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Surrogate-modeling techniques including Polynomial Chaos Expansion (PCE) is commonly 
used for statistical estimation (aka. Uncertainty Quantification) of quantities of interests 
obtained from expensive computational models. PCE is a data-driven regression-based 
technique that relies on spectral polynomials as basis-functions. In this technique, the 
outputs of few numerical simulations are used to estimate the PCE coefficients within a 
regression framework combined with regularization techniques where the regularization 
parameters are estimated using standard cross-validation as applied in supervised machine 
learning methods.
In the present work, we introduce an efficient method for estimating the PCE coefficients 
combining Elastic Net regularization with a data-driven feature ranking approach. Our 
goal is to increase the probability of identifying the most significant PCE components 
by assigning each of the PCE coefficients a numerical value reflecting the magnitude of 
the coefficient and its stability with respect to perturbations in the input data. In our 
evaluations, the proposed approach has shown high convergence rate for high-dimensional 
problems, where standard feature ranking might be challenging due to the curse of 
dimensionality.
The presented method is implemented within a standard machine learning library (scikit-
learn [1]) allowing for easy experimentation with various solvers and regularization 
techniques (e.g. Tikhonov, LASSO, LARS, Elastic Net) and enabling automatic cross-validation 
techniques using a widely used and well tested implementation. We present a set of 
numerical tests on standard analytical functions, a two-phase subsurface flow model and a 
simulation dataset for CO2 sequestration in a saline aquifer. For all test cases, the proposed 
approach resulted in a significant increase in PCE convergence rates.

Crown Copyright © 2019 Published by Elsevier Inc. All rights reserved.

1. Introduction

Uncertainty Quantification (UQ) and Uncertainty Propagation (UP) in the subsurface flow related problems have been 
the subject of intensive research activities over the last decades [2–6]. For instance, UQ of oil production forecasts from 
a given reservoir has far-reaching economical consequences [7]. Also, the accurate risk assessment of CO2 trapping in an 
underground reservoir [8] is of high importance from ecological and social perspectives [9].

The main challenge for UQ in subsurface flow related tasks is the complexity of the modeled physical systems [10] and 
the lack of information about the rock properties that determine underground flow [11]. Therefore, UQ for a Quantity of 
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Interest (QoI) is usually performed numerically through multiple evaluations of expensive reservoir simulations [12]. This 
corresponds to significant computational resources especially when dealing with a high number of uncertain parameters [13]
and for the cases where model high resolution is requirement [14]. Several lines of research have been pursued to address 
this challenge. For instance, models of multiple continuum media [15–17], dual mesh approaches [18–20], upscaling [21–24]
and model reduction [25–28] techniques have been developed to decrease the run-time of a single simulation. Also, various 
surrogate modeling techniques [29–31] emerged in order to reduce the cost of evaluating a large number of expensive 
numerical simulations.

In the current manuscript, we focus on surrogate modeling approaches using PCE-based response surfaces. There are 
several advantages of using PCE as a proxy model. First of all, surrogate models based on sparse PCE do not require signifi-
cant computational resources to compute a value at any given point within the interpolation domain as it is simply a direct 
polynomial function evaluation. Secondly, important statistical properties such as moments and sensitivities can be com-
puted directly from the PCE coefficients without the need for a Monte-Carlo simulations [32]. This is attributed to a special 
design properties of PCE that links the probability distribution of random variables with the orthogonality of polynomial 
basis functions [32].

Generally, two techniques could be utilized to estimate the PCE coefficients: collocation-based and regression-based 
methods. For collocation approaches, the QoI values are evaluated at pre-specified set of points called collocation nodes [33]. 
These specific points are designed in such a way that the PCE coefficients can be expressed as linear combination of the 
QoI values, allowing for direct computation of the PCE coefficients. The optimal choice of the collocation points especially 
for high-dimensional problems is a subject of extensive research activities [34–36]. In regression-based approaches, the PCE 
coefficients correspond to the solution of an error-minimization problem [37]. It is simple to show that the mean-square 
error minimization can be reduced to a linear regression problem to estimate the PCE expansion coefficients. Designing fast 
and accurate solution techniques to this minimization problem including various preconditioning methods is also a subject 
of intensive research activities [38–40]. Hampton and Doostan [41] developed a hybrid collocation and regression technique, 
where the training points for the surrogate model are generated with collocation techniques while the PCE coefficients are 
estimated by solving an error-minimization problem. One of the advantages of this approach is the better conditioning of 
the regression problem when compared to training using random samples [41].

In generic cases, sparse collocation techniques and hybrid approaches provide accurate response surfaces using reason-
able computational resources [42–44]. However, these methods rely on evaluating the QoI at specific set of points. This 
strategy can be successfully adopted for UQ of oil production and CO2 storage capacity [45–47]. However, computation of 
QoI values in the case of subsurface flow problems can be challenging if the collocation points correspond to extreme values 
of parameters that significantly affect convergence properties of the numerical scheme. Therefore, such collocation nodes 
can either increase computational costs of the response surface construction or reduce the overall accuracy of the surrogate 
model if significant numerical error is introduced to the QoI values at collocation nodes. Additionally, for many practical 
problems sampling of data points can not be controlled. For instance, samples could be generated randomly (e.g. Latin hy-
percube sampling), or in accordance with a prescribed probability distribution [48], or based on another meta-modeling 
technique used in combination with PCE for model stacking [49]. Under these conditions, collocation techniques cannot be 
directly applied. For this reason, regression based PCE (utilized in this manuscript) have wider applicability for any set of 
training samples where optimal response surfaces could be built.

In regression methods, PCE coefficients are computed through the minimization of mean-square error over the training 
data. Therefore, for low-dimensional problems, a direct approach could be adopted. In generic setting, the number of PCE 
coefficients for a problem with n variables can be expressed as follows:

D = D(n,d) =
(

n + d

n

)
(1)

where D is the number of PCE coefficients and d is the degree of polynomials used. It is simple to observe the fast growth 
of D with both d and n. This exponential growth of PCE coefficients imposes significant constraints on building PCE-based 
response surfaces. First of all, solving the error-minimization regression problem in high dimensions is a challenging task, 
because of the high number of numerical operations needed till convergence. Secondly, the number of QoI values (i.e. train-
ing samples) needed for accurate estimation of the PCE coefficients increases with D , which corresponds to additional runs 
of an expensive numerical simulator. In other words, the curse of dimensionality makes it impractical to solve for PCE co-
efficients directly. However, for a large class of problems it was observed that PCE coefficients are sparse [50,51]. Therefore, 
various techniques for sparse regression can be adopted. For example, �1 regularization techniques [52] can be considered 
as a first step towards enforcing sparsity on the PCE regression coefficients. This approach is widely adopted and will be 
referred to as standard PCE [53] in the rest of this manuscript. Further dimension reduction could be achieved through 
fitting both the data and the QoI derivatives at the training points [54]. The additional information from the gradients in-
creases the quality of PCE response surface [55]. Unfortunately, for many problems it is not possible to obtain the gradient 
information at the training points. Another line of research focuses on reducing the problem dimension by using advanced 
methods for solving nonlinear regression problems. For instance, sparse PCE coefficients can be computed efficiently through 
the application of support vector regression [56] or preconditioned conjugate gradient [57] techniques. Another direction of 
development relies on coupling the iterative solvers with algorithms for ranking the importance of the basis polynomials 
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(e.g. orthogonal matching pursuit [37]) or ranking based on the impact on the residual [58]. Further reduction of dimension 
could also be achieved by adaptive truncation of the spectrum of the expansion. For instance, it has been observed empir-
ically for a broad class of problems, that higher order interactions between the polynomial basis from different dimension 
have less impact on the quality of the response surface when compared to the one dimensional low order polynomials. 
This empirical observation is the foundation for hyperbolic truncation techniques [59]. Moreover, the performance of all 
regression-based approaches could be improved by transformation of the input variables (e.g. scaling, normalization). For 
example, variable rotations [60] or generic linear transformations [61] could significantly reduce the complexity of the error 
minimization problem corresponding to finding the PCE coefficients.

In the current paper, we focus on further improvement of dimension reduction techniques for regression based PCE. We 
present a novel iterative approach for solving the error minimization problem. We introduce a new data-driven ranking pro-
cedure for sequential identification of the most significant PCE basis functions with the closest relation to the interpolated 
QoI values. The ranking procedure is based on the correlation between the basis functions and the QoI values penalized by 
factors that measure the sensitivity of the corresponding coefficient to the noise in the input data. The aim of the introduc-
tion of correction/penalty factors is to avoid overestimation of the significance of a given polynomial basis function due to 
occasional location of data-points. The introduced ranking approach enables us to determine the most significant PCE terms 
and subsequently solving a reduced regression problem at each iteration. The new method could be easily combined with 
various regularization techniques.

The proposed approach has been integrated in scikit-learn [1], a widely used machine learning library. This integration 
enables uniform testing of a huge variety of techniques such as Lasso, Lars and Elastic Net [62] in order to formulate and 
solve the regularized regression problem. We implement PCE as an input feature transformation using machine learning 
terminology. Therefore, PCE can be naturally included in any machine-learning pipeline allowing one to combine different 
methods for variable transformation with advanced cross-validation techniques. Moreover, this implementation allows for 
an easy comparisons to alternative machine-learning techniques (e.g. Random Forests, Support Vector Machines). In the nu-
merical evaluation section, we compare the proposed approach to classical methods for sparse PCE namely, the Orthogonal 
Matching Pursuit (OMP) and Least Angular Regression (LARS). We consider four data-sets for evaluation. The first two data-
sets are generated using analytical functions and the last two data-sets are based on subsurface simulations of fluid flow 
in porous media. In all the test cases, extensive comparisons are performed in terms of Mean-Square Error (MSE) using a 
hold-out (aka. validation) set of points following the best practices in the machine learning literature.

The rest of this manuscript is organized as follows: In the following section, a general introduction to PC is presented 
followed by the proposed ranking procedure. In section 3 we present a set of numerical examples. Finally, the conclusion of 
our work is presented in section 4.

2. Methodology

Polynomial chaos expansion PCE is a meta-modeling technique that relies on orthogonal polynomials. One of the main 
advantages of PCE when compared to alternative surrogate modeling techniques is the ability to estimate the QoI sensitivity 
to given combination of variables through simple analytical formulae. This is only possible due to the close relation between 
the orthogonality of basis polynomials and the probability distribution of the input variables. This relation is explained in 
subsection 2.1, along with an overview of basic ideas of PCE. The proposed reordering of PCE basis is then introduced in 
subsection 2.2.

2.1. Basics of polynomial chaos

The essence of PCE is the relation between the statistics of input data and orthogonality of the utilized basis polynomials. 
The relation concerned gives a powerful tool for calculating the PCE coefficients and for further statistical analysis of the 
data. We first explain this relation for the single-variate case and then extend this formulation to multi-variate cases. 
Additionally, examples of applying this concept to study the statistical properties of PCE are presented.

For single-variate function f (x), a PCE is defined as series of orthogonal polynomials:

f (x) =
∑
α

cα pα(x) (2)

where pα(x) is an orthogonal single-variate polynomial with the index α and cα is the corresponding PCE coefficient. The 
specific type of utilized orthogonal polynomials is not of a principal importance in the definition introduced in Eq. (2). 
Therefore, PCE can be naturally formulated for all well-known families of orthogonal polynomials. For example Hermite, 
Legendre and Chebyshev polynomials [63].

The analysis of the PCE relies on the orthogonality of the basis polynomials, which is introduced through the notion of 
an inner product defined as follows:

〈g1, g2〉 =
+∞∫

K(x)g1(x)g2(x)dx (3)
−∞
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where g1(x) and g2(x) are certain square-integrable functions and K(x) is a non-negative function referred to as the kernel 
function or simply the kernel. Classical families of orthogonal polynomials are related to a specific form of the kernel 
function. For instance, Hermite polynomials correspond to a kernel function identical to Gaussian distribution function with 
zero mean and unit variance [64]:

K(x) = 1√
2π

e−x2/2 (4)

For a generic case, the PCE basis functions are constructed by applying Gram-Schmidt orthogonalization to the set of mono-
mial functions (e.g. 1, x, x2, . . . ) [65]. Therefore, PCE techniques could be naturally extended to any arbitrary kernel 
functions K(x).

A central idea of PCE is the statistical interpretation of K(x) as probability density function for a given random vari-
able [66]. This interpretation allows one to reformulate the inner product defined in Eq. (3) in terms of expectations:

〈g1, g2〉 =
+∞∫

−∞
K(x)g1(x)g2(x)dx = E[g1, g2] (5)

In the setting, the orthogonality of polynomials pα(x) with respect to the inner product can be reformulated as:

〈pα, pβ〉 = E[pα, pβ ] = ‖pα‖2δαβ (6)

where δαβ is a Kronecker symbol. In the present work, we consider orthonormal polynomials with ‖pα‖2 = 1 in order to 
simplify the numerical analysis of PCE. Therefore, Eq. (7) can be transformed as follows:

〈pα, pβ〉 = E[pα, pβ ] = δαβ (7)

Moreover, the basis polynomials orthogonality can be used to estimate the PCE coefficients:

cα = 〈 f , pα〉 = E[ f , pα] (8)

For multi-variate functions, similar analysis could be performed through the introduction of the tensor-product concept 
where the set of multivariate basis functions is formed as products of single-variate polynomials:

p A(x) = p(1)
α1 (x1)p(2)

α2 (x2) . . . p(n)
αn (xn) (9)

where αk is the degree of single-variate polynomial, p(k)
αk

(xk) is a uni-variate polynomial that depends only on the k-th 
coordinate of the vector x. The degree of polynomial p A(x) is defined as:

deg(p A(x)) =
∑

k

deg(p(k)
αk

(xk)) =
∑

k

αk (10)

Similar to Eq. (2), the PCE of multivariate function f (x) is defined as:

f (x) = f (x1, . . . , xn) =
∑

A

c A p A(x) (11)

where c A is the PCE coefficient corresponding to polynomial basis function with multi-index A. The inner product in multi-
dimensional case is defined as:

〈g1, g2〉 =
∫

K(x)g1(x)g2(x)dx (12)

where K(x) is a multi-variate kernel function and g1(x), g2(x) are certain square-integrable functions. It is important to 
note that the polynomial basis functions obtained by tensor multiplications inherit the orthogonality and orthonormality 
from single-variate PCE if the multi-variate kernel function K(x) equals the product of single-variate kernel functions:

K(x) = K1(x1) · · ·Kn(xn) (13)

where K1(x1), · · · , Kn(xn) are single-variate kernel functions. From a probabilistic point of view, this is equivalent to the 
mutual independence of the coordinates of the vector x.

The inner product defined in Eq. (12) can be utilized to derive an expression for the PCE coefficients similar to Eq. (8):

c A = 〈 f , p A〉 =E[p A, f ] (14)

The relation between the input data statistics and the polynomial basis orthogonality can be used to derive analytical 
expressions for the mean, variance and Sobol’ indices of the function f (x). For example, the mean can be estimated by:
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E[ f ] = 〈1, f 〉 =
∑

A

c A〈1, p A〉 = c0,...,0 = c0 (15)

Where c0,...,0 is the constant polynomial coefficient. In the present work, we simplify the notations and use c0 instead of 
c0,...,0. The mean-square deviation can be calculated in the similar fashion:

σ 2 = E[( f − c0), ( f − c0)] =
∑

A1,A2 �=0

c A1 c A2δA1 A2 =
∑
A>0

c2
A (16)

Calculation of other quantities for sensitivity analysis and UQ such as partial variances and Sobol’ indices could be performed 
naturally with PCE. A partial standard deviation represents the sensitivity to a given combination of variables. It is defined 
as the standard deviation of the function f (x) averaged with respect to certain collection of variables [36]:

σ 2
r1,...,rk

( f ) = σ 2(Et1,...,tn−k [ f ]) (17)

where σr1,...,rk is the standard deviations with respect to the components of the vector x with indices r1, · · · , rk and 
Et1,...,tn−k [ f ] is the average with respect to components of the vector x with indices t1, · · · , tn−k that form a complement to 
r1, · · · , rk [32], n is the dimension of x and k is a certain integer number from 1 to n. Sobol’ indices are commonly used as 
a measure for sensitivity and are defined as the normalized partial standard deviations:

Sr1,...,rk ( f ) = σ 2
r1,...,rk

( f )

σ 2( f )
(18)

For the response function f with a PCE representation, the partial standard deviations can be calculated in a similar fashion 
as the normal standard deviation defined in Eq. (16) following [36]:

σ 2
r1,...,rk

( f ) =
∑

αrl >0,αt j =0

c2
A (19)

The relation between orthogonality of polynomial basis functions and the probability distribution of input data has 
an important consequence on the numerical calculation of the PCE coefficients. In practice, for regression based response 
surfaces, the PCE coefficients for a given function f (x) can be computed for given input data through the minimization of 
the mean-square error (MSE) functional:

F(c) =
∑

i

(yi − ∑
A cA p A(xi))

2

N
(20)

where xi is the ith vector of input variables, N is the number of data points and yi is the value of the function f at the 
point xi . In the present work the spectrum of PCE is truncated to a certain polynomial degree d. Therefore, the dimension 
of c is given by Eq. (1).

It is simple to see that minimizing the functional defined in Eq. (20) is equivalent to solving a system of linear equations:

MABcB = VA (21)

where the square matrix M and vector V are defined as:

MAB =
∑

i

p A(xi)pB(xi)

N
, VA =

∑
i

yi p A(xi)

N
(22)

The relation between the basis orthogonality and the statistical distribution of the input data imposes several constraints on 
the value of the matrix M and the vector V. If the data is sampled in agreement with the probability distribution determined 
by the kernel function defined in Eq. (13), then the matrix M should converge to a unit matrix:

MAB =
∑

i

p A(xi)pB(xi)

N
= E[p A pB ] +O

(
1√
N

)
= δAB +O

(
1√
N

)
(23)

where the term O
( 1√

N

)
represents the convergence in accordance with the law of large numbers [67]. Similar reasoning 

could be applied to the vector V showing the close correlation between the data and the basis functions:

VA =
∑ p A(xi)yi

N
= E[y(x)p A(x)] +O

(
1√
N

)
= cA +O

(
1√
N

)
(24)
i
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Eq. (23) and Eq. (24), simply means that the coefficients c minimizing the MSE functional defined in Eq. (20) is close to the 
correlation vector V if a sufficient number N of training data points is available. Moreover, the difference between V and c
can be estimated as follows:

|V A − c A | ≤ kA√
N

(25)

Where kA is a positive number. In other words, V provides a reasonable approximation for c if a sufficient number of 
data-points is available. We utilize this observation to introduce a novel ranking-based approach to approximate the PCE 
coefficients as described in the next subsection.

2.2. Ranking based sparse PCE

In the present work, we estimate the PCE coefficients by minimizing the mean-square error functional defined in Eq. (20). 
It is well-known that a straight-forward minimization of mean square errors could provide an unstable solution or a re-
sponse surface that is not quite accurate at points that are not included in the training data-set. Therefore, we utilize a 
mixed �1 and �2 regularization technique known as Elastic Net model [68] (i.e., combined Tikhonov and Lasso regulariza-
tion). This results in a regularized functional for error minimization of the following form:

c = arg min
c

L(c) = arg min
c

(
F(c) + λ1

∑
A

|c A | + λ2

∑
A

c2
A

)
(26)

where L(c) is a functional for minimization and λ1, λ2 are hyperparameters that could be tuned in order to maximize the 
quality of the surrogate model. In the present work, λ1 and λ2 are determined through cross-validation.

We utilize a coordinate descent algorithm [62] in order to find the solution for the minimization problem defined in 
Eq. (26). This is an iterative algorithm that sequentially updates the solution vector c by minimizing the functional L(c)
with respect to one of the coordinates at each step as summarized in Algorithm 1.

Algorithm 1 Coordinate descent.
c = 0 
 Set vector of parameters to zero
while 	 L> ε do 
 Iterate while change in L(c) is significant

Select a value k from 1 to dim(c) 
 Select one of the coordinates
ck = arg min

ck

L(c) 
 Minimize with respect to single parameter

Update 	 L
return c

One of the essential parts in Algorithm 1 is the selection of the next component for update. Classical approaches include: 
random selection or selection based on the cyclic order on the set of components [62]. In the present work, we introduce a 
novel scheme for reordering the polynomial basis functions that increases the algorithm convergence rate and increases the 
response surface quality when utilizing small number of training samples. The aim of the reordering procedure is to identify 
the polynomial basis functions with the highest PCE coefficients in order to determine its values first. It should be noted 
that the assumption about the agreement between sampling of training data and orthogonality of basis polynomial functions 
Eq. (5) is of principal importance for the proposed reordering procedure. For the cases where this assumption is violated, 
data transformation techniques should be applied before using the proposed reordering approach. For instance, the desired 
distribution of input variables can be achieved through quantile transformation [69] or Rosenblatt transformation [70].

The reordering technique utilizes a ranking of PCE coefficients inspired by Eq. (24), which states that the vector of 
moments is close to the actual PCE coefficients given a sufficient number of training points. However, for certain polynomial 
basis functions the difference between c A and V A can be significant leading to an overestimation of the importance of those 
components due to the lack of the available data, which can be considered as a noise. In order to address this issue, we 
introduce a ranking of polynomial basis functions in a form of the signal-to-noise ratio which is a correlation coefficient 
divided by a correction factor that quantifies the sensitivity of a given PCE coefficient to the data noise.

Two sources of noise are considered in the current work: noise in the values of QoI and noise in the deviation of matrix 
M due to the random sampling of the training data. In order to quantify both sources of noise, we perform two series of 
Monte-Carlo simulations. In the first series of Monte-Carlo simulations, the sensitivity of the correlation vector V to the 
QoI values is estimated. For that purpose, we introduce random perturbations θi to each of the training data-points. In the 
present study, the noise part is sampled from a normal distribution with zero mean and unit variance. The correlation of 
the basis polynomial p A(x) with perturbed data to the QoI is estimated using:

UA =
∑

i

(yi + θi)p A(xi)

N
(27)

The mean-square deviation σY ,A of UA from VA is considered as a measure for stability:
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σY ,A =
√
Eθ [(UA − VA)2] (28)

where the mean Eθ is taken over several realization of θ .
The second series of Monte-Carlo simulations is performed to quantify the stability with respect to the location of 

training points. As long as the location of training data points x̃ is considered as a random parameter, a set of N points 
is generated at each Monte-Carlo simulation. Then the mean-square deviation σX,A of MA A from the unit matrix can be 
computed numerically as follows:

σX,A =
√

E x̃[(MA A − I)2] (29)

where the mean Ex̃ is taken over a number of realizations of x̃. Finally, the ranking coefficient for the basis polynomial 
p A(x) is defined as:

rA = 1√
σ 2

Y ,A + σ 2
X,A

|VA |
H

(30)

where parameter H is introduced for normalization purposes. The value of H is given by the expression:

H = 1

2
min

A
|VA | + 1

2
max

A
|VA | (31)

where minimum and maximum are taken over all values of multi-index A. In this work we consider high values of rA as 
an indicator of a high value of the corresponding PCE coefficient.

In the present work, the ranking parameter rA is used within the coordinate descent Algorithm 1 to select the next PCE 
coefficient for updates. Therefore, we solve iteratively for PCE coefficients by performing the following steps sequentially: 
ranking of basis functions based on the residual η(k) at the step k, select the first NB basis functions and solve for the 
corresponding PCE coefficients using coordinate descent method. These steps are combined in Algorithm 2. In our numerical 
testing, we set NB = 5 based on some initial testing. However, a more rigorous approach could utilize cross validation to 
select the optimal number of NB .

Algorithm 2 Ranking based sparse PCE solver.
1: k=0 
 Set iteration counter to zero
2: η(0) = y 
 Residual equals to initial data
3: c = 0 
 Set vector of parameters to zero
4: while 	 L> ε do 
 Iterate while change in L(c) is significant
5: r = r(η(k)) 
 Compute ranking
6: Select A1, · · · , ANB 
 indices of first NB components with highest rank
7: Solve 	c = arg

	c
min(L(	c A1 , · · · , 	c ANB

)) with respect to selected components 
 Use Algorithm 1

8: Update coefficients: c = c + �c
9: Update residual: η(k+1) = y − ∑

A c A p A(x)

10: k = k + 1
11: return c

3. Numerical examples

In this section, the proposed ranking based sparse PCE is evaluated on four test cases. The first test case is the Ishigami 
function [71], the second test case is a ten-dimensional Ackley function, the third case is a waterflooding problem with 
uncertain permeability field and the forth test case utilizes a data-set from simulations of CO2 injection [72]. In all test 
cases, the proposed PCE approach is compared to two standard techniques for sparse regression-based PCE: Least Angular 
Regression [73] and the Orthogonal Matching Pursuit (OMP) algorithm [74]. The numerical implementations are all based on 
scikit-learn, a machine library including with standard implementation of the LARS, OMP and coordinate descent algorithm. 
Moreover, cross-validation tools within this library are used to select the optimal regularization parameters for the Elastic 
Net functional defined in Eq. (26).

Test case 1: Ishigami function

Ishigami function is one of the standard benchmarks [71]:

y = 1 + 1 + π4/10 + sin(πx1) + 7 sin2(πx2) + 0.1(πx3)
4 sin(πx1)

9 + π4/5
(32)

This three dimensional function shows a strong nonlinear behavior and is commonly used as a test function for evaluating 
different response surface techniques. Typically, the evaluation domain is [−π, π ]3. In the present work, PCE with Legendre 
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Fig. 1. Mean-square error on the test data set versus the number of free coefficients for the Ishigami function.

polynomials is used because of the finite length of the interval concerned. We have rescaled the input parameters linearly 
to the interval [−1, 1], given that the Legendre polynomials are defined over the interval [−1, 1]. For each of the rescaled 
variables, a uniform distribution over the interval [−1, 1] is assumed. We consider two training sets of 200 samples and 
2000 samples. Another set of 2000 points uniformly sampled over the cube [−1, 1]3 is utilized for out-of-sample MSE 
calculations (aka. test set). We construct a PCE of polynomial functions up to degree d = 10. The aim of the example is 
to compare the convergence rates of the proposed ranking based PCE approach against the standard sparse regularization 
techniques (i.e. LARS and OMP), while increasing the number of free coefficients ND available for fitting by these iterative 
techniques. In the case of LARS and OMP, the value of ND is well-defined. For the proposed ranking based approach, ND is 
defined as:

ND = NI NB (33)

where NI is the number of iterations and NB is the number of PCE coefficients that can be modified by coordinate descent 
solver after each ranking update in Algorithm 2. It should be emphasized that PCE coefficients are selected solely based 
on ranking. In other words, the overlapping with previously selected PCE coefficients can occur. Therefore, the value of ND

given by Eq. (33) is a conservative upper bound for the total number of polynomial basis functions involved in the response 
surface construction (i.e. with non-zero coefficient).

The numerical level of tolerance has been set to 10−6 in all numerical schemes. Fig. 1a and Fig. 1b shows the MSE for 
each method versus the number of free coefficients ND for 200 and 2000 training points, respectively.

The results presented in Fig. 1, shows that response surface built using the ranking based sparse PCE is of higher quality 
when compared to those obtained by the standard LARS or OMP algorithm, especially when the size of training data is 
limited. However, all three techniques perform similarly in the case with higher number of training data-points as shown 
in Fig. 1b. This is a major advantage when collecting training samples corresponds to running computationally expensive 
simulations.

Test case 2: Ackley function

In this example, we build a response surface for a 10-dimensional Ackley function [75] of the form:

y = −20 exp

(
− 0.2

(
1

n

n∑
k=1

x2
k

)1/2
)

− exp

(
1

n

n∑
k=1

cos 2πxk

)
+ 20 + exp

(
1
)

(34)

where n is the dimension of the input vector. This function shows a strong nonlinear behavior with plenty of local min-
imums and is frequently used as a benchmark for optimization algorithm. The setup of the current numerical example is 
similar to the first test case. However, we assume that each of the input variables is uniformly distributed in the interval 
[−5, 5]. Legendre polynomials are utilized as basis function for the PCE. Therefore, input rescaling is applied to map all 
input variables to the interval [−1, 1]. In other words, we consider data to be uniformly distributed in the cube [−1, 1]10 . 
Similar to the first test case, two training sets sizes are considered (200, 2000 samples) and 2000 samples points uniformly 
distributed in the cube [−1, 1]10 are set aside as a test set for calculating the out-of-sample MSE. We truncate the PCE 
spectrum to polynomial functions up to degree d = 8.

Fig. 2 shows the MSE convergence for the ranking based sparse PCE versus LARS and OMP algorithms. Similar to the first 
test case, the proposed approach produces a response surface of higher quality than LARS or OMP if the size of training 
data is limited as shown in Fig. 2a, while all techniques perform similarly a higher number of training data-points is used 
and a high number of polynomial basis functions is utilized as shown in Fig. 2b.
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Fig. 2. Mean-square error on the test data set versus the number of free coefficients for a ten dimensional Ackley function.

Test case 3: waterflooding problem

In the present test case, we evaluate the developed PCE approach on an uncertainty propagation for a waterflooding 
problem with uncertain permeability field. Dimension reduction using PCA technique is applied to the spatial field as an 
effective parametrization techniques [76]. Waterflooding is a commonly used process within the petroleum industry for 
achieving higher hydrocarbon recovery rates. The essence of this approach is to inject water through a number of wells 
in a given reservoir in order to displace the existing oil and increase the oil production from another set of wells, which 
are commonly spatially scattered to surround the injection wells. The increased productivity is observed until the injected 
water starts to appear at the production wells. Thus estimating when water will appear at the production wells (commonly 
known as the water breakthrough time [77]) is of significant practical importance. We note, that this time is commonly 
measured in terms of volume of water injected relative to the total reservoir pore volume (PVI). Prediction of the water 
breakthrough time tb is of high importance for hydrocarbon field development because of the economical effects associated 
with it. In addition, tb is highly sensitive to the spatial distribution of reservoir properties [78] (e.g. porosity, permeability) 
which are highly uncertain because of lack of observations. Moreover, reliable forecast for hydrocarbon production rate after 
the water breakthrough is significant for economical decisions. Therefore, in the present test case we develop a surrogate 
model for the production rate at late stages of the well life. In particular, we focus on the oil production rate qoil when 60%
of PVI has been injected.

The waterflooding system is modeled via mass and momentum conservation laws coupled with Darcy’s law. A simplified 
model for waterflooding is utilized where flow of two incompressible fluids (water and oil) is considered. In this setting, we 
are interested in predicting the spatial distribution of volumetric fractions sa (saturation) of each of the fluids. The index 
a could be replaced by either w or o for water and oil, respectively. The evolution of saturations is governed by mass and 
momentum conservation laws expressed through the following partial differential equation (PDE):

∂φsaρa

∂t
−

3∑
γ =1

∂

∂xγ

(
ρakka

μa

∂ P

∂xγ

)
= Q a (35)

where γ = 1, 2, 3 is a spatial index of the coordinate vector x, ρa = ρa(x) and μa = μa(x) are the density and viscosity of 
fluid a at the point x respectively, k = k(x) is the permeability, φ = φ(x) is the porosity at a given point, P (x) is a pressure 
at point x, ka(s) is a relative phase permeability of fluid a, s = s(x) saturations of fluids at the point x, Q a = Q a(x) is a 
source term for fluid a at the point x. Generally, the permeability k is a tensor. In the present example, we assume k to be a 
spherical tensor which can vary in space. Therefore, it is fully described by a single spatial function k = k(x). In the present 
work we neglect capillary pressure effects. Therefore, both fluids are subjected to the same pressure at any given point. The 
source terms Q a are considered to be non-zero only for cells with injection and production wells. Finally, incompressible 
fluids and rocks (solid matrix) are considered. Therefore, Eq. (35) could be simplified:

φ
∂sa

∂t
−

3∑
γ =1

∂

∂xγ

(
kka

μa

∂ P

∂xγ

)
= qa (36)

where qa = Q a/ρa is the source term for fluid a normalized to the density of corresponding fluid. For calculation of relative 
phase permeabilities, Brooks-Corey model [79] is used:

kw(Swn) = k(0)
w S pw

wn

k (S ) = k(0)
(1 − S )po

(37)

w wn o wn
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Table 1
Fluid properties and parameters of the model for relative-phase permeability.

μo , cP μw po pw k(0)
o k(0)

w

10.0 1.0 2.0 2.0 1.0 1.0

Fig. 3. Permeability realizations projected to a different number of KL-terms.

where kw and ko are the values of relative phase permeability for water and oil, respectively and k(0)
w and k(0)

o are maximum 
the values of relative phase permeability for water and oil, respectively. The values pw and po are dimensionless parameters 
of the model and Swn is the normalized water saturation defined as:

Swn = S − Swir

1 − Swir − Sowr
(38)

where Swir and Sowr are irreducible water and oil saturations, respectively.
In this test case, we consider a five-spot injection pattern where an injection well is located in the center of a square 

surrounded by four production wells. Given the symmetry of this pattern, only one quarter of the domain is modeled with 
one producer and one injector located at the opposite corners of a square domain. The length of the edge of that square is 
set to L = 640 m. The thickness of the reservoir is h = 10 m. We do not consider discretization along the vertical direction 
and we only consider a two-dimensional flow problem. For the purposes of simplicity, incompressible immiscible fluids 
is considered while neglecting gravity effects. A uniform square grid is used for simulations and the dimensions of each 
grid-block is 10 m by 10 m by 10 m. In other words, a 64 by 64 by 1 mesh is used for discretization. The porosity of the 
reservoir is assumed to be constant and equal to 0.2. Both injection and production rates are considered to be constant and 
equal to 10 m3/day. The fluid properties and parameters of Corey model are presented in the Table 1.

In the present work, the reservoir permeability k(x) is assumed to be a random field with a predefined distribution given 
the correlation between values at different points within the domain. In reservoir modeling, it is natural to assume that the 
values of logarithm of permeability log(k(r)) at different points r1 and r2 are exponentially correlated [76]:

〈log(k(r1)), log(k(r2))〉 = exp

(
− |r1 − r2|

Lc

)
(39)

where Lc is a correlation length. In the present example, the correlation length is set to Lc = 1/4L = 160m. The utilized 
distribution of log-permeability allows one to implement Karhunen-Loeve expansion and express log(k(r)) as a linear com-
bination of mutually independent random variables:

log(k(r)) =
∑
α

θαλαξα(r) (40)

where λα, ξα(r) are the eigen-values and eigen-functions of the KL expansion, respectively. The θα are random mutually 
independent coefficients. In the present example θα are considered as input random variables for the PCE response surface. 
The permeability field is normalized such that a zero value of log(k(r)) corresponds to a permeability of 1 mD.

We truncate the KL expansion spectrum by taking the first 5, 15 or 45 KL components. Because of the long correlation 
length with respect to the size of the domain, a significant part of the energy of the spectrum is captured in all truncation 
scenarios. In this work, the fraction of the energy of the spectrum is defined as follows:

H(n) =
∑n

α=1 λ2
α∑∞

α=1 λ2
α

(41)

where n is the number of components in the truncated KL expansion. In the present example, H(5) = 0.9898, H(15) =
0.9948 and H(45) = 0.9972. It is important to notice that despite the fact that KL expansion captures significant portion of 
the energy spectrum, it provides smooth reconstruction of the permeability field as shown in Fig. 3.
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Fig. 4. Mean square error (MSE) over the test data for breakthrough time (a, b, c) and for oil production rate (d, c, e) for different PCE algorithms versus 
the response surface free parameters.

Three different PCE response surfaces are built corresponding to the 5, 15, 45-KL terms where 1000 samples (i.e. recon-
structed permeability realizations) are evaluated. Each of these samples has been generated from a normal distribution of 
the coordinates θα corresponding to the truncated eigen-vectors of the KL expansion. Water breakthrough times are esti-
mated through numerical simulations for each of the permeability realization using a forward simulation run. A training set 
of 750 samples is used for building the PCE response surface and the remaining 250 samples are used for testing. Legendre 
polynomials with degree d ≤ 5 are considered as basis functions. The tolerance in all numerical schemes used to estimate 
the PCE coefficients has been set to 10−6.

Fig. 4 shows the MSE for various KL truncation levels. The results presented in this figure, demonstrate that the proposed 
rank based PCE technique has similar accuracy when compared to the OMP algorithm for low-dimensional problems. How-
ever, the rank based PCE has clear advantages in higher dimensions. Also, both the Rank-PCE and OMP methods, perform 
slightly better than LARS. However, all three techniques do not perform perfectly, because the MSE is around 5% of the 
mean-value of the QoI. The cross-plot shown in Fig. 5 demonstrates how the quality of prediction is affected by the dimen-
sion of the problem or truncation scheme for KL expansion. The best accuracy of the response surface has been achieved for 
the problem with the lowest dimension corresponding to 5-KL truncation level (left). The numerical error is the highest for 
45-KL truncation level (right). The reason for such behavior is that the training set of the same cardinality has been used for 
all truncation schemes. It should be noted that the accuracy of the permeability representation increases with the increase 
of parameter space dimension. However, capabilities of the response surface to reproduce the simulation results for a fixed 
number of direct simulations drop with dimension. In other words, more training data is required to build a high quality 
response surface for the high-dimensional case when compared with problems of lower dimensionality.

Test case 4: data from CO2 injection simulations

In this test case, PCE-based response surface is used as a fast emulator for CO2 injection process. The QoI is the mass of 
CO2 in a gas phase after given time period from the end of CO2 injection [72]. The data is based on the simulations results 
developed by Manceau and Rohmer [72]. The key uncertain parameters in these simulations are: average field porosity, 
average field permeability, regional hydraulic gradient relative phase permeability, capillary pressure and the permeability 
anisotropy kv/kh ratio. More detailed description of this problem can be found in [72]. The average field porosity φ and per-
meability k are considered as independent continuous variables with a uniform probability distribution via density-function 
variable transformation [70]:

{
φ = fφ(x1)

k = fk(x2)
(42)
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Fig. 5. Cross-plots of breakthrough time and oil production rate in PVI units for Rank PCE algorithm. Top row (a, b, c) shows the results for test samples for 
breakthrough time and the bottom row (d, e, f) shows the results for oil production rate.

Table 2
Summary of variables notations and types.

Variable Notation Type

Porosity x1 Continuous, U [−1;1]
Permeability x2 Continuous, U [−1;1]
Relative phase permeability x3 Discrete, 10 different models

Regional hydraulic gradient x4 Discrete, 2 different values

Capillary pressure x5 Discrete, 2 different models

Permeability anisotropy x6 Discrete, 3 different values

where x1 and x2 are independent random variables uniformly distributed in the interval [−1; 1], fφ and fk are functions 
for transformation of variables. All other variables are considered as discrete variables with equal probabilities over all 
discretized values. Table 2 summarizes the variable names and types used in this test case.

We note that this test case includes categorical variables in the input space. In order to handle this type of data, we 
utilize Chebyshev polynomials for categorical data. Additionally, we establish a one-to-one correspondence between the 
values of a given categorical variable and Chebyshev nodes:

tm → cos

(
2m − 1

2M
π

)
(43)

where M is the total number of possible values for a given categorical variable. The mapping given by this equation is 
illustrated in Fig. 6.

We note that Gauss-quadrature rules for Chebyshev polynomials have the same weight [65] for each of the nodes. 
This justifies using Chebyshev polynomials for categorical data and the corresponding mapping to the Chebyshev nodes 
presented in Eq. (43) especially when training samples are uniformly distributed over the distinct categories. Therefore, the 
polynomials orthogonality and the distribution of categorical variables are consistent with each other.
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Fig. 6. Location of Chebyshev nodes corresponding to roots of the polynomials with the same degrees as the number of distinct values present in the 
categorical variable.

Fig. 7. Mean square error (test data) for the different PCE algorithm versus the response surface free parameters.

+1∫
−1

pα(t)pβ(t)√
1 − t2

dt =
∑

m

π

M
pα(tm)pβ(tm) = π E[pα pβ ] (44)

In the present work we utilize normalized polynomials pα(t) to qα(t):

E[qαqβ ] = δαβ (45)

Using Chebyshev polynomials provides a natural extension of standard PCE to problems with categorical variables while 
preserving the fundamental relation between the orthogonality of basis functions and probability distribution as defined in 
Eq. (5).

In the current example, sampling of the data is performed using uniform distributions over the parameter ranges. A 
total of 998 data points are generated in accordance with the proposed probability distributions of variables and we used 
250 data-points for training (i.e. constructing the PCE) and the remaining data points are used for testing. The mass of 
CO2 injection is computed via detailed numerical simulations (see [72] for more details). We normalized the QoI such that 
following equality holds for the training data:

∑
i

y2
i

N
= 1 (46)

We observed empirically that the QoI is highly sensitive to the permeability and relative phase permeability. Therefore, we 
constructed two evaluation cases with the same data set. For the first case which we refer to as the reduced case, we built 
a two-dimensional response surface using the permeability and relative phase permeability only as an input. The second 
case, which we denote as the full case, we utilize all the six uncertain variables in the response surface. In both cases, 
we evaluate the proposed ranking based sparse PCE against standard sparse regression PCE algorithms (i.e. LARS and OMP 
methods) for different numbers of expansion coefficients ND . For both the reduced and full problems, PCE is performed 
with polynomials of degree d ≤ 10. The number of terms in PCE varies from 5 to 50 and the tolerance has been set similar 
to all other test cases to 10−6. Legendre polynomials were used for continuous variables x1, x2 and Chebyshev polynomials 
were used for the discrete/categorical variables.

Fig. 7, shows the mean square error over the test data set for both the reduced and full cases in Fig. 7a and Fig. 7b, 
respectively. The introduced ranking based approach shows better convergence rates for both problems. Moreover, the results 
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in Fig. 7b demonstrate that advantages of the proposed Rank-PCE are more pronounced for higher dimensional problems, 
where the search space inside the iterative solver is large. For this case, the introduced ranking step allows for an efficient 
identification of the most significant components of PCE resulting in a higher quality response surfaces.

4. Concluding remarks

In the current manuscript, we introduced a ranking based sparse PCE technique (Rank-PCE). The core idea of the proposed 
approach is to rank the PCE features in accordance with the magnitude of a given PCE coefficient based on the correlation 
with data while estimating for the accuracy of computed correlations. We demonstrated, via a set of numerical examples, 
the superior performance of Rank-PCE when compared to standard sparse regularization techniques. Rank-PCE resulted in 
an increase in convergence rates for generative function with sparse spectrum. We also noticed that the improvements in 
convergence is more pronounced for high-dimensional problems, enabling the application of PCE to problems with signif-
icant number of independent variables. Moreover, the advantages of Rank-PCE are also evident for problems with limited 
number of training samples as demonstrated in the analytical test cases.

In addition to novel ranking procedure, we presented an extension of PCE response surfaces to problems with both 
continuous and categorical data through the utilization of Chebyshev polynomials to represent the discrete variables. The 
proposed technique might be not optimal for general cases, however under the uniform sampling conditions, it provides 
a simple approach to handle categorical data in PCE that is consistent with the statistical properties of PCE for sensitivity 
analysis and UQ. In other words, the proposed approach maintains the relation between basis orthogonality and statistics of 
the input variables, which is fundamental for UQ with PCE. This technique is also easy to implement given the availability 
of Chebyshev polynomials in most scientific computing libraries.
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