

(
Eξl A

l,m
κ 1

)
⊗ [Fm (U c)]

− IF2SH
−1 ∑

γ ⊂∂�̂κ

3∑
l,m=1

(
Eκ,ν

ξl,m,γ 1
)

⊗ [Fm (U c)] .

(F.4)

For free-stream preservation, all but the temporal terms must be zero; one solution is

3∑
m=1

Dξl A
l,m
κ 1 = H−1

⎛⎝ 3∑
m=1

Eξl A
l,m
κ 1 −

∑
γ ⊂∂�̂k

3∑
l,m=1

Eκ,ν
ξl,m,γ 1

⎞⎠ ,

which is identical to the conditions (17).
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