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This document presents a new numerical scheme dealing with the Boltzmann transport 
equation. This scheme is based on the expansion of the angular flux in a truncated 
spherical harmonics function and the discontinuous finite element method for the spatial 
variable. The advantage of this scheme lies in the fact that we can deal with unstructured, 
non-conformal and curved meshes. Indeed, it is possible to deal with distorted regions 
whose boundary is constituted by edges that can be either line segments or circular arcs 
or circles. In this document, we detail the derivation of the method for 2D geometries. 
However, the generalization to 2D extruded geometries is trivial.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

We propose in this work a new method of solving Boltzmann’s transport equation based on the PN method for the 
angular direction and the discontinuous finite element method in the spatial variable. The numerical scheme proposed is 
conservative, in the sense that the balance equation is respected per region of calculation. This method has the advantage 
of dealing with completely unstructured, non-conformal and curved meshes. The regions we consider in 2D are regions 
of arbitrary shape whose boundary is a finite union of straight line segments, arcs of circles or circles. Fig. 1 depicts an 
example of a mesh that can be handled by the method.

Recall that non-conforming meshes offer great flexibility for local refinement, and offer the possibility to deal with com-
plex geometries. Indeed, we can refine a region or element of the mesh into two or more regions without any refinement 
of other regions. This cannot be done in general with conformal meshes. This makes the non-conformal meshes apprecia-
ble when using an adaptive mesh refinement (AMR). Methods dealing with non-conformal meshes automatically handle 
conformal meshes, the opposite is not true.

Two approximations are adopted: the first one is that the angular flux is assumed to be polynomial in space per region 
of calculation; and the second is that the expansion of the angular flux on spherical harmonics is truncated at a finite 
order N .

This method leads to matrix systems whose coefficients require calculations of integrals of polynomials over a region 
and over its surface as well as integrals on the angular variable over the unit sphere and over half-spheres. We will show 
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Fig. 1. Example of a 2D-mesh.

how all these integrals can be calculated exactly even for geometric regions of arbitrary shape. The computation of these 
integrals can be generalized without difficulty for 2D extruded geometries.

We recall that the PN method has the advantage of not presenting the ray effects which affect the SN method. This is 
because the PN method approximates the angular flux for any direction, whereas the SN method is limited to approximate 
the angular flux for a finite number of directions.

The PN method has been widely studied in the literature and especially for the even- and odd-angular flux formula-
tion, see for example [7], [10], [15] and [20]. However, these studies remain limited to structured and conformal meshes 
consisting of rectangles, triangles or hexagons for 2D geometries.

As a method of acceleration, one can use a preconditioner resulting from the same method but with a lower PN order 
and/or a lower degree of polynomials in space. To our knowledge, such PN/PN acceleration has not been explored. This is just 
a suggestion for a possible acceleration, this proposal remains to be confirmed. Mathematically speaking, the acceleration 
by a lower order PN can be seen as methods using pre-conditioner called AMG (Algebraic MultiGrid).

The novelty in this work lies in the fact that: on the one hand we use a variational formulation presented in [4] and 
to our knowledge, this formulation has not been explored numerically neither in PN nor in SN. On the other hand we 
deal with unstructured, non-conformal and curved meshes, such non-standard meshes are dealt mostly by the method of 
characteristics (MOC). Finally, we use a technique of integration of polynomials over regions of arbitrary shape using the 
divergence theorem.

The strong point of the method lies in the fact that we can calculate exactly the integrals defining the coefficients of 
the elementary matrices resulting from the adopted approximation, and this for arbitrarily-shaped regions. Moreover, the 
matrices involved in the approximation depend only on the geometry and not on cross-sections, and so not on energy 
groups, this makes the method reasonable in terms of memory storage.

The numerical scheme presented in this document has been implemented in C++ in the nymo solver of the apollo3
®

code [21]. nymo integrates two solvers nymo-cg and nymo-dg. These two solvers are based on the same variational formu-
lation and both use the PN approximation for the angular variable but they have different spatial approximations. nymo-cg

uses continuous finite element method and nymo-dg uses discontinuous finite element method, see [11] for discontinuous 
Galerkin methods. nymo’s cg version deals with 1D, 2D and 3D geometries, but it is limited to structured and conformal 
meshes. This document discusses only the nymo-dg version.

2. Multigroup transport problem

Consider the phase space X = D × S2 where D is the spatial domain and S2 is the unit sphere. We use the variables 
x ∈ D and ω ∈ S2 to denote the space and the angular variables, respectively. We denote by ∂D the boundary of D and by 
n(x) the unit outward normal vector to D at x ∈ ∂D. We also denote by � and �± the sets:

� = ∂D × S2,

�+ = {(x,ω) ∈ �, ω · n(x) > 0},
�− = {(x,ω) ∈ �, ω · n(x) < 0}.

The neutron transport problem in its multigroup form consists to determine the multigroup flux u = (ug(x, ω))g=1,··· ,G and 
eventually the associated eigenvalue λ such that:{

ω · ∇ug + σ g ug = H g u + 1
λ

F g u + qg in X, (a)

ug = f g on �−, (b)
(1)
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where

(H g u)(x,ω) =
G∑

g′=1

∫
S2

σ
g,g′

s (x,ω · ω′)ug′
(x,ω′) dω′, (2)

(F g u)(x,ω) =
∑
α

χ
g
α(x)

G∑
g′=1

νσ
g′
f ,α(x)

∫
S2

ug′
(x,ω′) dω′. (3)

σ g denotes the total cross-section and σ g,g′
s is the transfer cross-section from group g′ to g . In Eq. (3) defining the fission 

operator F g , the sum over α is done over the fissile isotopes. νσ
g
f ,α and χ g

α are respectively the fission production term, 
assumed isotropic, and the spectrum for isotope α. The terms qg(x, ω) and f g(x, ω) represent the external source and the 
incoming angular flux respectively.

Remark 2.1. It should be noted that ug , in Eqs. (1a)-(3), is the flux in the group g and u denotes the multi-group flux: 
u = (ug)g=1,··· ,G .

Remark 2.2. In the case where the external source qg and the incoming flux f g are both zero, the problem is said an 
eigenvalue problem, where u is the eigenvector associated with eigenvalue λ. In other cases we have λ = 1 and the problem 
is called a source problem.

Remark 2.3. The angular direction ω is described by two angles θ ∈ [0, π ] and ϕ ∈ [0, 2π ], θ and ϕ are the axial and 
azimuthal angles of ω, so that ω = (sin θ cosϕ, sin θ sinϕ, cos θ). In Eqs. (2) and (3) the integral over the sphere S2 is 
defined by:

∫
S2

u(ω) dω = 1

4π

2π∫
0

π∫
0

u(θ,ϕ) sin θ dθ dϕ.

3. Variational formulation

In the remainder of this paper, we will assume that the total cross-section σ g is nonzero throughout the spatial do-
main D. Multiplying Eq. (1a) by (v + 1

σ g (ω · ∇v)), where v = v(x, ω) is a test function, we obtain:

1

σ g
(ω · ∇ug)(ω · ∇v) + σ g ug v + ug(ω · ∇v) + (ω · ∇ug)v

= (
H g u + 1

λ
F g u + qg)(v + 1

σ g
(ω · ∇v)

)
.

On integrating over the phase space X and after using of Green’s formula, we obtain:∫
X

( 1

σ g
(ω · ∇ug)(ω · ∇v) + σ g ug v

)
dωdx +

∫
�

ug v (ω · n) dωds

=
∫
X

(
H g u + 1

λ
F g u + qg)(v + 1

σ g
(ω · ∇v)

)
dωdx.

Splitting the integral over � into the sum of two integrals over �+ and �− and using the boundary conditions (1b), we 
obtain the variational formulation:

ag(ug, v) = hg(u, v) + 1

λ
pg(u, v) + Lg(v), (4)

where

ag(ug, v) =
∫
X

1

σ g
(ω · ∇ug)(ω · ∇v) + σ g ug v dωdx +

∫
�+

ug v (ω · n) dωds, (5)

hg(u, v) =
∫

(H g u)v + 1

σ g
(H g u)(ω · ∇v) dωdx, (6)
X
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pg(u, v) =
∫
X

(F g u)v + 1

σ g
(F g u)(ω · ∇v) dωdx, (7)

Lg(v) =
∫
X

qg v + 1

σ g
qg(ω · ∇v) dωdx −

∫
�−

f g v (ω · n) dωds. (8)

In [4] it is established, when using an appropriate functional setting and with reasonable assumptions about the data of 
the problem, that the variational formulation (4) is equivalent to the transport problem (1a)-(1b). In other words, if u is 
solution of Eq. (4) then u is also solution of Eqs. (1a)-(1b) and vice versa. We refer to [4], [5] and [6] for more details about 
this variational formulation.

The variational formulation (4) can also be derived by using a second-order form of the transport equation called Self-
Adjoint Angular Flux equation (SAAF). A simple derivation of the SAAF equation is given in [19]. See [19] for other references 
deriving the SAAF equation with different approaches.

In [14] (page 43, Eq. 3.24), the author derives a variational formulation for the SAAF equation, which resembles to the 
variational formulation (4) but without the integration over the angular direction. Slight modifications in the approach used 
in [14] will lead exactly to the formulation (4).

In [17] authors use the variational formulation (4) for non-void regions and a conservative least-squares method for 
void regions, the approximation is based on the classical Lagrange continuous finite elements method, and both SN and PN
approximations are considered. See also [16] and [13] where the authors use the discontinuous finite elements method and 
the PN method based on other variational formulations of the transport equation.

Remark 3.1. The formulation (4) is written for v = 1:∫
X

σ g ug dωdx +
∫
�+

ug (ω · n) dωds =
∫
X

(
H g u + 1

λ
F g u + qg) dωdx −

∫
�−

f g (ω · n) dωds.

This equation expresses the particle balance in the domain D , which shows that formulation (4) is conservative.

4. Discretization of the angular flux

We will denote by yk

(ω), see Appendix A, the real-valued spherical harmonic functions defined on the unit sphere S2. 

The degree 
 is zero or a positive integer and the order k is an integer varying from −
 to 
. The expansion of the flux 
ug(x, ω) on the spherical harmonics is written as:

ug(x,ω) =
∞∑


=0


∑
k=−


uk,g

 (x)yk


(ω).

The functions uk,g

 (x) are called the angular flux moments. The first two moments u0,g

0 (x) and uk,g
1 (x) are identical with 

the scalar flux and the current respectively. As a first approximation, we will assume that these flux moments are written 
as:

uk,g

 (x) =

J∑
j=1

uk,g

, j ϕ j(x),

where (ϕ j(x)) j=1,··· , J is a known basis of functions that depend only on the spatial variable x. So:

ug(x,ω) =
∞∑


=0


∑
k=−


J∑
j=1

uk,g

, j ϕ j(x)yk


(ω).

The PN approximation of the angular flux consists of truncating the infinite sum over 
 to an order N:

ug(x,ω) =
N∑


=0


∑
k=−


J∑
j=1

uk,g

, j ϕ j(x)yk


(ω). (9)

In the same way we approximate the source term qg(x, ω) and the incoming flux f g(x, ω) by expanding them on the basis 
of functions 

(
ϕ j(x)yk


(ω)
)
:

qg(x,ω) =
N∑ 
∑ J∑

qk,g

, j ϕ j(x)yk


(ω), (10)


=0 k=−
 j=1



L. Bourhrara / Journal of Computational Physics 397 (2019) 108801 5
f g(x,ω) =
N∑


=0


∑
k=−


J∑
j=1

f k,g

, j ϕ j(x)yk


(ω). (11)

Recall that the incoming flux f g(x, ω) is defined only for (x, ω) ∈ �− .
In the following, we consider a partition of the domain D in a set of homogeneous and non-overlapping regions or 

elements Dr :

D = ∪
r

Dr .

The choice of the basis of functions (ϕ j) play a crucial role in the approximation of the spatial variable. In a first step, we 
assume that the functions (ϕ j) are polynomials and linearly independent, they may be dependent on the region Dr . We 
specify later in Section 13 the choice of these polynomials used in the nymo solver.

Remark 4.1. It should be noted that in the case of 2D geometries, for reasons of symmetry, the sum over k in Eqs. (9), 
(10) and (11) is reduced only to k having the same parity as 
, see [1] page 192. Likewise for 1D geometries, the sum 
over k is reduced to k = 0. Thus, the number of degrees of freedom, for a given energy group g and a given region Dr , is 
N� = J (N + 1)2 in 3D, N� = J (N + 1)(N + 2)/2 in 2D and N� = J (N + 1) in 1D.

The idea to obtain the discretized problem consists in applying the variational formulation (4) for each region Dr of the 
domain D, which amounts to taking as phase space Xr = Dr × S2 in (4). Then we apply Galerkin’s method, for both spatial 
and angular variables, by replacing ug , qg and f g by their approximations given by Eqs. (9), (10) and (11) as well as v by 
ϕi ym

n , which gives for all (i, n, m):

ag(ug,ϕi ym
n ) = hg(u,ϕi ym

n ) + 1

λ
pg(u,ϕi ym

n ) + Lg(ϕi ym
n ). (12)

We stress that the incoming flux f g at the faces of region Dr is given either by the boundary conditions or by the flux 
in the adjacent regions to the region Dr . Equation (12) can be written in matrix form whose unknowns are uk,g


, j . In the 
following subsections we develop each terms of the above equation.

4.1. Calculation of the term ag(ug, ϕi ym
n )

Let us start by splitting the term ag(ug , v) of Eq. (5) into three terms:

ag(ug, v) = ag
0(ug, v) + ag

1(ug, v) + a+(ug, v),

with

ag
0(ug, v) =

∫
Xr

1

σ g
(ω · ∇ug)(ω · ∇v) dωdx,

ag
1(ug, v) =

∫
Xr

σ g ug v dωdx,

a+(ug, v) =
∫
�+

ug v (ω · n) dωds.

Here, Xr = Dr ×S2 where Dr is a calculation region and �+ = {(x, ω) ∈ ∂Dr × S2, ω ·n(x) > 0}. In order to get the expressions 
of ag

0 , ag
1 and a+ completely discretized, we use the approximation (9) for ug and we replace v with ϕi ym

n . After rearranging 
the terms and using the orthonormalization of the spherical harmonics, see Appendix A, we get:

ag
0(ug,ϕi ym

n ) =
∑

,k, j

A0
r (i,n,m; j, 
,k)

1

σ g
uk,g


, j , (13)

ag
1(ug,ϕi ym

n ) =
∑

,k, j

A1
r (i,n,m; j, 
,k) σ g uk,g


, j , (14)

a+(ug,ϕi ym
n ) =

∑

,k, j

A+
r (i,n,m; j, 
,k) uk,g


, j , (15)

with
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A0
r (i,n,m; j, 
,k) =

3∑
p=1

3∑
q=1

(∫
Dr

∂pϕi∂qϕ j dx
)(∫

S2

ωpωq ym
n yk


 dω
)
, (16)

A1
r (i,n,m; j, 
,k) = (δn,
δm,k)

∫
Dr

ϕiϕ j dx, (17)

A+
r (i,n,m; j, 
,k) =

∑
f∈∂Dr

∫
f

ϕiϕ j

∫
(ω·n)>0

ym
n yk


 (ω · n) dωds. (18)

Where ∂1, ∂2 and ∂3 refer to ∂x , ∂y and ∂z respectively. Similarly ω1, ω2 and ω3 refer to ωx , ωy and ωz . δn,
 is the 
Kronecker symbol. The sum 

∑

,k, j is an abbreviation for 

∑N

=0

∑

k=−


∑ J
j=1 with of course the restrictions on k for one-

and two-dimensional geometries as mentioned in Remark 4.1. In the definition of matrix A+
r the sum over f is done over 

all faces of the boundary ∂Dr of region Dr .
Note that if n and 
 are of opposite parity we have A0

r (i, n, m; j, 
, k) = 0, because the integral over all directions of an 
odd function of ω vanishes.

If the functions (ϕ j) are orthonormalized in the region Dr , then A1
r (i, n, m; j, 
, k) = δn,
δm,kδi, j and the matrix A1

r is 
reduced to the identity matrix.

The matrices A0
r , A1

r and A+
r are symmetric and we will show later that the integrals defining the coefficients of these 

matrices can be calculated exactly for regions of arbitrary shape, for any degree of polynomials and at any order N .

4.2. Calculation of the scattering source hg(u, ϕi ym
n )

Let us split the term hg(u, v) of Eq. (6) into two terms:

hg(u, v) = hg
1(u, v) + hg

2(u, v),

with

hg
1(u, v) =

∫
Xr

(H gu)v dωdx,

hg
2(u, v) =

∫
Xr

1

σ g
(H g u)(ω · ∇v) dωdx.

The addition theorem leads to:

σ
g,g′

s (x,ω · ω′) =
a∑

n=0

σ
n;g,g′
s

n∑
m=−n

ym
n (ω)ym

n (ω′),

where a is the order of anisotropy in the region Dr . Thus, on using the discretized flux given by Eq. (9), the scattering 
operator (2) is written as:

(H gu)(x,ω) =
∑

,k, j

ϕ j(x)yk

(ω)

G∑
g′=1

σ

;g,g′
s uk,g′


, j .

Substituting this expression of (H g u) into the definitions of hg
1 and hg

2 , we get:

hg
1(u,ϕi ym

n ) =
∑

,k, j

A1
r (i,n,m; j, 
,k)

G∑
g′=1

σ

;g,g′
s uk,g′


, j , (19)

hg
2(u,ϕi ym

n ) =
∑

,k, j

A2
r (i,n,m; j, 
,k)

G∑
g′=1

σ

;g,g′
s

σ g
uk,g′


, j , (20)

where the matrix A1
r is defined by (17) and the matrix A2

r is given by:

A2
r (i,n,m; j, 
,k) =

3∑
p=1

∫
(∂pϕi)ϕ j dx

∫
2

ωp ym
n yk


 dω. (21)
Dr S
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In Eqs. (19)-(20), σ 
;g,g′
s is zero if 
 is strictly greater than the order of anisotropy in the region Dr .

Note that if n and 
 have the same parity we have A2
r (i, n, m; j, 
, k) = 0, because the integral over the unit sphere of an 

odd function of ω vanishes.

Remark 4.2. It is possible, if we want to avoid inner iterations, to switch the scattering source term of the group g into 
itself in the left-hand side of Eq. (12), on writing:

(ag − hg,g
1 − hg,g

2 )(ug,ϕi ym
n ) = h�,g(u,ϕi ym

n ) + 1

λ
pg(u,ϕi ym

n ) + Lg(ϕi ym
n ),

with

hg,g
1 (ug,ϕi ym

n ) =
∑

,k, j

A1
r (i,n,m; j, 
,k) σ


;g,g
s uk,g


, j ,

hg,g
2 (ug,ϕi ym

n ) =
∑

,k, j

A2
r (i,n,m; j, 
,k)

σ

;g,g
s

σ g
uk,g


, j .

The term h�,g = h�,g
1 + h�,g

2 is written as hg = hg
1 + hg

2 by replacing 
∑G

g′=1 with 
∑G

g′=1;g′ �=g . On the other hand, we have:

(ag
1 − hg,g

1 )(ug,ϕi ym
n ) =

∑

,k, j

A1
r (i,n,m; j, 
,k) σ


,g
a uk,g


, j ,

where σ 
,g
a = σ g − σ


;g,g
s is the effective absorption section.

4.3. Calculation of the fission source pg(u, ϕi ym
n )

Let us split the term pg(u, v) defined by Eq. (7) into two terms:

pg(u, v) = pg
1(u, v) + pg

2(u, v),

where

pg
1(u, v) =

∫
Xr

(F g u)v dωdx,

pg
2(u, v) =

∫
Xr

1

σ g
(F g u)(ω · ∇v) dωdx.

The discretized terms pg
1 and pg

2 are written as:

pg
1(u,ϕi ym

n ) =
∑

,k, j

F 1
r (i,n,m; j, 
,k)

∑
α

χ
g
α

G∑
g′=1

νσ
g′
f ,αu0,g′

0, j , (22)

pg
2(u,ϕi ym

n ) =
∑

,k, j

F 2
r (i,n,m; j, 
,k)

∑
α

χ
g
α

σ g

G∑
g′=1

νσ
g′
f ,αu0,g′

0, j , (23)

with

F 1
r (i,n,m; j, 
,k) = δn,0δm,0δ
,0δk,0

∫
Dr

ϕiϕ j dx, (24)

F 2
r (i,n,m; j, 
,k) = δn,1δ
,0δk,0

3∑
p=1

∫
Dr

(∂pϕi)ϕ j dx

∫
S2

ωp ym
n dω. (25)
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4.4. Calculation of the source term Lg(ϕi ym
n )

Let us split the term Lg(v) defined by Eq. (8) into three terms:

Lg(v) = Lg
1(v) + Lg

2(v) − Lg
−(v),

where

Lg
1(v) =

∫
Xr

qg v dωdx,

Lg
2(v) =

∫
Xr

1

σ g
qg(ω · ∇v) dωdx,

Lg
−(v) =

∫
�−

f g v (ω · n) dωds.

Using approximations (9), (10) and (11), we obtain after some algebra:

Lg
1(ϕi ym

n ) =
∑

,k, j

A1
r (i,n,m; j, 
,k) qk,g


, j , (26)

Lg
2(ϕi ym

n ) =
∑

,k, j

A2
r (i,n,m; j, 
,k)

1

σ g
qk,g

, j , (27)

Lg
−(ϕi ym

n ) =
∑

f∈∂Dr

∑

,k, j

A−
f (i,n,m; j, 
,k) f k,g


, j , (28)

where the matrices A1
r and A2

r are defined by Eqs. (17) and (21) and the matrix A−
f is given by:

A−
f (i,n,m; j, 
,k) =

∫
f

ϕiϕ j

∫
(ω·n)<0

ym
n yk


 (ω · n) dωds. (29)

If the functions (ϕ j) are orthonormalized in the region Dr , then Lg
1(ϕi ym

n ) = qm,g
n,i .

Note that the incoming flux f k,g

, j in Eq. (28) can be given: either by the boundary conditions if the face f is a part of the 

boundary ∂D of the domain D or by the flux in the adjacent regions when the face f is an interface between two regions.

Remark 4.3. The term Lg
−(ϕi ym

n ) is the only one linking the flux in region Dr to the fluxes of its adjacent regions, i.e. sharing 
the same face.

5. Solving the discretized problem

Before showing how one can calculate the coefficients of the matrices A0
r , A1

r , A2
r , F 1

r , F 2
r , A+

r and A−
f , we give in this 

section the strategy used in the nymo code to solve the discretized problem.
The discretization of the transport problem presented in the above sections leads to a matrix problem per energy group 

g and region Dr which is written by considering Remark 4.2 and after numbering the degrees of freedom ( j, 
, k):

Ag
r ug = Q g

r u, (30)

with

Ag
r ug =

(
A0

r d0,g
r + A1

r d1,g
r − A2

r d2,g
r + A+

r

)
ug +

∑
f∈∂Dr

A−
f ũg

f , (31)

and where the matrices d0,g
r , d1,g

r and d2,g
r are diagonal:

d0,g
r (i,n,m; j, 
,k) = δn,
δm,kδi, j

(
1

σ g

)
,

d1,g
r (i,n,m; j, 
,k) = δn,
δm,kδi, j

(
σ


,g
a

)
,

d2,g
r (i,n,m; j, 
,k) = δn,
δm,kδi, j

(
σ


;g,g
s

σ g

)
,
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where σ 
;g,g
s is zero if 
 is strictly greater than the order of anisotropy in the region Dr . ug is the flux in the group g and 

in the region Dr given by its components (uk,g

, j ) and ũg

f is either an incoming flux given by the boundary conditions or the 
flux in the region D̃r adjacent to the region Dr by the face f.

Q g
r represents the source term regrouping the scattering, fission and eventually an external source:

Q g
r u = A1

r (̂s g) + A2
r

(
1

σ g
ŝ g

)
+ 1

λ

(
F 1

r (̂p g) + F 2
r

(
1

σ g
p̂ g

))
+ A1

r (qg) + A2
r

(
1

σ g
qg

)
, (32)

where

ŝ k,g

, j =

G∑
g′=1,g′ �=g

σ

;g,g′
s uk,g′


, j ,

p̂ k,g

, j = δ
,0δk,0

∑
α

χ
g
α

G∑
g′=1

νσ
g′
f ,αu0,g′

0, j .

The matrices A0
r , A1

r , A2
r , A+

r and A−
f depend on the region Dr , but not on the energy group g .

Now, by giving a global numbering of degrees of freedom (r, j, 
, k) and after assembling the matrices A0
r , A1

r , A2
r , A+

r , 
A−

f , d0,g
r , d1,g

r and d2,g
r into global matrices A0, A1, A2, A+ , A− , d0,g , d1,g and d2,g we get the matrix system per energy 

group:

Ag ug = Q g u, (33)

with

Ag ug = (
A0d0,g + A1d1,g − A2d2,g + A+ + A−)

ug . (34)

The matrices d0,g , d1,g and d2,g are diagonal. The matrices A0, A1, A2, A+ and A− do not depend on the energy group g . 
In addition, these matrices are sparse because the flux in a region Dr is coupled only to the fluxes of its neighbor regions.
nymo uses the Compressed Sparse Row format (CSR) to store only the nonzero coefficients of these matrices.

The matrix Ag is not symmetric and the resolution of the system (33) requires solvers dealing with non-symmetric 
matrices such as GMRES and BiCGSTAB. Moreover, such solvers are well suited to solve system (33) because they only need 
matrix-vector operation that can be computed using (34) by storing only matrices A0, A1, A2, A+ + A− , d0,g , d1,g and d2,g . 
This avoids the storage of matrices Ag which can be expensive in cases with many energy groups.

The matrix-vector operation with sparse matrices is easily parallelizable in shared memory using OpenMP.
Another level of parallelization in distributed memory can be used with MPI, by grouping calculation regions Dr into 

some agglomerations DR of regions Dr . The assembly of the matrices A0
r , A1

r , A2
r , A+

r , A−
f , d0,g

r , d1,g
r and d2,g

r can be 
done in distributed memory for each agglomeration DR of regions, likewise the matrix-vector product can also be done in 
distributed memory. This approach is similar to the domain decomposition method where each agglomeration DR of regions 
is considered as a subdomain.

In the nymo code, the two solvers GMRES and BiCGSTAB are implemented and the matrix-vector operation is parallelized 
using OpenMP. However, the parallelization using MPI is not yet implemented. For the moment we use the most trivial 
preconditioner namely the diagonal of the matrix A g . But one can consider preconditioners resulting from the same method 
but with a lower PN order and/or a lower degree of polynomials in space.

Equation (33) has two levels of coupling multigroup fluxes (ug) via both the scattering and the fission sources. These 
couplings are treated conventionally using outer and thermal iterations.

6. Calculation of integrals over the angular variable

The integrals over the angular variable intervening in the coefficients of matrices A0
r , A2

r , F 2
r , A+

r and A−
f are∫

S2

ωpωq ym
n yk


 dω,

∫
S2

ωp ym
n yk


 dω and
∫

±(ω·n)>0

ym
n yk


(ω · n) dω. (35)

In order to explain how we can calculate these integrals, we start by defining the set E of functions with a single real 
variable f (θ) which are written

f (θ) = a0 +
∑
i≥1

ai
c cos(i θ) +

∑
j≥1

a j
s sin( j θ), (36)

where the sums over integers i and j are finite and coefficients a0, ai
c and a j

s are real numbers. Let us also define the set Y
of two real variable functions y(θ, ϕ) by:
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Y = {y(θ,ϕ) = f (θ)g(ϕ); with f ∈ E and g ∈ E}. (37)

It’s easy to see that the set E is a vector space. What will interest us more in the following is the fact that E is stable by 
multiplication: if f1(θ) ∈ E and f2(θ) ∈ E then f1(θ) f2(θ) ∈ E. This results by linearization of product of functions cos(i θ)

and sin( j θ).
Therefore the set Y is also stable by multiplication: if y1(θ, ϕ) ∈ Y and y2(θ, ϕ) ∈ Y then y1(θ, ϕ)y2(θ, ϕ) ∈ Y.
Functions ym

n (θ, ϕ), ωp(θ, ϕ) and sin θ belong to the set Y. And since the latter is stable by multiplication, functions 
(ωpωq ym

n yk

 sin θ) and (ωp ym

n yk

 sin θ) which appear under the integrals in (35) are also functions of Y. The integrand sin θ

results from taking into account that dω = (1/4π) sin θ dθ dϕ .
Thus, integrals (35) are reduced to integrals in the form:

θ1∫
θ0

ϕ1∫
ϕ0

f (θ) g(ϕ) dθ dϕ =
θ1∫

θ0

f (θ) dθ

ϕ1∫
ϕ0

g(ϕ) dϕ,

with f ∈ E and g ∈ E.
For integrals over the entire sphere S2, we have θ0 = 0, θ1 = π , ϕ0 = 0 and ϕ1 = 2π . For the integrals over the outgoing 

half-sphere (ω · n > 0) and in the 2D case, we have θ0 = 0, θ1 = π , ϕ0 = ϕn − π/2 and ϕ1 = ϕn + π/2 where ϕn is the 
measure of the angle formed by the x-axis and the normal n. For integrals over the incoming half-sphere (ω · n < 0) we 
have ϕ0 = ϕn + π/2 and ϕ1 = ϕn + 3π/2.

Remark 6.1. The two first integrals over the entire sphere S2 in Eq. (35) have been studied in [3]. We find in this reference 
the analytic expressions of these integrals and even the C++ source code calculating them. Integrals over the half-sphere are 
not discussed in [3].

When n and 
 are of opposite parity, the integrals over the half-sphere in Eq. (35) can be recast into integrals over the 
whole sphere:∫

±(ω·n)>0

ym
n yk


(ω · n) dω = 1

2

∫
S2

ym
n yk


(ω · n) dω = 1

2

3∑
p=1

np

∫
S2

ωp ym
n yk


 dω.

This results from the fact that the integrand ym
n yk


(ω · n) is even of ω. Thus, in the case where n and 
 have opposite parity, 
the integrals over the half-sphere also have an analytic expression which can be found in [3].

Remark 6.2. It should be noted that the surface integrals involved in the coefficients of matrices A+
r and A−

f :∫
f

ϕiϕ j

∫
±(ω·n)>0

ym
n yk


(ω · n) dω ds,

can be written, in the case where the face f is a line segment, as:⎛⎝∫
f

ϕiϕ j ds

⎞⎠ ×
⎛⎜⎝ ∫

±(ω·n)>0

ym
n yk


(ω · n) dω

⎞⎟⎠ .

This results from the fact that the normal vector n is constant along the face f. However, the integral over the surface and 
the integral over the half-sphere remain coupled in the case where the face is a circular arc, but even in this case the 
integrals can be calculated exactly as we will see in the following.

7. Integral of a monomial over a 2D region

Coefficients of matrices A0
r , A1

r , A2
r , F 1

r and F 2
r require the computation of the integrals over a region Dr of the polyno-

mials: ϕiϕ j , (∂pϕi)(∂qϕ j) and (∂pϕi)ϕ j . As the computation of the integral of a polynomial leads to calculate the integral of 
its monomials, we will limit ourselves to explaining how to calculate the integral of a monomial Xi Y j over a region Dr .

Consider a region Dr having a boundary ∂Dr that can be partitioned into some finite number of edges:

∂Dr = Ne

∪
e=1

Ae.

Each edge Ae can be line segments, arc of circles or circles. We will denote by ne = (nx
e, n

y
e ) the unit normal vector on the 

edge Ae oriented outside of the region Dr .
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In order to compute the integral of the monomial Xi Y j over the region Dr , consider the vector field:

	F (X, Y ) = ( 1

i + 1
Xi+1Y j, 0

)
,

this field is chosen so that: div 	F = Xi Y j . On using the divergence theorem:∫
Dr

X i Y j dx dy =
∫
Dr

div 	F dx dy =
∫

∂Dr

	F · n ds =
Ne∑

e=1

∫
Ae

	F · ne ds.

Thus ∫
Dr

X i Y j dx dy = 1

i + 1

Ne∑
e=1

∫
Ae

Xi+1Y j nx
e ds.

The last equation recasts the volume integral of a monomial Xi Y j over a region Dr into the surface integrals over edges Ae

constituting the boundary ∂Dr . The following sections give the details for calculating the surface integrals:

I =
∫
Ae

Xi+1Y j nx
e ds.

The expressions of these integrals differ according to the shape of the edge: line segment, circular arc or circle.

7.1. Case where the edge is a line segment

Consider the case where the edge A = (A, B) is a line segment, with A(xA, y A) and B(xB , yB). By setting �x = xB − xA , 
�y = yB − y A , L =

√
(�x)2 + (�y)2 and noting that the normal vector n(nx, ny) is constant along the line segment, we 

obtain:

I =
∫
A

Xi+1Y j nx ds = nxL

1∫
0

(
�xs + xA

)i+1 (
�ys + y A

) j
ds.

Using the binomial formula:

I = nxL
i+1∑
i′=0

j∑
j′=0

(
i + 1

i′

)(
j

j′

)
(xA)i+1−i′(�x)

i′(y A) j− j′(�y)
j′

1∫
0

si′+ j′ ds,

with (
i

i′

)
= i!

i′!(i − i′)! .

Moreover, we have n = κ
L (�y, −�x) where κ = 1 if region Dr is at the left of the line segment (A, B) when going from A

to B and κ = −1 otherwise. Thus nx = κ�y
L and finally:

I = κ�y

i+1∑
i′=0

(
i + 1

i′

)
(xA)i+1−i′(�x)

i′
j∑

j′=0

(
j

j′

)
(y A) j− j′(�y)

j′ 1

i′ + j′ + 1
. (38)

7.2. Case where the edge is an arc of circle

In the case where A is an arc defined by its radius ρ , its center C(xC , yC ) and its endpoints (A, B) and denoting α the 
angle formed by the x-axis and the vector 

−→
C A and β the angle formed by the x-axis and the vector 

−→
C B , we obtain

I =
∫
A

Xi+1Y j nx ds = κρ

β∫
α

(
xC + ρ cos s

)i+1 (
yC + ρ sin s

) j
cos s ds.

In the above equation we used the fact that nx = κ cos s, with κ = 1 if the region Dr is at the left of the arc when going 
from A to B in the trigonometric sense and κ = −1 otherwise. Using the binomial formula:
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I = κρ

β∫
α

(
i+1∑
i′=0

(
i + 1

i′

)
(xC )i+1−i′ρ i′ cosi′ s

)⎛⎝ j∑
j′=0

(
j

j′

)
(yC ) j− j′ρ j′ sin j′ s

⎞⎠ (cos s) ds,

and finally

I = κρ

i+1∑
i′=0

(
i + 1

i′

)
(xC )i+1−i′ρ i′

j∑
j′=0

(
j

j′

)
(yC ) j− j′ρ j′

β∫
α

(cosi′+1 s)(sin j′ s) ds. (39)

Thus, the computation of the integral I is reduced to integrate functions of the form (cosN (s) sinM(s)). In nymo code, we 
proceed by linearization of the function (cosN (s) sinM(s)) to compute its integral. To do this, we write

cosN(s) sinM(s) =
(1

2
(eis + e−is)

)N( 1

2i
(eis − e−is)

)M
.

By expanding the right-hand member using the binomial formula, we obtain:

cosN(s) sinM(s) = 1

2N+M(iM)

N∑
n=0

M∑
m=0

(
N

n

)(
M

m

)
(−1)M−mei(2(n+m)−N−M)s.

Noticing that 
(N

n

) = ( N
N−n

)
and 

(M
m

) = ( M
M−m

)
it’s easy to see that:

cosN(s) sinM(s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(−1)M/2

2N+M

N+M∑
k=0

C N,M
k cos(2k − N − M)s if M is even

(−1)(M+1)/2

2N+M

N+M∑
k=0

C N,M
k sin(2k − N − M)s if M is odd

where coefficients C N,M
k are integers given by:

C N,M
k =

N∑
n=0

M∑
m=0

(
N

n

)(
M

m

)
(−1)mδk,n+m.

In the case where the edge is a circle, the calculation of the integrals is done in a similar way to those of arc with α = 0
and β = 2π .

Remark 7.1. The integral over an arc of circle of a monomial can also be approximated by subdividing the arc into several 
arcs sufficiently small so that these can be considered as straight line segments. Then we apply the formula of the integral 
of a monomial over a line segment as it is seen in Section 7.1.

Remark 7.2. The previous remark is also applicable for other types of edges that are neither line segments nor circular arcs.

8. Integral of a monomial over the boundary of a region

The coefficients of matrices A+
r and A−

f require computations of integrals of polynomials over the incoming and the 
outgoing boundaries of a region Dr . The computation of these integrals leads to calculate the integrals of monomials Xi Y j

over these boundaries. Thus, for an edge A of the boundary ∂Dr we have to calculate the integrals:

I+(i,n,m; j, 
,k) =
∫
A

Xi Y j
∫

(ω·n)>0

yk

 ym

n (ω · n) dω ds, (40)

I−(i,n,m; j, 
,k) =
∫
A

Xi Y j
∫

(ω·n)<0

yk

 ym

n (ω · n) dω ds. (41)

In the following subsections, we give the details to compute these integrals according to the shape of the edge A: line 
segment or arc of circle.
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8.1. Case where the edge is a line segment

In the case where the edge is a line segment, the surface integrals and the integrals over the angular direction, in Eqs. 
(40)-(41), are decoupled because the normal vector n is constant along the line segment:

I±(i,n,m; j, 
,k) =
(∫
A

Xi Y j ds
)( ∫

±(ω·n)>0

yk

 ym

n (ω · n) dω
)
.

In this section, we give only the details for the calculations of the surface integrals, see Section 6 for integrals over the 
angular direction. Denote by A(xA, y A) and B(xB , yB) the endpoints of the line segment A. By setting �x = xB − xA , �y =
yB − y A and L =

√
(�x)2 + (�y)2, we can write:

I =
∫
A

Xi Y j ds = L

1∫
0

(
�xs + xA

)i (
�ys + y A

) j
ds.

Using again the binomial formula, we obtain:

I = L
i∑

i′=0

(
i

i′

)
(xA)i−i′(�x)

i′
j∑

j′=0

(
j

j′

)
(y A) j− j′(�y)

j′
1∫

0

si′+ j′ ds.

Finally

I = L
i∑

i′=0

(
i

i′

)
(xA)i−i′(�x)

i′
j∑

j′=0

(
j

j′

)
(y A) j− j′(�y)

j′ 1

i′ + j′ + 1
. (42)

8.2. Case where the edge is an arc of circle

In this section, we explain how the integrals (40) and (41) can be evaluated exactly in the case where A is an arc of a 
circle. But these integrals can also be approximated by applying Remark 7.1 and the previous section.

Consider the case where A is an arc defined by its radius ρ , its center C(xC , yC ) and its endpoints (A, B). Let α be the 
angle formed by the x-axis and the vector 

−→
C A and β the angle formed by the x-axis and the vector 

−→
C B . The integrals (40)

and (41) are then written:

I+(i,n,m; j, 
,k) = ρ

β∫
α

a(s)

∫
ω·n>0

yk

 ym

n (ω · n) dω ds,

I−(i,n,m; j, 
,k) = ρ

β∫
α

a(s)

∫
ω·n<0

yk

 ym

n (ω · n) dω ds,

where

a(s) = (xC + ρ cos s)i(yC + ρ sin s) j .

Since n = κ(cos s, sin s, 0) and ω = (sin θ cosϕ, sin θ sinϕ, cos θ), with κ = 1 if the region Dr is at the left of the arc when 
going from A to B in the trigonometric sense and κ = −1 otherwise, we obtain:

I±(i,n,m; j, 
,k) = ρ

4π

β∫
α

a(s)

ϕ±
1 (s)∫

ϕ±
0 (s)

π∫
0

yk

 ym

n (ω · n) sin θ dθ dϕ ds

= κρ

4π

β∫
α

a(s) cos s

ϕ±
1 (s)∫

ϕ±
0 (s)

cosϕ

π∫
0

yk

 ym

n sin2 θ dθ dϕ ds

+ κρ

4π

β∫
α

a(s) sin s

ϕ±
1 (s)∫

ϕ±(s)

sinϕ

π∫
0

yk

 ym

n sin2 θ dθ dϕ ds
0
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where ϕ+
0 , ϕ+

1 , ϕ−
0 , ϕ−

1 are given by:

ϕ+
0 (s) = s − π/2, ϕ+

1 (s) = s + π/2, (43)

ϕ−
0 (s) = s + π/2, ϕ−

1 (s) = s + 3π/2. (44)

Consider now the functions φx(ϕ) and φy(ϕ) defined by:

φx(ϕ) = cosϕ

π∫
0

ym
n (θ,ϕ)yk


(θ,ϕ) sin2 θ dθ,

φy(ϕ) = sinϕ

π∫
0

ym
n (θ,ϕ)yk


(θ,ϕ) sin2 θ dθ.

It’s easy to see that φx ∈ E and φy ∈ E, so their primitives �x and �y are written as:

�x(ϕ) = cx ϕ + fx(ϕ), (45)

�y(ϕ) = c y ϕ + f y(ϕ), (46)

where fx and f y are still functions of E, cx and c y being constants. So we have:

I±(i,n,m; j, 
,k) = κρ

4π

β∫
α

a(s)(cos s)
(
�x(ϕ

±
1 (s)) − �x(ϕ

±
0 (s))

)
ds +

κρ

4π

β∫
α

a(s)(sin s)
(
�y(ϕ

±
1 (s)) − �y(ϕ

±
0 (s))

)
ds. (47)

Using (43), (44), (45) and (46), it is easy to see that the functions

γ ±
x (s) = (

�x(ϕ
±
1 (s)) − �x(ϕ

±
0 (s))

)
and γ ±

y (s) = (
�y(ϕ

±
1 (s)) − �y(ϕ

±
0 (s))

)
are also functions of E. And since E is stable by multiplication, the functions(

a(s)(cos s)(�x(ϕ
±
1 (s)) − �x(ϕ

±
0 (s))

)
and

(
a(s)(sin s)(�y(ϕ

±
1 (s)) − �y(ϕ

±
0 (s))

)
belong to E.

Thus the computation of the integrals I±(i, n, m; j, 
, k) is reduced to integrals of functions of E, things we know how 
to do. It is not easy to give an analytic expression for the integrals I±(i, n, m; j, 
, k), but their calculation is achievable by 
programming a computer to do the algebra.

Circles are treated in the same way as arcs with α = 0 and β = 2π .

9. Integral of a monomial over a 2D extruded region

We shall briefly give here the main idea to compute the integral of a monomial over a 2D extruded region. To do this, 
assume that the region Dr is a vertical cylinder with horizontal bases:

Dr = S × [z0, z1],
where S is a flat horizontal surface of arbitrary shape. So∫

Dr

X i Y j Zk dx dy dz =
∫
S

z1∫
z0

Xi Y j Zk dx dy dz

= 1

k + 1
(zk+1

1 − zk+1
0 )

∫
S

Xi Y j dx dy.

The integral 
∫

S Xi Y j dx dy can be computed as explained in the previous sections. Surface integrals can also be calculated 
without difficulty by distinguishing the lateral surfaces and the bases surfaces of the region.
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10. Treatment of the reflecting boundary conditions

Let f be a perfectly reflecting surface of the boundary ∂D assumed to be a line segment, as is the case in real applications. 
Let n(θn, ϕn) denote the unit normal to the surface f oriented outside of the domain D. The reflected direction of ω(θ, ϕ) by 
the surface f is ω�(θ�, ϕ�) defined by

ω� = ω − 2(ω · n)n. (48)

The reflecting boundary conditions applied to the surface f is then written:

u(x,ω) = u(x,ω�), for ω · n < 0. (49)

Thus the incoming flux in region Dr through the face f is given by:

I−f (i,n,m) =
∫
f

∫
ω·n<0

u(x,ω�)ϕi(x)ym
n (ω)(ω · n) dω ds.

Using approximation (9)

I−f (i,n,m) =
∫
f

∫
ω·n<0

⎛⎝∑

,k, j

uk

, j yk


(ω
�)ϕ j(x)

⎞⎠ϕi(x)ym
n (ω)(ω · n) dω ds,

thus

I−f (i,n,m) =
∑

,k, j

A−,�
f (i,n,m; j, 
,k) uk


, j,

with

A−,�
f (i,n,m; j, 
,k) =

⎛⎝∫
f

ϕiϕ j ds

⎞⎠⎛⎝ ∫
ω·n<0

ym
n (ω)yk


(ω
�)(ω · n) dω

⎞⎠ .

Using (48), it’s easy to see that ω� = (sin θ� cosϕ�, sin θ� sinϕ�, cos θ�) with θ� = θ and ϕ� = π + 2ϕn − ϕ . Therefore the 
function yk


(ω
�) is also a function of Y.

The computation of the coefficients of matrices A−,�
f is done in a similar way to the computation of the coefficients of 

A−
f presented in Section 8.1. The matrices A−,�

f are not symmetric while the matrices A−
f are.

11. Orthonormalization of a family of polynomials

The coefficients of matrices A1
r and F 1

r require the computation of the integrals∫
Dr

ϕiϕ j dx dy,

these coefficients become simpler if the polynomials family (ϕ j) is orthonormalized on the region Dr with respect to the 
L2(Dr)-product, since the last integral is reduced to δi, j . The use of orthonormalized basis of functions (ϕ j) avoids the 
problem of obtaining a solution from an ill-conditioned matrix equation and also introduces the economy of avoiding the 
storage of the matrix A1 and subsequent matrix-vector multiplication. Using an orthonormalized polynomials family (ϕ j )

in each region Dr is possible, but the family (ϕ j) becomes necessarily dependent on the region Dr . Thus on both sides of 
an interface f the flux is developed on two different bases of polynomials. This changes the expression of the matrix A−

f . In 
this section we recall how to orthonormalize a family of polynomials in a region and we revise the expression of the matrix 
A−

f accordingly.
Consider a family of linearly independent polynomials (φ j) j=1,··· , J . We recall here the Gram-Schmidt process for building 

a family of polynomials (ϕ j) j=1,··· , J orthonormalized on a region Dr spanning the same space as the family (φ j).
Assuming that the polynomials ϕ j for j = 1, · · · , i have already been built, the construction of the polynomial ϕi+1 is 

done by setting:

ϕ̂i+1 = φi+1 −
i∑

k=1

< φi+1,ϕk >r ϕk,

with
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< φi+1,ϕk >r =
∫
Dr

φi+1(x) ϕk(x) dx,

it is easy to check that ϕ̂i+1 is orthogonal to all polynomials ϕ j for j = 1, · · · , i. ϕi+1 is then obtained by normalization of 
ϕ̂i+1:

ϕi+1 = ϕ̂i+1

||ϕ̂i+1|| .

The Gram-Schmidt algorithm requires only the calculation of the integrals < φi+1, ϕk >r , which we know how to do as seen 
in the previous sections.

Suppose now that we have two families of polynomials (ϕ j) j=1,··· , J and (ϕ̃ j) j=1,··· , J spanning the same space with (ϕ j)

orthonormalized in a region Dr and (ϕ̃ j) orthonormalized in a region D̃r adjacent to the region Dr . We can write:

ϕ̃i =
J∑

j=1

< ϕ̃i,ϕ j >r ϕ j.

The flux in the region D̃r is written:

ũg(x,ω) =
∑

,k, j

ũk,g

, j ϕ̃ j(x)yk


(ω), (50)

thus

ũg(x,ω) =
∑

,k, j

ũk,g

, j

( J∑
j′=1

< ϕ̃ j,ϕ j′ >r ϕ j′
)

yk

. (51)

Let us rewrite the expression of Lg
−(ϕi ym

n ) where the basis of polynomials (ϕ j) in the region Dr and the basis (ϕ̃ j) in its 
adjacent regions are different.

Lg
−(ϕi ym

n ) =
∫
�−

ũg(x,ω)ϕi ym
n (ω · n) dωds

=
∫
�−

⎛⎝∑

,k, j

ũk,g

, j

( J∑
j′=1

< ϕ̃ j,ϕ j′ >r ϕ j′
)

yk



⎞⎠ϕi ym
n (ω · n) dωds.

Thus by writing 
∫
�− · dω ds = ∑

f∈∂Dr

∫
f

∫
(ω·n)<0 · dω ds:

Lg
−(ϕi ym

n ) =
∑

f∈∂Dr

∑

,k, j

Ã−
f (i,n,m; j, 
,k)̃uk,g


, j ,

with

Ã−
f (i,n,m; j, 
,k) =

J∑
j′=1

< ϕ̃ j,ϕ j′ >r

∫
f

ϕiϕ j′
∫

(ω·n)<0

ym
n yk


 (ω · n) dωds,

thus

Ã−
f (i,n,m; j, 
,k) =

J∑
j′=1

< ϕ̃ j,ϕ j′ >r A−
f (i,n,m; j′, 
,k).

12. Description of the mesh in NYMO-DG

The 2D mesh in nymo-dg is first described by a cloud of numbered points given by their coordinates (x, y). This cloud of 
points is constituted by the endpoints of the edges and the centers of arcs and circles intervening in the mesh. The mesh is 
then described by the edges separating two regions of calculation. Each edge is defined according to its shape, line segment, 
arc of circle or circle:
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Fig. 2. C5G7 geometry.

• A line segment is defined by the numbers of its two endpoints (A, B) and the numbers of its two neighbors regions 
(rL, rR), where rL is the number of the left region of the line segment when going from A to B . When the line segment 
is a part of the boundary ∂D, the line segment has only one neighbor region and in this case we assign the null value 
to the superfluous region, i.e. rL = 0 or rR = 0 depending on the case.

• An arc is defined by its radius ρ , the number of its center C , the numbers of its two endpoints (A, B) and the numbers 
of its two neighbors regions (rL, rR), where rL is the left region to the arc when going from A to B in the counter-
clockwise.

• A circle is defined by its radius ρ , the number of its center C and the numbers of its two neighbors regions (rL, rR), 
where rL is the region lying inside the circle.

The computation of matrices coefficients A0
r , A1

r , A2
r , F 1

r , F 2
r , A+

r and A−
f is done by sweeping over all edges of the mesh 

and for each edge we calculate its contribution to the matrix coefficients for its two neighbors regions rL and rR .

13. Choice of polynomials in NYMO-DG

In nymo-dg we use an orthonormalized polynomials family (ϕ j)1≤ j≤ J in each region Dr . This family is constructed by 
orthonormalization of a family of translated monomials (φ j = (X − x0)

n(Y − y0)
m), by setting up an one-to-one correspon-

dence between the pair (n, m) and j. The point (x0, y0) is a local origin of region Dr . In nymo, the choice of the local origin 
(x0, y0) of the region Dr is the barycenter of the points involved in the definition of the region: endpoints of edges and 
centers of arcs. The use of translated monomials allows for distant regions and identical up to an arbitrary translation to 
have identical elementary matrices.

When working with translated monomials, the integrals (38), (39), (42) and (47) remain valid by replacing xA , y A , xC

and yC per (xA − x0), (y A − y0), (xC − x0) and (yC − y0) respectively.
The monomials family (φ j) is specified by giving the highest degree d of its monomials as well as the mode of this 

degree: total (n + m ≤ d) or partial (n ≤ d and m ≤ d).

14. C5G7 benchmark

In this section we present numerical results for the C5G7 benchmark in its 2D version, see [22]. This benchmark was pro-
posed to provide a point of comparison for assessing the capabilities of transport codes to deal with reactor core problems 
without spatial homogenization. The geometry of the benchmark consists of 4 × 4 assemblies surrounded by moderator, 
see Fig. 2 where only a quarter of the geometry is presented for reasons of symmetry. Internal assemblies (MOX/UO2) are 
17 × 17 cells. The cells comprise two material zones representing different fuels, guide tubes and instrumented tubes. The 
benchmark specifies the macroscopic cross-sections for seven energy groups and with isotropic collision.

The geometry of the cells is presented in Fig. 3. The side length of each pin cell is 1.26 cm and all of the fuel pins and 
guides tubes have 0.54 cm radius. The mesh of cells used in the calculations is given in Fig. 4. The calculations are done in 
eighth of the geometry, Fig. 5 provides the mesh of computation.

The authors of the benchmark provided the k-effective and the overall pin power distribution resulting from the Monte-
Carlo transport code mcnp. This power distribution is used as a reference result for comparison with the results obtained 
by the nymo code. The results of the nymo code, presented in this section, use piecewise linear polynomials in space. The 
authors also specified a number of results to be compared to those of mcnp. The Tables 1 to 6 give these comparisons with
nymo code for different PN orders but with the same spatial mesh.

Table 1 gives the k-effective solution for different PN orders and the error relative in pcm compared to mcnp code.
The results of the k-effective in Table 1 do not give a convergence as desired when the order PN grows. This is due in 

part to the fact that PN calculations use the same spatial mesh, whereas for a convergence study one has to go up in PN
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Fig. 3. Cell geometry.

Fig. 4. Cell mesh.

Fig. 5. nymo mesh.

order and refine the spatial mesh simultaneously. This phenomenon deserves to be analyzed on problems with Cartesian 
meshes so that the spatial refinement is easy to realize. Nevertheless, when we take a close look at Table 2, the convergence 
on the power distribution seems acceptable. Difference of the results between PN approximations with even and odd orders 
remains unexplained.

The PN approximation is often used with an odd expansion order. It is established for the PN equations resulting from the 
first-order transport equation that odd orders give better results, see Davison’s book [9], Section 10.3.2. The superiority of 
odd orders over even is not true in the absolute for all PN approximations, this depends on the variational formulation used, 
on the spatial approximations adopted and in particular on the approximations at the interfaces. The PN method developed 
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Table 1
Keff resulting from nymo code.

order PN keff pcm error cpu time (s)

P2 1.18672 14 71
P4 1.18684 24 226
P6 1.18704 41 575

P1 1.18500 −131 37
P3 1.18517 −116 130
P5 1.18527 −108 385

mcnp 1.18655 ±8

Table 2
Percent error results for specific pin powers.

order PN Max pin power error (%) Min pin power error (%) Max error(%)

P2 2.477 −0.80 0.233 0.69 1.32
P4 2.487 −0.41 0.232 0.32 1.08
P6 2.498 −0.41 0.232 0.27 1.15

P1 2.515 0.71 0.233 0.68 2.98
P3 2.511 0.54 0.232 0.26 1.75
P5 2.502 0.18 0.232 0.38 1.25

mcnp 2.498 ±0.16 0.232 ±0.58

Table 3
Assembly power percent errors.

order PN Inner UO2 error (%) MOX error (%) Outer UO2 error (%)

P2 490.5 −0.46 212.4 0.33 140.6 0.61
P4 491.3 −0.30 212.1 0.20 140.4 0.44
P6 491.3 −0.30 212.2 0.22 140.4 0.43

P1 495.1 0.48 210.8 −0.43 139.3 −0.36
P3 494.2 0.29 210.8 −0.42 140.1 −0.25
P5 493.2 0.09 211.3 −0.21 140.2 0.34

mcnp 492.8 ±0.10 211.7 ±0.18 139.8 ±0.20

here use both odd and even orders indifferently. There are no theoretical results, for our method, favoring or discrediting 
odd order approximations over those of even order. Other authors [8] use the PN approximation based on other variational 
formulation, have shown that their method can be used with both even and odd orders. See also [12] where the authors 
combine the PN method with the least-squares method, in this reference, all numerical results are given only with even 
orders.

Table 2 gives the relative error in percent of the extrema of pin power distribution compared to the results given by
mcnp. The positions of the pins achieving the maximum and the minimum of the pin power distribution coincide between
mcnp and nymo calculations.

Table 3 gives the relative error in percent per assembly power versus to the results given by mcnp.
Table 4 give the differences between mcnp and nymo results for overall pin power distribution. These differences are 

calculated in three different ways called AVG, RMS and MRE:

AV G = 1

N

N∑
n=1

|en|,

RM S =
√√√√ 1

N

N∑
n=1

e2
n,

M R E = 1

N · pavg

N∑
n=1

|en| · pn.

See document [22] for the meanings of these deviations. N being the number of fuel pin, en is the relative error in percent 
of the calculated power in the nth fuel pin compared to the reference result. pn is the reference pin power in the nth fuel 
pin. pavg = 1 ∑N

n=1 pn is the average power.
N
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Table 4
Pin power distribution error.

order PN AVG RMS MRE

P2 0.52 0.60 0.50
P4 0.34 0.42 0.33
P6 0.35 0.44 0.34

P1 0.90 1.11 0.76
P3 0.42 0.53 0.37
P5 0.31 0.40 0.25

mcnp 0.32 0.34 0.27

Table 5
Number of fuel pins within the reference confidence intervals.

order PN 68% 90% 98% 99.8%

P2 734 910 968 972
P4 928 1038 1050 1052
P6 894 1022 1044 1047

P1 480 595 648 669
P3 843 947 986 993
P5 939 1030 1041 1041

Table 6
Percentage of fuel pins within the reference confidence intervals.

order PN 68% 90% 98% 99.8%

P2 69.5 86.2 91.7 92.0
P4 87.9 98.3 99.4 99.6
P6 84.7 96.8 98.9 99.1

P1 45.5 56.3 61.4 63.4
P3 79.8 89.7 93.4 94.0
P5 88.9 97.5 98.6 98.6

Table 5 gives statistics of the number of fuel pins having a relative error in percent compared to mcnp less than 0.68, 
0.90, 0.98 and 0.998. And Table 6 gives the same statistics but in percent. The total number of fuel pins is 1056 for the 
quarter of the geometry.

15. Conclusion

In this work, a new numerical scheme solving the transport equation is described in detail for 2D geometries. The method 
has the ability to deal with non-standard meshes (unstructured, non-conformal and curved), such meshes are considered for 
realistic calculations only by the method of characteristics MOC. The method presented is not limited neither in PN order 
nor in degrees of polynomials. The coefficients of the elementary matrices resulting from the adopted approximations are 
evaluated exactly for regions of arbitrary shape.

The numerical results presented for the C5G7 benchmark are very satisfying for the precision of computation and the 
computation time. The method deserves to be studied more and especially for the choice of a preconditioner with an 
acceptable storage cost. Optimizing of the performance of the method by parallelization and acceleration using a good 
preconditioner would make the method very competitive. It would also be interesting to implement the method for 2D 
extruded geometries.

The motivation for the numerical scheme presented was firstly the consideration of complex geometries with regions 
having curved boundaries like those used in heterogeneous reactor calculations. The method is quite general so that it can 
also deal with other problems as shielding or source detector calculations. This of course remains to be demonstrated with 
appropriate test cases. However, the method as it is presented here cannot handle cases with void regions, a possible way 
to extend the method for void regions can be found in the work done in [17].
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Appendix A. Spherical harmonics

In this appendix, we recall the definition of real-valued spherical harmonics ym
n .

A.1. The Legendre polynomials

The Legendre polynomials Pn(μ), of degree n, are defined by Rodrigue’s formula:

P0(μ) = 1,

Pn(μ) = 1

2n n!
dn

dμn
(μ2 − 1)n, n ≥ 1.

They satisfy the following properties, see [18]:

1∫
−1

Pn(μ)P
(μ) dμ = 2

2n + 1
δn,
, ∀n, 
 ≥ 0,

Pn(−μ) = (−1)n Pn(μ), ∀n ≥ 0,

(2n + 1)μPn(μ) = (n + 1)Pn+1(μ) + nPn−1(μ), ∀n ≥ 1.

The last equation is a recursive formula on Legendre’s polynomials, it can serve as an alternative definition for Legendre’s
polynomials with P0(μ) = 1 and P1(μ) = μ.

A.2. Associated Legendre functions

The associated Legendre functions Pm
n (μ), of degree n and order m, are defined by:

P 0
n(μ) = Pn(μ), n ≥ 0,

Pm
n (μ) = (−1)m(1 − μ2)m/2 dm

dμm
Pn(μ), n ≥ 0; 1 ≤ m ≤ n,

They satisfy the following properties, see [18]:

1∫
−1

Pm
n (μ)Pm


 (μ) dμ = 2

Cm
n

δn,
, ∀n,m, 
 ≥ 0,

Pm
n (−μ) = (−1)n+m Pm

n (μ), ∀n,m ≥ 0,

where,

Cm
n = (2n + 1)

(n − m)!
(n + m)! .

On the other hand, we have the recurrence formula, for n ≥ 1 and 0 ≤ m ≤ n:

(2n + 1) μPm
n (μ) = (n − m + 1)Pm

n+1(μ) + (n + m)Pm
n−1(μ).

A.3. Spherical harmonics

The real spherical harmonics ym
n (ω), of degree n and order m, are finally defined by, see [2] page 315:

y0
n(ω) = (2n + 1)1/2 Pn(cos θ), m = 0,

ym
n (ω) = (2Cm

n )1/2 Pm
n (cos θ) cos(mϕ), m = 1, · · · ,n,

y−m
n (ω) = (2Cm

n )1/2 Pm
n (cos θ) sin(mϕ), m = 1, · · · ,n,

where (θ, ϕ) are the polar coordinates of the direction ω. θ is the angle formed by ω and the z-axis, ϕ is the angle formed 
by the orthogonal projection of ω on the xy-plane and the x-axis, thus ω = (sin θ cosϕ, sin θ sinϕ, cos θ). The spherical 
harmonics ym

n constitute a complete basis of the space L2(S2) of square integrable real functions. We finally have the 
following properties:
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∫
S2

ym
n (ω)yk


(ω) dω = δn,
 δm,k, (A.1)

Pn(ω · ω′) = 1

2n + 1

n∑
m=−n

ym
n (ω)ym

n (ω′), (A.2)

ym
n (−ω) = (−1)n ym

n (ω). (A.3)

Relation (A.1) expresses the orthonormalization of the spherical harmonics, relation (A.2) is the addition formula and rela-
tion (A.3) expresses that the parity in ω of the harmonic spherical ym

n is that of n. A proof of the addition formula (A.2) is 
presented in [18], page 128.
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