
JID:YJCPH AID:5413 /FLA [m3G; v 1.134; Prn:20/08/2014; 10:27] P.1 (1-17)

Journal of Computational Physics ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A discrete time random walk model for anomalous diffusion

C.N. Angstmann, I.C. Donnelly, B.I. Henry ∗, J.A. Nichols

School of Mathematics and Statistics, UNSW Australia, 2052, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 May 2014
Received in revised form 10 July 2014
Accepted 3 August 2014
Available online xxxx

Keywords:
Fractional diffusion
Fractional Fokker–Planck equation
Continuous time random walk
Finite difference method
Anomalous diffusion

The continuous time random walk, introduced in the physics literature by Montroll and 
Weiss, has been widely used to model anomalous diffusion in external force fields. One 
of the features of this model is that the governing equations for the evolution of the 
probability density function, in the diffusion limit, can generally be simplified using 
fractional calculus. This has in turn led to intensive research efforts over the past decade to 
develop robust numerical methods for the governing equations, represented as fractional 
partial differential equations.
Here we introduce a discrete time random walk that can also be used to model anomalous 
diffusion in an external force field. The governing evolution equations for the probability 
density function share the continuous time random walk diffusion limit. Thus the discrete 
time random walk provides a novel numerical method for solving anomalous diffusion 
equations in the diffusion limit, including the fractional Fokker–Planck equation. This 
method has the clear advantage that the discretisation of the diffusion limit equation, 
which is necessary for numerical analysis, is itself a well defined physical process. Some 
examples using the discrete time random walk to provide numerical solutions of the 
probability density function for anomalous subdiffusion, including forcing, are provided.

Crown Copyright © 2014 Published by Elsevier Inc. All rights reserved.

1. Introduction

Following the seminal Physics Reports article by Metzler and Klafter in 2000 [1] there has been an explosion of literature 
on using the physically motivated continuous time random walk (CTRW) model of Montroll and Weiss [2] together with the 
mathematics of fractional calculus [3] to provide mathematical models of anomalous diffusion [4–12]. Further interest has 
been stimulated by large numbers of papers reporting findings of anomalous diffusion in experimental systems [1,13–18]
and large numbers of papers seeking to provide numerical solutions of the models [19–29]; ultimately to compare with 
experimental observations.

Anomalous diffusion, in this research field, has been taken to be stochastic particle motion where the variance, in the 
position of the particle, scales other than linearly with time. In the following we focus on so-called subdiffusion in which 
the variance scales as a sublinear power law in time, i.e.,〈

x(t)2〉 − 〈
x(t)

〉2 ∼ tα (1)

where 0 < α < 1.
In the CTRW model, particles wait for a time t , selected from a waiting time probability density ψ(t), before jumping 

through a distance x, selected from a jump probability density λ(x). Here it is assumed that the waiting time density and 
the jump density are decoupled. The evolution of the probability density function describing the position of the random 
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walk on a lattice at subsequent times is given by a generalised master equation [30]

du(x, t)

dt
=

∑
x′

t∫
0

K
(
x − x′, t − t′)u

(
x′, t′)dt′ (2)

where the kernel is related to the waiting time density and the jump density in Laplace space by

K̂
(
x − x′, s

) = sψ̂(s)
λ(x − x′) − δx,0

1 − ψ̂(s)
. (3)

The hat denotes a Laplace transform with respect to time. In the case of nearest neighbour jumps on a lattice of spacing 
�x, the jump density

λ
(
x − x′) = 1

2
(δx−x′,�x + δx−x′,−�x) (4)

has a finite variance. The generalised master equation for CTRWs with nearest neighbour jumps provides a model for 
standard diffusion if the waiting time density is exponential,

ψ(t) = 1

τ
exp

(
− t

τ

)
, (5)

and it provides a model for subdiffusion if the waiting time density is Mittag–Leffler,

ψ(t) = tα−1

τα
Eα,α

[
−

(
t

τ

)α]
for 0 < α < 1. (6)

The essential difference is that the exponential waiting time density is Markovian and the Mittag–Leffler density is non-
Markovian with an infinite first moment [1].

The diffusion limit of the generalised master equation is found by taking the time and space scales of the random walk, 
characterised by τ and �x respectively, to zero in a way that preserves the scaling relation �x2 ∼ τα , where α = 1 for 
standard diffusion. With the exponential waiting time density the diffusion limit of the generalised master equation results 
in the standard diffusion equation

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
(7)

with

D = lim
�x→0,τ→0

�x2

2τ
. (8)

With the Mittag–Leffler waiting time density, the diffusion limit of the generalised master equation results in the fractional 
diffusion equation

∂u(x, t)

∂t
= Dα0 D1−α

t
∂2u(x, t)

∂x2
, (9)

with [5]

D = lim
�x→0,τ→0

�x2

2τα
, (10)

and the operator 0 D1−α
t is the Riemann–Liouville fractional derivative defined by [3]

0 D1−α
t y(x, t) = 1

	(α)

∂

∂t

t∫
0

y(x, t′)
(t − t′)1−α

dt′. (11)

In the limit α → 1− , Eq. (11) recovers the standard diffusion equation.
The CTRW model has been extended to model anomalous diffusion in an external force field by introducing a bias 

probability for the direction of each step [5]. The bias probability is determined by evaluating the external force field at 
the instant of jumping. In the case where the force field, F (x, t), varies in both space and time, in the diffusion limit, the 
evolution of the probability density function is given by the fractional Fokker–Planck equation [10],

∂u(x, t)

∂t
= Dα0 D1−α

t

(
∂2u(x, t)

∂x2

)
− 1

ηα

∂

∂x

(
F (x, t)0 D1−α

t

(
u(x, t)

))
. (12)

Here ηα = (2βDα)−1 is a fractional friction coefficient and β is a parameter quantifying the strength of the effect of the 
force. If β = 0, Eq. (12) simplifies to Eq. (9). The CTRW formalism has also been extended to model subdiffusion in an 
external force field with reactions [12].
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In general, it is not possible to obtain explicit algebraic solutions for the fractional Fokker–Planck equation, Eq. (12), and 
related fractional partial differential equations, except in special cases. This has stimulated enormous interest in the devel-
opment of numerical methods of approximation, including explicit finite difference methods [19], implicit finite difference 
methods [20], spectral methods [26], and Galerkin methods [27].

In this paper, we introduce a discrete time random walk (DTRW) model for anomalous diffusion in an external space-
and time-dependent force field. In an earlier series of papers, Gorenflo, Mainardi and co-workers [31,32] introduced a dis-
crete time random walk for anomalous diffusion by using the backward Grünwald–Letnikov summation to replace the time 
fractional Caputo derivative in the time fractional diffusion equation. Our DTRW model for subdiffusion starts with the phys-
ical description of a random walk on a lattice with the steps of the walk selected from a jump probability distribution with 
a finite variance, and with waiting times, between steps, selected from a discrete time power law waiting time probability 
distribution with an infinite first moment. The forcing is again realised through bias probabilities in the step directions. We 
have derived the generalised master equations for the probability distribution of the DTRW and we show that the diffusion 
limit is equivalent to the diffusion limit of the corresponding CTRW model.

The DTRW, which is itself a well defined physical process, provides a novel explicit numerical scheme for solving the 
fractional Fokker–Planck equation. In Section 2 we derive the generalised master equations for DTRWs. We find the diffusion 
limit for these equations and show that they limit to the diffusion limit equations for CTRWs. In Section 3 we describe our 
numerical scheme for solving fractional Fokker–Planck equations, based on the DTRW model. Some illustrative examples are 
provided in Section 4. We conclude with a summary in Section 5.

2. The master equation for discrete time random walks

In this section we derive the master equation for the stochastic motion of a particle traversing a lattice {x−L , ..., xi−1, xi,

xi+1, ..., xL} in discrete time n ∈ N. At each discrete time the particle either remains at the current site or transitions to a 
new site. If a particle arrives at a site xi at time m then the transition to another site x j at time n is governed by a transition 
probability distribution function Ψ (x j, n|xi, m). In the following we assume that

Ψ (x j,n|xi,m) = λ(x j,n|xi)ψ(n − m) (13)

where ψ(n − m) is the probability distribution function for waiting a time (n − m) before jumping and λ(x j, n|xi) is the 
probability distribution function for jumping from xi to x j at time n. The probability distributions are normalised as follows:

∞∑
n=0

ψ(n) = 1 (14)

and

L∑
j=−L

λ(x j,n|xi) = 1. (15)

The effect of a space- and time-dependent force can be included in the probability distribution for jumping by biasing the 
jump probabilities in proportion to the external force. It is also possible to include spatial heterogeneity by having ψ vary 
as a function of the lattice site, but, in order to simplify the presentation, we have not included this generalisation in the 
following.

The probability of a particle arriving at a site xi after n time steps is recursively defined by

Q (xi,n) =
L∑

j=−L

n−1∑
m=0

Ψ (xi,n|x j,m)Q (x j,m) (16)

where Q (xi, 0) = δxi ,x∗ and x∗ is the lattice site the random walker started from at time n = 0. The probability of a particle 
remaining at xi at time n given the particle arrived at the earlier time m is given by the survival probability

Φ(n − m) = 1 −
n−m∑
k=0

ψ(k). (17)

The probability of a particle being at site xi after the nth time step is given by

X(xi,n) =
n∑

m=0

Φ(n − m)Q (xi,m), (18)

which expresses the probability that the particle arrived at xi at some earlier time m, and has not yet jumped away.
Conservation of probability leads to the condition that the difference in probability on a site after one time step is just 

the probability of a particle arriving, minus the probability of a particle leaving,
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X(xi,n) − X(xi,n − 1) = Q (xi,n) −
L∑

j=−L

n−1∑
m=0

Ψ (x j,n|xi,m)Q (xi,m). (19)

Substituting Eq. (16) into Eq. (19) gives

X(xi,n) − X(xi,n − 1) =
L∑

j=−L

n−1∑
m=0

Ψ (xi,n|x j,m)Q (x j,m) −
L∑

j=−L

n−1∑
m=0

Ψ (x j,n|xi,m)Q (xi,m). (20)

Restricting further analysis to biased nearest neighbour steps we have

λ(xi,n|x j) = pr(xi,n|x j)δx j ,xi−1 + p�(xi,n|x j)δx j ,xi+1 , (21)

λ(x j,n|xi) = pr(x j,n|xi)δx j ,xi+1 + p�(x j,n|xi)δx j ,xi−1 , (22)

where pr(xi, n|xi−1) is the bias probability of jumping to the right and p�(xi, n|xi+1) is the bias probability of jumping to 
the left. Substituting Eq. (13) with the above jump probabilities into Eq. (20), and using the normalisation

pr(xi+1,n|xi) + p�(xi−1,n|xi) = 1, (23)

we arrive at

X(xi,n) − X(xi,n − 1) = pr(xi,n|xi−1)

n−1∑
m=0

ψ(n − m)Q (xi−1,m) + p�(xi,n|xi+1)

n−1∑
m=0

ψ(n − m)Q (xi+1,m)

−
n−1∑
m=0

ψ(n − m)Q (xi,m). (24)

To obtain the generalised master equation (GME) from the flux balance we make use of the single-sided Z transform [33]
defined by

Ŷ (z) = Z
{

Y (n)
} =

∞∑
n=0

Y (n)z−n. (25)

The Z transform of Eq. (18) gives

X̂(xi, z) = Φ̂(z)Q̂ (xi, z). (26)

Similarly to the analysis of CTRWs in [34], it is convenient to define a discrete memory kernel K (n) by the Z transform 
relation

K̂ (z) = ψ̂(z)

Φ̂(z)
. (27)

Note that K (0) = 0. This enables us to replace the convolutions involving ψ and Q , with convolutions involving K and X . 
Explicitly we have

n−1∑
m=0

ψ(n − m)Q (x,m) =
n−1∑
m=0

K (n − m)X(x,m), (28)

which can readily be verified by taking the Z transform of each side of the equation and using Eqs. (26) and (27). Replacing 
the ψ � Q convolutions with K � X convolutions in Eq. (24) we arrive at the GME for DTRWs with biased step directions

X(xi,n) − X(xi,n − 1) = pr(xi,n|xi−1)

n−1∑
m=0

K (n − m)X(xi−1,m) + p�(xi,n|xi+1)

n−1∑
m=0

K (n − m)X(xi+1,m)

−
n−1∑
m=0

K (n − m)X(xi,m). (29)

The sum of the bias probabilities at a lattice site is normalised

pr(xi+1,n|xi) + p�(xi−1,n|xi) = 1, (30)

and the difference in bias probabilities at a lattice site can be represented as a bias force function

f (xi,n) = pr(xi+1,n|xi) − p�(xi−1,n|xi). (31)
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Using these results in Eq. (29) we can obtain the Generalised Master Equation (GME) for DTRWs with space- and time-
dependent forcing

X(xi,n) − X(xi,n − 1) =
n−1∑
m=0

K (n − m)

2

(
X(xi−1,m) + X(xi+1,m) − 2X(xi,m)

)

−
n−1∑
m=0

K (n − m)

2

(
f (xi+1,n)X(xi+1,m) − f (xi−1,n)X(xi−1,m)

)
. (32)

2.1. Diffusion limit of the GMEs for DTRWs

The diffusion limit is found by taking the time and space scales of the random walk to zero, effectively having an infinite 
number of size zero jumps in every instant in time.

We can introduce the time scale limit by transforming the Z transform variable via

z−1 = e−s�t . (33)

The Z transform is then a so called star transform

Ŷ �(s|�t) =
∞∑

n=0

Y (n)e−sn�t (34)

which can be considered as a discrete time sampled Laplace transform [33] with a sampling time scale of �t , identifying 
t = n �t .

The passage from discrete time to continuous time using the star transform can be seen by considering the discrete 
convolution H(n) defined by

H(n) =
n∑

m=0

K (m − n)G(m), (35)

where G(n) is an arbitrary discrete function. The star transform of this convolution gives

Ĥ�(s|�t) = K̂ �(s|�t)Ĝ�(s|�t), (36)

and the inverse Laplace transform with respect to the variable s yields

H(t|�t) =
t∫

0

K
(
t − t′ ∣∣ �t

)
G
(
t′ ∣∣ �t

)
dt′. (37)

Applying this process to the discrete time GME, Eq. (32), gives the corresponding continuous time GME in the limit of 
�t → 0.

lim
�t→0

X(xi, t) − X(xi, t − �t) = lim
�t→0

t∫
0

K (t − t′|�t)

2

(
X
(
xi−1, t′ ∣∣ �t

) + X
(
xi+1, t′ ∣∣ �t

) − 2X
(
xi, t′ ∣∣ �t

))
dt′

−
t∫

0

K (t − t′|�t)

2

(
f (xi+1, t)X

(
xi+1, t′ ∣∣ �t

) − f (xi−1, t)X
(
xi−1, t′ ∣∣ �t

))
dt′.

Dividing both sides of this equation by �t then gives

dX(xi, t)

dt
= lim

�t→0

t∫
0

K (t − t′|�t)

2�t

(
X
(
xi−1, t′ ∣∣ �t

) + X
(
xi+1, t′ ∣∣ �t

) − 2X
(
xi, t′ ∣∣ �t

))
dt′

−
t∫

0

K (t − t′|�t)

2�t

(
f (xi+1, t)X

(
xi+1, t′ ∣∣ �t

) − f (xi−1, t)X
(
xi−1, t′ ∣∣ �t

))
dt′. (38)

We can introduce a length scale, through an arbitrary lattice spacing �x, by setting xi = x and xi+1 = x +�x. Multiplying 
the RHS of Eq. (38) by �x2

�x2 and taking the limit as �x → 0 gives the governing equation for the diffusion limit as a 
generalised Fokker–Planck equation,
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∂ X(x, t)

∂t
= lim

�x→0,�t→0

�x2

2�t

t∫
0

K
(
t − t′ ∣∣ �t

)(∂2 X(x, t′)
∂x2

− 2β
∂ F (x, t)X(x, t′)

∂x

)
dt′, (39)

where the force,

F (x, t) = lim
�x→0

(pr(x + �x, t|x) − p�(x − �x, t|x))
β�x

(40)

= lim
�x→0

f�x(x, t)

β�x
. (41)

2.2. Memoryless waiting time

If the probability of jumping at any step is independent of the number of steps that the particle has waited we will 
refer to the probability of jumping as being memoryless. In the case of continuous time this property is only shown by 
the exponential waiting time density. In discrete time, if r is the probability of the particle jumping in any step, then for a 
memoryless process the probability of jumping on the nth step after arrival is

ψ(n) = r(1 − r)n−1 (42)

for n > 0 and zero otherwise. The survival probability is then given by

Φ(n) = (1 − r)n. (43)

The Z transform of this waiting time density, Eq. (42), is given by

ψ̂(z) =
∞∑

n=1

r(1 − r)(n−1)z−n, (44)

= r

r + z − 1
. (45)

Similarly the Z transform of the survival probability function is

Φ̂(z) = z

r + z − 1
. (46)

The Z transform of the memory kernel is then obtained from Eq. (27), yielding

K̂ (z) = r

z
, (47)

and the inverse Z transform then yields

K (n) = rδn,1, (48)

where δ is the Kronecker delta function.
We now substitute the memory kernel, Eq. (48), into the generalised master equation, Eq. (32), to obtain

X(xi,n) = r pr(xi,n|xi−1)X(xi−1,n − 1) + r p�(xi,n|xi+1)X(xi+1,n − 1) + (1 − r)X(xi,n − 1). (49)

This is the master equation for DTRWs with memoryless waiting time densities and space- and time-dependent forcing.

2.2.1. Diffusion limit of the memoryless GME
The star transform, Eq. (34), of the memory kernel, Eq. (48), is given by

K̂ �(s|�t) = re−s�t , (50)

and the inverse Laplace transform with respect to the variable s yields

K (t|�t) = rδ(t − �t). (51)

Substituting this into the generalised Fokker–Planck equation, Eq. (39), and taking a Taylor series expansion about t for 
terms involving X(x, t − �t), then gives,

∂ X(x, t)

∂t
= D

(
∂2 X(x, t)

∂x2
− 2β

∂ F (x, t)X(x, t)

∂x

)
, (52)

where

D = lim
�x→0,�t→0

r�x2

2�t
. (53)

This is the standard Fokker–Plank equation for diffusion in an external space- and time-dependent force field F (x, t).
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2.3. Power-law Sibuya waiting time

If the waiting time distribution has a finite first moment then the walk will behave asymptotically like the memoryless 
case. By considering a heavy tailed waiting time distribution this will no longer be the case and the process will asymptot-
ically follow a fractional governing equation. For tractability, here we consider the Sibuya distribution [35] for the waiting 
time distribution,

ψ(n) = (−1)n+1 	(α + 1)

	(n + 1)	(α − n + 1)
, (54)

for 0 < α < 1 and n > 0. The Sibuya distribution is the waiting time distribution for a particle that has a probability α
n

of jumping after waiting n steps. The probability of a zero length wait is zero, and hence ψ(0) = 0. It is interesting to 
note that this distribution is the negative of the coefficients of the Grünwald–Letnikov fractional derivative of order α. 
The Grünwald–Letnikov fractional derivative involving a discrete sum is formally equivalent to the Riemann–Liouville frac-
tional derivative involving an integral [3] and it has been widely used to replace Riemann–Liouville fractional derivatives in 
numerical methods [36]. The survival probability function corresponding to the Sibuya waiting time distribution is given by,

Φ(n) = (−1)n	(α)

	(n + 1)	(α − n)
. (55)

After taking the Z transforms,

ψ̂(z) = 1 − (
1 − z−1)α (56)

and

Φ̂(z) = (
1 − z−1)α−1

(57)

we arrive at the Z transform of memory kernel

K̂ (z) = (
1 − z−1)1−α − (

1 − z−1). (58)

The Z transform can be inverted to give

K (n) = 	(n − 1 + α)

	(α − 1)	(n + 1)
+ δn,1. (59)

Note that this can be defined recursively for n ≥ 3 by

K (n) = n + α − 2

n
K (n − 1). (60)

Again it is interesting to note that K (n) − δn,1 are the coefficients of the Grünwald–Letnikov fractional derivative of order 
1 − α.

We now substitute the memory kernel into the GME, Eq. (29), to arrive at the GME for DTRWs with the Sibuya heavy 
tailed waiting time density and space- and time-dependent forcing,

X(xi,n) = pr(xi,n|xi−1)

(
n−1∑
m=0

	(n − m − 1 + α)

	(α − 1)	(n − m + 1)
X(xi−1,m) + X(xi−1,n − 1)

)

+ p�(xi,n|xi+1)

(
n−1∑
m=0

	(n − m − 1 + α)

	(α − 1)	(n − m + 1)
X(xi+1,m) + X(xi+1,n − 1)

)

−
n−1∑
m=0

	(n − m − 1 + α)

	(α − 1)	(n − m + 1)
X(xi,m). (61)

2.4. Diffusion limit of Sibuya GME

The star transform of the Sibuya memory kernel is

K̂ �(s|�t) = (
1 − e−s�t)1−α − (

1 − e−s�t). (62)

Taking the power series expansion of the exponential, e−s�t , and retaining the lowest order term in �t we have

K̂ �(s|�t) ∼ (s�t)1−α. (63)
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The inverse Laplace transform with respect to s yields

K (t|�t) = lim
�t→0

�t

�tα
L−1{s1−α

}
(t) +O(�t). (64)

This can be substituted into the generalised Fokker–Planck equation, Eq. (39), giving

∂ X(x, t)

∂t
= Dα

t∫
0

L−1{s1−α
}(

t − t′)(∂2 X(x, t′)
∂x2

− 2β
∂ F (x, t)X(x, t′)

∂x

)
dt′, (65)

where

Dα = lim
�x→0,�t→0

�x2

2�tα
. (66)

The integral on the RHS of Eq. (65) is a convolution so that we can take the Laplace transform to obtain

s X̂(x, s) − X(x,0) = Dα

(
s1−α

(
∂2 X̂(x, s)

∂x2
− 2β

∂ F (x, t) X̂(x, s)

∂x

))
,

and then we take the inverse Laplace transform, with the identification,

L−1{s1−α X̂(x, s)
} = 0 D1−α

t X(x, t)

to arrive at

∂ X(x, t)

∂t
= Dα

(
∂2

∂x2

(
0 D1−α

t X(x, t)
) − 2β

∂

∂x

(
F (x, t)0 D1−α

t X(x, t)
))

. (67)

3. Numerical scheme

Given that the GME for the DTRW with Sibuya distributed waiting times, Eq. (61), approaches the fractional Fokker–
Planck equation, Eq. (67), in the limit of small lattice spacing, �x, and small time step, �t , the solution of the GME can be 
used as an approximation to the solution of the FFPE. Thus the GME for the DTRW provides an explicit numerical scheme 
that will converge to the FFPE in the appropriate limit, as described below.

The fractional Fokker–Planck equation is given by

∂ρ(x, t)

∂t
= Dα

(
∂2

∂x2

(
D1−α

t

(
ρ(x, t)

)) − 2β
∂

∂x

(
F (x, t)D1−α

t

(
ρ(x, t)

)))
, (68)

where Dα and α are parameters and F (x, t) is an external space- and time-dependent force. In our numerical method we 
approximate the solution to the FFPE, Eq. (68), with the solution of the GME for DTRWs, Eq. (61), through the identification

ρ(x, t) ≈ X(i,n), (69)

where i = 
x/�x� and n = 
t/�t�.
It remains to match the parameters, Dα and F (x, t), from the FFPE with the appropriate parameters in the GME. The 

diffusion coefficient from the FFPE sets the ratio of the space and length scales through the relation,

Dα = �x2

2�tα
. (70)

Treating �x as the free parameter in this ratio we identify

�t =
(

�x2

2Dα

) 1
α

. (71)

This leaves only a relationship between the force function from the FFPE, F (x, t), and the bias function from the GME, f (x, t). 
Consistent with the derivation of the FFPE from CTRWs we introduce Boltzmann weights [5] for the bias probabilities as 
follows:

pr(xi+1,n|xi) = exp[−βV (xi+1, t)]
exp[−βV (xi−1, t)] + exp[−βV (xi+1, t)] (72)

where

F (x, t) = −∂V (x, t)
. (73)
∂x
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It is straightforward to show that

lim
�x→0

pr(xi+1,n|xi) = lim
�x→0

1

2

(
1 + β�xF (xi, t)

)
, (74)

is consistent with Eq. (30) and Eq. (40). A similar relation holds for p�(xi−1, n|xi).

3.1. Boundary conditions

Boundary conditions are imposed on the problem in a standard manner. For example, on a finite domain, x ∈ [0, L], 
where L = k�x and t = n�t , we have boundary conditions as follows:

Dirichlet: If

ρ(0, t) = b1(t) (75)

and

ρ(L, t) = b2(t), (76)

then

X(0,n) = b1(n) (77)

and

X(k,n) = b2(n). (78)

Zero-Flux: If

∂ρ(x, t)

∂x

∣∣∣∣
x=0

− 2β F (0, t)ρ(0, t) = 0 (79)

and

∂ρ(x, t)

∂x

∣∣∣∣
x=L

− 2β F (L, t)ρ(L, t) = 0, (80)

then we have

X(−1,n) = p�(x−1,n|x0)X(0,n)

pr(x0,n|x−1)
(81)

and

X(k + 1,n) = p�(xk+1,n|xk)X(0,n)

pr(xk,n|xk+1)
(82)

3.2. Initial conditions

For the initial condition

ρ(x,0) = g(x), (83)

where g(x) is bounded, we simply sample g(x) via

X(i,0) = g(i�x). (84)

However, if

ρ(x,0) = δ
(
x − x∗) (85)

we take

X(i,0) = δx,x∗

�x
(86)

such that

∞∫
−∞

ρ(x,0)dx = lim
�x→0

∑
∀xi

X(xi,0)�x. (87)
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3.3. Implementation

Here we summarise the details necessary to implement the DTRW, presented in pseudo code in Algorithm 1. Calling the 
function “DTRW” will return the N × 2L sized array of values for X , where L parameterises the size of the spatial grid, and 
we solve for N times steps. Note that the algorithm determines N according to Eq. (71), which uses the provided spatial 
resolution �x and final simulation time T .

We note the other crucial input arguments include the anomalous exponent, α, the diffusion coefficient, Dα , along with 
jump probabilities p� and pr (though note that we may simply use p� = 1 − pr ), which may be dependent on xi and t and 
may be calculated from a potential using Eq. (72).

Algorithm 1 Discrete time random walk with Sibuya waiting time.
1: function CalculateSibuyaKernel(N, α)
2: K0 ← 0
3: K1 ← α
4: K2 ← α(1 − α)/2
5: for i ← 3 to N do
6: Ki ← i+α−2

n Ki−1
return K

7: function DTRW(T , α, Dα , �x, L, p� , pr )

8: �t ← ( �x2

2Dα
)1/α

9: N ← T /�t
10: K ← CalculateSibuyaKernel(N , α)
11: X(xi , 0) ← Initial conditions
12: for n ← 1 to N do
13: for xi ← x−L to xL do
14: i(xi , n) ← 0
15: for m ← 0 to n do
16: i(xi , n) ← i(xi , n) + K (n − m) × X(xi , m)

17: for xi ← x−L to xL do
18: X(xi , n) ← X(xi , n − 1) + p�(xi+1, n) × i(xi+1, n) + pr(xi−1, n) × i(xi−1, n) − i(xi , n)

19: return X

4. Examples

4.1. Example 1: F (x, t) = 0 with zero-flux boundary conditions

We begin with the example of anomalous diffusion on a line subject to zero-flux boundary conditions. In this case the 
fractional Fokker–Planck equation simplifies to the standard fractional diffusion equation,

∂ρ(x, t)

∂t
= Dα D1−α

t
∂2ρ(x, t)

∂x2
, (88)

subject to the boundary conditions,

∂ρ(x, t)

∂x

∣∣∣∣
x=0

= 0, (89)

and

∂ρ(x, t)

∂x

∣∣∣∣
x=1

= 0. (90)

Initially the particle is taken to be at x = 1/2, i.e.,

ρ(x,0) = δ

(
x − 1

2

)
. (91)

We take the parameters Dα = 1, and α = 4/5.
The analytical solution can be found by subordinating the solution to the standard diffusion equation given the same 

boundary and initial conditions [1,37]. It is straightforward to show, using separation of variables, that the solution to the 
standard diffusion equation,

∂χ(x, t)

∂t
= ∂2χ(x, t)

∂x2
, (92)

with boundary conditions and initial conditions given above, is of the form,
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χ(x, t) = 1 +
∞∑

n=1

(−1)n2 exp
(−(2nπ)2t

)
cos[2nπx]. (93)

This can be subordinated by an inverse alpha stable subordinator, T (t, τ ) to find the solution to the fractional diffusion 
equation [1,37],

ρ(x, t) =
∞∫

0

χ(x, τ )T (t, τ )dτ . (94)

As the subordination of the exponential function, exp(−c t), is a Mittag–Leffler, Eα(−c tα), function [38]. This yields

ρ(x, t) = 1 +
∞∑

n=1

(−1)n2Eα

(−(2nπ)2tα
)

cos[2nπx] (95)

as the infinite series solution to the fractional diffusion equation, subject to the boundary conditions and initial condition 
given above.

To implement the numerical scheme for this problem we choose k + 1 to be the number of equally spaced points in the 
interval [0, 1]. Then �x = L/k. Using Eq. (71) we set a value for �t given Dα = 1, and α = 4/5. As there is no force term 
the bias function f (x, t) is zero. Hence the GME that must be solved can be simplified to the following difference equation:

X(i,n) = X(i,n − 1) +
n−1∑
m=0

K (m − n)
(

X(i − 1,m) + X(i + 1,m) − X(i,m)
)

(96)

with K (n) given by Eq. (59), and α = 4/5. The boundary conditions, consistent with Eq. (81), and Eq. (82), are

X(−1,n) = X(0,n), (97)

X(k + 1,n) = X(k,n). (98)

The initial condition consistent with Eq. (86) is

X(i,0) =
δi,
 k

2 �
�x

. (99)

Finally the solution to the fractional diffusion equation can then be approximated by

ρ(x, t) = X(i,n) (100)

with x = i�x and t = n�t .
We present results for a range of �x and compare them to the analytical solution in Fig. 1. Within the same figure we 

also show measures of convergence between the numerical scheme X�x(x, t) and the analytical solution ρ(x, t) for t > 0. 
The measures of convergence that we have investigated are the L∞ norm of the absolute difference,∥∥X�x(x, t) − ρ(x, t)

∥∥∞ (101)

and the L∞ norm of the relative difference,∥∥∥∥ X�x(x, t) − ρ(x, t)

ρ(x, t)

∥∥∥∥∞
. (102)

The latter can also measure convergence in the case of unbounded solutions.

4.2. Example 2: F (x) = 1 with time varying boundary conditions

Following Example 1 in [25], we consider the following fractional Fokker–Planck equation

∂ρ(x, t)

∂t
= ∂2

∂x2

(
D1−α

t

(
ρ(x, t)

)) − ∂

∂x

(
D1−α

t

(
ρ(x, t)

))
(103)

with the anomalous exponent α = 4
5 , and subject to the time-dependent boundary conditions

ρ(0, t) = −3t0.8

	[1.8] − 2t1.6

	[2.6] , (104)

ρ(1, t) = −t0.8

− 2t1.6

, (105)

	[1.8] 	[2.6]
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Fig. 1. Convergence of numerical solution for Example 1. Numerical solutions are shown for different values of �x with �x = 1
4 (Blue ©), 1

8 (Purple �), 
1

12 (Orange +) and 1
16 (Green ×). �t = 0.42045�x10/4. The arrow denotes decreasing �x. Top Left—Plot of numerical and analytical (solid curve) solutions 

at t = 2. Top Right—Difference between each numerical solution and the analytical solution at t = 2. Bottom Left—The L∞ norm of the absolute difference 
between the numerical simulation and the analytical solution. Bottom Right—The L∞ norm of the relative difference between the numerical simulation and 
the analytical solution. Note that the bottom plots are on a log–log scale.

and initial condition

ρ(x,0) = x(1 − x). (106)

As shown in [25], this has the solution

ρ(x, t) = x(1 − x) + (2x − 3)
t0.8

	[1.8] − 2t1.6

	[2.6] . (107)

This example provides an interesting test case for the numerical method presented here as the solution is negative and 
hence cannot be interpreted as probability density of a random walk.

To implement the numerical scheme we set the number of points in the interval [0, 1] to be (k + 1). Then �x = 1/k and 
�t is found from Eq. (71). From the given FFPE it can be seen that the force is constant in both space and time, F (x, t) = −1, 
so we may define a potential,

V (x, t) = x. (108)

From Eq. (72) and taking β = 1
2 , the probability of jumping right is in this case independent of time and space,

pr = exp(− 1
2 �x)

exp(− 1
2 �x) + exp( 1

2 �x)
. (109)

The GME in this case is given by

X(i,n) = X(i,n − 1) +
n−1∑
m=0

K (m − n)
(

pr X(i − 1,m) + (1 − pr)X(i + 1,m) − X(i,m)
)
, (110)

with K (n) from Eq. (59). The boundary conditions consistent with Eq. (77) and Eq. (78) are

X(0,n) = −3(n�t)0.8

	[1.8] − 2(n�t)1.6

	[2.6] , (111)

X(1,n) = −(n�t)0.8

− 2(n�t)1.6

, (112)

	[1.8] 	[2.6]
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Fig. 2. Convergence of numerical solution for Example 2. Numerical solutions are shown for different values of �x with �x = 1
4 (Blue ©), 1

8 (Purple �), 
1

12 (Orange +) and 1
16 (Green ×). �t = 0.42045�x10/4. The arrow denotes decreasing �x. Top Left—Plot of numerical and analytical (solid curve) solutions 

at t = 2. Top Right—Difference between each numerical solution and the analytical solution at t = 2. Bottom Left—The L∞ norm of the absolute difference 
between the numerical simulation and the analytical solution. Bottom Right—The L∞ norm of the relative difference between the numerical simulation and 
the analytical solution.

and the initial condition is
X(i,0) = i�x(1 − i�x). (113)

Finally the solution can then be approximated by

ρ(x, t) = X(i,n) (114)

with x = i�x and t = n�t .
Different measures of convergence are shown in Fig. 2. The numerical solution of the GME, Eq. (61), approaches the 

analytic solution as the parameter �x is decreased.

4.3. Example 3: F (x) = − 1
x+1 with time varying boundary conditions

Following Example 2 in [25], we consider the behaviour on the interval [0, 1] of the fractional Fokker–Planck equation

∂ρ(x, t)

∂t
= ∂2

∂x2

(
D1−α

t

(
ρ(x, t)

)) + ∂

∂x

(
1

x + 1
D1−α

t

(
ρ(x, t)

))
. (115)

In this example we take α = 4
5 . The boundary conditions are given by

ρ(0, t) = 1 + 8t0.8

	[1.8] , (116)

and

ρ(1, t) = 8 + 16t0.8

	[1.8] . (117)

The initial condition is taken to be

ρ(x,0) = (x + 1)3. (118)
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The exact solution is given by [25]

ρ(x, t) = (x + 1)3 + 8(x + 1)
t0.8

	[1.8] . (119)

Similarly to the previous example, we set the number of points in the interval [0, 1] to be k + 1. Then �x = 1/k and �t
is found from Eq. (71). The potential in this example is

V (x, t) = ln(x + 1). (120)

As in the previous case, we use Eq. (72) with β = 1
2 to obtain the probability of jumping right, which, in this case is 

independent of time but dependent on space,

pr(x) = exp(− 1
2 ln(x + �x + 1))

exp(− 1
2 ln(x + �x + 1)) + exp(− 1

2 ln(x − �x + 1))
(121)

The GME in this case is given by

X(i,n) = X(i,n − 1) +
n−1∑
m=0

K (m − n)
(

pr(i − 1)X(i − 1,m) + (
1 − pr(i + 1)

)
X(i + 1,m) − X(i,m)

)
, (122)

where K (n) is the memory kernel given in Eq. (59). The boundary conditions are given by

X(0,n) = 1 + 8(n�t)0.8

	[1.8] , (123)

X(1,n) = 8 + 16(n�t)0.8

	[1.8] , (124)

and the initial condition is

X(i,0) = (i�x + 1)3. (125)

In an identical manner to the previous two cases the solution can then be approximated by

ρ(x, t) = X(i,n) (126)

with x = i�x and t = n�t .
The convergence of the numerical solution to the analytical solution, with decreasing �x, is shown in Fig. 3.

4.4. Example 4: F (x) = −2π sin(2πx) on a periodic domain

The effects of fractional diffusion for a particle moving in a spatially periodic potential has been considered in [39]. 
By simulating an ensemble of particles undergoing a CTRW the authors showed that the time evolution of the PDF has 
qualitative differences for small α values, compared to standard diffusion α = 1. To investigate this example we take an 
array of delta functions that is commensurate with the period of the potential as the initial condition. The solution of the 
infinite domain problem can then be considered in a single unit cell with periodic boundary conditions. In this example we 
consider a spatially periodic potential

V (x, t) = cos(2πx). (127)

The fractional Fokker–Planck equation for this example is given by

∂ρ(x, t)

∂t
= ∂2

∂x2

(
D1−α

t

(
ρ(x, t)

)) + ∂

∂x

(
2π sin(2πx)D1−α

t

(
ρ(x, t)

))
, (128)

with periodic boundary conditions

ρ(0, t) = ρ(1, t), (129)

and the initial condition

ρ(x,0) = δ(x − 0) + δ(x − 1). (130)

As in the previous examples, we set the number of points in the interval [0, 1] to be k + 1. Then �x = 1/k and �t is 
found from Eq. (71). Once again we use Eq. (72) with β = 1

2 to obtain the probability of jumping right, which again, is 
independent of time but dependent on space,

pr(x) = exp(− 1
2 cos(2π(x + �x)))

exp(− 1 cos(2π(x + �x))) + exp(− 1 cos(2π(x − �x)))
. (131)
2 2



JID:YJCPH AID:5413 /FLA [m3G; v 1.134; Prn:20/08/2014; 10:27] P.15 (1-17)

C.N. Angstmann et al. / Journal of Computational Physics ••• (••••) •••–••• 15
Fig. 3. Convergence of numerical solution for Example 3. Numerical solutions are shown for different values of �x with �x = 1
4 (Blue ©), 1

8 (Purple �), 
1

12 (Orange +) and 1
16 (Green ×). �t = 0.42045�x10/4. The arrow denotes decreasing �x. Top Left—Plot of numerical and analytical (solid curve) solutions 

at t = 2. Top Right—Difference between each numerical solution and the analytical solution at t = 2. Bottom Left—The L∞ norm of the absolute difference 
between the numerical simulation and the analytical solution. Bottom Right—The L∞ norm of the relative difference between the numerical simulation and 
the analytical solution.

The GME is then given by

X(i,n) = X(i,n − 1) +
n−1∑
m=0

K (m − n)
(

pr(i − 1)X(i − 1,m) + (
1 − pr(i + 1)

)
X(i + 1,m) − X(i,m)

)
, (132)

where K (n) is the memory kernel given in Eq. (59). The boundary condition is

X(0,n) = X(1,n), (133)

and the initial condition is

X(i,0) = (δi,1 + δi,k+1)

�x
. (134)

The time evolution of the solution to the GME is shown in Fig. 4 for two different values of α. For α = 0.45 we see the 
eventual peak in the density arises from the centre, whereas for α = 0.9 the peak is formed from the coalescing of two 
separate peaks. This behaviour is in qualitative agreement with the results shown in Fig. 5 of [39].

5. Summary

In this paper we have introduced a discrete time random walk model for anomalous subdiffusion in an external space-
and time-dependent force field. We have derived the generalised master equations for this model and we show that in the 
diffusion limit this limits to the fractional Fokker–Planck equation for subdiffusion with space- and time-dependent forcing. 
We then show how the discrete time random walk model can be used to provide an explicit numerical method for solving 
fractional Fokker–Planck equations. In future work we plan to extend our numerical method to fractional reaction diffusion 
equations.
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Fig. 4. Numerical solution of Example 4. Numerical solutions are shown for different values of α. Top Left—Here α = 9
20 , �x = 0.05, and �t = 3.53744 ×10−7 . 

The solution is plotted at four different times, t = 1.06123 × 10−6 (Blue ©), t = 4.1388 × 10−5 (Purple �), t = 3.17308 × 10−4 (Orange +), t = 1.06113 ×
10−2 (Green ×). Top Right—Here α = 9

10 , �x = 0.025, and �t = 1.27464 × 10−4. The solution is plotted at four different times, t = 5.09858 × 10−4

(Blue ©), t = 9.68729 × 10−3 (Purple �), t = 1.98844 × 10−2 (Orange +), t = 4.53773 × 10−2 (Green ×). Bottom Left—Here α = 9
20 , �x = 0.05, and 

�t = 3.53744 × 10−7 . The solution at t = 3.17308 × 10−4 (Orange +) highlights the emergence of the central peak. Bottom Right—Here α = 9
10 , �x = 0.025, 

and �t = 1.27464 × 10−4. The solution at t = 1.98844 × 10−2 (Orange +) highlights the emergence of two of centre peaks that eventually coalesce into 
the central peak.
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