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Abstract

For modeling scalar-wave propagation in geophysical problems using finite-difference

schemes, optimizing the coefficients of the finite-difference operators can reduce nu-

merical dispersion. Most optimized finite-difference schemes for modeling seismic-

wave propagation suppress only spatial but not temporal dispersion errors. We develop

a novel optimized finite-difference scheme for numerical scalar-wave modeling to con-

trol dispersion errors not only in space but also in time. Our optimized scheme is based

on a new stencil that contains a few more grid points than the standard stencil. We

design an objective function for minimizing relative errors of phase velocities of waves

propagating in all directions within a given range of wavenumbers. Dispersion anal-

ysis and numerical examples demonstrate that our optimized finite-difference scheme

is computationally up to 2.5 times faster than the optimized schemes using the stan-

dard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem.

Compared with the high-order finite-difference scheme using the same new stencil, our

optimized scheme reduces 50 percent of the computational cost to achieve the similar

modeling accuracy. This new optimized finite-difference scheme is particularly useful

for large-scale 3D scalar-wave modeling and inversion.
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1. Introduction

Finite-difference (FD) schemes have been widely used for simulations of wave

propagation [e.g., 1]. High-order FD schemes are particularly attractive for large-scale

3D modeling, because they are able to control numerical dispersion using a larger grid

spacing compared with low-order schemes [e.g., 2, 3]. The coefficients of high-order

FD operators are usually determined using the Taylor expansion of the truncation error

ε with respect to the grid spacing h such that ε = O(h2M), where 2M is the length

of the standard FD operator or stencil [e.g., 4]. Equivalently, one may express the

phase-velocity error εv in terms of the normalized wavenumber “kh” and design the

coefficients such that εv = O((kh)2M) [e.g., 5], where k is the wavenumber. Although

very high-order accuracy has been achieved in space, second-order time discretization

is popular for modeling large-scale wave propagation because of its relatively low re-

quirements of computer memory [e.g., 6]. In the following, we refer the scheme with

2Mth-order accuracy in space and second-order accuracy in time as the standard high-

order FD scheme.

The numerical solution obtained using a high-order scheme converges rapidly to

the true solution when the grid spacing h approaches zero. In other words, high-order

schemes are excellent at controlling the phase-velocity error for low wavenumbers.

However, for a given h, high-order schemes do not always sufficiently suppress the

error for large wavenumbers. One remedy is increasing the length of the FD operator

2M, leading to high computational costs. When 2M approaches the total number of

grid points along one direction, high-order FD schemes essentially become the pseu-

dospectral method [7, 8], which is free of numerical dispersion but is computationally

expensive.

Holberg [9] introduced an optimized FD scheme to control spatial dispersion errors

for a wide range of wavenumbers for a given length of the FD operator for numerical

modeling of seismic-wave propagation. His objective function for optimization is the

maximum relative error of the group velocity. Various optimized FD schemes have
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emerged since Holberg’s pioneering work.

Numerous optimized FD schemes minimize the spatial dispersion error and tem-

poral dispersion error independently [e.g., 10–14]. Lele [10] obtained compact FD

schemes with spectral-like resolution by imposing the requirement that the discrete FD

operator matches the spatial differential operator at three prescribed high wavenum-

bers. Tam and Webb [11] constructed a dispersion-relation-preserving (DRP) scheme

by optimizing the FD approximations to the spatial and temporal differential opera-

tors. Bogey and Bailly [12] advanced the DRP scheme using spatial FD operators

with a length of up to 13 grid points. Hu et al. [13] developed low-dissipation and

low-dispersion Runge-Kutta time-advancing schemes. Zhang and Yao [14] found that

the norm of objective functions plays an important role for designing optimized FD

schemes. Their schemes based on the maximum norm have more flexibility and better

accuracy than those in [11, 12] based on L2- or L1-norm.

Several optimized FD schemes minimize the spatial dispersion error and temporal

dispersion error simultaneously. Haras and Ta’asan [15] minimized the global trunca-

tion error of the partial differential equation, and demonstrated that their compact FD

scheme is more accurate than Lele’s spectral-like scheme in [10] for solving the scalar-

wave equation. Etgen [16] developed an FD scheme to minimize the phase-velocity

error. His scheme balances both spatial and temporal dispersion errors because the

two types of errors have opposite signs. Stork [17] designed spatial FD operators that

vary between consecutive time steps to reduce dispersion errors. Liu [18] found that

minimizing the relative error of the time-space-domain dispersion relation can lead to

smaller relative errors of the phase velocity, compared to minimizing the absolute error

of the space-domain dispersion relation. He obtained his globally optimal FD schemes

by linearizing an objective function of the relative phase-velocity error and solving it

using a least-squares approach.

The FD schemes optimized in time-space domain in [9, 16–18] are based on the

standard finite-difference stencil composed of grid points on the axis along which

the spatial derivative is calculated. Liu and Sen [5] demonstrated that high-order FD

schemes based on the standard 2M-point stencil can reach the 2Mth-order accuracy

both in space and time, but only along eight directions of wave propagation in 2D and
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48 directions in 3D when using wavefields at one time step for temporal evolution.

The temporal accuracy is still second order along the other propagation directions. As

high-order FD schemes, optimized schemes based on the standard stencil still have low

temporal accuracy when using wavefields at one time step for temporal evolution, and

a small time interval has to be used to adequately control temporal dispersion errors.

We recently developed a new staggered-grid finite-difference method in the time-

space domain to improve the accuracy in time [19]. The stencil, same as that for Lax-

Wendroff scheme [e.g., 2, 20, 21], contains a few additional grid points off each axis

compared to the standard stencil. Our new FD scheme increases the temporal accuracy

from second order to fourth order for FD modeling with high-order spatial accuracy.

The computer-memory requirement of our FD scheme is similar to that of the standard

high-order FD scheme with second-order accuracy in time.

In this paper, we develop an optimized staggered-grid finite-difference scheme in

the time-space domain based on our new stencil for solving 2D and 3D scalar-wave

equations. Scalar-wave equations are widely used in important geophysical problems,

including reverse-time migration [22] and full-waveform inversion [23]. In such prob-

lems, the phase error is one of the major concerns. Our objective function for opti-

mization is thus the relative error of the phase velocity for waves propagating in all

directions within a given range of wavenumbers. Our optimized scheme not only sup-

presses spacial dispersion errors for large wavenumbers, but also allows us to use a

large time interval and well control time dispersion errors. The advantage of using

a large time interval for numerical wave modeling highlights the novelty of our FD

scheme. We preform dispersion analysis for our optimized FD scheme, and use our

optimized scheme to conduct numerical modeling of scalar-wave propagation in 2D

and 3D complex media. Our results demonstrate that the computational efficiency of

our optimized FD scheme is up to 2.5 times higher than that of the optimized schemes

based on the standard stencil for a given 2D or 3D modeling problem. Compared

with the high-order FD scheme based on the same new stencil, our optimized scheme

achieves the same modeling accuracy with only a half of the original computational

cost.

We design our optimized FD scheme specifically for modeling scalar-wave propa-
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gation in geophysical problems, as in [9, 14, 16–18]. The development of the optimized

FD schemes in [10–13, 15] is motivated by computational fluid dynamics (CFD) prob-

lems. Although the two types of problems are both governed by hyperbolic equations,

they have their own computational challenges for practical applications. For example,

the spectrum content of the waves and propagation distances may be different. More-

over, different boundary conditions are imposed for geophysical problems and CFD

problems. For geophysical problems, two types of boundary conditions are usually

imposed for the scalar-wave equation: absorbing boundary conditions and free-surface

boundary conditions [e.g., 1, 24]. The former is used to truncate an unbounded do-

main (the Earth) into a bounded one. There have been extensive studies of absorb-

ing boundary conditions for modeling seismic-wave propagation [e.g., 25–27]. Free-

surface boundary conditions are prescribed at the air/ocean or air/land interface. For

planar free surfaces, the mirror technique [e.g., 1] can be employed to convert the half-

space problem to a whole-space problem because of symmetry. For CFD problems,

properly imposing numerical boundary conditions may become very challenging. Ad-

dressing the challenge of boundary conditions for CFD problems is out of the scope of

this paper.

This paper is organized as follows. We first derive our optimized FD scheme based

on our new stencil, followed by stability and dispersion analyses. We then conduct

numerical modeling of scalar-wave propagation in 2D and 3D complex media, and

compare the accuracy and efficiency of our FD modelings with those obtained using a

high-order FD scheme or an FD scheme optimized in the space domain.

2. An optimized finite-difference scheme in the time-space domain using a new

stencil

The scalar-wave equation is given by

∂2 p
∂t2
− c(x)∇2 p = 0, (1)

where c(x) is the wave speed, p(x, t) is the pressure, and x is the spatial position in 2D

or 3D. The scalar-wave equation (1) is mathematically equivalent to the velocity-stress
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formulation given by

∂p
∂t
+ K(x)∇ · v = 0,

∂v
∂t
+

1

ρ
∇p = 0,

(2)

where ρ is the constant density, K(x) is the bulk modulus, and v(x, t) = (u(x, t), v(x, t),w(x, t))T

is the vector of the velocity wavefield. Wave speed c(x) is related to bulk modulus K(x)

and density ρ via c =
√

K/ρ. The velocity-stress formulation (2) is widely used [e.g.,

1, 28–30], because it explicitly gives both the pressure and velocity wavefields. We aim

to design an optimized staggered-grid FD scheme for solving the first-order system (2).

In the 2D case, the staggered-grid FD discretization of eq. (2) is given by

p j
0,0 = p j−1

0,0 − K
(
DO

x u j−1/2
0,0 + DO

z wj−1/2
0,0

)
Δt,

u j+1/2
1/2,0

= u j−1/2
1/2,0

− 1

ρ
DO

x p j
1/2,0
Δt,

wj+1/2
0,1/2

= wj−1/2
0,1/2

− 1

ρ
DO

z p j
0,1/2
Δt,

(3)

where Δt is the time interval. DO
x and DO

z are optimized finite-difference operators

along the x- and z-axis, respectively. Term pj
m,n represents the discretized pressure

wavefield p(x + mh, z + nh, jΔt), and u j+1/2
m,n and wj+1/2

m,n denote the discretized velocity

wavefields. In fact, FD scheme (3) can be written in a form for solving the second-order

equation (1) by eliminating discretized velocity wavefields [e.g., 5].

We first briefly review our recently developed high-order FD scheme based on a

new stencil [19]. This new FD scheme has the 2Mth-order accuracy in space and the

fourth-order accuracy in time. We then construct our objective function for optimiza-

tion. This is a nonlinear optimization problem. We derive an approximate minimizer

for numerical optimization of our objective function using the Levenberg-Marquardt

algorithm [31]. At the end of this section, we discuss the implementation of absorbing

boundary conditions.

2.1. A new finite-difference stencil

Our FD scheme uses FD stencils shown in Fig. 1 when 2M = 8. For the 2D case, the

stencil in Fig. 1a contains 2M grid points on the axis along which the spatial derivative
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is calculated. Four additional grid points lying off the axis play an important role in

increasing the temporal accuracy. The FD stencil in the 3D case (Fig. 1b) comprises a

stencil in the 2D case and four grid points in the perpendicular plane. Note that the FD

stencils in Fig. 1 are also used in Lax-Wendroff scheme [e.g., 2, 20, 21].

(a) 2D stencil

1
2 3 4

5 6
7 8

9 10

11 12

13
14

15
16

(b) 3D stencil

Figure 1: Illustration of the new FD stencils with 2M = 8 grid points on the axis for

(a) 2D and (b) 3D modeling. Grid points #1-12 in the shaded plane in (b) are the same

as those in the 2D case in (a), while grid points #13-16 in the perpendicular plane are

added for 3D modeling.

The high-order FD operator for 2D modeling is defined on the new stencil as fol-

lows

∂p
∂x
≈ D2M,4

x p0,0 =
1

h

[ M∑
m=1

am,0(pm−1/2,0 − p−m+1/2,0)

+ a1,1(p1/2,1 − p−1/2,1 + p1/2,−1 − p−1/2,−1)

]
,

(4)

where h denotes the spatial grid spacing, and we omit the superscripts for time steps.

The FD operator D2M,4
x has the 2Mth-order accuracy in space and the fourth-order ac-

curacy in time. The finite-difference coefficients in eq. (4) are given by

a1,1 =
r2

24
,

a1,0 = 1 − 2a1,1 −
M∑

m=2

(2m − 1)am,0

am,0 =
(−1)m+1

2m − 1

M∏
l=1,l�m

(2l − 1)2 − r2

|(2m − 1)2 − (2l − 1)2| , m = 2, 3, · · · ,M,

(5)

where

r = cΔt/h
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is the Courant-Friedrichs-Lewy (CFL) number. In a heterogeneous medium, c is a

function of the spatial position, and can vary from one grid point to another grid point.

For 3D modeling, the high-order FD operator is calculated using

∂p
∂x
≈D2M,4

x p0,0,0 =
1

h

M∑
m=1

am,0,0(pm−1/2,0,0 − p−m+1/2,0,0)+

1

h
a1,1,0(p1/2,1,0 − p−1/2,1,0 + p1/2,−1,0 − p−1/2,−1,0

+ p1/2,0,1 − p−1/2,0,1 + p1/2,0,−1 − p−1/2,0,−1),

(6)

where pm,n,l = p(x + mh, y + nh, z + lh) and thus p0,0,0 = p(x, y, z). The coefficients in

eq. (6) are

a1,1,0 =
r2

24
,

a1,0,0 = 1 − 4a1,1,0 −
M∑

m=2

(2m − 1)am,0,0,

am,0,0 =
(−1)m+1

2m − 1

M∏
l=1,l�m

(2l − 1)2 − r2

|(2m − 1)2 − (2l − 1)2| , m = 2, 3, · · · ,M.

(7)

The FD coefficients in eqs. (5) and (7) depend on the CFL number r and thus on

the local wave speed c for a given grid spacing h and time interval Δt. This makes the

fourth-order accuracy in time possible even only using wavefields at one time step for

temporal wavefield evolution.

2.2. Objective function for optimization

We define our optimized FD operators on the new stencil in Fig. 1a using

∂p
∂x
≈ DO

x p0,0 =
1

h

[ M∑
m=1

dm,0(pm−1/2,0 − p−m+1/2,0)

+ d1,1(p1/2,1 − p−1/2,1 + p1/2,−1 − p−1/2,−1)

]
,

(8)

∂p
∂z
≈ DO

z p0,0 =
1

h

[ M∑
m=1

dm,0(p0,m−1/2 − p0,−m+1/2)

+ d1,1(p1,1/2 − p1,−1/2 + p−1,1/2 − p−1,−1/2)

]
.
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We minimize the relative error of the phase velocity, which is directly related to

numerical dispersion. We consider a pressure plane wave p given by

p(x, t) = exp[i(k · x − kcnumt)],

where cnum is the numerical wave speed and the wavenumber k = |k|. For the FD

scheme (3), the relative error of the phase velocity for the plane wave propagating

along angle θ is

e2(kh, θ, r) =
cnum

c
− 1 =

1

rkh
arccos(1 − 2g2r2) − 1, (9)

where

g2 =

⎡⎢⎢⎢⎢⎢⎣ M∑
m=1

dm,0 sin ((m − 1/2)kxh) + 2d1,1 sin(kxh/2) cos(kzh)

⎤⎥⎥⎥⎥⎥⎦
2

+

⎡⎢⎢⎢⎢⎢⎣ M∑
m=1

dm,0 sin ((m − 1/2)kzh) + 2d1,1 sin(kzh/2) cos(kxh)

⎤⎥⎥⎥⎥⎥⎦
2

,

(10)

and k = (kx, kz) = k(cos θ, sin θ).

For 3D modeling, our optimized FD operator is defined on the new stencil shown

in Fig. 1b using

∂p
∂x
≈DO

x p0,0,0 =
1

h

M∑
m=1

dm,0,0(pm−1/2,0,0 − p−m+1/2,0,0) +
1

h
d1,1,0(p1/2,1,0

− p−1/2,1,0 + p1/2,−1,0 − p−1/2,−1,0 + p1/2,0,1 − p−1/2,0,1

+ p1/2,0,−1 − p−1/2,0,−1).

(11)

The definitions of DO
y and DO

z are similar. The relative error of the phase velocity for

the plane wave p(x, t) = exp[i(k ·x− kcnumt)] propagating along a direction with angles

(θ, φ) is given by

e3(kh, θ, φ, r) =
cnum

c
− 1 =

1

rkh
arccos(1 − 2g3r2) − 1,

9



where

g3 =

⎡⎢⎢⎢⎢⎢⎣ M∑
m=1

dm,0,0 sin ((m − 1/2)kxh) + 2d1,1,0 sin(kxh/2)
(
cos(kyh) + cos(kzh)

)⎤⎥⎥⎥⎥⎥⎦
2

+

⎡⎢⎢⎢⎢⎢⎣ M∑
m=1

dm,0,0 sin
(
(m − 1/2)kyh

)
+ 2d1,1,0 sin(kyh/2) (cos(kxh) + cos(kzh))

⎤⎥⎥⎥⎥⎥⎦
2

+

⎡⎢⎢⎢⎢⎢⎣ M∑
m=1

dm,0,0 sin ((m − 1/2)kzh) + 2d1,1,0 sin(kzh/2)
(
cos(kyh) + cos(kxh)

)⎤⎥⎥⎥⎥⎥⎦
2

,

(12)

and k = (kx, ky, kz) = k(sin θ cos φ, sin θ sin φ, cos θ).

Our objective function accounts for waves propagating along all directions within

a given range of wavenumbers. For 2D modeling, we construct the objective function

as

E2(r) =

∫ π/4
0

∫ qπ

0

e2(kh, θ, r)2d(kh)dθ. (13)

Here the wavenumber range is chosen as [0, qπ], where 0 < q ≤ 1. We only consider

the propagation angle in the range of [0, π/4] because of symmetry. Similarly, our

objective function for 3D modeling is constructed as

E3(r) =

∫ π/4
0

∫ π/4
0

∫ qπ

0

e3(kh, θ, φ, r)2d(kh)dθdφ. (14)

We preform optimization within the wavenumber range [0, qπ]. The larger the

value of q is, the wider is the range of wavenumbers under optimization, but less accu-

rate are modeling results for low wavenumbers. Our optimized FD scheme trades off

between the relative error of the phase velocity for low wavenumbers and that for large

wavenumbers.

2.3. Solving the nonlinear least-squares problems

For a given CFL number r, our objective functions (13) and (14) lead to nonlinear

least-squares problems for the FD coefficients. To avoid nonlinearity, Liu [18] obtained

his conventional-grid FD scheme by minimizing the relative error of the dispersion

relation. He claimed that the solution is almost the same as that obtained by minimizing

the relative error of the phase velocity. However, a direct application of his technique

is not able to completely remove the nonlinearity in our problems, because g2 and g3
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in eqs. (10) and (12) are nonlinear with respect to the FD coefficients for staggered-

grid FD schemes. We have to use some numerical techniques to solve our nonlinear

problems.

We discretize our objective functions using quadratures:

E2(r) ≈ qπ2

4

1

N1

1

N2

N1∑
m=1

N2∑
n=1

e2(khm, θn, r)2,

E3(r) ≈ qπ3

16

1

N1

1

N2
2

N1∑
m=1

N2∑
n=1

N2∑
l=1

e3(khm, θn, φl, r)2,

(15)

where khm are N1 uniform samples of the normalized wavenumbers in the range of

[0, qπ], and θn, φl are N2 uniform samples of the propagation angles in the range of

[0, π/4].

We employ the Levenberg-Marquardt algorithm [31] to solve the discrete nonlin-

ear least-squares problems (15) using the coefficients of the high-order FD scheme in

eqs. (5) and (7) as the initial guesses. We find that the relative error of the phase ve-

locity obtained using N1 = 50 and N2 = 2 is almost the same as that obtained with

N1 = 50 and N2 = 50. This means that the phase errors of waves propagating along the

axes and the diagonal directions are the most important ones to be minimized.

Note that eq. (15) depends on the CFL number r = c(x)Δt/h that varies spatially

in a heterogeneous medium. To avoid minimizing eq. (15) for r at each spatial grid

point, we assume the coefficients of the optimized FD schemes are polynomials of

degree M−1 in r. The polynomials are derived by minimizing eq. (15) for 2M uniform

samples of r and performing a least-squares fitting of these samples.

In our implementation, we pre-compute and store the values of the FD coefficients

for the wave-speed values in a given model. For example, for a given model with

the wave speed ranging from 1500 m/s to 5000 m/s, we calculate and store the FD

coefficients for wave speeds of 1500 m/s, 1501 m/s, · · · , 5000 m/s with an increment

of 1 m/s. Less than 1 MB of computer memory is needed to store the values of the FD

coefficients using our optimized FD scheme. Therefore, our optimized scheme requires

almost the same amount of computer memory as the standard high-order FD scheme

for large-scale 3D modeling.

The optimization strategy of our new FD scheme for scalar-wave propagation can
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be employed to improve the computational efficiency of FD modeling of acoustic-wave

and elastic-wave propagation.

Hereafter, we focus on the optimized FD scheme using 2M = 16 grid points along

the axis to approximate each spatial derivative in the scalar-wave equation (2). The co-

efficients of our optimized FD scheme for 2D and 3D modeling problems are provided

in Appendix A.

2.4. Boundary conditions

In geophysical applications, the Earth is usually considered as an unbounded do-

main. Absorbing boundary conditions are imposed at boundaries of a computational

domain to truncate the unbounded domain into a bounded one. Various absorbing

boundary conditions have been developed, e.g., the methods of Clayton and Engquist [25],

Engquist and Majda [32], and Higdon [33], the perfectly matched layer (PML) method

[34], and the hybrid method of Liu and Sen [27] combining one- and two-way wave

equations. Absorbing boundary conditions work properly for FD schemes with very

long operators for modeling seismic-wave propagation [e.g., 14, 18, 35].

In all our numerical examples, we employ the unsplit convolutional PML method [26]

to effectively eliminate unwanted artificial reflections from all boundaries. Absorbing

layers with thickness of 15 grid points are added to the exterior of each boundary. In

the absorbing layers, we modify the spatial derivatives in the scalar-wave equation (2).

For example, we replace the spatial derivative ∂
∂x with

∂

∂x̂
=

1

κx

∂

∂x
+ ψx, (16)

where κx is a parameter, and ψx is an auxiliary wavefield defined only in PMLs. On

the external edges of PMLs, we use zero ghost values to impose Dirichlet boundary

conditions p = 0 and v = 0 for all time t. There is thus no need to adjust the stencil or

coefficients of FD operators for computing ∂
∂x in eq. (16). The extra computer-memory

requirement of PML is very small for large-scale 3D modeling of seismic-wave prop-

agation where each spatial dimension typically has grid points in the order of 1000.

For example, if we consider a 3D model of 10003 grid points, storing wavefields p

and v requires 14.9 GB of computer memory. Storing the wavefields in PMLs only
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needs extra memory of 0.69 GB, which is less than 5% of the total computer mem-

ory required. According to our numerical experiments, the stability condition of our

optimized scheme, analyzed in the following section, remains valid for PML. The im-

plementation strategy, computational cost, computer-memory usage, and stability of

the unsplit convolutional PML method are discussed in detail in [26].

There have been significant efforts to theoretically prove the numerical stability

of various PML methods in the past decade [e.g., 36–39]. Abarbanel et al. [37] found

that the long-time stability seems to be strongly affected by the type of the layer and the

type of discretization, in particular, the discretization in space. Very recently, Duru [39]

found that simply replacing the derivative in eq. (16) with FD operators would result

in instability. He employed the simultaneous approximation term (SAT) methodology

to weakly impose boundary conditions on the external edges of PMLs and showed that

the resulting discrete models do not support growing modes. Duru [39] also found

that the interior FD scheme plays little role in numerical stability once the numerical

implementation of boundary conditions for the PML is carefully designed. His interior

FD scheme is based on summation-by-parts FD operators on standard grids. It is our

future research to investigate whether the SAT technique combined with our optimized

FD operator on staggered-grids would allow the theoretical proof of numerical stability

of PMLs.

At the air/ocean or air/land interface, free-surface boundary condition p = 0 is

sometimes prescribed. For planar free surfaces, the mirror technique [e.g., 1] may be

employed, where extra rows of ghost points are added in the air. All interior wave-

fields are imaged symmetrically or anti-symmetrically to ghost wavefields. The stabil-

ity condition of the FD scheme for solving the half-space problem is the same as that

for solving the whole-space problem because of symmetry.

3. Analyses of the optimized FD scheme

We perform stability and dispersion analyses of our optimized FD scheme, and

compare the results with those of the high-order scheme using the same FD stencil and

with those of the optimized schemes using the standard stencil.
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3.1. Stability analysis

For 2D modeling, the standard von Neumann analysis gives

r ≤ s(r) =

⎡⎢⎢⎢⎢⎢⎣√2

M∑
m=1

(−1)m+1dm,0(r) − 2
√

2d1,1(r)

⎤⎥⎥⎥⎥⎥⎦
−1

.

This stability factor s depends on CFL number r. The maximum allowed value of s

is determined by the minimum x-intercept between the curve s(r) and the straight line

s = r, as shown in Fig. 2a. This gives the stability condition of our optimized FD

scheme for 2D modeling: r ≤ 0.533. It is slightly more stringent than the stability

condition r ≤ 0.607 for the high-order scheme using the same FD stencil [19].

For 3D modeling, the same stability analysis gives

r ≤ s(r) =

⎡⎢⎢⎢⎢⎢⎣√3

M∑
m=1

(−1)m+1dm,0,0(r) − 4
√

3d1,1,0(r)

⎤⎥⎥⎥⎥⎥⎦
−1

.

According to Fig. 2b, the stability condition for 3D modeling is r ≤ 0.437. It is again

slightly more stringent than the stability condition r ≤ 0.480 for the high-order scheme

using the same FD stencil [19].
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Figure 2: The relationship between the stability factor s and the CFL number r of our

optimized FD scheme for (a) 2D and (b) 3D modeling. The maximum allowed value

of s is determined by the minimum x-intercept between the curve s(r) (blue curve) and

the straight line s = r (black line).
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3.2. Dispersion analysis

We calculate the relative error of the phase velocity using eq. (9) for our optimized

2D FD scheme, and display the resulting dispersion curves for propagation angles θ =

0, π/4 in Fig. 3. For comparison with an optimized FD scheme obtained using Etgen’s

approach [16], we solve the same least-squares problem (13) with d1,1 = 0. This

FD scheme essentially uses the standard stencil. Both optimized schemes perform

well when we use a small time interval with r = 0.05 (Fig. 3a). Here we choose

r = 0.05 to control the relative error of phase velocity within approximately 0.1%. Note

that even stricter phase error thresholds are used in [17] (0.05%) and [40] (0.01%).

When we increase the time interval such that r = 0.15, the optimized scheme using

our new stencil maintains its accuracy for a wide range of wavenumbers, while the

optimized scheme based on the standard stencil leads to significant errors even for

relatively low wavenumbers (Fig. 3b). This demonstrates that the new FD stencil is

crucial for improving the temporal accuracy of numerical wave modeling.

Etgen [16] observed similar errors as shown by the red curves in Fig. 3b for his

optimized FD scheme based on the standard stencil. He reduced the errors by requir-

ing the dispersion curves of his scheme match those of a very high-order FD scheme

and adding a weight in the objective function. His strategy requires tuning parame-

ters, while our approach directly gives an optimized FD scheme with accurate phase

velocities for a wide range of wavenumbers.

We next compare our optimized FD scheme with its high-order counterpart with the

same value of M = 8 for 2D modeling, and depict the dispersion curves in Fig. 4. Our

optimized FD scheme significantly extends the range of wavenumbers with accurate

phase velocities compared to the high-order FD counterpart, even using the large time

interval with r = 0.15.

Also illustrated in Fig. 4 are the dispersion curves for the optimized 2D FD scheme

in the space domain obtained using the objective function of Tam [41]:

Espace =

qπ∫
0

⎡⎢⎢⎢⎢⎢⎣ M∑
m=1

2dm,0 sin((m − 1/2)kh) − kh

⎤⎥⎥⎥⎥⎥⎦
2

d(kh). (17)

Compared with our optimized FD scheme, the space-domain optimized FD scheme
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Figure 3: Dispersion relations of our optimized FD scheme using the new stencil (blue

curves) and the optimized FD scheme using the standard stencil (red curves) for 2D

modeling problems with (a) r = 0.05 and (b) r = 0.15. Both optimized schemes

have good performance when the time interval is small in (a). Only our optimized FD

scheme is able to suppress the time dispersion errors using the large time interval in

(b).
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based on the objective function (17) gives similar dispersion curves for a small time

interval with r = 0.05 (Fig. 4a). However, a large time interval with r = 0.15 generates

significant time dispersion errors for the space-domain optimized FD scheme, as shown

in Fig. 4b. By contrast, our new FD scheme optimized in time-space domain suppresses

the errors for a wide range of wavenumbers. Our optimized 3D FD scheme has the

same improvement compared with the other FD schemes, as shown in Fig. 5.

We evaluate the computational costs of different FD stencils for one time step using

eqs. (8) and (11). The FD schemes using the new stencil with operator length 2M

along the axis need 3M+5 and 3M+9 floating-point operations to compute one spatial

derivative for 2D and 3D modeling, respectively, while FD schemes using the standard
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Figure 4: Dispersion relations of the high-order scheme with coefficients given by

eq. (5) (red curves), our optimized FD scheme (blue curves), and the space-domain

optimized scheme obtained by minimizing eq. (17) (green curves) for 2D modeling

with (a) r = 0.05 and (b) r = 0.15. Compared with the high-order FD scheme, our

optimized FD scheme significantly extends the range of wavenumbers with accurate

phase velocities. The scheme optimized in the space domain has similar dispersion

curves to those of our optimized scheme in (a). However, a large time interval with

r = 0.15 generates significant time dispersion errors for the space-domain optimized

scheme in (b), while our optimized scheme is able to suppress the errors for a wide

range of wavenumbers.
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Figure 5: Dispersion relations of the high-order scheme with coefficients given by

eq. (7) (red curves), our optimized FD scheme (blue curves), and the space-domain

optimized scheme obtained by minimizing eq. (17) (green curves) for 3D modeling

with (a) r = 0.05 and (b) r = 0.15. The observations are similar to those made for the

2D case as shown in Fig. 4.

stencil use 3M floating-point operations. When 2M = 16, the computational cost for

each time step for FD schemes using the new stencil is 1.21 and 1.38 times higher than

that of FD schemes using the standard stencil for 2D and 3D modeling, respectively.

In summary, our optimized FD scheme is able to control dispersion errors for a

much wider range of wavenumbers compared with its high-order counterpart. What

makes our scheme distinct is that it generates accurate modeling results with a time in-

terval approximately three times larger than that can be used in the optimized schemes

using the standard stencil. Taking the computational cost for each time step into ac-

count, our optimized FD scheme speeds up the calculation by a factor of 2 to 2.5

compared with the optimized schemes using the standard stencil for a given 2D or 3D

modeling problem.

4. Numerical examples

We conduct numerical modeling of 2D and 3D scalar-wave propagation in het-

erogeneous media, and compare the waveforms with reference ones. We use either
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analytical solutions or the high-order FD scheme with a fine time interval and a very

high-order accuracy in space to compute the reference waveforms. In all the following

examples, we compare the performance of three FD schemes including

• Scheme I : The optimized scheme in the space domain obtained by minimizing

eq. (17) on the standard stencil;

• Scheme II : The high-order scheme with 16th-order accuracy in space and fourth-

order accuracy in time; and

• Scheme III : Our optimized scheme in the time-space domain using the new

stencil and objective functions (13) and (14).

According to the dispersion analysis, we expect Scheme III gives fewer time dispersion

errors than Scheme I, and has better control of spatial dispersion errors than Scheme II.

Note that Scheme II is actually similar to a Lax-Wendroff scheme [e.g., 2, 20, 21].

The connections between the two schemes are discussed in detail in [19]. We have

made extensive comparison between Scheme II and the standard high-order FD scheme

in [19]. For media with a velocity contrast up to five, Scheme II is approximately two

times faster than the standard high-order FD scheme to achieve the same modeling

accuracy. Thus, we do not present the results obtained using the standard high-order

FD scheme.

We keep the spatial grid spacing h the same for Schemes I–III, and vary the time

interval Δt and the length of the FD operators 2M to study the effect of dispersion

errors. For the ease of comparison, we specify Δt using the global CFL number rmax

through Δt = rmaxh/cmax where cmax is the maximum wave speed in a model.

We use the coda-wave interferometry method to quantify the time shift between

FD waveform u1(t) and reference waveform u2(t) [42]. We compute the time-shifted

cross-correlation over a time window with a width of tw at the center time t using

R(ts) =

∫ t+tw
t−tw

u1(t′)u2(t′ + ts)dt′[∫ t+tw
t−tw

(u1(t′))2 dt′
∫ t+tw

t−tw
(u2(t′ + ts))

2 dt′
]1/2 , (18)

where ts is the time shift. When u2(t) = u1(t − τ) is a time-shifted version of u1(t),

R(ts) attains its maximum at ts = τ. In the general case, we obtain tmax as the time shift
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between two waveforms u1(t) and u2(t) when R(ts) attains its maximum at ts = tmax.

When the two waveforms are identical, the maximum value of the time-shifted cross-

correlation is equal to unity at the zero lag time, i.e., R(ts = 0) = 1.

The spectral content associated with seismic waves propagating in the Earth is gen-

erally modeled using a Ricker wavelet [43]

s(t) = [1 − 2(π f0(t − t0))2] exp[−(π f0(t − t0))2],

where f0 is the central frequency and t0 = 1/ f0. We use the Ricker wavelet as a source

time function to generate scalar waves. Namely, we add the following source term to

the right-hand side of the first equation in (2):

δ(x − xs)s(t),

where xs is the location of the point source and δ(·) is the Dirac delta function. A Ricker

wavelet with f0 = 10 Hz is displayed in Fig. 6a. Figure 6b shows the broad spectrum

content of the Ricker wavelet. The maximum frequency is approximately 2.5 f0.
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Figure 6: The Ricker wavelet shown in (a) time and (b) frequency domains. The central

frequency is f0 = 10 Hz.
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4.1. 2D examples

4.1.1. Two-layer model

Our first example is modeling of scalar-wave propagation in a 2D layered velocity

model defined by

c(x, z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
3000 m/s, 0 m ≤ z ≤ 3000 m;

3300 m/s, 3000 m < z ≤ 4000 m.

(19)

The model is defined on a 2D grid with x ∈ [−2000 m, 2000 m] and z ∈ [0 m, 4000 m].

The spatial grid spacing of the model is h = 10 m. A Ricker-wavelet source with a

central frequency of 45 Hz is located at (-1534 m, 50 m). The receiver is located at (0 m,

1850 m). Figures 7a and 7b display the reflected waveforms calculated using Scheme I

with 2M = 16, together with the analytical waveform. The spatial dispersion errors are

very small, because of the optimization. However, using the large time interval with

rmax = 0.15 gives huge time dispersion errors as depicted in Fig. 7a. A small time

interval with rmax = 0.05 has to be used to suppress the errors as displayed in Fig. 7b.

Scheme II with 2M = 16 is capable of suppressing temporal dispersion errors using a

large time interval with rmax = 0.15, as shown in Fig. 7c, but the wiggles following the

reflected waveform indicate that the waveform contains significant spatial dispersion

errors. The wiggles disappear in Fig. 7d when we increase the length of the FD operator

to 2M = 32 for Scheme II. Scheme III with 2M = 16 is able to accurately generate the

waveform using a large time interval with rmax = 0.15, as displayed in Fig. 7e.

The errors between the simulated waveforms and the analytical waveforms are

quantified in Table 1. The relative time shift tmax/T0, where T0 is the central period

of waveforms, and the time-shifted cross-correlation R(tmax) obtained using eq. (18)

mainly measure time dispersion errors. The relative time-shift error is 8.6% for Scheme I

with rmax = 0.15 and the resulting time-shifted cross-correlation is 0.946. The relative

time-shift error is below 1.0% and the time-shifted cross-correlation is at least 0.994

for all the other schemes. To measure the energy of the spurious oscillations caused by

spatial dispersion errors, we define the L2-error ε2 using

ε2 =

√∫ 1.5

1.43

(u(t) − uanal(t))2dt, (20)
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tmax/T0 R(tmax) ε2 Cost

Scheme I with rmax = 0.15 and 2M = 16 8.6% 0.946 4.58E-4 0.8

Scheme I with rmax = 0.05 and 2M = 16 0.9% 0.997 7.77E-4 2.5

Scheme II with rmax = 0.15 and 2M = 16 0.0% 0.994 4.02E-3 1.0

Scheme II with rmax = 0.15 and 2M = 32 0.9% 0.997 7.77E-4 2.0

Scheme III with rmax = 0.15 and 2M = 16 0.0% 0.997 5.62E-4 1.0

Table 1: Quantified errors between the simulated waveforms and the analytical wave-

forms depicted in Fig. 7. The time shift tmax and the time-shifted cross-correlation

R(tmax) are obtained using eq. (18). T0 = 1/ f0 is the central wave period. The L2-error

ε2 is defined in eq. (20). The last column lists the estimated computational cost of all

FD schemes relative to Scheme III. The computational cost of Scheme III is only 40%

of that of Scheme I with rmax = 0.05 and 2M = 16, and 50% of that of Scheme II

with rmax = 0.15 and 2M = 32. Moreover, Scheme III generates the most accurate

waveform.

where u(t) is the calculated waveform using FD schemes and uanal(t) is the analytical

waveform. The L2-error ε2 is 4.02E-3 for Scheme II with rmax = 0.15 and 2M = 16,

while the error is at most 7.77E-4 for all the other schemes. The last column of Table 1

lists the estimated computational cost of all FD schemes relative to Scheme III. The

computational cost of Scheme III is only 40% of that of Scheme I with rmax = 0.05 and

2M = 16, and 50% of that of Scheme II with rmax = 0.15 and 2M = 32. Moreover,

Scheme III generates the most accurate waveform.

4.1.2. 2D SEG/EAGE salt model

Next, we compare the accuracy and efficiency of the three FD schemes for a 2D

SEG/EAGE salt model depicted in Fig. 8. The model is defined on a 2D grid with

x ∈ [−7500 m, 7500 m] and z ∈ [0 m, 3975 m]. The spatial grid spacing of the model

is h = 25 m. A Ricker-wavelet source with a central frequency of 10 Hz is located at (-

6000 m,125 m), and the receiver array is located at the same depth. We use Scheme II

with a fine time interval with rmax = 0.05 and a very high-order accuracy in space
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(a) Scheme I with rmax = 0.15 and 2M = 16
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(b) Scheme I with rmax = 0.05 and 2M = 16
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(c) Scheme II with rmax = 0.15 and 2M = 16
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(d) Scheme II with rmax = 0.15 and 2M = 32
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(e) Scheme III with rmax = 0.15 and 2M = 16

Figure 7: Reflected waveforms calculated using Scheme I (first row), Scheme II (sec-

ond row), and Scheme III (third row) for the 2D layered model (19). The red line is the

analytical waveform; the blue line is the simulated waveform. (a) and (c) contain sig-

nificant numerical dispersion. Satisfactory modeling results are displayed in (b), (d),

and (e), among which the computational cost of (e) is the lowest.
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(2M = 48) to generate reference waveforms. Figure 9a demonstrates the common-shot

gather calculated using Scheme II with rmax = 0.5 and 2M = 16. The four-time-

amplified error between the FD common-shot gather and the reference one is shown in

Fig. 9c. We observe wiggles caused by spatial dispersion errors. Scheme III with the

same values of rmax and M successfully suppresses the errors, as shown in Figs. 9b and

9d.
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Figure 8: 2D SEG/EAGE salt model for scalar-wave modeling.

Figure 10 displays the waveforms calculated using the three schemes together with

the reference waveform at a receiver with an offset (source-receiver distance) of 1375 m

or approximately 20 minimum wavelengths. The dispersion errors are quantified in

Fig. 11. The time shift between the calculated waveform and the reference waveform

in Fig. 10a is due to time dispersion errors of Scheme I with rmax = 0.4 and 2M =

16. We have to reduce the time interval by half to suppress the errors, as shown in

Fig. 10b. Scheme II is able to handle a large time interval with rmax = 0.5, but it suffers

from significant spacial dispersion errors if we use 2M = 16 (Fig. 10c). The spacial

dispersion errors are mostly reduced if we increase the length of the FD operator to

2M = 32 (Fig. 10d). Scheme III with rmax = 0.5 and 2M = 16 gives the most accurate

waveform (Fig. 10e) among all the schemes. The computational cost of Scheme III is

approximately a half of that of Scheme I with rmax = 0.2 and 2M = 16 or Scheme II

with rmax = 0.5 and 2M = 32.

The advantage of Scheme III is more obvious if we compare the simulated wave-

forms and the reference waveform at a receiver with a larger offset of 9750 m or ap-

proximately 160 minimum wavelengths in Fig. 12. The dispersion errors are quanti-
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(b) Scheme III with rmax = 0.5 and 2M = 16
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Figure 9: Common-shot gathers calculated using (a) Scheme II and (b) Scheme III

with rmax = 0.5 and 2M = 16 for the 2D SEG/EAGE salt model. (c) and (d) are the

four-time-amplified errors of (a) and (b) compared with the reference. Scheme II leads

to significant spatial dispersion errors as shown in (c), while Scheme III suppresses the

errors as shown in (d).
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(a) Scheme I with rmax = 0.4 and 2M = 16
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(b) Scheme I with rmax = 0.2 and 2M = 16
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(c) Scheme II with rmax = 0.5 and 2M = 16
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(d) Scheme II with rmax = 0.5 and 2M = 32
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(e) Scheme III with rmax = 0.5 and 2M = 16

Figure 10: Waveforms (blue lines) at a receiver with an offset of 1375 m or approx-

imately 20 minimum wavelengths calculated using Scheme I (first row), Scheme II

(second row), and Scheme III (third row) for the 2D SEG/EAGE salt model. The red

line is the reference waveform. Both (a) and (c) suffer from significant dispersion er-

rors. We have to decrease the time interval for Scheme I in (b) or increase the length

of the FD operator for Scheme II in (d) to suppress the errors. Scheme III gives a

well-matched waveform in (e) with approximately a half of the computational cost

compared with Scheme I in (b) or Scheme II in (d).26
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Figure 11: (a) Time-shifted cross-correlation R(tmax) and (b) relative time shift tmax/T0

between the calculated waveform and the reference waveform at a receiver with an

offset of 1375 m or approximately 20 minimum wavelengths for the 2D SEG/EAGE

salt model. Magenta line: Scheme I with rmax = 0.4 and 2M = 16; Blue symbols:

Scheme I with rmax = 0.2 and 2M = 16; Dark green line: Scheme II with rmax = 0.5

and 2M = 16; Black line: Scheme II with rmax = 0.5 and 2M = 32; Red symbols:

Scheme III with rmax = 0.5 and 2M = 16. The width of the time window is tw = 2T0 in

eq. (18), where T0 is the central wave period. Scheme III generates the most accurate

waveform among the three schemes.
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fied in Fig. 13. The errors of Scheme I and II become larger when the waves propagate

longer distance. In particular, a huge time shift occurs in the waveform calculated using

Scheme I with rmax = 0.4 and 2M = 16 (Fig. 12a). By contrast, Scheme III maintains

its excellent performance (Fig. 12e).

4.2. 3D examples

4.2.1. Two-layer model

We simulate scalar-wave propagation in 3D models, and compare the accuracy and

efficiency of the three schemes. We consider a layered model defined by

c(x, y, z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
3000 m/s, 0 m ≤ z ≤ 2600 m;

3300 m/s, 2600 m < z ≤ 3000 m.

(21)

The model is defined on a 3D grid with x ∈ [−2000 m, 2000 m], y ∈ [−2000 m, 2000 m],

and z ∈ [0 m, 3000 m]. The spatial grid spacing of the model is h = 10 m. A Ricker-

wavelet source with a central frequency of 48 Hz is located at (-1000 m, 1000 m, 50 m).

The receiver is located at (0 m, 0 m, 1400 m). Figure 14 displays the reflected wave-

form calculated using the three schemes, together with the analytical waveform. The

errors are quantified in Table 2. The L2-error ε3 is defined by

ε3 =

√∫ 1.35

1.27

(u(t) − uanal(t))2dt, (22)

where u(t) is the calculated waveform using FD schemes and uanal(t) is the analytical

waveform. The last column of the table lists the estimated computational cost of all

FD schemes relative to Scheme III. When r = 0.15 and 2M = 16, Scheme I and II give

significant dispersion errors (Figs. 14a and 14c), while Scheme III generates the wave-

form with very small errors (Fig. 14e). Accurate waveforms can also be obtained by

reducing the time interval for Scheme I or by increasing the length of the FD operator

for Scheme II, as shown in Figs. 14b and 14d. Scheme III is the best choice among the

three schemes because it speeds up the 3D modeling by a factor of approximately two

relative to the others.
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(a) Scheme I with rmax = 0.4 and 2M = 16
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(b) Scheme I with rmax = 0.2 and 2M = 16
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(c) Scheme II with rmax = 0.5 and 2M = 16
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(d) Scheme II with rmax = 0.5 and 2M = 32
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(e) Scheme III with rmax = 0.5 and 2M = 16

Figure 12: Waveforms (blue lines) at a receiver with an offset of 9750 m or approx-

imately 160 minimum wavelengths calculated using Scheme I (first row), Scheme II

(second row), and Scheme III (third row) for the 2D SEG/EAGE salt model. The red

line is the reference waveform. Compared with Fig. 10, the errors of Scheme I and II

become larger when the waves propagate longer distance, while Scheme III maintains

its excellent performance.
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Figure 13: (a) Time-shifted cross-correlation R(tmax) and (b) relative time shift tmax/T0

between the calculated waveform and the reference waveform at a receiver with an

offset of 9750 m or approximately 160 minimum wavelengths for the 2D SEG/EAGE

salt model. Magenta line: Scheme I with rmax = 0.4 and 2M = 16; Blue symbols:

Scheme I with rmax = 0.2 and 2M = 16; Dark green line: Scheme II with rmax = 0.5

and 2M = 16; Black line: Scheme II with rmax = 0.5 and 2M = 32; Red symbols:

Scheme III with rmax = 0.5 and 2M = 16. The width of the time window is tw = 2T0

in eq. (18), where T0 is the central wave period. Scheme III gives the most accurate

waveform among the three schemes and is the most efficient.
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(a) Scheme I with rmax = 0.15 and 2M = 16
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(b) Scheme I with rmax = 0.05 and 2M = 16
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(c) Scheme II with rmax = 0.15 and 2M = 16
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(d) Scheme II with rmax = 0.15 and 2M = 32
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(e) Scheme III with rmax = 0.15 and 2M = 16

Figure 14: Reflected waveform calculated using Scheme I (first row), Scheme II (sec-

ond row), and Scheme III (third row) for the 3D layered model (21). The red line is the

analytical waveform; the blue line is the simulated waveform. (a) and (c) contain sig-

nificant numerical dispersion. The waveforms in (b), (d) and (e) have similar quality,

but the computational cost of (e) is the lowest.
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tmax/T0 R(tmax) ε2 Cost

Scheme I with rmax = 0.15 and 2M = 16 8.2% 0.953 6.50E-4 0.7

Scheme I with rmax = 0.05 and 2M = 16 1.0% 0.997 7.80E-4 2.2

Scheme II with rmax = 0.15 and 2M = 16 0.0% 0.993 4.12E-3 1.0

Scheme II with rmax = 0.15 and 2M = 32 0.5% 0.997 9.75E-4 2.0

Scheme III with rmax = 0.15 and 2M = 16 0.0% 0.997 6.67E-4 1.0

Table 2: Quantified errors between the simulated waveform and the analytical wave-

form depicted in Fig. 14. T0 = 1/ f0 is the central wave period. The L2-error ε3 is

defined in eq. (22). The last column lists the estimated computational cost of all FD

schemes relative to Scheme III. To achieve the same modeling accuracy, Scheme III is

the most efficient among all the schemes.

4.2.2. 3D SEG/EAGE salt model

Our last modeling example is simulation of scalar-wave propagation in a 3D SEG/EAGE

salt model shown in Fig. 15. The model is defined on a 3D grid with x ∈ [−6500 m, 6500 m],

y ∈ [−6500 m, 6500 m], and z ∈ [0 m, 4180 m]. The spatial grid spacing of the model

is h = 20 m. A Ricker-wavelet source with a central frequency of 13 Hz is located

at (-5000 m, -5000 m, 100 m). Reference waveforms are generated using Scheme II

with a fine time interval with rmax = 0.05 and a very high-order accuracy in space

(2M = 48). The common-shot gather calculated using Scheme II with rmax = 0.38 and

2M = 16 contains spurious oscillations caused by spatial dispersion errors, as shown

in Figs.16a and 16c. Scheme III with the same values of rmax and M mostly removes

the oscillations, as displayed in Figs. 16b and 16d.

In Fig. 17, we compare the waveforms calculated using the three schemes at a

receiver with an offset of 7500 m in x-direction with the reference waveform. Scheme I

with rmax = 0.38 gives severe time shift between the simulated waveform and the

reference waveform, as shown in Fig. 17a. A small time interval with rmax = 0.15 is

needed for Scheme I to eliminate the time shift (Fig. 17b). Scheme II with rmax = 0.38

and 2M = 16 suffers from spatial dispersion errors, but not time dispersion errors

(Fig. 17c). The spatial dispersion errors can be greatly reduced by increasing the length

32



of the FD stencil to 2M = 32 (Fig. 17d). The waveform generated using Scheme III

with rmax = 0.38 and 2M = 16 contains very small numerical dispersion (Fig. 17e).

According to the quantified errors shown in Fig. 18, Scheme III is able to achieve

similar modeling accuracy with only approximately a half of the computational cost

compared with the other two schemes.

5. Conclusions

We have developed a novel finite-difference scheme optimized in the time-space

domain for modeling 2D and 3D scalar-wave propagation in geophysical problems.

Our optimized finite-difference scheme uses a new finite-difference stencil containing

a few more grid points than the standard stencil. We have obtained optimized finite-

difference coefficients by minimizing an objective function of relative errors of the

phase velocity. Our new optimized scheme is capable of suppressing dispersion er-

rors for a wide range of wavenumbers using a large time interval. In addition, the

new scheme is accurate for waves propagating along all directions. We have validated

the improved accuracy and computational efficiency of our optimized finite-difference

scheme using both dispersion analysis and numerical modeling of scalar-wave prop-

agation in 2D and 3D complex media. To achieve the same modeling accuracy, our
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Figure 15: 3D SEG/EAGE salt model for scalar-wave modeling.
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(a) Scheme II with rmax = 0.38 and 2M = 16
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(b) Scheme III with rmax = 0.38 and 2M = 16
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Figure 16: Common-shot gathers calculated using (a) Scheme II and (b) Scheme III

with rmax = 0.38 and 2M = 16 for the 3D SEG/EAGE salt model. (c) and (d) are the

four-time-amplified errors of (a) and (b) compared with the reference. The receiver

array is along the x-axis. Scheme II generates significant spatial dispersion errors as

shown in (c), while Scheme III successfully suppresses the errors as shown in (d).
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(a) Scheme I with rmax = 0.38 and 2M = 16
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(b) Scheme I with rmax = 0.15 and 2M = 16

4.5 5.0 5.5
−0.3

−0.1

0.1

0.3

0.5

Time (s)

V
er

tic
al

 V
el

oc
ity

(c) Scheme II with rmax = 0.38 and 2M = 16
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(d) Scheme II with rmax = 0.38 and 2M = 32
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(e) Scheme III with rmax = 0.38 and 2M = 16

Figure 17: Waveforms (blue lines) at a receiver with an offset of 7500 m in x-direction

calculated using Scheme I (first row), Scheme II (second row), and Scheme III (third

row) for the 3D SEG/EAGE salt model. The red line is the reference waveform. Both

(a) and (c) suffer from dispersion errors. We have to decrease the time interval for

Scheme I in (b) or increase the length of the FD stencil for Scheme II in (d) to suppress

the errors. Scheme III gives a well-matched waveform in (e) with only approximately

a half of the computational cost compared with Scheme I or II.
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Figure 18: (a) Time-shifted cross-correlation R(tmax) and (b) relative time shift tmax/T0

between the calculated waveform and the reference waveform at a receiver with an off-

set of 7500 m in x-direction for the 3D SEG/EAGE salt model. Magenta line: Scheme I

with rmax = 0.38 and 2M = 16; Blue symbols: Scheme I with rmax = 0.15 and

2M = 16; Dark green line: Scheme II with rmax = 0.38 and 2M = 16; Black line:

Scheme II with rmax = 0.38 and 2M = 32; Red symbols: Scheme III with rmax = 0.38

and 2M = 16. The width of the time window is tw = 2T0 in eq. (18), where T0 is the

central wave period. Scheme III is able to achieve similar modeling accuracy with only

approximately a half of the computational cost compared with the other two schemes.
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optimized scheme is computationally two times faster than its high-order counterpart,

and is up to 2.5 times more computationally efficient than optimized finite-difference

schemes using the standard stencil. Our new optimized finite-difference method pro-

vides a powerful tool for large-scale, high-frequency 3D modeling and high-resolution

3D inversion.
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Appendix A. The coefficients of our optimized FD scheme when 2M = 16

For 2D modeling:

d1,0 = − 8.74634088067635E−4 × r7 − 1.80530560296097E−3 × r6

− 4.40512972481673E−4 × r5 + 4.74018847663366E−3 × r4

− 1.93097802254349E−5 × r3 − 2.92328221171893E−1 × r2

− 6.58101498708345E−8 × r + 1.25420636437969,

d2,0 =7.93317828964018E−4 × r7 + 1.61433256585486E−3 × r6

+ 3.97244786277123E−4 × r5 + 5.46057645976549E−3 × r4

+ 1.73781972873916E−5 × r3 + 5.88754971188371E−2 × r2

+ 5.91706982879834E−8 × r − 1.23406473759703E−1,

d3,0 = − 6.50217700538851E−4 × r7 − 1.16449260340413E−3 × r6

− 3.24403734066325E−4 × r5 − 9.11483710059994E−3 × r4

− 1.41739982312600E−5 × r3 + 2.33184077551615E−2 × r2

− 4.82326094707544E−8 × r + 3.46342451534453E−2,
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d4,0 =4.67529510541428E−4 × r7 + 7.32736676632388E−4 × r6

+ 2.32444388955328E−4 × r5 + 8.46419766685254E−3 × r4

+ 1.01438593426278E−5 × r3 − 3.17586249260511E−2 × r2

+ 3.44988852042879E−8 × r − 1.19674942518101E−2,

d5,0 = − 2.98416281187033E−4 × r7 − 3.99380750669364E−4 × r6

− 1.48203388388213E−4 × r5 − 6.01788793192501E−3 × r4

− 6.46543538517443E−6 × r3 + 2.41912754935119E−2 × r2

− 2.19855171569984E−8 × r + 4.15554391204146E−3,

d6,0 =1.67882669698981E−4 × r7 + 1.88195874702691E−4 × r6

+ 8.30579218603960E−5 × r5 + 3.48461963201376E−3 × r4

+ 3.61873162287129E−6 × r3 − 1.49875789940005E−2 × r2

+ 1.22979142197165E−8 × r − 1.29213888778954E−3,

d7,0 = − 6.22209937489143E−5 × r7 − 6.44890425871692E−5 × r6

− 3.02936928954918E−5 × r5 − 1.33386143898282E−3 × r4

− 1.31215186728213E−6 × r3 + 6.70228205200379E−3 × r2

− 4.44653967516776E−9 × r + 3.15659916047599E−4,

d8,0 =6.84740881090240E−6 × r7 + 1.14082245705934E−5 × r6

+ 3.03727593705750E−6 × r5 + 2.36122782444105E−4 × r4

+ 1.26768491232397E−7 × r3 − 1.53347270556276E−3 × r2

+ 4.21617557752767E−10 × r − 4.51948990428065E−5,
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d1,1 =2.13188763071246E−6 × r7 − 7.41025068776257E−5 × r6

+ 2.31652037371554E−6 × r5 − 2.59495924602038E−3 × r4

+ 1.20637183170338E−7 × r3 + 5.21123771632193E−2 × r2

+ 4.42258843694177E−10 × r − 4.20967682664542E−7.

For 3D modeling:

d1,0,0 =3.26627215252963E−3 × r7 − 7.91679373564790E−4 × r6

+ 1.08663532410570E−3 × r5 + 2.54974226454794E−2 × r4

+ 3.23083288193913E−5 × r3 − 3.97704676886853E−1 × r2

+ 7.95584310128586E−8 × r + 1.25425295688331,

d2,0,0 = − 2.83291379048757E−3 × r7 + 8.52796449228369E−4 × r6

− 9.45353822586534E−4 × r5 − 8.82015372858580E−3 × r4

− 2.81364895458027E−5 × r3 + 6.73021045987599E−2 × r2

− 6.93180036837075E−8 × r − 1.23448809066664E−1,

d3,0,0 =2.32775473203342E−3 × r7 − 5.56793042789852E−4 × r6

+ 7.77649035879584E−4 × r5 + 2.45547234243566E−3 × r4

+ 2.31537892801923E−5 × r3 + 1.61900960524164E−2 × r2

+ 5.70523152308121E−8 × r + 3.46683979649506E−2,

d4,0,0 = − 1.68883462553539E−3 × r7 + 3.03535823592644E−4 × r6

− 5.64777117315819E−4 × r5 + 2.44582905523866E−4 × r4

− 1.68215579314751E−5 × r3 − 2.62344345204941E−2 × r2

− 4.14559953526389E−8 × r − 1.19918511290930E−2,

39



d5,0,0 =1.08994931098070E−3 × r7 − 1.41445142143525E−4 × r6

+ 3.64794490139160E−4 × r5 − 8.86057426195227E−4 × r4

+ 1.08681882832738E−5 × r3 + 2.07238558666603E−2 × r2

+ 2.67876079477806E−8 × r + 4.17058420250698E−3,

d6,0,0 = − 6.39950124405340E−4 × r7 + 6.06079815415080E−5 × r6

− 2.14633466007892E−4 × r5 + 6.84580412267934E−4 × r4

− 6.39907927898092E−6 × r3 − 1.29825288653404E−2 × r2

− 1.57775422151124E−8 × r − 1.29998325971518E−3,

d7,0,0 =2.92716539609611E−4 × r7 − 1.87446062803024E−5 × r6

+ 9.85389372183761E−5 × r5 − 2.40360290348543E−4 × r4

+ 2.94166215515130E−6 × r3 + 5.57066438452790E−3 × r2

+ 7.25741366376659E−9 × r + 3.18698432679400E−4,

d8,0,0 = − 6.42183857909518E−5 × r7 + 3.38552867751042E−6 × r6

− 2.17377151411164E−5 × r5 + 4.98269067389945E−5 × r4

− 6.50197868987757E−7 × r3 − 1.19096089679178E−3 × r2

− 1.60559948991172E−9 × r − 4.57795411807702E−5,

d1,1,0 = − 4.47723278782936E−5 × r7 − 7.69502473399932E−5 × r6

− 1.41765498250133E−5 × r5 − 2.54672045901272E−3 × r4

− 4.14343385915353E−7 × r3 + 5.00210047924752E−2 × r2

− 1.01220354410507E−9 × r − 8.07139347787336E−8.
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