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This paper presents a review of the current state-of-the-art of numerical methods for non-
linear Dirac (NLD) equation. Several methods are extendedly proposed for the (1 + 1)-
dimensional NLD equation with the scalar and vector self-interaction and analyzed in
the way of the accuracy and the time reversibility as well as the conservation of the dis-
crete charge, energy and linear momentum. Those methods are the Crank–Nicolson (CN)
schemes, the linearized CN schemes, the odd–even hopscotch scheme, the leapfrog
scheme, a semi-implicit finite difference scheme, and the exponential operator splitting
(OS) schemes. The nonlinear subproblems resulted from the OS schemes are analytically
solved by fully exploiting the local conservation laws of the NLD equation. The effective-
ness of the various numerical methods, with special focus on the error growth and the
computational cost, is illustrated on two numerical experiments, compared to two high-
order accurate Runge–Kutta discontinuous Galerkin methods. Theoretical and numerical
comparisons show that the high-order accurate OS schemes may compete well with other
numerical schemes discussed here in terms of the accuracy and the efficiency. A fourth-
order accurate OS scheme is further applied to investigating the interaction dynamics of
the NLD solitary waves under the scalar and vector self-interaction. The results show that
the interaction dynamics of two NLD solitary waves depend on the exponent power of the
self-interaction in the NLD equation; collapse happens after collision of two equal one-
humped NLD solitary waves under the cubic vector self-interaction in contrast to no col-
lapse scattering for corresponding quadric case.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

As a relativistic wave equation, the Dirac equation provides naturally a description of an electron [1]. Following Dirac’s
discovery of the linear equation of the electron, there appears the fundamental idea of nonlinear description of an elemen-
tary spin-1/2 particle which makes it possible to take into account its self-interaction [2–4]. Heisenberg put forward the idea
to use a nonlinear Dirac (NLD) equation as a possible basis model for a unified field theory [5]. A key feature of the NLD equa-
tion is that it allows solitary wave solutions or particle-like solutions — the stable localized solutions with finite energy and
charge [6]. That is, the particles appear as intense localized regions of field which can be recognized as the basic ingredient in
the description of extended objects in quantum field theory [7]. Different self-interactions give rise to different NLD models
mainly including the Thirring model [8], the Soler model [9], the Gross–Neveu model [10] (equivalent to the massless Soler
model), and the bag model [11] (i.e. the solitary waves with finite compact support), all of which attracted wide interest of
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physicists and mathematicians around the 1970s and 1980s, especially on looking for the solitary wave solutions and
investigating the related physical and mathematical properties [6].

For the NLD equation in (1 + 1) dimensions (i.e. one time dimension plus one space dimension), several analytical solitary
wave solutions are derived in [12,13] for the quadric nonlinearity, [14] for fractional nonlinearity as well as [15,16] for gen-
eral nonlinearity by using explicitly the constraint resulting from energy-momentum conservation, and summarized by Mat-
hieu [17]. In contrast, there are few explicit solutions in (1 + 3) dimensions except for some particular cases shown in [18] in
spite of their existence claimed by mathematicians for various situations [19–26] (the readers are referred to an overview
[27] on this topic), and most understanding is based on numerical investigations, e.g. [28–30]. Beyond this, the study of
the NLD equation in (1 + 1) dimensions could be very helpful for that in (1 + 3) dimensions since the (1 + 1)-dimensional
NLD equation correspond to the asymptotic form of the equation in the physically interesting case of (1 + 3) dimensions
as emphasized by Kaus [31]. That is, some qualitative properties of the NLD solitary waves could be similar in such two cases.
An interesting topic for the NLD equation is the stability issue, which has been the central topic in works spread out over
several decades in an effort that is still ongoing. Analytical studies of the NLD solitary wave stability face serious obstacles
[32–34], while results of computer simulations are contradictory [35–37,30]. The stability analysis of the NLD solitary waves
is still a very challenging mathematical problem to date [38,16]. Recent efforts in this direction can be found in [39–44]. An-
other rising mathematical interest related to the NLD equation is the analysis of global well-posedness, e.g. see [45,46] and
references therein.

In the case of that theoretical methods were not able to give the satisfactory results, numerical methods were used
for obtaining the solitary wave solutions of the NLD equation as well as for investigating the stability. An important step
in this direction was made by Alvarez and Carreras [47], who simulated the interaction dynamics between the (1 + 1)-
dimensional NLD solitary waves of different initial charge for the Soler model [9] by using a second-order accurate
Crank–Nicholson (CN) scheme [48]. They first saw there: charge and energy interchange except for some particular ini-
tial velocities of the solitary waves; inelastic interaction in binary collisions; and oscillating state production from binary
collisions. Motivated by their work, Shao and Tang revisited this interaction dynamics problem in 2005 [49] by employ-
ing a fourth-order accurate Runge–Kutta discontinuous Galerkin (RKDG) method [50]. They not only recovered the phe-
nomena mentioned by Alvarez and Carreras but also revealed several new ones, e.g. collapse in binary and ternary
collisions of two-humped NLD solitary waves [49]; a long-lived oscillating state formed with an approximate constant
frequency in collisions of two standing waves [50]; full repulsion in binary and ternary collisions of out-of-phase waves
[51]. Their numerical results also inferred that the two-humped profile could undermine the stability during the scatter-
ing of the NLD solitary waves. Note in passing that the two-humped profile was first pointed out by Shao and Tang [49]
and later gotten noticed by other researchers [16]. Besides the often-used CN [48] and RKDG methods [50], there exist
many other numerical schemes for solving the (1 + 1)-dimensional NLD equation: split-step spectral schemes [52], the
linearized CN scheme [53], the semi-implicit scheme [54]46, Legendre rational spectral methods [55], multi-symplectic
Runge–Kutta methods [56], adaptive mesh methods [57] etc. The fourth-order accurate RKDG method [50] is very appro-
priate for investigating the interaction dynamics of the NLD solitary waves due to their ability to capture the discontin-
uous or strong gradients without producing spurious oscillations, and thus performs better than the second-order
accurate CN scheme [48]. However, the high cost due to the relatively more freedoms used in each cell and the stringent
time step constraint reduce its practicality in more realistic simulations where realtime and quantitative results are
required.

Recently, there has been a remarkable upsurge of the interest in the NLD models, as they emerge naturally as prac-
tical models in other physical systems, such as the gap solitons in nonlinear optics [38], Bose–Einstein condensates in
honeycomb optical lattices [58], as well as matter influencing the evolution of the Universe in cosmology [59]. In view
of such new trend, longtime stable, efficient, conservative and high-order accurate numerical methods for solving the
NLD equation are highly desirable. Finite difference methods, usually as the first try in practice, enable easy coding
and debugging and thus are often used by physicists and engineers. However, detailed discussion and careful compar-
ison on finite difference solvers for the NLD equation are not existed. To this end, the present work as the first step will
extendedly propose the finite deference schemes for solving the NLD equation with the scalar and vector self-interaction.
A general and precise comparison among them will be presented. However, all of these finite difference methods are
often of the second order accuracy and thus sustain fast error growth with respect to time. To achieve relatively slow
error growth, high-order accurate numerical methods are required. By exploiting the local conservation laws of the NLD
equation, we present exponential operator splitting (OS) schemes which are time reversible and can conserve the dis-
crete charge. One of the high-order accurate OS schemes is afterwards adopted to investigate the interaction dynamics
for the NLD solitary waves under the general scalar and vector self-interaction. It should be noted that the experiments
carried out in the literatures are all limited to the collisions of the NLD solitary waves under the quadric scalar self-
interaction. Here, the binary collisions of the NLD solitary waves under the cubic scalar self-interaction or under the vec-
tor self-interaction or under the linear combination of the scalar and vector self-interactions are all studied for the first
time.

The paper is organized as follows. There is a brief review of the NLD equation in Section 2 and the solitary wave solutions
are also derived there for the general scalar and vector self-interaction. The numerical schemes are presented in Section 3
and corresponding numerical analysis is given in Section 4. The numerical results are presented with discussion in Section 4.
The paper is concluded in Section 6 with a few remarks.
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2. Preliminaries and notations

This section will introduce the (1 + 1)-dimensional NLD equation with the scalar and vector self-interaction and derive its
two solitary wave solutions. Throughout the paper, units in which both the speed of light and the reduced Planck constant
are equal to one will be used.

2.1. Nonlinear Dirac equation

Our attention is restricted to the NLD equation in ð1þ 1Þ dimensions which can be written in the covariant form
ðicl@l �mÞWþ @LI½W�=@ �W ¼ 0; ð2:1Þ
where W is the spinor with two complex components, �W :¼ Wyc0 denotes the adjoint spinor, Wy is the complex conjugate
transpose of W, LI½W� denotes the self-interaction Lagrangian, the Greek index l runs from 0 to 1, the Einstein summation
convection has been applied, i is the imaginary unit, m is the rest mass, @l ¼ @

@xl stands for the covariant derivative, and
cl, for l ¼ 0;1, are the gamma matrices or the Dirac matrices, chosen as those in [47,49],
c0 ¼
1 0
0 �1

� �
; c1 ¼

0 1
�1 0

� �
:

In fact, Eq. (2.1) is the equation of motion for the classical spinorial particle with the Lagrangian being a sum of the Dirac
Lagrangian and the self-interaction Lagrangian, i.e.
L½W� ¼ �Wðicl@l �mÞWþ LI½W�: ð2:2Þ
There exist several different NLD models in the literature, where two important models in (1 + 1) dimensions are the scalar
self-interaction of Soler [9]
Ls½W� :¼ �WW ð2:3Þ
and the vector self-interaction of Thirring [60]
Lv½W� :¼ �WclW �WclW; ð2:4Þ
where cl ¼ glmc
m with the Minkowski metric glm ¼ diagð1;�1Þ on spacetime, which implies cl ¼ ð�1Þlcl.

This paper will focus on the NLD Eq. (2.1) with a more general self-interaction [15,61]
LI½W� ¼ s Ls½W�ð Þkþ1 þ v Lv½W�ð Þðkþ1Þ=2 ð2:5Þ
and extendedly propose and compare its numerical methods, where s and v are two real numbers and k is a positive real
number. If the spinor W is scaled by a constant factor as W0 ¼

ffiffiffi
a
p

W with a 2 C, then the scaled self-interaction Lagrangian
will be akþ1LI½W� which shows that the power exponent to a is kþ 1. In such sense, we call that the self-interaction Lagrang-
ian LI has the power exponent kþ 1 [14–16]. Hereafter the quadric and cubic self-interaction will be referred to the case k ¼ 1
and the case k ¼ 2, respectively.

The self-interaction (2.5) implies the so-called homogeneity relation [17,15]
�W
@LI½W�
@ �W

¼ ðkþ 1ÞLI½W�:
Combining it with the definition of the Lagrangian L½W� and (2.1) gives
L½W� ¼ �kLI½W�: ð2:6Þ
–For the NLD Eq. (2.1) with (2.5), one may still verify the following local conservation laws for the current vector Jl and the
energy-momentum tensor Tlm:
@lJl ¼ 0; @lTlm ¼ 0; ð2:7Þ
where
Jl ¼ �WclW; Tlm ¼ i �Wcl@mW� glmL½W�:
For localized solitary waves W ¼ ðw1;w2Þ
T , one may derive a direct corollary of (2.7), i.e. the following global conservation

laws [50].

Proposition 2.1. Assume that limjxj!þ1jwiðx; tÞj ¼ 0 and limjxj!þ1j@xwiðx; tÞj < þ1 hold uniformly for t P 0 and i ¼ 1;2. The
total energy E, the total linear momentum P, and the total charge Q, defined respectively by
EðtÞ :¼
Z þ1

�1
T00dx; PðtÞ :¼

Z þ1

�1
T01dx; QðtÞ :¼

Z þ1

�1
J0dx; ð2:8Þ
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satisfy
d
dt

EðtÞ ¼ 0;
d
dt

PðtÞ ¼ 0;
d
dt

QðtÞ ¼ 0:
The properties (2.6) and (2.7) will be also exploited to find the solitary wave solutions of the (1 + 1)-dimensional NLD Eq.
(2.1) with LI given in (2.5) in the next subsection.
2.2. Standing wave solution

This subsection will derive the standing wave solutions of the (1 + 1)-dimensional NLD Eq. (2.1) with the self-interaction
(2.5) in the spirit of the technique used in [12,13,17,15]. The solution W ¼ ðw1;w2Þ

T of the NLD Eq. (2.1) with LI in (2.5), having
the form
w1ðx; tÞ ¼ e�ixtuðxÞ; w2ðx; tÞ ¼ e�ixtvðxÞ
is wanted, where m > x P 0, and juðxÞj and jvðxÞj are assumed to decay exponentially as jxj ! þ1 or have the finite com-
pact support. For such solution, it is not difficult to verify that both the Lagrangian L½W� and the energy-momentum tensor
Tlm are independent of the time t, because
L½W� � x�wc0wþ i�wc1wx �m�wwþ LI½W�;
T00 � �i�wc1wx þm�ww� LI½W�; T01 � i�wc0wx;

T10 � �x�wc1w; T11 � �i�wc1wx þ L½W�;
ð2:9Þ
where wðxÞ ¼ uðxÞ;vðxÞð ÞT . Using the conservation laws (2.7) further gives
T10 ¼ �x�wc1w ¼ 0; T11 ¼ �i�wc1wx þ L½W� ¼ 0: ð2:10Þ
The first equation implies that u�v is imaginary because
�wc1w ¼ u�vþuv� ¼ 0:
Thus, without loss of generality, we may assume that uðxÞ is real and vðxÞ is imaginary, and they are in the form
wðxÞ ¼
uðxÞ
vðxÞ

� �
¼ RðxÞ

cos hðxÞð Þ
i sin hðxÞð Þ

� �
; ð2:11Þ
where both RðxÞ and hðxÞ are pending real functions, and RðxÞ is assumed to satisfy the inequality QðtÞ �
Rþ1
�1 R2ðxÞdx < þ1.

On the other hand, combining the first equation in (2.9) with the second equation in (2.10) yields
xwyw�m�wwþ LI½W� ¼ 0; ð2:12Þ
which becomes for (2.11)
R2 x�m cosð2hÞð Þ þ R2kþ2 s coskþ1ð2hÞ þ v
� �

¼ 0: ð2:13Þ
Combining (2.12) with (2.6) leads to
kxwyw� km�ww� i�wc1wx ¼ 0;
which reduces to for (2.11)
dh
dx
¼ �k x�m cosð2hÞð Þ: ð2:14Þ
Because
Z h

0

d~h

�kxþ km cosð2~hÞ
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ðm2 �x2Þ
q tanh�1 kðmþxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ðm2 �x2Þ
q tan hð Þ

0
B@

1
CA
for h 2 �0:5 cos�1ðx=mÞ;0:5 cos�1ðx=mÞ
� �

� ð�p=2;p=2Þwhen m > x P 0, the solution of (2.14) may be derived as follows:
hðxÞ ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�x
mþx

r
tanh k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 �x2
p

x
� �� �

ð2:15Þ
for initial data hð0Þ ¼ 0 and k > 0. In fact, under the previous assumption, one may verify hðxÞ 2 ð�p=4;p=4Þ. If coefficients s
and v in (2.5) belong to the set fv P 0; s > �vg for m > x > 0, or fv > 0; s > �vg for m > x ¼ 0, then from Eq. (2.13) one has
non-trivial RðxÞ for the localized solution as follows
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RðxÞ ¼ � m cos 2hðxÞð Þ �x
s coskþ1 2hðxÞð Þ þ v

� �1=2k

: ð2:16Þ
Hereto, the standing wave solution of the NLD Eq. (2.1) with (2.5) has been derived, and will be denoted as follows
Wswðx; tÞ ¼
wsw

1 ðx; tÞ
wsw

2 ðx; tÞ

� �
¼ e�ixtRðxÞ

cos hðxÞð Þ
i sin hðxÞð Þ

� �
; ð2:17Þ
where hðxÞ and RðxÞ are given in Eqs. (2.15) and (2.16), respectively. This solution represents a solitary wave with zero veloc-
ity and contains some special cases in the literature e.g. [47,16].

Remark 2.1. It has been pointed out in [49] that the profile of the charge density J0ðx; tÞ for the standing wave (2.17) under
the scalar self-interaction (i.e. s – 0 and v ¼ 0) with k ¼ 1 can be either one-humped or two-humped, which is also recently
confirmed for any k > 0 by other researchers in [16]. They further pointed out there that the profile can only be one-humped
for any k > 0 in the case of s ¼ 0 and v – 0. For the linear combined self-interaction (2.5) with s – 0 and v – 0, we find that
the profile can also be one-humped (see Figs. 2 and 6 where the charge density is denoted by qQ ðx; tÞ for convenience) or
two-humped (see Fig. 8).
2.3. Solitary wave solution with nonzero velocity

This subsection will derive another solution of the (1 + 1)-dimensional NLD Eq. (2.1) with the self-interaction (2.5) by
using the Lorentz covariance of the NLD equation. Consider a frame F with an observer O and coordinates ðx; tÞ. The observer
O describes a particle by the wavefunction Wðx; tÞ which obeys the NLD Eq. (2.1) with LI given in (2.5), i.e.
ic0 @

@t
þ ic1 @

@x
�m

� �
Wðx; tÞ þ @LI½W�=@ �W

� �
ðx; tÞ ¼ 0: ð2:18Þ
In another inertial frame F0 with an observer O0 and coordinates ðx0; t0Þ given by the Lorentz transformation with a translation
in the x-direction
x0 ¼ c ðx� x0Þ � Vtð Þ; t0 ¼ c t � Vðx� x0Þð Þ; ð2:19Þ
which is called ‘‘boost’’ in the x-direction, where x0 is any given position, V is the relative velocity between frames in the x-
direction, and c ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

p
is the Lorentz factor. According to the relativity principle, the observer O0 describes the same

particle by W0ðx0; t0Þ which should also satisfy
ic0 @

@t0
þ ic1 @

@x0
�m

� �
W0ðx0; t0Þ þ @L0I½W

0�=@ �W0
� �

ðx0; t0Þ ¼ 0: ð2:20Þ
Using some algebraic manipulations, the ‘‘transformation’’ matrix S may be found as follows
S ¼

ffiffiffiffiffiffi
cþ1

2

q
signðVÞ

ffiffiffiffiffiffi
c�1

2

q
signðVÞ

ffiffiffiffiffiffi
c�1

2

q ffiffiffiffiffiffi
cþ1

2

q
0
B@

1
CA; ð2:21Þ
which takes Wðx; tÞ to W0ðx0; t0Þ under the Lorentz transformation (2.19), i.e.
W0ðx0; t0Þ ¼ SWðx; tÞ; ð2:22Þ
where signðxÞ is the sign function which returns 1 if x > 0;0 if x ¼ 0, and �1 if x < 0.
Applying the transformation (2.22) with (2.21) to the standing wave solution (2.17) gives another solution of the NLD Eqs.

(2.1)–(2.5), i.e. the moving wave solution
Wmwðx� x0; tÞ ¼

ffiffiffiffiffiffi
cþ1

2

q
wsw

1 ðx0; t0Þ þ signðVÞ
ffiffiffiffiffiffi
c�1

2

q
wsw

2 ðx0; t0Þ

signðVÞ
ffiffiffiffiffiffi
c�1

2

q
wsw

1 ðx0; t0Þ þ
ffiffiffiffiffiffi
cþ1

2

q
wsw

2 ðx0; t0Þ

0
B@

1
CA: ð2:23Þ
This solution represents a NLD solitary wave with velocity V and will return to the standing wave (2.17) if setting V ¼ 0 and
x0 ¼ 0.

2.4. Time reversibility

This subsection will show that the NLD Eq. (2.1) with LI given in (2.5) remains invariant under the time reversal operation
x0 ¼ x; t0 ¼ �t; W0ðx0; t0Þ ¼ KWðx; tÞ; K ¼ c0C; ð2:24Þ
where C denotes the complex conjugate operation on Wðx; tÞ, i.e. W�ðx; tÞ ¼ CWðx; tÞ, the time-reversal operator K satisfies
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KyK ¼ I; Kc0 ¼ c0K; Kc1 ¼ �c1K ; ð2:25Þ
due to the anticommutation relation fcl; cmg ¼ 2glmI, and I is the unit matrix. From the relations (2.25), it can be easily ver-
ified that
ð �W0W0Þðx0; t0Þ ¼ ð �WWÞðx; tÞ;
ð �W0c0W0Þðx0; t0Þ ¼ ð �Wc0WÞðx; tÞ;
ð �W0c1W0Þðx0; t0Þ ¼ �ð �Wc1WÞðx; tÞ;

ð2:26Þ
so that the self-interaction Lagrangian in (2.5) satisfies
L0I½W
0�ðx0; t0Þ ¼ LI½W�ðx; tÞ; ð2:27Þ
under the time reversal transformation (2.24).
Applying the time-reversal operator K to the NLD Eq. (2.18) and using the definition (2.24) as well as the relations (2.25)

and (2.27) lead to an equation which has the same form as shown in (2.20). That is, if a spinor Wðx; tÞ satisfies the NLD Eq.
(2.18), then the transformed spinor W0ðx0; t0Þ by the time reversal operation (2.24) will also satisfy the same NLD equation, i.e.
the NLD Eq. (2.18) is time reversible under the operation (2.24).

3. Numerical methods

As we mentioned in Section 1, some numerical methods have been well developed for the NLD equation with a scalar or
vector self-interaction. This section will extendedly present and compare several numerical methods for solving the (1 + 1)-
dimensional NLD Eq. (3.1) with the general scalar and vector self-interaction (2.5). Their numerical analyzes will be pre-
sented in Section 4.

For the sake of convenience, divide the bounded spatial domain X � R into a uniform partition fxjjxj ¼ jh 2 X; j 2 Zgwith
a constant stepsize h > 0 and give a grid in time ftn ¼ ns;n ¼ 0;1; . . .g with a time stepsize s > 0, and recast the NLD Eq.
(2.18) into
@W
@t
þ c0c1 @W

@x
þ imc0W� ifsc

0W� ifv
�WclWc0clW ¼ 0; ð3:1Þ
where
fs :¼ sðkþ 1Þwk
s ; ws :¼ �WW; f v :¼ vðkþ 1Þwðk�1Þ=2

v ; wv :¼ �WcmW �WcmW;
all of which are real functions, and the dependence of Wðx; tÞ on ðx; tÞ is implied.

3.1. Several finite difference schemes

Use Wn
j to denote approximation of Wðxj; tnÞ and define the forward, backward and centered difference operators in space

and time by:
d�t ¼ �ðE
�1
t � IÞ=s; d0

t ¼ ðEt � E�1
t Þ=2s;

d�x ¼ �ðE
�1
x � IÞ=h; d0

x ¼ ðEx � E�1
x Þ=2h;

ð3:2Þ
where I is the identity operator, and Et and Ex are the translation operators in time and space, respectively, defined by
EtW
n
j :¼ Wnþ1

j ; ExW
n
j :¼ Wn

jþ1;
whose inverses exist and are defined by
E�1
t Wn

j :¼ Wn�1
j ; E�1

x Wn
j :¼ Wn

j�1:
Besides, several symbols are also introduced for arithmetic averaging operators:
‘�t Wn
j :¼ 1

2
ðWn�1

j þWn
j Þ; ‘0

t W
n
j :¼ 1

2
ðWnþ1

j þWn�1
j Þ;

‘�x Wn
j :¼ 1

2
ðWn

j�1 þWn
j Þ; ‘0

xW
n
j :¼ 1

2
ðWn

jþ1 þWn
j�1Þ
and for an extrapolation operator:
‘e
t W

n
j ¼

3
2

Wn
j �

1
2

Wn�1
j :
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� Crank–Nicolson schemes The CN scheme and its linearized version have been studied in [48,53,54] for the NLD equation
with the quadric scalar self-interaction. For the system (3.1), the extension of the CN scheme in [54,62] may be written as
dþt Wn
j þ c0c1‘þt d0

xW
n
j þ imc0‘þt Wn

j � i
dþt ðFsÞnj
dþt ðwsÞnj

c0‘þt Wn
j � i

dþt ðFvÞnj
dþt ðwvÞnj

‘þt ð �WclWÞnj c0cl‘þt Wn
j ¼ 0; ð3:3Þ
by approximating (3.1) at point ðxj; tnþ1
2
Þ with compact central difference quotient in place of the partial derivative, where
FIðwIÞ :¼
Z wI

0
fIðxÞdx; I ¼ s; v:
The above CN scheme (named as CN hereafter) is fully implicit and forms a nonlinear algebraic system. In practice, the lin-
earization technique is often used to overcome difficulty in directly solving such nonlinear algebraic system. Two lineariza-
tion techniques [62] for numerical methods of the nonlinear Schrödinger equation are borrowed here. The first linearized CN
scheme we consider is using wholly the extrapolation technique to the nonlinear self-interaction terms in (3.1)
dþt Wn
j þ c0c1‘þt d0

xW
n
j þ imc0‘þt Wn

j � i‘
e
t fsc

0Wþ fv
�WclWc0clW

� �n

j
¼ 0; ð3:4Þ
which will be called by LCN1. The second linearized CN scheme, denoted by LCN2, is
dþt Wn
j þ c0c1‘þt d0

xW
n
j þ imc0‘þt Wn

j � i‘
e
t ðfsÞnj c0‘þt Wn

j � i‘
e
t ðfv

�WclWÞnj c0cl‘þt Wn
j ¼ 0; ð3:5Þ
by partially applying the extrapolation technique to the nonlinear self-interaction terms. It is worth noting that the above
linearized CN schemes are not linearized version of the CN scheme (3.3). The LCN2 scheme may conserve the charge and be-
haves better than the LCN1 scheme (vide post).
Remark 3.1. For the (1 + 1)-dimensional NLD Eq. (2.1) with the quadric scalar self-interaction Lagrangian (2.3), the CN
scheme (named by CN0) proposed in [48] is
dþt Wn
j þ c0c1‘þt d0

xW
n
j þ imc0‘þt Wn

j � 2isð‘þt �Wn
j ‘
þ
t Wn

j Þc0‘þt Wn
j ¼ 0; ð3:6Þ
and its linearized version (called by LCN0) is given in [53] as follows
dþt Wn
j þ c0c1‘þt d0

xW
n
j þ imc0‘þt Wn

j � 2is ð �WWÞnj � sReð �Wn
j c

0c1d0
xW

n
j Þ

� �
c0‘þt Wn

j ¼ 0: ð3:7Þ
We will show in Section 4 that the CN, CN0 and LCN0 schemes conserve the charge and the CN scheme further conserves the
energy.

� Odd–even hopscotch scheme. The odd–even hopscotch scheme is a numerical integration technique for time-dependent
partial differential equations, see [63]. Its key point is that the forward Euler-central difference scheme is used for the odd
grid points while at the even points the backward Euler-central difference scheme is recovered. Thus the odd–even hop-
scotch scheme may be explicitly implemented. Such scheme applied to the system (3.1) becomes
dþt Wn
j þ c0c1d0

xW
n
j þ imc0Wn

j � i‘
0
x fsc

0Wþ fv
�WclWc0clW

� �n

j
¼ 0; nþ j is odd; ð3:8Þ

d�t Wnþ1
j þ c0c1d0

xW
nþ1
j þ imc0Wnþ1

j � i‘0
x fsc

0Wþ fv
�WclWc0clW

� �nþ1

j
¼ 0; nþ j is even: ð3:9Þ
In the following we will call it by HS.
� Leapfrog scheme. The leapfrog scheme looks quite similar to the forward scheme, see e.g. (3.8), except it uses the values

from the previous time-step instead of the current one. For the system (3.1), it is
d0
t W

n
j þ c0c1d0

xW
n
j þ imc0Wn

j � i fsc
0Wþ fv

�WclWc0clW
� �n

j
¼ 0; ð3:10Þ
which is a three-level explicit scheme in time with a central difference in space and will be named by LF.
� Semi-implicit scheme. Another three-level scheme considered here for the system (3.1) is
d0
t W

n
j þ c0c1‘0

t d
0
xW

n
j þ imc0‘0

t W
n
j � i fsc

0Wþ fv
�WclWc0clW

� �n

j
¼ 0; ð3:11Þ
which is obtained by approximating explicitly the nonlinear terms but implicitly the linear terms and will be called by SI. It
is worth noting that such semi-implicit scheme has been studied for the NLD equation with the quadric scalar self-interac-
tion in [46].
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3.2. Exponential operator splitting scheme

This subsection goes into discussing exponential operator splitting scheme for the NLD Eq. (3.1). For convenience, we re-
write the system (3.1) as follows
Wt ¼ LþN s þN vð ÞW; ð3:12Þ
where the linear operator L and both nonlinear operators N s and N v are defined by
LW :¼ �c0c1Wx � imc0W; N sW :¼ ifsc
0W; N vW :¼ ifv

�WclWc0clW:
Then the problem (3.12) may be decomposed into three subproblems as follows
Wt ¼ LW; ð3:13Þ
Wt ¼ N sW; ð3:14Þ
Wt ¼ N vW: ð3:15Þ
Due to the local conservation laws which are discussed in Section 3.2.2, solutions of the nonlinear subproblem (3.14) or
(3.15) may be expressed as an exponential of the operator N s or N v acting on ‘‘initial data’’. Thus we may introduce the
exponential operator splitting scheme for the the NLD Eq. (3.12) or (3.1), imitating that for the linear partial differential
equations, see e.g. [64,65] and references therein. Based on the exact or approximate solvers of those three subproblems,
a more general K-stage Nth order exponential operator splitting method [66,67] for the system (3.12) can be cast into prod-
uct of finitely many exponentials as follows
Wnþ1
j ¼

YK

i¼1

expðsiAð1Þi Þ expðsiAð2Þi Þ expðsiAð3Þi Þ
� �

Wn
j ; ð3:16Þ
where si denotes the time stepsize used within the i-th stage and satisfies
PK

i¼1si ¼ s, and fAð1Þi ;Að2Þi ;Að3Þi g is any permutation
of fL;N s;N vg. Hereafter we call the operator splitting scheme (3.16) by OS(N). Although one single product of finitely many
exponentials exponentials (3.16) is employed here, it should be pointed out that the linear combination of such finite prod-
ucts can also be used to construct exponential operator splitting schemes as shown in [64].

A simple example is the well-known second-order accurate operator splitting method of Strang (named by OS(2)) with
K ¼ 2; s1 ¼ s2 ¼
1
2
s; Að1Þ1 ¼ A

ð3Þ
2 ; Að3Þ1 ¼ A

ð1Þ
2 ; Að2Þ1 ¼ A

ð2Þ
2 : ð3:17Þ
Another example is the fourth-order accurate operator splitting method [66] with
K ¼ 8; Að1Þq ¼ A
ð3Þ
p ; Að3Þq ¼ A

ð1Þ
p ; Að2Þq ¼ A

ð2Þ
p ; q ¼ 1;4;6;7; p ¼ 2;3;5;8;

s1 ¼ s8 ¼
s

5�
ffiffiffiffiffiffi
13
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ

ffiffiffiffiffiffi
13
p
Þ

q ; s2 ¼ s7 ¼
7þ

ffiffiffiffiffiffi
13
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ

ffiffiffiffiffiffi
13
p
Þ

q
24

s;

s3 ¼ s6 ¼
s2

1

s2 � s1
; s4 ¼ s5 ¼

s2ðs1 � s2Þ
3s1 � 2s2

;

which is denoted by OS(4) in the following.

Remark 3.2. Another operator splitting scheme is studied in [52] for the NLD Eq. (2.1) but only with the quadric scalar self-
interaction Lagrangian, and the second-order accurate Strang method (3.17) is applied there. For the system (3.1), it is based
on the following operator decomposition
Wt ¼ L̂ þ N̂ s þ N̂ v

� �
W; ð3:18Þ
with
L̂W :¼ �c0c1Wx; N̂ sW :¼ �i m� fsð Þc0W; N̂ vW :¼ ifv
�WclWc0clW:
Remark 3.3. For the linear parabolic equation which is an irreversible system, a more general exponential operator splitting
scheme and its accuracy as well as stability are discussed in [64], based on linear combinations of products of finitely many
exponentials. It is shown that for such irreversible system, negative weights or negative time stepsizes si may lead to insta-
bility; and the highest order of the stable exponential operator splitting approximation (only with positive weights and posi-
tive sub-stepsizes in time) is two. However, for time-reversible systems, such as the Hamilton system, the Schrödinger
equations and the NLD Eq. (2.1) with LI given in (2.5), it is immaterial whether or not the weights or time stepsizes si are
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positive [65], where a general framework was presented for understanding the structure of the exponential operator split-
ting schemes and both specific error terms and order conditions were analytically solved.
3.2.1. Linear subproblem
We are now solving the linear subproblem (3.13). Denote its ‘‘initial data’’ by Wð0Þj ¼ ðw1Þ

ð0Þ
j ; ðw2Þ

ð0Þ
j

� �T
at the ith stage in

(3.16).
If the spinor W is periodic (e.g. 2p-periodic) with respect to x, the Fourier spectral method is employed to solve (3.13) and

gives
Wð1Þj ¼ F
�1 exp �isiðjc0c1 þmc0Þ

� �
F Wð0Þj

� �� �
: ð3:19Þ
Here F and F�1 denote the discrete Fourier transform operator and its inverse, respectively, defined by
FðWÞð Þj :¼
XJ�1

j¼0

Wj exp �i2pj
j
J

� �
j ¼ 0; . . . ; J � 1;

F�1ðUÞ
� �

j :¼ 1
J

XJ�1

j¼0

Uj exp i2pj
j
J

� �
j ¼ 0; . . . ; J � 1;
where J is the grid point number, and the matrix exponential in (3.19) can be easily evaluated as follows
exp �isiðjc0c1 þmc0Þ
� �

¼
cosðfsiÞ � im

f sinðfsiÞ �i j
f sinðfsiÞ

�i j
f sinðfsiÞ cosðfsiÞ þ im

f sinðfsiÞ

 !
; ð3:20Þ
with f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þm2
p

.
When the spinor W is not periodic with respect to x, the fifth-order accurate finite difference WENO scheme will be used

to solve the linear subproblem (3.13). The readers are referred to [68] for details. In this case, the linear subproblem (3.13)
can also be solved by using the characteristics method.

3.2.2. Nonlinear subproblems
The nonlinear subproblems (3.14) and (3.15) are left to be solved now. Their ‘‘initial data’’ is still denoted by

Wð0Þj ¼ ðw1Þ
ð0Þ
j ; ðw2Þ

ð0Þ
j

� �T
at the i-th stage in (3.16), and define
tðiÞn ¼ tn þ
Xi�1

p¼1

sp; i ¼ 1;2; . . . ;K:
For nonlinear subproblem (3.14), it is not difficulty to verify that @tws ¼ 0 so that
@tfs ¼ 0: ð3:21Þ
Using this local conservation law gives the solution at t ¼ tðiþ1Þ
n of (3.14) with the ‘‘initial data’’ Wð0Þj as follows
Wð1Þj ¼ exp i

Z tðiþ1Þ
n

tðiÞn

ðfsÞjc0dt

 !
Wð0Þj ¼ exp iðfsÞð0Þj c0si

� �
Wð0Þj ¼ diag exp iðfsÞð0Þj si

� �
; exp �iðfsÞð0Þj si

� �n o
Wð0Þj : ð3:22Þ
For the nonlinear subproblem (3.15), one may still similarly derive the following local conservation laws
@tð �Wc0WÞ ¼ 0; @tð �Wc1WÞ ¼ 0; @tfv ¼ 0: ð3:23Þ
by direct algebraic manipulations if using the fact that �Wc0W, �Wc1W and fv are all real. Consequently, integrating (3.15) from
tðiÞn to tðiþ1Þ

n gives its solution as follows
Wð1Þj ¼ exp iðfv
�WclWÞð0Þj c0clsi

� �
Wð0Þj ¼ expðiasiÞ

cosðbsiÞ i sinðbsiÞ
i sinðbsiÞ cosðbsiÞ

� �
Wð0Þj ; ð3:24Þ
where a ¼ ðfv
�Wc0WÞ

ð0Þ
j and b ¼ ðfv

�Wc1WÞ
ð0Þ
j .

Remark 3.4. It is because the local conservation laws (3.21) and (3.23) are fully exploited here that we can solve exactly the
nonlinear subproblems (3.14) and (3.15) which imply the more higher accuracy of the OS method than that of other
methods.

In summary, we have.

� The CN (3.3) and CN0 (3.6) schemes are nonlinear and implicit, and could be solved by iterative algorithms such as Picard
iteration and Newton method.
� The LCN0 (3.7), LCN1 (3.4), LCN2 (3.5) and SI (3.11) schemes are linear and implicit.
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� The HS (3.8), (3.9), LF (3.10), and OS(N) (3.16) schemes are explicit.

4. Numerical analysis

Before investigating the performance of the numerical methods proposed in Section 3, this section will go first into
numerical analysis of them, including the accuracy in the sense of the truncation error, time reversibility and the conserva-
tion of the charge or energy.

Proposition 4.1. If Wðx; tÞ 2 C1ðR	 ½0;þ1ÞÞ is periodic, then the CN, CN0, LCN0, LCN1, LCN2, HS, LF and SI schemes are of
order Oðs2 þ h2Þ, and the OS(N) scheme is of order OðsN þ hmÞ for any arbitrary large m > 0.
Proof. The proof is very straightforward by using directly the Taylor series expansion for the finite difference schemes and
the Fourier spectral analysis for the OS(N) scheme, and thus is skipped here for saving space. h
Proposition 4.2. The CN, CN0, HS, LF, SI, and OS(N) schemes are time reversible, but the LCN0, LCN1, LCN2 schemes are not.
Proof. We give the proof for the CN and LCN1 schemes as an example and the others can be proved in a similar way.
According to the transformation (2.24), the relation between the transformed finite difference solution and the original

one should be ðW0Þn
0

j ¼ KWn
j ¼ ðKWÞnj with n0 ¼ �n. Consequently, we have
Kdþt Wn
j ¼ K

Wnþ1
j
�Wn

j

s ¼ ðW
0Þn
0�1

j �ðW0 Þn
0

j

s ¼ �dþt ðW
0Þn
0�1

j ;

K‘þt Wn
j ¼ K

Wnþ1
j
þWn

j

2 ¼ ðW
0 Þn
0�1

j þðW0Þn
0

j

2 ¼ ‘þt ðW
0Þn
0�1

j

ð4:1Þ
and then using the relations in (2.26) yields
‘þt ð �Wc0WÞ
n
j ¼ ‘

þ
t ð �W0c0W

0Þn
0�1

j ;

‘þt ð �Wc1WÞ
n
j ¼ �‘

þ
t ð �W0c1W

0Þn
0�1

j ;

dþt ðwIÞnj ¼ �dþt ðw0IÞ
n0�1
j ;

dþt ðFIÞnj ¼ �dþt ðF
0
IÞ

n0�1
j

ð4:2Þ
for I 2 fs; vg. Applying the time-reversal operator K to the CN scheme (3.3) and using the commutation relation (2.25) and
Eqs. (4.1) and (4.2) lead to
dþt ðW
0Þn
0�1

j þ c0c1‘þt d0
xðW

0Þn
0�1

j þ imc0‘þt ðW
0Þn
0�1

j � i
dþt ðF

0
sÞ

n0�1
j

dþt ðw0sÞ
n0�1
j

c0‘þt ðW
0Þn
0�1

j � i
dþt ðF

0
vÞ

n0�1
j

dþt ðw0vÞ
n0�1
j

‘þt ð �W0clW0Þn
0�1

j c0cl‘þt ðW
0Þn
0�1

j ¼ 0;
which is exactly the CN scheme (3.3) applied to ðW0Þn
0�1

j . That is, the CN scheme is invariant under the time-reversal trans-
formation, namely, it is time reversible.

The fact that the LCN1 scheme (3.4) is not time reversible can be observed directly if noting
�Ki‘e
t fsc

0Wþ fv
�WclWc0clW

� �n

j
¼ i

3
2

f 0sc
0W0 þ f 0v �W0clW0c0clW0

� �n0

j
� 1

2
f 0sc

0W0 þ f 0v �W0clW0c0clW0
� �n0þ1

j

	 


– i‘e
t f 0sc

0W0 þ f 0v �W0clW0c0clW0
� �n0�1

j
: �
Next, we will discuss the conservation of the discrete energy, linear momentum and charge defined below for the numer-
ical methods given in Section 3. After performing the integration in the computational domain X ¼ ½xL; xR� and then approx-
imating the first derivative operator @x with the centered difference operator d0

x as well as the integral operator
R xR

xL
dx with

the summation operator h
PJ

j¼1 in Eq. (2.8), we have the discrete energy, linear momentum and charge at the nth time step
En
h ¼ h

XJ

j¼1

Imð �Wc1d0
xWÞ þmð �WWÞ � Fs � 1

2 Fv
� �n

j ;

Pn
h ¼ h

XJ

j¼1

ImðWyd0
xWÞ

n
j ;

Qn
h ¼ kW

nk2 :¼ hWn;Wni ¼ h
XJ

j¼1

ðWn
j Þ
yWn

j ;
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where the inner product h
; 
i is defined as
hu;vi ¼ h
XJ

j¼1

ðujÞyvj
for two complex-valued vectors u and v, and J is the grid point number. Here the values of W at xj with 1 6 j 6 J are un-
knowns and those at x0 and xJþ1 are determined by appropriate boundary conditions.

We first present the following lemma which can be verified through direct algebraic manipulations and will be used in
discussing the conservation of the discrete charge, energy and linear momentum.

Lemma 4.3. Given that Un
j is a complex-valued vector mesh function with two components evaluated at the mesh fxj; tng

(n ¼ 0;1; 
 
 
 ;N; j ¼ 0;1; 
 
 
 ; J þ 1) and a matrix C 2 fI2; c0; c1;ic0c1g, we have the following identities

(a) 2Reh‘þt Un; dþt Uni ¼ dþt kUnk2;
(b) 2Rehc0c1d0

xU
n;Uni ¼ 1

2 ð �Un
Jþ1c

1Un
J þ �Un

J c
1Un

Jþ1Þ � 1
2 ð �Un

1c
1Un

0 þ �Un
0c

1Un
1Þ;

(c) Im ‘þt
�Un

j C‘
þ
t Un

j

� �
¼ 0;

(d) 2Reðdþt �Un
j C‘

þ
t Un

j Þ ¼ dþt ð �Un
j CUn

j Þ;
(e)

2iImhc0c1ð‘þt d0
x ÞUn; dþt Uni ¼ �dþt h

PJ
j¼1ð �Un

j c
1d0

xU
n
j Þ

� �
þ 1

2 ð‘
þ
t

�Un
Jþ1c

1dþt Un
J þ ‘

þ
t

�Un
J c

1dþt Un
Jþ1Þ � ð‘

þ
t

�Un
1c

1dþt Un
0 þ ‘

þ
t

�Un
0c

1dþt Un
1Þ

� �
:

Proof. It can be checked that the following Leibniz rules
da
t ðuyvÞ

n
j ¼ da

t ðuyÞ
n
j ‘

a
tv

n
j þ ‘

a
t ðuyÞ

n
j d

a
tv

n
j

holds for any two spinors uðx; tÞ;vðx; tÞ and a 2 fþ;�;0g, and then we have
2Reh‘þt Un; dþt Uni ¼ hdþt Un; ‘þt Uni þ h‘þt Un; dþt Uni ¼ h
XJ

j¼1

dþt ðUyÞ
n
j ‘
þ
t Un

j þ h
XJ

j¼1

‘þt ðUyÞ
n
j d
þ
t Un

j ¼ h
XJ

j¼1

dþt ðUyUÞ
n
j ¼ dþt kUnk2

:

Thus the identity (a) holds.
Because the operator �d0

x is the adjoint operator of d0
x and c0c1 is an Hermite matrix, we get the identity (b) directly by

rearranging the summation. The identity (c) can be easily verified if using the fact ðc0CÞy ¼ c0C. The proof of (d) (resp. ðeÞ) is
similar with that of (b) (resp. ðcÞ). h
Proposition 4.4. The CN, CN0, LCN0, LCN2, and OS(N) schemes conserve the discrete charge, but only the CN scheme conserves
the discrete energy.
Proof. We begin with the discrete conservation law of charge for the CN scheme (3.3). Performing the inner product of ‘þt Wn

and the CN scheme (3.3) leads to
h‘þt Wn; dþt Wni þ h‘þt Wn; c0c1d0
x‘
þ
t Wni þ h‘þt Wn;imc0‘þt Wn � i dþt ðFsÞn

dþt ðwsÞn
c0‘þt Wni þ h‘þt Wn;�i dþt ðFvÞn

dþt ðwvÞn
‘þt ð �WclWÞnc0cl‘þt Wni ¼ 0

ð4:3Þ
and then the conservation law of the discrete charge can be easily verified by taking directly the real part as follows
dþt Qn
h ¼

1
2
ð‘þt �Wn

1c
1‘þt Wn

0 þ ‘
þ
t

�Wn
0c

1‘þt Wn
1Þ �

1
2
ð‘þt �Wn

Jþ1c
1‘þt Wn

J þ ‘
þ
t

�Wn
J c

1‘þt Wn
Jþ1Þ; ð4:4Þ
where Lemma 4.3 (a) is applied to the first term in Eq. (4.3), (b), to the second term and (c) to the third and fourth terms.
Similarly, it can be verified that (4.4) holds for the CN0 (3.6), LCN0 (3.7) and LCN2 (3.5) schemes.

Performing the inner product of the CN scheme (3.3) and dþt Wn, keeping the imaginary part and applying Lemma 4.3 give
directly the conservation of the discrete energy
dþt En
h ¼

1
2

Im ð‘þt �Wn
Jþ1c

1dþt Wn
J þ ‘

þ
t

�Wn
J c

1dþt Wn
Jþ1Þ � ð‘

þ
t

�Wn
1c

1dþt Wn
0 þ ‘

þ
t

�Wn
0c

1dþt Wn
1Þ

� �
:

For the Fourier spectral method (3.19), using the fact that expð�isiðjc0c1 þmc0ÞÞ in (3.20) is a unitary matrix yields
exp �isiðjc0c1 þmc0Þ
� �

Wð1Þj

��� ���2
¼ Wð0Þj

��� ���2
and then
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Wð1Þ
�� ��2 ¼ F�1 exp �isiðjc0c1 þmc0Þ

� �
F Wð0Þ
� �� 
�� ��2 ¼ exp �isiðjc0c1 þmc0Þ

� �
F Wð0Þ
� ��� ��2 ¼ F Wð0Þ

� ��� ��2 ¼ Wð0Þ
�� ��2

;

where Parseval’s identity is applied twice. It can be readily verified that the matrix exponents in Eqs. (3.22) and (3.24) are
unitary, thus kWð1Þk2 ¼ kWð0Þk2 holds both for Eqs. (3.22) and (3.24), i.e. Q h should be conserved for solutions of the nonlinear
subproblems. Therefore, the OS(N) scheme satisfies the conservation law of charge. h
Remark 4.1. It will be verified by numerical results in Section 5 that the LCN1, HS, LF and SI schemes do not conserve the
discrete charge or energy, and none of the numerical methods presented in Section 3 conserves the discrete linear
momentum.
5. Numerical results

This section will conduct numerical simulations to compare the performance of numerical schemes proposed in Section 3
and then utilize the OS(4) scheme to investigate the interaction dynamics for the NLD solitary waves (2.23) under the scalar
and vector self-interaction. For those localized NLD solitary waves, the periodic boundary condition for the OS(N) scheme
and the non-reflection boundary condition for other schemes could be adopted at the boundaries of the computational do-
main if a relatively large computational domain has been taken in our numerical experiments.

All calculations are performed on a Lenovo desktop computer with Intel Core i5 650 CPU and 4 GB RAM using double pre-
cision in the 3.0.0–24-generic x86_64 Linux operation system and the compiler is gcc 4.6.1. The computational domain X will be
taken as ½�50;50� in Examples 5.1–5.5 and ½�100;100� in Example 5.6. and the particle mass m in Eq. (2.18) is chosen to be 1.

Example 5.1. The first example is devoted to comparing the numerical performance of all the numerical methods in
Section 3 in terms of the accuracy, the conservativeness, the efficiency and the error growth. A one-humped solitary wave
with the velocity V ¼ �0:2 is simulated here under the quadric scalar self-interaction (i.e. v ¼ 0 and k ¼ 1), traveling from
right to left with the parameters in (2.23): x0 ¼ 5; s ¼ 0:5, and x ¼ 0:75. The PN-RKDG method [50] is also included here for
comparison, which is assembled with a fourth-order accurate Runge–Kutta time discretization in time and the Legendre
polynomials of degree at most N as local basis functions in the spatial Galerkin approximation.

Tables 1 and 2 summarize the numerical results at the final time t ¼ 50, where err2 and err1 are respectively the l2 and l1

errors at the final time, VQ ;VE;VP measure respectively the variation of charge, energy and linear momentum at the final time
relative to the initial quantities, and the CPU time of calculations with the same mesh size is recorded for comparing the efficiency.
It can be observed clearly there that: (1) while the CN, CN0, LCN0, LCN1, LCN2, HS, LF, SI and OS(2) schemes are of the second-
order accuracy, the OS(4), P3-RKDG and P4-RKDG methods exhibit at least the fourth-order accuracy; (2) The CN, CN0, LCN0,
LCN2, OS(2) and OS(4) schemes conserve the discrete charge and only the CN scheme conserves the discrete energy, but none
conserves the discrete linear momentum; (3) The OS(4) scheme could also keep very accurately the discrete energy and linear
momentum with relatively fine meshes. All above numerical results are consistent with the theoretical results given in Section 4.
Among the numerical methods of the second order accuracy, it is also found that theOS(2) scheme runs fastest (8:2 s for the mesh
s ¼ 0:005 and h ¼ 0:20) if requiring to attain almost the same accuracy. Similarly, theOS(4) scheme runs much more faster than
both P3-RKDG and P4-RKDG methods, and the ratio of the CPU time used by the OS(4) scheme over that used by the P3-RKDG
method is around 3:05%, and reduces to around 2:26% over that used by the P4-RKDG method.

Fig. 1 plots the l1 error history in the finest mesh used in Tables 1 and 2. According to the curves shown there, it can be
seen there that the l1 error of all the schemes increases almost linearly with the time. However, the slopes, obtained by the
linear fitting, are different. The smaller the slope is, the longer time the scheme could simulate to. The SI scheme has the
largest slope 1:412	 10�05 while the OS(2) scheme has the smallest one 2:334	 10�07 among all the second-order accurate
methods. Further, the slopes of the curves of l1 errors for the OS(4), P3-RKDG and P4-RKDG schemes are almost the same
value of 3:199	 10�13 which is much more smaller than those of the second-order accurate schemes.
Remark 5.1. Both the theoretical and numerical comparison of the OS(2) scheme with the CN0 and LCN0 schemes show that
the former is better, especially in terms of efficiency and error growth. Therefore in some sense this is an answer to the debate
stimulated in [53,52] over twenty years ago on which one is most efficient among the OS(2), CN0 and LCN0 schemes.
Example 5.2. The P3-RKDG method has been successfully applied before into investigating the interaction for the NLD solitary
waves under the quadric scalar self-interaction in [49–51], but the numerical comparison shown in Example 5.1 tells us that the
proposed OS(4) scheme should be preferred now. In this example, we further conduct numerical comparison among the
OS(4), P3-RKDG and P4-RKDG methods in simulating one-humped and two-humped solitary waves. Two typical profiles of
the charge density for the NLD solitary wave displayed in Fig. 2 are considered, one denoted by Case 1 has a two-humped profile
under the quadric scalar self-interaction, and the other denoted by Case 2 has a one-humped profile under the cubic scalar and
vector self-interaction. These two solitary waves are located initially at x0 ¼ 5, travel from right to left with the velocity
V ¼ �0:2 and stop at the final time t ¼ 50. For convenience, we use qQ ðx; tÞ � J0 to represent the charge density.



Table 2
Example 5.1. Part II: Numerical comparison of the accuracy, the conservativeness and the efficiency at t ¼ 50. The CPU time measured in seconds is listed for the
finest mesh.

s h VQ VE VP err2 Order err1 Order Time(s)

OS(2) 0.04 0.78 1.04E�13 2.33E�07 3.97E�05 2.03E�03 9.96E�04
0.02 0.39 1.33E�13 1.45E�08 2.55E�13 2.53E�04 3.01 1.90E�04 2.39
0.01 0.39 3.58E�13 9.04E�10 6.08E�13 6.33E�05 2.00 4.75E�05 2.00
0.005 0.20 6.15E�13 5.60E�11 7.13E�13 1.58E�05 2.00 1.21E�05 1.97 8.2

OS(4) 0.04 0.78 7.40E�13 5.78E�13 4.12E�05 1.71E�03 4.27E�04
0.02 0.39 1.46E�12 1.25E�12 2.17E�12 7.92E�08 14.40 3.32E�08 13.65
0.01 0.20 1.88E�12 1.60E�12 2.71E�12 4.28E�10 7.53 3.28E�10 6.66
0.005 0.10 7.00E�13 6.55E�13 2.44E�12 1.93E�11 4.47 1.44E�11 4.51 16.8

P3�RKDG 0.04 0.78 1.03E�05 5.47E�07 2.61E�06 1.46E�04 1.44E�04

0.02 0.39 8.60E�08 5.96E�07 6.31E�07 6.59E�06 4.47 8.85E�06 4.03
0.01 0.20 6.98E�10 4.32E�08 4.69E�08 4.10E�07 4.01 5.62E�07 3.98
0.005 0.10 7.88E�12 2.75E�09 3.00E�09 2.56E�08 4.00 3.69E�08 3.93 551.6

P4�RKDG 0.04 0.78 1.00E�07 2.13E�07 1.10E�07 8.02E�06 1.04E�05

0.02 0.39 8.53E�10 4.51E�09 3.44E�09 2.58E�07 4.96 3.36E�07 4.96
0.01 0.20 2.28E�11 6.41E�11 5.22E�11 8.46E�09 4.93 1.16E�08 4.86
0.005 0.10 2.58E�12 9.56E�11 2.16E�10 3.09E�10 4.78 2.39E�10 5.60 744.8

Table 1
Example 5.1. Part I: Numerical comparison of the accuracy, the conservativeness and the efficiency at t ¼ 50 with the time stepsize being set to s ¼ 1

2 h. The CPU
time in seconds is recorded for the finest mesh.

h VQ VE VP err2 Order err1 Order Time(s)

CN 0.08 1.38E�15 1.09E�15 2.65E�06 2.74E�02 2.61E�02
0.04 4.66E�15 1.37E�15 1.65E�07 6.84E�03 2.00 6.50E�03 2.00
0.02 4.78E�15 1.37E�15 1.03E�08 1.71E�03 2.00 1.63E�03 2.00
0.01 3.05E�14 2.05E�15 6.42E�10 4.27E�04 2.00 4.06E�04 2.00 367.1

CN0 0.08 7.05E�15 3.24E�08 2.37E�06 2.31E�02 2.21E�02
0.04 1.01E�15 2.02E�09 1.47E�07 5.76E�03 2.00 5.51E�03 2.00
0.02 5.54E�15 1.26E�10 9.17E�09 1.44E�03 2.00 1.38E�03 2.00
0.01 2.88E�14 7.88E�12 5.72E�10 3.59E�04 2.00 3.44E�04 2.00 345.3

LCN0 0.08 2.14E�15 1.83E�06 4.31E�05 2.75E�02 2.62E�02
0.04 1.26E�16 2.29E�07 5.55E�06 6.87E�03 2.00 6.53E�03 2.00
0.02 8.81E�15 2.86E�08 7.04E�07 1.72E�03 2.00 1.63E�03 2.00
0.01 3.11E�14 3.58E�09 8.87E�08 4.29E�04 2.00 4.08E�04 2.00 81.8

LCN1 0.08 2.22E�04 1.92E�04 3.73E�04 3.53E�02 3.34E�02
0.04 2.78E�05 2.40E�05 4.65E�05 9.06E�03 1.96 8.56E�03 1.97
0.02 3.47E�06 3.01E�06 5.80E�06 2.30E�03 1.98 2.17E�03 1.98
0.01 4.34E�07 3.76E�07 7.25E�07 5.78E�04 1.99 5.45E�04 1.99 118.7

LCN2 0.08 2.77E�15 1.64E�07 7.01E�06 2.77E�02 2.64E�02
0.04 7.55E�16 1.98E�08 6.77E�07 6.92E�03 2.00 6.58E�03 2.00
0.02 7.55E�16 2.44E�09 7.24E�08 1.73E�03 2.00 1.64E�03 2.00
0.01 2.91E�14 3.03E�10 8.29E�09 4.32E�04 2.00 4.11E�04 2.00 118.4

HS 0.08 1.62E�06 1.55E�06 4.33E�06 2.00E�02 1.55E�02
0.04 1.01E�07 9.65E�08 2.70E�07 5.00E�03 2.00 3.88E�03 2.00
0.02 6.30E�09 6.03E�09 1.68E�08 1.25E�03 2.00 9.71E�04 2.00
0.01 3.94E�10 3.77E�10 1.05E�09 3.13E�04 2.00 2.43E�04 2.00 14.8

LF 0.08 5.88E�05 4.73E�05 8.68E�06 1.41E�02 1.35E�02
0.04 5.51E�06 4.43E�06 6.59E�07 3.51E�03 2.01 3.36E�03 2.01
0.02 6.24E�07 5.01E�07 6.91E�08 8.74E�04 2.00 8.36E�04 2.00
0.01 7.54E�08 6.05E�08 8.19E�09 2.18E�04 2.00 2.09E�04 2.00 8.9

SI 0.08 3.79E�08 1.15E�07 3.94E�06 3.59E�02 4.76E�02
0.04 3.68E�09 8.36E�09 2.40E�07 8.97E�03 2.00 1.19E�02 2.00
0.02 4.09E�10 6.87E�10 1.44E�08 2.24E�03 2.00 2.98E�03 2.00
0.01 4.89E�11 6.46E�11 8.20E�10 5.60E�04 2.00 7.44E�04 2.00 132.7
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The numerical comparison is shown in Table 3, from which we can observe that, (1) with the same mesh, no matter
sparse (s ¼ 0:01 and h ¼ 100

512 � 0:1953) or fine (s ¼ 0:005 and h ¼ 100
1024 � 0:0977), the OS(4) scheme is more conservative and

higher accurate than both P3-RKDG and P4-RKDG methods; (2) the OS(4) scheme runs much faster than both P3-RKDG and

P4-RKDG methods as we have found in Table 2. Here, the ratio of the CPU time used by the OS(4) scheme over that used by

the P3-RKDG method is around 5:32%, and reduces to around 4:05% over that used by the P4-RKDG method for both cases.



0 5 10 15 20 25 30 35 40 45 50

0

1

2

3

4

5

6

7

8
x 10−4

2)
4)

Fig. 1. Example 5.1. The l1 error history.
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The l1 error history is plotted in Fig. 3, which shows that those three methods all have almost zero slope (under 4:50E-09).

This can be used to explain our previous success of the P3-RKDG method in [49–51]. Further more, the more smaller errors of
the OS(4) method mean that it should be more powerful than others.

It has been shown that the OS(4) scheme behaves best for both one-humped and two-humped NLD solitary waves in
long time simulations. Therefore, we conclude the comparison with the judgement that the OS(4) scheme is the most suit-
able for simulating the interaction dynamics for the NLD solitary waves in terms of the accuracy, the conservativeness, the
efficiency and the error growth. The OS(4) scheme will be utilized to investigate the binary collision of the NLD solitary
waves. The initial setup is the linear superposition of two moving waves
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Fig. 2. Example 5.2. The initial charge density qQ ðx; tÞ for two typical cases, V ¼ �0:2; x0 ¼ 5. Case 1 is shown in the solid line, a two-humped profile
(x ¼ 0:3) under the quadric scalar self-interaction (k ¼ 1; s ¼ 0:5 and v ¼ 0); Case 2 is shown in the dashed line, a one-humped profile (x ¼ 0:75) under the
cubic scalar and vector self-interaction (k ¼ 2 and s ¼ v ¼ 0:5).



Table 3
Example 5.2. Numerical comparison among the OS(4), P3-RKDG and P4-RKDG methods. The CPU time is measured in seconds.

VQ VE VP err2 err1 Time(s)

Case 1 in the mesh of s ¼ 0:01 and h ¼ 100
512

OS(4) 1.96E�12 1.10E�12 3.45E�12 2.15E�09 2.17E�09 7.8

P3�RKDG 3.34E�08 2.27E�07 2.96E�07 2.89E�06 4.15E�06 146.6

P4�RKDG 1.35E�12 9.43E�08 5.34E�08 9.02E�08 6.94E�08 195.5

Case 2 in the mesh of s ¼ 0:005 and h ¼ 100
1024

OS(4) 9.82E�13 8.35E�13 2.95E�12 7.33E�11 8.63E�11 46.8

P3�RKDG 3.21E�10 9.04E�09 1.95E�08 2.00E�07 3.98E�07 881.1

P4�RKDG 9.10E�13 4.89E�09 1.57E�09 4.68E�09 6.35E�09 1156.5

Fig. 3. Example 5.2. The l1 error history. The slopes are displayed above the curves.

Table 4
The init

case

B1
B2
B3
B4
B5
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Wðx; t ¼ 0Þ ¼ Wmw
l ðx� xl; t ¼ 0Þ þWmw

r ðx� xr; t ¼ 0Þ;
where Wmw
pos ðx� xpos; tÞ denote the moving waves (2.23) centered at xpos with the speed Vpos and the frequency xpos for

pos 2 fl; rg. In the following examples, two equal solitary waves are placed symmetrically at t ¼ 0 with �xl ¼ xr ¼ 10 and
V l ¼ �V r ¼ 0:2. Several typical NLD solitary waves are considered with the parameters given in Table 4, and both quadric
(k ¼ 1) and cubic (k ¼ 2) cases will be studied. It should be noted that the experiments carried out in the literatures are
all limited to the collisions of the NLD solitary waves under the quadric scalar self-interaction. A relatively fine mesh,
s ¼ 0:005 and h ¼ 100=213 � 0:0122, is adopted hereafter.
ial setups of different cases in binary collisions.

s v xl ¼ xr Remarks

0.5 0 0.8 scalar, one-humped
0 0.5 0.8 vector, one-humped
0.5 0.5 0.8 scalar and vector, one-humped
0.5 0 0.3 scalar, two-humped
4 1 0.1 scalar and vector, two-humped
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Example 5.3. The collision of two equal one-humped solitary waves under the scalar self-interaction, i.e. Case B1 in Table 4,
is studied in this example. The interaction dynamics for the quadric case are shown in the left plot of Fig. 4, where two equal
waves with the initial amplitude of 0.4082 move close at a velocity of 0.2 and overlap each other, then separate into a left
moving wave and a right moving wave with the amplitude of 0.3743 and the velocity of 0.1831. Similar phenomena are
observed for the cubic case shown in the right plot of Fig. 4 except that (1) two waves overlap more stronger around t ¼ 41
now due to the stronger nonlinearity; (2) after collision, the amplitude decreases to 0.5899 from the initial amplitude of
0:6455 while the velocity also decreases to 0.1037. In both cases, the discrete charge, energy and linear momentum are
approximately conserved in the interaction since the variation of them at t ¼ 80 is under 1.58E�10.
Example 5.4. The collision of two equal one-humped solitary waves under the vector self-interaction, i.e. Case B2 in Table 4, is
studied in this example. To the best of our knowledge, it is the first time to study binary collision of the NLD solitary waves under
the vector self-interaction. The interaction dynamics for the quadric case are shown in the left plot of Fig. 5, where the waves
keep the shape and the velocity after the collision. A totally different phenomenon appears for the cubic vector self-interaction
as displayed in the right plot of Fig. 5. The initial one-humped equal waves first merge into a single wave, then separate and
overlap again. Around t ¼ 50, collapse happens and highly oscillatory waves are generated and moving outside with a big veloc-
ity near 1, meanwhile a one-humped wave with small amplitude is formed at the center. In both cases, the discrete charge,
energy and linear momentum are approximately conserved in the interaction since the variation of them at t ¼ 100 is under
5.41E�11. Note in passing that the collapse here is different from that shown in [49]. It was reported there that the strong neg-
ative energy and radiation appear when the collapse happens during the binary collision of two-humped waves.
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Fig. 4. Example 5.3. Binary collision of the NLD solitary waves under the scalar self-interaction.
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Fig. 5. Example 5.4: Binary collision of the NLD solitary waves under the vector self-interaction.
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Example 5.5. This example is devoted into investigating for the first time the collision of two equal NLD solitary waves
under the scalar and vector self-interaction, i.e. Case B3 in Table 4. The interaction dynamics for the quadric case are shown
in the left plot of Fig. 6, where two equal waves with the initial amplitude of 0:2041 move close at a velocity of 0:2 and over-
lap each other, then separate into a left moving wave and a right moving wave with the amplitude of 0:2091 and the velocity
of 0:1968. The collapse similar to that shown in right plot of Fig. 5 happens again for the cubic vector self-interaction, see the
right plot of Fig. 6. The initial one-humped equal waves first merge into a single wave at t ¼ 38, then separate and overlap
again. Around t ¼ 50, collapse happens and highly oscillatory waves are generated and moving outside with a big velocity
near 1. In both cases, the discrete charge, energy and linear momentum are approximately conserved in the interaction since
the variation of them at t ¼ 80 is under 3:53E-10.
Example 5.6. As reported before in [49,51], collapse happens in binary and ternary collisions of the NLD solitary waves
under the quadric scalar self-interaction if the two-humped waves are evolved. In this example, we will show further that
collapse could happen in binary collision of equal two-humped waves under the cubic scalar self-interaction and under the
linear combination of scalar and vector self-interactions. First, Case B4 in Table 4 is studied and the interaction dynamics are
shown in Fig. 7, which clearly shows that (1) collapse happens in both quadric and cubic cases but is more stronger in the
latter; (2) two initial waves at the same velocity are decomposed into groups with different velocities after the collision, but
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Fig. 6. Example 5.5: Binary collision of the NLD solitary waves under the scalar and vector self-interaction.
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Fig. 7. Example 5.6: Binary collision of the two-humped NLD solitary waves under the scalar self-interaction.
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there is no such decomposition for the cubic case. In the left plot of Fig. 7, the highly oscillating waves with small amplitude
move outside at a big velocity of 0:9644, while the one-humped waves with big amplitude follow them at a small velocity of
0:4626. In both cases, the discrete charge, energy and linear momentum are approximately conserved in the interaction since
the variation of them at t ¼ 80 is under 1:01E�5. Second, binary collision of equal two-humped solitary waves under the
scalar and vector self-interaction, i.e. Case B5 in Table 4, is plotted in Fig. 8. The phenomena are very similar to that shown
in Fig. 7, and the ‘‘decomposition’’ phenomenon for the quadric case is more obvious than that shown in the left plot of Fig. 7.
6. Conclusion and outlook

Several numerical methods for solving the NLD equation with the scalar and vector self-interaction have been presented
and compared theoretically and numerically. Our results have revealed that among them, the OS(4) scheme, one of the
fourth-order accurate OS methods, performs best in terms of the accuracy and the efficiency. Particularly, the OS(4) scheme
is usually more accurate than the P4-RKDG method in the mesh of the same size, but the former needs much more less com-
putational cost than the latter. Such superior performance of the OS methods is credited to the full use of the local conser-
vation laws of the NLD equation such that the nonlinear subproblems resulted from them are exactly solved. The interaction
dynamics for the NLD solitary waves under the quadric and cubic self-interaction have been investigated with the OS(4)

scheme. We have found that such interaction dynamics depend on the exponent power of the self-interaction. Actually, it
has been observed for the first time in our numerical experiments that, (1) collapse happens in collision of two equal
one-humped NLD solitary waves under the cubic vector self-interaction but such collapse does not appear for corresponding
quadric case; (2) two initial waves at the same velocity are decomposed into groups with different velocities after collapse in
binary collision of two-humped NLD solitary waves under the quadric scalar self-interaction or under the quadric scalar and
vector self-interaction but such phenomenon does not show up for corresponding cubic case. More efforts on the interaction
dynamics for the NLD solitary waves under more general self-interaction with the OS(4) method are still going on.
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