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Fractional partial order diffusion equations are a generalization of classical partial 
differential equations, used to model anomalous diffusion phenomena. When using the 
implicit Euler formula and the shifted Grünwald formula, it has been shown that the 
related discretizations lead to a linear system whose coefficient matrix has a Toeplitz-
like structure. In this paper we focus our attention on the case of variable diffusion 
coefficients. Under appropriate conditions, we show that the sequence of the coefficient 
matrices belongs to the Generalized Locally Toeplitz class and we compute the symbol 
describing its asymptotic eigenvalue/singular value distribution, as the matrix size diverges. 
We employ the spectral information for analyzing known methods of preconditioned 
Krylov and multigrid type, with both positive and negative results and with a look forward 
to the multidimensional setting. We also propose two new tridiagonal structure preserving 
preconditioners to solve the resulting linear system, with Krylov methods such as CGNR 
and GMRES. A number of numerical examples show that our proposal is more effective 
than recently used circulant preconditioners.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Fractional-space diffusion equations (FDEs) are used to describe diffusion phenomena, that cannot be modeled by the 
second order diffusion equations. More precisely, when a fractional derivative replaces a second derivative in a diffusion 
model, it leads to enhanced diffusion. The FDEs are of numerical interest, since there exist only few cases in which the 
analytic solution is known. As a consequence, in the past ten years, many methods have been proposed for solving numer-
ically FDEs problems. In [16,17] Meerschaert and Tadjeran introduced an unconditionally stable method for approximating 
the FDEs: from a numerical linear algebra viewpoint, it is worth noticing that the resulting linear systems show a strong 
structure and indeed the related coefficient matrices can be seen as a sum of two diagonal times Toeplitz matrices (see 
[32]). Exploiting such a structure, in [31] the authors employed the conjugate gradient normal residual (CGNR) method and 
numerically showed that its convergence is fast when the diffusion coefficients are small, that is in this case the resulting 
linear system is well-conditioned. On the other hand, when the diffusion coefficients are not small, the problem becomes 
ill-conditioned and the convergence of the CGNR method slows down. To avoid the resulting drawback, in [19] Pang and 
Sun proposed a multigrid method that converges very fast, even in the ill-conditioned case. The linear convergence of such 
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a method has been proved only in the case of constant and equal diffusion coefficients. With the same purpose, Lei and Sun 
used the CGNR method with a circulant preconditioner and verified that it converges superlinearly (see [15]), again in the 
case of constant diffusion coefficients. A further improvement of the circulant preconditioning has been proposed in [18]. 
Both strategies preserve the computational cost per iteration of O (N log N) operations, typical of the CGNR method when 
applied to Toeplitz type structures.

Under appropriate conditions, in this paper we show that the coefficient matrix-sequence coming from the Meerschaert–
Tadjeran method belongs to the Generalized Locally Toeplitz (GLT) class [25,26] and we compute the associated symbol: it 
turns out that the symbol describes the asymptotic singular value distribution, as the matrix size tends to infinity. In other 
words, an evaluation of the symbol over a uniform equispaced gridding in the domain leads to a reasonable approximation 
of the singular values, when the matrix size is sufficiently large. Furthermore, when the diffusion coefficients are equal 
(even if not necessarily constant), we show that the symbol also describes the eigenvalue distribution. Making use of such 
asymptotic spectral information, we study in more detail recently developed techniques, by furnishing new positive and 
negative results: for instance we prove that the circulant preconditioning described in [15] cannot be superlinear in the 
variable coefficient case, due to a lack of clustering at a single point, while the multigrid approach based on the symbol 
(which goes back to [9,2] and it is used in this FDE context in [19]) can be optimal also in the variable coefficient set-
ting. We finally introduce two tridiagonal preconditioners for Krylov methods like CGNR and GMRES, which preserve the 
Toeplitz-like structure of the coefficient matrix. One of the preconditioners involves the first derivative discretization matrix 
and is suitable for fractional exponents close to 1, the other makes use of the discrete Laplacian matrix and is recommended 
for fractional exponents close to 2. Due to their tridiagonal structure, both preconditioners preserve the computational cost 
per iteration of the used Krylov method. A clustering analysis of the preconditioned matrix-sequences, even in case of 
nonconstant diffusion coefficients, is also provided.

The paper is organized as follows. In Section 2 we briefly introduce the FDEs equations and recall the Meerschaert–Tad-
jeran discretization. Section 3 concerns the symbol and the spectral distribution of the resulting coefficient matrix-sequence. 
In Section 4 we study known preconditioning techniques and multigrid methods by using the spectral information and we 
give details on our new preconditioning strategy. Finally, Section 5 is devoted to numerical examples and Section 6 contains 
conclusions and open problems.

2. Fractional diffusion equations and a finite difference approximation

We are interested in the following initial-boundary value problem⎧⎨
⎩

∂u(x,t)
∂t = d+(x, t) ∂αu(x,t)

∂+xα + d−(x, t) ∂αu(x,t)
∂−xα + f (x, t), (x, t) ∈ (L, R) × (0, T ],

u(L, t) = u(R, t) = 0, t ∈ [0, T ],
u(x,0) = u0(x), x ∈ [L, R],

(1)

where α ∈ (1, 2) is the fractional derivative order, f (x, t) is the source term and the nonnegative functions d±(x, t) are the 
diffusion coefficients. The right-handed (−) and the left-handed (+) fractional derivatives in (1) are defined in Riemann–
Liouville form as follows

∂αu(x, t)

∂+xα
= 1

�(n − α)

∂n

∂xn

x∫
L

u(ξ, t)

(x − ξ)α+1−n
dξ,

∂αu(x, t)

∂−xα
= (−1)n

�(n − α)

∂n

∂xn

R∫
x

u(ξ, t)

(ξ − x)α+1−n
dξ,

where n is an integer such that n −1 < α ≤ n and �(·) is the gamma function. If α = m, with m ∈N, the fractional derivatives 
reduce to the standard integer derivatives, i.e.,

∂mu(x, t)

∂+xm
= ∂mu(x, t)

∂xm
,

∂mu(x, t)

∂−xm
= (−1)m ∂mu(x, t)

∂xm
.

Let us observe that when α = 2 the equation in (1) reduces to a parabolic partial differential equation (PDE), while when 
α = 1 it becomes a hyperbolic PDE. From a numerical point of view, an interesting definition of the fractional derivatives is 
the shifted Grünwald definition given by

∂αu(x, t)

∂+xα
= lim

�x→0+
1

�xα

�(x−L)/�x�∑
k=0

g(α)

k u(x − (k − 1)�x, t),

∂αu(x, t)

∂−xα
= lim

�x→0+
1

�xα

�(R−x)/�x�∑
k=0

g(α)

k u(x + (k − 1)�x, t), (2)
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where �·� is the floor function, while g(α)

k are the alternating fractional binomial coefficients defined as

g(α)

k = (−1)k
(

α
k

)
= (−1)k

k! α(α − 1) · · · (α − k + 1) k = 0,1, . . . (3)

with the formal notation 
(

α
0

)
= 1. The shifted Grünwald formulas are numerically relevant since, from (2), we can define 

the following estimates of the left and right-handed fractional derivatives

∂αu(x, t)

∂+xα
= 1

�xα

�(x−L)/�x�∑
k=0

g(α)

k u(x − (k − 1)�x, t) + O (�x),

∂αu(x, t)

∂−xα
= 1

�xα

�(R−x)/�x�∑
k=0

g(α)

k u(x + (k − 1)�x, t) + O (�x).

In [16] Meerschaert and Tadjeran proved that the implicit Euler method based on the shifted Grünwald formula is consistent 
and unconditionally stable. Let us fix two positive integers N , M , and define the following partition of [L, R] × [0, T ], i.e.,

xi = L + i�t, �x = (R−L)
N+1 , i = 0, . . . , N + 1,

tm = m�t, �t = T
M , m = 0, . . . , M.

More in detail, the idea that underlies the Meerschaert–Tadjrean method is to combine a discretization in time of equation 
(1) by an implicit Euler method, with a discretization in space of the fractional derivatives by a shifted Grünwald estimate, 
i.e.,

u(xi, tm) − u(xi, tm−1)

�t
= d(m)

+,i

∂αu(xi, tm)

∂+xα
+ d(m)

−,i

∂αu(xi, tm)

∂−xα
+ f (m)

i + O (�t),

where d(m)
±,i := d±(xi, tm), f (m)

i := f (xi, tm) and

∂αu(xi, tm)

∂+xα
= 1

�xα

i+1∑
k=0

g(α)

k u(xi−k+1, tm) + O (�x),

∂αu(xi, tm)

∂−xα
= 1

�xα

N−i+2∑
k=0

g(α)

k u(xi+k−1, tm) + O (�x).

The resulting finite difference approximation scheme is then

u(m)
i − u(m−1)

i

�t
= d(m)

+,i

�xα

i+1∑
k=0

g(α)

k u(m)

i−k+1 + d(m)
−,i

�xα

N−i+2∑
k=0

g(α)

k u(m)

i+k−1 + f (m)
i ,

where by u(m)
i we denote a numerical approximation of u(xi, tm). The previous approximation scheme can be written in 

matrix form as (see [32])(
νM,N I + D(m)

+ Tα,N + D(m)
− T T

α,N

)
u(m) = νM,N u(m−1) + �xα f (m), (4)

where νM,N = �xα

�t , u(m) = [u(m)
1 , . . . , u(m)

N ]T , f (m) = [ f (m)
1 , . . . , f (m)

N ]T , D(m)
± = diag(d(m)

±,1, . . . , d
(m)
±,N), I is the identity matrix of 

order N and

Tα,N = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(α)
1 g(α)

0 0 · · · 0 0

g(α)
2 g(α)

1 g(α)
0 0 · · · 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

g(α)
N−1

. . .
. . .

. . . g(α)
1 g(α)

0

g(α)
N g(α)

N−1 · · · · · · g(α)
2 g(α)

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×N

is a lower Hessenberg Toeplitz matrix. The fractional binomial coefficients g(α)

k satisfy few properties, summarized in the 
following proposition (see [16,17,32]).
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Proposition 1. Let α ∈ (1, 2) and g(α)

k be defined as in (3). Then we have{
g(α)

0 = 1, g(α)
1 = −α, g(α)

0 > g(α)
2 > g(α)

3 > . . . > 0,∑∞
k=0 g(α)

k = 0,
∑n

k=0 g(α)

k < 0, n ≥ 1.

From here onwards, we denote the coefficient matrix of the linear system (4) by M(m)
α,N , that is

M(m)
α,N = νM,N I + D(m)

+ Tα,N + D(m)
− T T

α,N . (5)

Using Proposition 1, it can be shown that M(m)
α,N is strictly diagonally dominant and then non-singular (see [32]), for every 

choice of the parameters m ≥ 0, N ≥ 1, α ∈ (1, 2).

3. Spectral analysis of the coefficient matrix

Given the notion of symbol and of spectral distribution in the eigenvalue and singular value sense, in this section we 
provide a spectral analysis of the coefficient matrix-sequence 

{
M(m)

α,N

}
N∈N . In the constant coefficient case, as already ob-

served in other papers (see e.g. [15]), the coefficient matrix-sequence is a Toeplitz sequence: then using well-known spectral 
tools for Toeplitz sequences we determine its symbol and study its spectral distribution. In the nonconstant coefficients case, 
under appropriate conditions, we show that, 

{
M(m)

α,N

}
N∈N belongs to the GLT class and use the GLT machinery to analyze 

its singular value/eigenvalue distribution. The resulting spectral information is then used for the analysis and the design of 
numerical solvers to be applied to the considered linear systems.

3.1. Constant diffusion coefficients case

Let us assume that both diffusion coefficients are constant. Under this condition, 
{
M(m)

α,N

}
N∈N is a sequence of Toeplitz 

matrices. We define the symbol of a Toeplitz sequence as follows.

Definition 1. Let f ∈ L1([−π, π ]) and let 
{

f j
}

j∈Z be the sequence of its Fourier coefficients defined as

f j = 1

2π

π∫
−π

f (θ)e−i jθdθ, j ∈ Z.

Then the Toeplitz sequence {T N }N∈N with T N = [ f i− j]N
i, j=1 is called the family of Toeplitz matrices generated by f , which 

in turn is called the symbol of {T N }N∈N and T N is denoted by T N ( f ).

Definition 2. The Weiner class is the set of functions f (θ) = ∑∞
k=−∞ fkeikθ such that 

∑∞
k=−∞ | fk| < ∞.

Note that the Weiner class forms a subalgebra of the continuous and 2π -periodic functions.

Remark 1. Let {T N}N∈N be a Toeplitz sequence, with T N = [ f i− j]N
i, j=1. If 

{
f j

}
j∈Z is such that 

∑∞
k=−∞ | fk| < ∞, then the 

series 
∑∞

k=−∞ fkeikθ converges uniformly in infinity norm to a continuous and 2π -periodic function f which belongs to 
the Weiner class and is the symbol of {T N }N∈N , i.e., T N = T N ( f ), ∀N ∈ N.

We determine the sequence of symbols associated to 
{
M(m)

α,N

}
N∈N as a corollary of the following proposition.

Proposition 2. Let α ∈ (1, 2). The symbol associated to the matrix-sequence 
{

Tα,N
}

N∈N belongs to the Wiener class and its formal 
expression is given by

fα(θ) = −
∞∑

k=−1

g(α)

k+1eikθ = −e−iθ
(

1 + ei(θ+π)
)α

. (6)

Proof. Let us observe that Tα,N = [−g(α)
i− j+1]N

i, j=1 with g(α)

k = 0 for k < 0 and let us define the function fα(θ) =
− 

∑∞
k=−1 g(α)

k+1eikθ . When α ∈ (1, 2), it is easy to see that fα(θ) lies in the Wiener class. In detail, from Proposition 1

we know that g(α) = −α < 0, g(α)
> 0 for k ≥ 0 and k �= 1, and g(α) = 0 for k < 0. Then
1 k k
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∞∑
k=−1

|g(α)

k+1| =
∞∑

k=−1
k �=0

g(α)

k+1 + α.

Again from Proposition 1 we deduce

∞∑
k=0

g(α)

k = 0 ⇐⇒
∞∑

k=−1
k �=0

g(α)

k+1 = −g(α)
1 = α,

that is 
∑∞

k=−1 |g(α)

k+1| = 2α, which means that fα(θ) belongs to the Wiener class for α ∈ (1, 2). To obtain an explicit formula 
for the symbol fα(θ), let us recall the definition of g(α)

k given in (3) and let us rewrite fα(θ) as follows

fα(θ) = −
∞∑

k=0

g(α)

k ei(k−1)θ = −
∞∑

k=0

(−1)k
(

α
k

)
ei(k−1)θ

= −
∞∑

k=0

(
α
k

)
ei(k−1)θ eikπ = −e−iθ

∞∑
k=0

(
α
k

)
eik(θ+π).

Applying the well-known binomial series

(1 + z)α =
∞∑

k=0

(
α
k

)
zk, z ∈C, |z| ≤ 1, α > 0,

with z = ei(θ+π) we obtain

fα(θ) = −e−iθ
(

1 + ei(θ+π)
)α

. �
Corollary 1. Let us assume that d+(x, t) = d+ > 0, d−(x, t) = d− > 0. The matrix M(m)

α,N defined as in (5) is the Toeplitz matrix 
M(m)

α,N = [ϕi− j]N
i, j=1 with

ϕ j = 1

2π

π∫
−π

ϕα,N(θ)e−i jθdθ, j ∈ Z,

where

ϕα,N(θ) = νM,N + d+ fα(θ) + d− fα(−θ).

Now we focus our attention on the spectral distribution of 
{
M(m)

α,N

}
N∈N , under the further assumption that the diffusion 

coefficients are equal. By this hypothesis, 
{
M(m)

α,N

}
N∈N is a sequence of symmetric Toeplitz matrices. Let us start with the 

definition of the spectral distribution in the sense of the eigenvalues and of the singular values.

Definition 3. Let f : G → C be a measurable function, defined on a measurable set G ⊂ R
k with k ≥ 1, 0 < mk(G) < ∞. 

Let C0(K) be the set of continuous functions with compact support over K ∈ {C, R+
0 } and let {AN }N∈N be a sequence of 

matrices of size N with eigenvalues λ j(AN ), j = 1, . . . , N and singular values σ j(AN ), j = 1, . . . , N .

• {AN}N∈N is distributed as the pair ( f , G) in the sense of the eigenvalues, in symbols

{AN}N∈N ∼λ ( f , G),

if the following limit relation holds for all F ∈ C0(C):

lim
N→∞

1

N

N∑
j=1

F (λ j(AN)) = 1

mk(G)

∫
G

F ( f (t))dt. (7)

• {AN}N∈N is distributed as the pair ( f , G) in the sense of the singular values, in symbols

{AN}N∈N ∼σ ( f , G),
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if the following limit relation holds for all F ∈ C0(R
+
0 ):

lim
N→∞

1

N

N∑
j=1

F (σ j(AN)) = 1

mk(G)

∫
G

F (| f (t)|)dt. (8)

Remark 2. When f is continuous, an informal interpretation of the limit relation (7) (resp. (8)) is that when the matrix-size 
is sufficiently large, the eigenvalues (resp. singular values) of AN can be approximated by a sampling of f (resp. | f |) on a 
uniform equispaced grid of the domain G .

For Hermitian Toeplitz matrix-sequences, the following theorem due to Szegö holds (see [14]).

Theorem 1. Let f ∈ L1([−π, π ]) be a real-valued function. Then,

{T N( f )}N∈N ∼λ ( f , [−π,π ]).

The following proposition concerns the eigenvalue distribution of the coefficient matrix-sequence 
{
M(m)

α,N

}
N∈N , when 

diffusion coefficients are constant and equal.

Proposition 3. Let us assume that d±(x, t) = d > 0 and that νM,N = o(1). Given the matrix-sequence 
{
M(m)

α,N

}
N∈N with M(m)

α,N

defined as in (5), we have{
M(m)

α,N

}
N∈N ∼λ (d · pα(θ), [−π,π ]),

where

pα(θ) = fα(θ) + fα(−θ) = fα(θ) + fα(θ) (9)

is a real-valued continuous function.

Before proving Proposition 3 we report some notations, recall a property of the spectral norm of Toeplitz matrices, and 
we state a relevant theorem contained in [13].

Given a square matrix A of order N , we denote its spectral norm by ‖A‖ = maxi=1,...,N σi(A) and its trace norm by 
‖A‖1 = ∑N

i=1 σi(A). We also recall a well known fact concerning the spectral norm of a Toeplitz sequence {T N ( f )}N∈N
generated by f , (see [23, Corollary 3.5]):

f ∈ L∞(−π,π ] ⇒ ‖T N ( f )‖ ≤ ‖ f ‖∞,∀N ∈N. (10)

Theorem 2. (See Theorem 3.4 in [13].) Let {AN }N∈N be a matrix sequence with AN = B N + CN and B N Hermitian ∀N ∈ N. Assume 
that

• {B N}N∈N ∼λ ( f , G),
• ‖B N‖, ‖CN‖ are bounded by a constant independent of N,
• ‖CN‖1 = o(N).

Then {AN }N∈N ∼λ ( f , G).

Proof of Proposition 3. Since the diffusion coefficients d±(x, t) are constant and equal to a real positive number d, the 
matrices of the sequence 

{
dTα,N + dT T

α,N

}
N∈N are symmetric. The function pα(θ) = fα(θ) + fα(−θ) = fα(θ) + fα(θ) belongs 

to the Wiener algebra since fα(θ) itself is in the same algebra (see Proposition 2). Furthermore, from its expression it also 
follows that pα(θ) is real-valued and globally continuous.

From Theorem 1, it follows that 
{

dTα,N + dT T
α,N

}
N∈N ∼λ (d · pα, [−π, π ]). Furthermore, using (10), we have that 

‖dTα,N + dT T
α,N‖ ≤ d‖pα‖∞ = d2α+1, while under the hypothesis that νM,N = o(1), the remaining term νM,N I is such that 

‖νM,N I‖1 = o(N) and ‖νM,N I‖ = νN,M < C for some constant C independent of N . By Theorem 2, we conclude that the 
distribution of 

{
M(m)

α,N

}
N∈N is decided only by d · pα(θ). �

Combining (9) with (6), we can explicitly rewrite pα(θ) as follows

pα(θ) = fα(θ) + fα(−θ) = −e−iθ
(

1 − eiθ
)α − eiθ

(
1 − e−iθ

)α
.
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It is obvious that pα(0) = 0. We want to show that such a zero is of order α, with α ∈ (1, 2), according to the following 
definition.

Definition 4. Let f : [a, b] ⊂ R → R be a continuous nonnegative function. We say that f has a zero of order β > 0 at 
θ0 ∈ [a, b] if there exist two real constants C1, C2 > 0 such that

lim inf
θ→θ0

f (θ)

|θ − θ0|β = C1, lim sup
θ→θ0

f (θ)

|θ − θ0|β = C2.

Recalling the definition of fα(θ) in equation (6), it is easy to see that pα(θ) is nonnegative; in fact making use of the 
Proposition 1 we obtain

pα(θ) = −
∞∑

k=−1

g(α)

k+1(eikθ + e−ikθ )

= −
[

2g(α)
1 + (g(α)

0 + g(α)
2 )(eiθ + e−iθ ) +

∞∑
k=2

g(α)

k+1(eikθ + e−ikθ )

]

= −
[

2g(α)
1 + 2(g(α)

0 + g(α)
2 ) cos θ + 2

∞∑
k=2

g(α)

k+1 cos(kθ)

]
≥ −2

∞∑
k=−1

g(α)

k+1 = 0.

Proposition 4. Let α ∈ (1, 2), then the function pα(θ) defined in (9) has a zero of order α at 0.

Proof. Let us rewrite 1 − eiθ and 1 − e−iθ in polar form

1 − eiθ = √
2 − 2 cos θ eiφ,

1 − e−iθ = √
2 − 2 cos θ eiψ,

where

φ =
⎧⎨
⎩

arctan
( − sin θ

1−cos θ

)
, θ �= 0

limθ→0+ arctan
( − sin θ

1−cos θ

)
= −π

2 , θ = 0

and ψ = −φ. We can then express pα(θ) as follows

pα(θ) = −e−iθ
(√

2 − 2 cos θeiφ
)α − eiθ

(√
2 − 2 cos θe−iφ

)α

= −√
(2 − 2 cos θ)αei(αφ−θ) − √

(2 − 2 cos θ)αe−i(αφ−θ)

= −2
√

(2 − 2 cos θ)αrα(θ),

where rα(θ) = cos(αφ − θ). Let us observe that limθ→0− rα(θ) = limθ→0+ rα(θ) = cos
(
α π

2

)
. Now it is easy to see that

lim
θ→0

pα(θ)

|θ |α = −2 lim
θ→0

(2 − 2 cos θ)
α
2

|θ |α rα(θ) = −2 cos
(
α

π

2

)
∈ (0,2),

which proves that pα has a zero of order α at 0, according to Definition 4. �
Remark 3. In Proposition 4 we assumed that α ∈ (1, 2). Let us observe that when α = 1 the order of the zero at 0 of pα(θ)

is 2 since

p1(θ) = −e−iθ
(

1 − eiθ
)

− eiθ
(

1 − e−iθ
)

= 2 − 2 cos(θ).

Hence the statement in Proposition 4 is not true for α = 1, while it remains true for α = 2: indeed the polynomial

p2(θ) = −e−iθ
(

1 + ei2θ − 2eiθ
)

− eiθ
(

1 + e−i2θ − 2e−iθ
)

= 4 − 4 cos(θ)

has a zero of order α = 2 at 0, as expected.

Fig. 1(a) compares the symbol pα(θ) normalized by ‖pα‖∞ with the normalized symbol of the Laplacian operator given 
by �(θ) = 1 − 1 cos(θ) for α = 1.2, 1.5, 1.8 and varying θ in [−π, π ]. Fig. 1(b) is a zoom of Fig. 1(a) in a neighborhood
of 0. Recalling that �(θ) has a zero of order 2 at 0, we observe that pα(θ)

‖pα‖∞ approaches �(θ) and the order of its zero in 0 
increases up to 2 as α tends to 2.
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Fig. 1. (a) Comparison between the normalized symbol of the Laplacian operator �(θ) (blue bullet line) with pα(θ)
‖pα‖∞ for α = 1.2 (red solid line), α = 1.5

(black dotted line) and α = 1.8 (green dashed line) varying θ in [−π, π ]; (b) zoom of (a) in a neighborhood of 0.

3.2. Nonconstant diffusion coefficients case

Now we focus on the symbol associated to 
{
M(m)

α,N

}
N∈N and on its spectral distribution, when both d+(x, t) and d−(x, t)

are nonconstant. For this purpose we need the notion of Generalized Locally Toeplitz (GLT) sequences and the related theory, 
starting from the pioneering work by Tilli [28] and widely generalized in [25,26]. Unfortunately, the formal definitions 
are rather technical, difficult, and involve a heavy notation: therefore we just give and briefly discuss the notion in one 
dimension, which is the case of interest in our setting, and we report few properties of the GLT class [11], which are 
sufficient for studying the spectral features of the matrices 

{
M(m)

α,N

}
N∈N , when both d+(x, t) and d−(x, t) are nonconstant 

functions.
For the nonconstant coefficients case, the class of Toeplitz matrices is no longer sufficient and we need a further structure 

of matrices which keeps the information on d+(x, t) and d−(x, t).

Definition 5. Given a Riemann-integrable function a defined over [0, 1], by diagonal sampling matrix of order N we mean 
D N(a) = diag j=1,...,N a

(
j

N

)
.

The first notion is that of approximating class of sequences (a.c.s.), which generalizes the concept of perturbation by 
small norm plus small rank terms, widely used in the preconditioning literature (see [27] and references therein). The basic 
ingredients are Toeplitz and diagonal sampling matrices, where the guiding idea is that any reasonable approximation by 
local methods (finite differences, finite elements, IgA, etc.) of PDEs leads to matrix sequences that can be approximated in 
the a.c.s. sense by a finite sum of products of Toeplitz and diagonal sampling matrices; see [28,25,26,11].

Definition 6 (a.c.s.). Let {AN }N∈N be a matrix-sequence. An approximating class of sequences (a.c.s.) for {AN }N∈N is a sequence 
of matrix-sequences {{B N,m}N∈N}m∈N with the following property: for every m there exists Nm such that, for N ≥ Nm ,

AN = B N,m + R N,m + E N,m,

rank(R N,m) ≤ c(m)N, ‖E N,m‖ ≤ ω(m),

where the quantities Nm , c(m), ω(m) depend only on m, and

lim
m→∞ c(m) = lim

m→∞ω(m) = 0.

Roughly speaking, {{B N,m}N∈N}m∈N is an a.c.s. for {AN}N∈N if AN is equal to B N,m plus a low-rank matrix (with respect 
to the matrix size), plus a small-norm matrix.

Definition 7. Let m, N ∈N, let a : [0, 1] →C, and let f : [−π, π ] →C in L1([−π, π ]). Then, we define the N × N matrix

LTm(a, f ) = Dm(a) ⊗ T�N/m�( f ) ⊕ O N mod m
N
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= diag j=1,...,m a
( j

m

)
⊗ T�N/m�( f ) ⊕ O N mod m,

where the tensor Kronecker product operation ⊗ is applied before the direct sum ⊕. It is understood that LTm
N (a, f ) = O N

when N < m and that the term O N mod m is not present when N is a multiple of m.

Definition 8 (LT sequence). Let {AN }N∈N be a matrix-sequence. We say that {AN }N∈N is a separable Locally Toeplitz (sLT) 
sequence if there exist

• a Riemann-integrable function a : [0, 1] →C,
• a function f ∈ L1([−π, π ]),

such that 
{{LTm

N (a, f )}N∈N
}

m∈N is an a.c.s. for {AN }N∈N . In this case, we write {AN }N∈N ∼sLT a(x) f (θ). The function a(x) f (θ)

is referred to as the symbol of the sequence {AN }N∈N , a is the weight function and f is the generating function.

Definition 9 (GLT sequence). Let {AN }N∈N be a matrix-sequence and let κ : [0,1] × [−π,π ] →C be a measurable function. 
We say that {AN }N∈N is a GLT sequence with symbol κ(x, θ), and we write

{AN}N∈N ∼GLT κ(x, θ),

if:

• for any ε > 0 there exist matrix-sequences {A(i,ε)
N }N∈N ∼sLT ai,ε (x) f i,ε(θ), i = 1, . . . , ηε ;

• ∑ηε

i=1 ai,ε (x) f i,ε(θ) → κ(x, θ) in measure over [0, 1] × [−π, π ] when ε → 0;

• {{∑ηε

i=1 A(i,ε)
N }N∈N

}
m∈N , with ε = (m + 1)−1, is an a.c.s. for {AN }N∈N .

There are four main features of the GLT class that we shortly mention here.

GLT1 Let {AN}N∈N ∼GLT κ(x, θ) with κ : G → C, G = [0, 1] × [−π, π ], then {AN}N∈N ∼σ (κ, G). If the matrices AN are 
Hermitian, then it holds also {AN }N∈N ∼λ (κ, G).

GLT2 The set of GLT sequences form a ∗-algebra, i.e., it is closed under linear combinations, products, inversion (whenever 
the symbol vanishes, at most, in a set of zero Lebesgue measure), conjugation: hence, the sequence obtained via alge-
braic operations on a finite set of input GLT sequences is still a GLT sequence and its symbol is obtained by following 
the same algebraic manipulations on the corresponding symbols of the input GLT sequences.

GLT3 Every Toeplitz sequence {T N ( f )}N∈N generated by an L1([−π, π ]) function f (θ) is {T N ( f )}N∈N ∼GLT f (θ), with the 
specifications reported in item [GLT1]. Every diagonal sampling sequence {D N (a)}N∈N , where a(x) is a Riemann inte-
grable function, is {D N (a)}N∈N ∼GLT a(x).

GLT4 Let {AN}N∈N ∼σ (0, G), G = [0, 1] × [−π, π ], then {AN }N∈N ∼GLT 0.

Remark 4. The approximation by local methods (finite differences, finite elements, IgA, etc.) of PDEs with nonconstant 
coefficients, general domains, nonuniform gridding leads to GLT sequences, under very mild assumptions (see [28,25,26] for 
the case of Finite Differences, [4,12] for the Finite Element setting, and [8,10] for the case of IgA approximations): here, as 
a byproduct, we show that the approximation of FDEs leads to GLT sequences as well.

Proposition 5. Let us assume that νM,N = o(1) and that, fixed the instant of time tm, d+(x) := d+(x, tm) and d−(x) := d−(x, tm) are 
both Riemann integrable over [L, R]. For the matrix M(m)

α,N defined as in (5), it holds{
M(m)

α,N

}
N∈N ∼GLT ĥα(x̂, θ)

with

ĥα(x̂, θ) = hα(L + (R − L)x̂, θ), hα(x, θ) = d+(x) fα(θ) + d−(x) fα(−θ), (11)

where (x̂, θ) ∈ [0, 1] × [−π, π ], (x, θ) ∈ [L, R] × [−π, π ]. Furthermore,{
M(m)

α,N

}
N∈N ∼σ (hα(x, θ), [L, R] × [−π,π ]),

and whenever hα(x, θ) is real-valued, i.e., if and only if d+(x) = d−(x), we also have{
M(m)

α,N

}
N∈N ∼λ (hα(x, θ), [L, R] × [−π,π ]),

and indeed all the matrices M(m) have only real eigenvalues.
α,N
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Proof. Let us observe that, fixed the instant of time tm , the diagonal elements of the matrices D(m)
± are a uniform sampling 

of the functions d±(x), x ∈ [L, R], and then 
{

D(m)
±

}
N∈N ∼GLT d̂±(x̂) = d±(L + (R − L)x̂), x̂ ∈ [0, 1] (see item [GLT3]). Since the 

GLT class is stable under linear combinations and products, as reported in item [GLT2], and since Toeplitz sequences with L1

symbols lie in the GLT class (see item [GLT3]), it is immediate to see that the matrix-sequence 
{

D(m)
+ Tα,N + D(m)

− T T
α,N

}
N∈N

is still a member of the GLT class. The symbol of 
{

D(m)
+ Tα,N + D(m)

− T T
α,N

}
N∈N is ĥα(x̂, θ) = d̂+(x̂) fα(θ) + d̂−(x̂) fα(−θ), 

(x̂, θ) ∈ [0, 1] × [−π, π ], again by item [GLT2]. Under the hypothesis that νM,N = o(1), the sequence {νM,N I}N∈N is a GLT 
sequence with zero symbol, as in item [GLT4]. This implies that 

{
M(m)

α,N

}
N∈N ∼GLT ĥα(x̂, θ), according to item [GLT2].

Exploiting the Riemann integrability of d±(x) over [L, R] and by item [GLT1] (see in particular Theorem 1.3 in [26]), we 
can conclude 

{
M(m)

α,N

}
N∈N ∼σ (ĥα(x̂, θ), [0, 1] × [−π, π ]) and hence 

{
M(m)

α,N

}
N∈N ∼σ (hα(x, θ), [L, R] × [−π, π ]), after an 

affine change of variable (refer to the integral expression in Definition 3).
Now, by exploiting Proposition 2 and Proposition 3, since pα(θ) is real-valued, it is clear that hα(x, θ) is real-valued 

if and only if d+(x) = d−(x). Furthermore, under the condition that d+(x) = d−(x) we deduce that D(m)
+ = D(m)

− which is a 
positive definite diagonal matrix, whence, choosing D as the positive definite square root of D(m)

+ , we find that D−1 M(m)
α,N D

is similar to M(m)
α,N and real symmetric. Therefore all the eigenvalues of M(m)

α,N are real and we plainly have 
{
M(m)

α,N

}
N∈N ∼λ

(hα(x, θ), [L, R] × [−π, π ]), by exploiting again the GLT machinery, as done before but in the Hermitian setting. �
Here we show in Proposition 6 that, if both diffusion coefficients are bounded and positive, the symbol hα(x, θ) (and 

hence ĥα(x̂, θ)), for the set of interest α ∈ (1, 2), has always a zero at θ = 0 of order α (see Proposition 4 for the constant 
and equal coefficients case). This property is true independently of the constant or nonconstant character of the diffusion 
coefficients.

Proposition 6. Given pα(θ) as in (9) and hα(x, θ) as in (11), the following two limit relations hold

lim
θ→0+

hα(x, θ)

pα(θ)
= d+(x) + d−(x)

2
− i tan

(
α

π

2

) d+(x) − d−(x)

2
,

lim
θ→0−

hα(x, θ)

pα(θ)
= d+(x) + d−(x)

2
+ i tan

(
α

π

2

) d+(x) − d−(x)

2
.

Proof. As in the proof of Proposition 4 we exploit the polar form of 1 − eiθ and 1 − e−iθ and rewrite the quotient hα(x,θ)
pα(θ)

as 
follows

hα(x, θ)

pα(θ)
= −d+(x)

√
(2 − 2 cos θ)αei(αφ−θ) − d−(x)

√
(2 − 2 cos θ)αe−i(αφ−θ)

−2
√

(2 − 2 cos θ)α cos(αφ − θ)

= d+(x)ei(αφ−θ) + d−(x)e−i(αφ−θ)

2 cos(αφ − θ)

= d+(x)(cos(αφ − θ) + i sin(αφ − θ))

2 cos(αφ − θ)
+ d−(x)(cos(αφ − θ) − i sin(αφ − θ))

2 cos(αφ − θ)

= d+(x) + d−(x)

2
+ i tan (αφ − θ)

d+(x) − d−(x)

2
,

where

φ =
⎧⎨
⎩

arctan
( − sin θ

1−cos θ

)
, θ �= 0,

limθ→0+ arctan
( − sin θ

1−cos θ

)
= −π

2 , θ = 0.

It is easy to see that for α ∈ (1, 2)

lim
θ→0+ tan (αφ − θ) = − tan

(
α

π

2

)
> 0,

lim
θ→0− tan (αφ − θ) = tan

(
α

π

2

)
< 0,

and the thesis is proved. �
The previous Proposition 6 shows also the importance of the diffusion coefficients functions d+ and d− , that should be 

properly taken into account when defining a good preconditioner.
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4. Analysis and design of numerical methods, via the spectral information

In this section we use the spectral information discussed in Section 3 to analyze in more detail the convergence of 
some recently proposed techniques [15,19] and to design some structure preserving preconditioners for Krylov methods. It 
is divided in three parts. In Subsection 4.1, we observe that the superlinear convergence obtained in the constant coefficient 
case for the CGNR with a circulant preconditioner discussed in [15] cannot be ensured for any Krylov method when the 
diffusion coefficients are nonconstant or in the multidimensional setting even when the diffusion coefficients are constant. 
In Subsection 4.2 structure preserving preconditioners are studied and a preconditioning proposal with minimal bandwidth 
(and so with efficient computational cost) is proposed. Finally, in Subsection 4.3, with reference to the method indicated 
in [19], we briefly give a compact proof of the two-grid convergence (already proved in [19]), simply based on the prop-
erties of the symbol pα(θ), according to the results in [9,6,24]. Moreover, we give a theoretical motivation of the constant 
convergence rate of the V-cycle multigrid experimentally observed in [19] using the results in [2].

4.1. Negative results for the circulant preconditioner

We show here that the circulant preconditioning, which ensures a clustering at the unity in the case of constant coeffi-
cients (see Theorem 1 in [15]), cannot be extended in the variable coefficient setting.

Since circulant structures are special instances of Toeplitz structures, if a sequence of circulant matrices {CN }N∈N has a 
symbol f (θ), then its Toeplitz counterpart {TN}N∈N is such that {TN − CN }N∈N ∼σ (0, [−π, π ]). Hence, by invoking items
[GLT1–4], we deduce that the sequence {TN − CN }N∈N is a GLT sequence with zero symbol and that both {CN }N∈N , {TN}N∈N
are also GLT sequences with symbol f (θ).

As a consequence, again using item [GLT2], we infer that 
{
C−1

N M(m)
α,N

}
N∈N is a GLT sequence such that

{
C−1

N M(m)
α,N

}
N∈N ∼σ

(
ĥα(x̂, θ)

f (θ)
, [0,1] × [−π,π ]

)

when νM,N = o(1). Now if we look carefully at the expression of the function ĥα(x̂, θ) as reported in (11), we plainly see that 
the preconditioned sequence cannot be clustered at one, since the function ĥα(x̂, θ)/ f (θ) is a nontrivial function depending 
on the variable x̂, whenever the diffusion coefficients are nonconstant functions. Therefore the superlinear behavior of any 
preconditioned Krylov method is lost, as long as we employ circulant preconditioners, in contrast with what happens in the 
constant coefficient case.

The second negative result concerns the possible application of the circulant preconditioner to multidimensional prob-
lems also in the constant coefficient setting. Indeed, we observe that in the constant coefficient case the matrix structures 
arising in the approximation of a FDE in multidimensional domain are essentially of multilevel Toeplitz type: we refer the 
reader to [29,30] for the study of the related matrices in a variable coefficients setting in two and three dimensional spaces. 
As a consequence, the multilevel circulant preconditioning cannot ensure a superlinear convergence character, due to the 
negative results in [27]. In the latter, when considering d-level Toeplitz matrices and any type of circulant preconditioner, 
it is shown that at least O (N

d−1
d ) outliers show up, where N is the size of the matrix: as a consequence, the superlinear 

behavior can be observed only for unilevel Toeplitz structures, i.e., for d = 1 and this agrees with the numerical results 
reported in the literature. However, in some specific cases, the resulting Krylov methods may be still very fast, especially if 
the conditioning is moderate and there are not outliers tending to zero.

4.2. Structure preserving preconditioners

To design a good preconditioner it is crucial not only the symbol, but also the structure of the matrix. For instance, in 
the context of Toeplitz linear systems a Toeplitz preconditioner could be more effective than a circulant preconditioner also 
with a symbol that provides a worse approximation (but preserving the same order of the zero), see [7,22]. The importance 
of preserving the same structure of the original matrix is crucial to overcome the negative result in the multidimensional 
case in [27] and to have a preconditioned matrix with a well-conditioned matrix of the eigenvectors, which is relevant for 
the convergence of GMRES (see Tables 1–2).

To define a preconditioner with the same structure of the matrix M(m)
α,N , and keeping at the same time a low com-

putational cost, a small bandwidth matrix should be considered. On the other hand, the symbol of a bandwidth Toeplitz 
matrix is a trigonometric polynomial and hence the zero of the symbol cannot be of fractional order. We now introduce 
two preconditioners with minimal bandwidth and whose structure is the same of M(m)

α,N .
The first preconditioner is defined as

P (m)
1,N = νM,N I + D(m)

+ B N + D(m)
− BT

N , (12)

where B N is the following approximation of the first derivative operator



M. Donatelli et al. / Journal of Computational Physics 307 (2016) 262–279 273
B N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0
...

. . . 0 1 −1
0 · · · · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

N×N

.

The second preconditioner is given by

P (m)
2,N = νM,N I + D(m)

+ LN + D(m)
− LT

N , (13)

where LN is the Laplacian matrix

LN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0

−1 2 −1
. . .

...
...

. . .
. . .

. . . 0
...

. . . −1 2 −1
0 · · · · · · −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

N×N

.

Both P (m)
1,N and P (m)

2,N are tridiagonal matrices, and hence the associated linear system can be solved optimally in O (N) oper-
ations, by the standard Gaussian Elimination (known also as Thomas algorithm in the case of banded matrices). Therefore, 
the preconditioned Krylov method (CGNR, GMRES, etc.) leads to a minimal computational cost per iteration of O (N log N)

operations, typical of the un-preconditioned method with the considered matrices.
Let us assume that νM,N = o(1). The spectral distribution of sequences of the two preconditioners P (m)

1,N and P (m)
2,N can be 

derived using the tools in Subsection 3.2 like in Proposition 5. In particular, we have that{
P (m)

1,N

}
N∈N ∼σ (p(m)

1 (x, θ), [L, R] × [−π,π ]), p(m)
1 (x, θ) = d+(x, tm)(1 − e−iθ ) + d−(x, tm)(1 − eiθ ),

and {
P (m)

2,N

}
N∈N ∼λ (p(m)

2 (x, θ), [L, R] × [−π,π ]), p(m)
2 (x, θ) = (d+(x, tm) + d−(x, tm))(2 − 2 cos(θ)).

If we further assume that d±(x, t) = d > 0, i.e., hα(x, θ) = d · pα(θ) from Remark 3 and from Proposition 4, it holds that

lim
θ→0

hα(x, θ)

p(m)

k (x, θ)
= ∞, k ∈ {1,2}, (14)

hence both P (m)
1,N and P (m)

2,N cannot provide a clustering of the singular values or of the eigenvalues. On the other hand, 
pα(θ) is a real-valued nonnegative and continuous function with a zero of order α in 0. Consequently, using Theorem 3.1 
in [21], we can conclude that the condition number of the preconditioned matrix P (m)

2,NM
(m)
α,N , is asymptotical to N |α−2| , 

with |α − 2| < 1. In other words, thanks to the Axelsson–Lindskog bounds (see [3]), the number of iterations of a conjugate 
gradient type method grows as O (N

|α−2|
2 ), which justifies the effectiveness of the preconditioner P (m)

2,N when α is close to 2. 
An analogous reasoning can be done for P (m)

1,N .

Actually, we expect that similar arguments can be used to motivate the efficiency of both P (m)
1,N and P (m)

2,N independently of 
the constant or nonconstant character of the diffusion coefficients, despite a clustering of the eigenvalues or of the singular 
values of the preconditioned matrix-sequence cannot be ensured in any case. Indeed, using again Remark 3 and recalling 
Proposition 6, it is easy to see that the limit relation (14) is still true when the diffusion coefficients are nonconstant and 
equal functions, say d±(x, t) = d(x), with d(x) positive and bounded, while when d±(x, t) = d± > 0 and d+ �= d− , or when 
they are nonconstant and different from each other

lim
θ→0

hα(x, θ)

p(m)

k (x, θ)
=

{
0 k = 1,

∞ k = 2.
(15)

From relation (15) we deduce that hα(x,θ)

p(m)

k (x,θ)
asymptotically behaves as |θ |α−k , ∀α ∈ (1, 2). As a consequence, we expect the 

condition number of the preconditioned matrix to be asymptotical to N |α−k| . In the light of this, we state that P (m)
1,N is a good 

preconditioner for α close to 1, while P (m)
2,N is a good preconditioner for α close to 2, (we can say α ≥ 1.5); cf. Tables 1–2

for the variable diffusion coefficients case.
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4.3. Linear convergence of multigrid methods

Multigrid methods have shown to be a valid alternative to preconditioned Krylov methods also for FDEs [19]. Using the 
Ruge–Stuben theory [20], Theorem 4 in [19] shows that, in the constant coefficient case, i.e., d±(x, t) = d > 0, the two-grid 
method converges with a constant convergence rate independent of N and m. Since in this case the matrix M(m)

α,N is a 
Toeplitz matrix, the classical multigrid theory for Toeplitz matrices developed in [9,6,24,2] can be directly applied when 
the symbol is known. Under the assumptions that d±(x, t) = d > 0 and νM,N = o(1), according to our previous analysis in 
Subsection 3.1, the symbol of the Toeplitz sequence 

{
M(m)

α,N

}
N∈N is d · pα(θ) (cf. Proposition 3).

When the grid transfer operator is the classical linear interpolation like in [19], the associated symbol is 2 + 2 cos(θ). 
Therefore, according to the results in [6,24], given a sequence of Toeplitz matrices {AN }N∈N with a nonnegative symbol f , 
if

lim
θ→0

sup
(2 + 2 cos(θ + π))2

f (θ)
= c < ∞, (16)

then the two-grid method has a constant convergence rate. For f (θ) = d · pα(θ), the condition (16) is trivially satisfied with 
c = 0.

The varying coefficient case can be addressed thanks to the extension of the previous results given in [24]. Let d+ and 
d− be two uniformly bounded and positive functions. Then the linear convergence rate of the two-grid method is preserved 
combining Proposition 6 with Lemma 6.2 in [24].

The convergence analysis of the V-cycle is much more involved and a constant convergence rate has been proved only 
for sequences of matrices in some trigonometric algebra, like circulant matrices, under a condition stricter than (16), see [2]. 
In details, it has to hold

lim
θ→0

sup
2 + 2 cos(θ + π)

f (θ)
= c < ∞. (17)

Note that f (θ) = d · pα(θ) satisfies also the condition (17) with c = 0. This gives a theoretical justification of the linear 
convergence of the V-cycle experimentally observed in [19]. Actually, the Ruge–Stuben theory used to derive the condition 
(17) requires the Galerkin approach, while for computational convenience in [19] a rediscretization strategy is adopted. On 
the other hand, c = 0 suggests that the grid transfer operator is powerful enough, to work also under some perturbations.

In conclusion, taking into account that the order of the zero at 0 of hα(x, θ) in (11) remains bounded by 2, multigrid 
methods with linear interpolation, like that proposed in [19], represent a good solver or at least a robust preconditioner 
for Krylov methods. Moreover, despite to what happens for the circulant preconditioning (see Subsection 4.1), thanks to 
the theoretical results in [24,1] we expect the multigrid to be optimal also in the multidimensional setting for variable and 
different diffusion coefficients, provided that they are uniformly bounded and positive.

Finally, we note that the knowledge of the symbol is crucial to define both the symbol of the preconditioner and the 
grid transfer operator of a multigrid method. The advantage of multigrid methods is that for the grid transfer operator it 
is enough to have a proper zero with an order larger than the order of the zero of hα(x, θ). Conversely, the preconditioner 
has to match exactly the order of the zero of hα(x, θ). For this reason, the linear interpolation provides a multigrid with a 
constant convergence rate, while we cannot prove the eigenvalues clustering for the preconditioner P (m)

2,N in (13).

5. Numerical results

In this section we compare the new preconditioners P (m)
1,N and P (m)

2,N defined in (12) and (13), respectively, with the 
circulant preconditioner proposed in [15] defined as

S(m)
N = νM,N I + d̄(m)

+ s(Tα,N) + d̄(m)
− s(Tα,N)T ,

where d̄(m)
± = 1

N

∑N
i=1 d(m)

±,i and s(Tα,N ) is the Strang circulant matrix for Tα,N . For notational simplicity, in the following, 
we remove the subscript N to each considered preconditioner. In all examples, we make also comparisons with a slightly 
modified version of P (m)

1 and P (m)
2 , obtained by replacing the matrices D(m)

± with the averages d̄(m)
± , in their definition. We 

refer to these Toeplitz preconditioners as P (m),av
1 , P (m),av

2 , respectively. All the considered preconditioners are used to solve 
the FDE system (4), with the preconditioned CGNR and with the preconditioned GMRES methods. Regarding the stopping 
criterion for the CGNR, we use ‖rk‖/‖r0‖ < 10−7, where rk is the residual vector after k iterations. The GMRES method is 
computationally performed using the built-in gmres Matlab function with tolerance 10−7. The initial guess at each time 
step is chosen for both methods as the zero vector.

We do not test CGNR without preconditioning, since, as already shown in [15] for Example 1 and in [19] for Example 2 
(when α = 1.5), in these examples much more iterations are needed. Similar results can be obtained using GMRES without 
preconditioning.

The linear system with coefficient matrix S(m) is solved within O (N log(N)) arithmetic operations by two FFTs, while the 
tridiagonal Toeplitz preconditioners can be implemented in O (N) arithmetic operations by the Thomas algorithm. In the 
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Table 1
Example 1 – Comparison of iterations in the CGNR and GMRES methods with preconditioners P1, P2, S , P av

1 and P av
2 for α = 1.2, 1.5, 1.8 and M = N+1

2 .

α N + 1 P1 P2 S P av
1 P av

2

CGNR GMRES CGNR GMRES CGNR GMRES CGNR GMRES CGNR GMRES

1.2 26 7.7 8.0 13.0 9.0 9.0 13.0 10.0 12.0 12.0 10.0
27 7.0 8.0 13.0 10.0 9.2 14.0 11.8 13.0 12.4 10.0
28 7.0 7.0 13.0 10.0 9.1 13.0 12.8 14.0 12.2 10.0
29 7.0 7.0 12.4 10.0 9.0 12.0 13.1 14.0 12.0 10.0

1.5 26 15.3 16.0 12.6 8.0 10.9 12.0 11.0 11.0 10.3 9.0
27 18.3 20.0 13.2 9.0 10.7 12.0 13.2 13.0 11.8 10.0
28 20.3 24.0 13.9 9.0 11.0 12.0 16.4 15.0 13.0 10.0
29 22.4 26.0 14.3 10.0 10.6 12.0 18.6 16.0 13.9 11.0

1.8 26 23.0 25.0 9.0 6.0 14.8 9.0 13.0 10.0 9.4 8.0
27 37.8 40.0 9.0 6.0 14.1 9.0 14.0 11.0 9.0 8.0
28 56.3 61.0 9.4 7.0 14.0 9.0 15.7 12.0 9.0 8.0
29 71.8 88.0 9.5 7.0 13.7 9.0 17.6 13.0 9.4 9.0

Table 2
Example 2 – Number of iterations in the CGNR and GMRES methods with preconditioners P (m)

1 , P (m)
2 , S(m) , P (m),av

1 and P (m),av
2 for α = 1.2, 1.4, 1.5, 1.6, 1.8

and M = N+1
2 .

α N + 1 P1 P2 S P av
1 P av

2

CGNR GMRES CGNR GMRES CGNR GMRES CGNR GMRES CGNR GMRES

1.2 26 5.1 5.0 7.3 6.6 6.8 7.6 6.8 6.3 6.8 6.9
27 5.0 5.0 7.0 5.1 6.1 7.0 6.7 5.3 6.0 5.3
28 5.0 4.8 6.1 4.1 6.0 7.0 6.3 5.1 5.2 4.2
29 4.0 4.0 6.0 3.4 6.0 6.9 6.0 4.4 5.0 3.5

1.4 26 6.3 7.5 7.1 5.8 7.1 8 8.1 7.3 6.4 6.4
27 6.1 7.3 7.0 5.1 7.0 8.6 8.2 7.2 6.0 5.3
28 5.9 7.1 7.0 5.0 7.0 8.6 8.1 7.0 5.8 5.0
29 5.2 7.0 6.4 4.7 7.0 8.0 8.0 7.0 5.5 5.0

1.5 26 7.1 8.8 7.0 5.6 7.2 8.4 8.7 7.6 6.3 6.0
27 6.8 9.2 7.0 5.1 7.1 8.8 8.8 8.0 6.0 5.5
28 6.2 9.2 7.0 5.0 7.0 8.8 8.6 8.0 5.7 5.3
29 6.0 9.4 6.5 5.0 7.0 8.7 8.3 8.0 5.7 5.1

1.6 26 7.8 10.6 6.9 5.3 7.6 8.0 9.3 7.9 6.2 5.7
27 7.5 11.4 7.0 5.1 7.7 8.7 9.3 8.2 5.6 5.5
28 7.4 12.1 6.6 5.0 7.3 8.7 8.8 8.1 5.4 6.0
29 7.6 12.8 6.3 5.0 7.0 8.6 8.3 8.0 5.3 6.0

1.8 26 9.9 14.6 5.1 4.9 8.4 8.0 9.3 7.8 4.5 5.3
27 10.7 18.7 5.1 5.0 9.2 8.0 8.8 8.3 5.0 5.2
28 11.8 23.3 5.0 5.0 9.4 7.9 8.4 8.1 5.0 5.2
29 13.8 29.0 4.9 5.0 9.0 7.8 7.7 8.0 4.8 5.1

light of this, a comparison of the two preconditioning strategies in terms of number of iterations is a reliable test which 
does not penalize the circulant preconditioner, rather gives it an edge.

We point out that apart form the preconditioner S(m)
N , there is in literature a sophisticated preconditioning method (see 

[18]) which involves a sum of circulant matrices. The main idea of this method is to start from the following preconditioner

Q −1 =
N∑

i=1

eie
T
i C−1

i ,

where ei denotes the ith column of the identity matrix, while Ci = νM,N I + d(m)
+,i s(Tα,N ) + d(m)

−,i s(Tα,N )T , and then to apply a 
piecewise linear interpolation on a small subset {x̃ j}�j=1 of {xi}N

i=1, with � � N which covers most of the interval [L, R] to 
approximate C−1

i as

C−1
i ≈

�∑
φ j(xi)C̃−1

j , i = 1, . . . , N,
j=1
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Fig. 2. Example 1 – CGNR: (a) Average number of iterations varying N for α = 1.2; (b) Average number of iterations varying N for α = 1.8.

where {φ j}�j=1 is a basis for the space of the piecewise linear polynomials, while C̃ j = νM,N I + d̃(m)
+, j s(Tα,N ) + d̃(m)

−, j s(Tα,N )T , 
with d̃(m)

±, j = d±(x̃ j, tm), j = 1, . . . , �. As shown in [18], this preconditioner reveals faster than S(m)
N . On the other hand, it still 

involves the use of FFTs, more precisely, O (�) FFTs per iteration are required which means that the product Q −1 y for any 
vector y is computed in O (�N log N) operations. Moreover, in the multidimensional setting such a circulant preconditioner 
suffers of the drawbacks already discussed in Subsection 4.1. Therefore, for the sake of simplicity, in the next examples we 
present a comparison of our two preconditioners only with S(m)

N .
In the following tables, we display the average number of iterations computed as follows

1

M

M∑
m=1

Iter(m),

where Iter(m) is the number of iterations required for solving (4) at time tm .

Example 1. In this example we consider a FDE problem of type (1) with nonconstant diffusion coefficients

d+(x, t) = �(3 − α)xα, d−(x, t) = �(3 − α)(2 − x)α.

The spatial domain is [L, R] = [0, 2], while the time interval is [0, T ] = [0, 1]. The source term and the initial condition are 
given by

f (x, t) = −32e−t
(

x2 + 1

8
(2 − x)2(8 + x2) − 3

3 − α
[x3 + (2 − x)3] + 3

(4 − α)(3 − α)
[x4 + (2 − x)4]

)
,

u(x,0) = 4x2(2 − x)2.

The exact solution of this problem is known and is given by u(x, t) = 4e−t x2(2 − x)2. Since the diffusion coefficients do 
not depend on t , the coefficient matrix and all preconditioners for this example are independent of the time step. For this 
reason we omit the superscript (m). For this example we choose �x = �t . In this case,

νM,N = �xα

�t
= �xα−1

which, being 0 < α − 1 < 1, tends to zero as N tends to ∞. Such a choice implies that the number of time steps M is 
given by M = (N+1)T

R−L = N+1
2 . In Table 1 we compare the iterations provided by the CGNR and the GMRES methods with 

preconditioners P1, P2, S , P av
1 and P av

2 for α = 1.2, 1.5, 1.8. We observe that preconditioner P1 is suitable for α close to 1 
(see Figs. 2(a) and 3(a)). When α is close to 2 both P2 (see Figs. 2(b) and 3(b)) and P av

2 are good preconditioners for CGNR 
and GMRES methods.

Example 2. The following example consists in an anomalous diffusive process of a Gaussian pulse. Let us define

d+(x, t) = 0.1(1 + x2 + t2), d−(x, t) = 0.1(1 + (2 − x)2 + t2)
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Fig. 3. Example 1 – GMRES: (a) Average number of iterations varying N for α = 1.2; (b) Average number of iterations varying N for α = 1.8.

Fig. 4. Example 2 – CGNR: (a) Average number of iterations varying N for α = 1.2; (b) Average number of iterations varying N for α = 1.8.

and set [L, R] = [0, 2] and [0, T ] = [0, 1]. The initial condition is given by

u(x,0) = e− (x−xc )2

2σ2 ,

with xc = 1.2 and σ = 0.08, and the source term is f (x, t) = 0. As in the previous example, we set �x = �t . In Table 2
we compare the number of iterations provided by the CGNR and GMRES methods with preconditioners P (m)

1 , P (m)
2 , P (m),av

1 , 
P (m),av

2 and S(m) for α = 1.2, 1.4, 1.5, 1.6, 1.8. As in Example 1, we observe that P (m)
1 is the best preconditioner for both 

CGNR and GMRES methods when α is close to 1 (see Figs. 4(a) and 5(a)). For α close to 2, CGNR and GMRES methods 
perform better with preconditioners P (m)

2 (see Figs. 4(b) and 5(b)) and P (m),av
2 . To be precise, for α = 1.4, 1.5, 1.6, 1.8 these 

numerical results suggest using preconditioner P (m)
2 with the GMRES method and preconditioner P (m),av

2 with the CGNR 
method.

6. Conclusions and future works

In this paper we focused our attention on the case of variable coefficients FDEs. Under appropriate conditions, we have 
shown that the sequence of the coefficient matrices belongs to the GLT class and we have computed the symbol describing 
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Fig. 5. Example 2 – GMRES: (a) Average number of iterations varying N for α = 1.2; (b) Average number of iterations varying N for α = 1.8.

its asymptotic eigenvalue/singular value distribution, as the matrix size diverges. We used the spectral information for 
analyzing known methods of preconditioned Krylov and multigrid type, with both positive and negative results. We also 
identified two new tridiagonal structure preserving preconditioners, to solve the resulting linear system with CGNR or 
GMRES. In particular, we suggested to use preconditioner P (m)

2 for 1.5 ≤ α < 2 and preconditioner P (m)
1 for 1 < α < 1.5.

A future work will concern a detailed analysis of the problem in the multidimensional setting. According to the pre-
liminary comments in Section 4, the only promising technique even in the case of nonconstant and different diffusion 
coefficients (provided that they are uniformly bounded and positive) seems to be the use of appropriate multigrid strate-
gies; on the other hand, for a completely different approach based on matrix equations we refer the reader to [5].
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