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A B S T R A C T

We present a method that dynamically and efficiently performs connectivity

calculations between many (O(105)) moving, unstructured overset meshes in

parallel. In order to connect overset meshes, elements exterior to the solution

domain must be removed from the simulation. In regions with many over-

lapping meshes, elements must be selectively removed to reduce redundancy

while maintaining a solution over the entire domain. Around masked regions

interpolation partner pairing is required between meshes to provide boundary

conditions. For general unstructured meshes, these steps involve challeng-

ing computational geometry calculations which must be efficient and auto-

matic. For many moving meshes each step must be massively parallelized and

scaleable to large numbers of computational cores. To establish communi-

cation patterns a parallelized master/slave algorithm is used which minimizes

global communication and storage. To remove elements a parallel ‘Forest Fire’

flood-fill algorithm is used to set a masking variable. For interpolation partner

pairing, and other necessary searches, k-dimensional tree data structures (k-d

trees) are extensively used. Often in a calculation, the connectivity between

overset meshes remains largely the same between time steps. The tempo-

ral coherence of the various objects in the connectivity calculation is directly

used to only update necessary information with time, resulting in substantial

cost savings. Details of the different algorithms are presented. Resulting con-

nectivity and timings are shown for complex geometries. Parallel scaling is

demonstrated for 100,000 spherical particles within a channel up to 492,000

processors.
c© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

Performing computational simulations of many, mov-

ing bodies in a fluid presents significant challenges.

Moving boundary conditions must be accurately im-
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posed for the solution of the fluid flow. The motion of

boundaries is generally not known a. priori., and hence

the methods must be dynamic in time for general mo-

tion. For a mesh based method with a single, body-fitted

mesh this requires re-meshing a domain dynamically as

bodies move. This procedure can be prohibitively ex-

pensive when many bodies are present. Boundary con-

ditions can also be imposed in a non-conforming manner

on the mesh as is the case for Immersed Boundary Meth-

ods (IBM) [1, 2, 3, 4, 5, 6].

In IBM a force is added to the governing equation

to impose non-conforming boundary conditions. This

type of method is relatively efficient and is generally eas-

ier to implement compared to re-meshing. The method

has been used successfully to study problems with

many moving bodies such as particle-resolved direct-

numerical simulations (PR-DNS). Challenging problems

such as surface-resolved sediment bed erosion with

many particles have been successfully investigated [7].

One disadvantage of IBM is the necessity of high res-

olution in the vicinity of moving boundaries, especially

for high Reynolds number (Re) [6, 8]. High mesh resolu-

tion must be placed in locations near moving boundaries,

which is often unknown, or the mesh must be adaptively

refined near the boundaries of bodies which has similar

disadvantages to a re-meshing method. Additionally the

calculation of forces and other quantities on the moving

bodies requires a reconstruction operation where flow

field quantities must be accurately recreated along the

surface of bodies. This reconstruction is often conducted

at Lagrangian points along surfaces. The placement of

these points along the surface is a non-trivial selection

where the nearby, possibly non-uniform, mesh resolu-

tion must be reflected in the placement of the points. In

simulations of PR-DNS several moving surfaces can be

present within a single element depending on the reso-

lution of the fixed mesh. This can create a non-trivial

constraint on the fluid flow such that none of the mov-

ing boundary conditions within such elements can be im-

posed accurately.

If multiple meshes are used, it is possible to use

meshes which conform to moving bodies while provid-

ing adequate resolution near surfaces. Such is the case

in overset methods where meshes are directly attached to

surfaces and allowed to overlap arbitrarily [9, 10]. A key

challenge of an overset method is connecting the solu-

tions between meshes robustly and efficiently throughout

a domain. Elements within meshes can be located exte-

rior to the solution domain and must be removed from

the simulation. Additionally, there may be regions in the

domain where many meshes overlap and redundant so-

lutions exist. For best efficiency, elements within these

regions must be selectively removed to reduce the redun-

dancy while still covering the entire domain. Boundaries

remain at the edges of overset meshes and the regions

of removed elements, which must be supplied bound-

ary conditions interpolated from meshes. This requires

finding elements which overlap these boundaries. Each

of these steps must be performed dynamically as the

meshes move.

Methods have been developed and software packages

are available which have been shown to effectively es-

tablish overset connectivity for moving body problems

[11, 12, 13]. In general the available packages are not

suitable to simulate large-scale problems on large num-

bers of meshes. This is necessary for many-body prob-

lems where the number of unknowns in a simulation can

be O(109) and the number of moving meshes O(105 −
106) as would be the case for PR-DNS of particle-laden

turbulent channel flows using an overset method. Over-

set methods have not been applied to simulating large

numbers of moving bodies. The main reason is the in-
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herent difficulty in establishing connectivity when many

meshes are present.

Establishing communication patterns and geometri-

cal connections between meshes at large scales presents

unique challenges. Communication patterns between

partitioned meshes must be efficiently established dy-

namically as meshes move while minimizing global

communication and storage, which could be crippling to

a simulation given the large amounts of data and com-

putational cores present. Collective communication is

necessary within a mesh, and between meshes, requir-

ing the creation of collective communication patterns

which must be efficient and robust. Finding geometri-

cal overlap between the different objects within meshes

must be localized and algorithmically efficient even if

many meshes are overlapping and geometries are com-

plex. Updating connectivity as meshes move must be

efficient even with large-scale motion that crosses many

meshes.

In this paper, we present an overset method which can

utilize large numbers of meshes distributed over large

numbers of computational cores. Details of the com-

munication strategy are first presented in section 2. The

removal of elements within the domain is then shown

in section 3. Interpolation partner pairing is presented

in section 4. Results from connectivity calculations

are shown as relevant to each section. Scaling is then

demonstrated for 100,000 spherical particles in turbulent

channel flow in section 5.

2. Communication

Consider an example case of several objects in a chan-

nel is chosen as shown in Fig. (1). Each mesh, includ-

ing the body meshes and background domain, is first

individually partitioned to a set number of partitions.

Processors are then assigned to be background or over-

set processors. Background mesh partitions, which is

the channel mesh partitions in this case, are assigned to

background processors such that there is one partition

per processor. Overset partitions, which are the body

mesh partitions in this case, are then assigned to over-

set processors in a cyclical fashion as shown in Fig. (1).

Note that multiple partitions are allowed on the same

overset processor and overset meshes can be duplicated

as desired. To control the balance of the computational

load, the number of partitions can be adjusted for each

mesh individually and the number of overall processors

can be adjusted. Even with movement, the required com-

munication between partitions on the same mesh will

not change throughout a simulation. By first partitioning

each mesh the communication within a mesh is treated

as static thus alleviating cost.

Partitions on different meshes which geometrically

overlap must communicate mesh connectivity informa-

tion such as the presence of solid boundaries or inter-

polation pairings. This requires that partitions must de-

termine other overlapping partitions dynamically with

time. It is desirable for best scaling that little to no global

information about the different partitions is stored. Addi-

tionally, it is desirable that costly O(N2
part), where Npart

is the number of partitions, calculations be avoided as

much as possible. To avoid both of these undesirable

properties we employ a parallel master/slave method

which uses Cartesian spatial-partitioning to dynamically

determine partition overlap.

This is effectively the same as detecting collisions be-

tween different partitions. Spatial partitioning has been

used to reduce the cost of collision detection success-

fully in the graphics community [14]. A Cartesian mesh

is created, spanning all objects present in the calcula-

tion. The objects are binned into the different cells of the

Cartesian mesh. Detailed collision calculations are then
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Fig. 1. Partitioned background and overset meshes in channel with partition numbering and resulting processor assignment color coded
by processor type for 13 processors and 16 partitions. Numbering begins on the background channel mesh and continues onto the overset
mesh partitions. Note the cyclical processor assignment is only applied to the overset partitions.

conducted only between objects that share a cell. This

effectively culls the number of detailed collision calcu-

lations required, thus alleviating the cost.

For the present method, we begin by constructing

a Cartesian mesh over the entire domain as shown in

Fig. (2). This requires the calculation and storage of the

Cartesian mesh spacing and size, a total of 6 global num-

bers. Each cell in the Cartesian mesh is assigned to a

processor, which can be a background or overset proces-

sor, which will determine all overlap within the cell. The

uniform size of the cells is set such that each processor

has approximately one cell assigned to it. In most cases

it is not possible to have one cell per processor thus mul-

tiple cells per processor are allowed as necessary. The

assignment of processors to Cartesian cells is done in a

cyclical fashion as depicted in the figure. By using this

assignment the Cartesian mesh cell numbering (i, j, k) di-

rectly maps to a unique processor that can be determined

by all processors with only knowledge of the Cartesian

mesh size and spacing.

Determining if an object belongs to a Cartesian cell

is done through an axis-aligned bounding box (AABB)

comparison. Axis-aligned boxes which complete en-

compass the maximum and minimum points of an object

are created for each object and are examined for overlap

using

Box1i,max ≥ Box2i,min, Box1i,min ≤ Box2i,max. (1)

Here, Box1i and Box2i refers to the maximum or min-

imum point in the specified i direction for each AABB

respectively. If all of the conditions are met then there is
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Fig. 2. Communication Cartesian mesh for overset meshes in channel numbered by assigned processor.

overlap between the two AABB. In this comparison, an

AABB is created over the object which is then compared

to each cell for overlap.

Since a Cartesian mesh is used for the spatial parti-

tioning, the cells themselves are AABB. Since the de-

tails of the Cartesian mesh are known, the range of cells

over cell numbering (i, j, k) can be directly determined

from a given partition’s AABB. Since there is a direct

map from (i, j, k) to an assigned processor, it is straight-

forward to determine not only the Cartesian cell within

which a partition lies, but also the processor which has

been assigned to that cell. For each partition, the range

of (i, j, k) on the Cartesian mesh is calculated and the

meta-information of the partition’s geometry is commu-

nicated to the Cartesian cell processor. This informa-

tion includes the AABB around the partition which is

used to determine partition overlap. The communication

from partitions to Cartesian cell processors is one-way

such that a Cartesian processor may receive many mes-

sages or none at all, depending on the partitions present.

The Cartesian processors process the meta-information

received and sends back the resulting overlapping parti-

tions to the processor assigned to each partition present

within their respective cells.

Within a calculation it is desirable to conduct collec-

tive communication within a mesh as well as between

overlapping partitions on different meshes. Using the

Message Passing Interface (MPI) one could create a

communicator object for each mesh and between meshes

to give access to useful MPI routines. This is not cur-

rently a feasible strategy when many meshes are present

due to limitations of speed and memory when dynam-

ically creating the required communicator objects. For

example at this time of writing, a typical Intel compiler is

limited to approximately 16,000 communicators. Thus,

this strategy on an Intel compiler would effectively limit

a simulation to approximately 16,000 meshes. To over-

come this limitation, a tree communication data struc-

ture is created for each mesh which stores all necessary

information to perform collective operations akin to MPI

routines such as MPI ALLREDUCE.

Tree construction for an example Cartesian parti-

tioned mesh is illustrated in Fig. (3). To create the tree

structure a processor within a mesh is chosen to be the

head of the tree for the mesh. A graph is created in par-

allel starting from the head processor using a flood-fill

algorithm. An integer (Nj) starting with a value of 0

is passed starting from the head processor to neighbor-

ing partitions. As partitions receive Nj its value is in-

creased by unity and sent to neighboring partitions. This

is repeated until all partitions have received the integer

message. The resulting value of Nj represents the num-

ber of partitions a given partition is away from the head

partition. To construct the tree structure, each partition

compares its local Nj to values of the neighboring parti-

tions. If a neighboring partition has a smaller value of Nj

relative to a given partition, the neighbor partition is con-

sidered to be on a higher branch of the tree. Conversely,
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if Nj is lower on a neighboring partition it is considered

to be on a lower branch of the tree. Neighboring parti-

tions with the same value of Nj are considered to be on

the same branch of the structure. The relative locations

of neighboring partitions on the tree are stored within

each partition. Redundant tree information is sometimes

found where a given processor is connected to several

branches. In such cases all but one connecting branch

is removed by pruning branches with large Nj. Note

that only Nj is necessary to determine the pattern. Parti-

tions can be general unstructured shapes or on different

meshes and a tree can be created using this methodology.

To use the resulting tree for an operation like

MPI ALLREDUCE, messages are started at the bottom

of the tree, reducing the value at each branch. The final

reduced value is calculated at the chosen head processor

and sent back down the tree. If the head processor is

chosen appropriately such that a balanced tree is found,

the resulting operation is expected to be similar in cost

to the logarithmic cost of MPI ALLREDUCE [15].

In addition to collective communication it is necessary

to communicate arbitrary lists of data which are possibly

dynamic with time between overlapping partitions. This

is necessary for the cutting and interpolation procedures

which will be discussed in the next sections. To per-

form such communication, a stacking strategy is used.

For a given partition, each overlapping partition is as-

signed a send and receive data stack to be used for com-

munication. As data is found during a calculation which

must be communicated to other partitions it is added to

its the corresponding partition’s send stack. As desired,

the data within the stacks can be synchronized such that

the data from all send stacks is placed within the receive

stack of the corresponding processor and partition. Once

the stacks are synchronized the receive data stacks can

be accessed as needed for further calculation. The syn-

chronization is conducted using non-blocking commu-

nication such that synchronization can be started while

other calculations are performed and then finished when

needed. This is utilized whenever possible to mask the

cost of communication for best parallel efficiency.

3. Cutting

When several meshes with solid bodies are in close

proximity, elements reside within the solid bodies and

must be removed from a simulation. An example is

shown in Fig. (4) for a spherical particle near a wall

where elements are found in the wall and within the par-

ticle. In regions where meshes overlap redundant solu-

tions are present as shown in the blue region in the figure.

It is desirable to remove elements within these regions

to improve efficiency. To remove elements a masking

variable is used (ψ) which decouples the solution of the

motion of fluid and solid bodies from removed elements

when set to a value of 0. The process of removing ele-

ments by setting ψ will be referred to as cutting, similar

to previous overset studies [10].

To reduce overlap between meshes, volumes are first

constructed for each overset mesh which encompass the

different solid bodies on the overset mesh while being

contained by the mesh. Elements on other overlapping

meshes inside these volumes are selectively removed

from the simulation ensuring that elements are present

throughout the domain. Simple primitive volumes are

selected, such as spheres or angled rectangular boxes,

when possible, to simplify and optimize calculations of

overlap. For complex geometries it is not always feasi-

ble to use such primitive volumes. For such cases, solid

faces along a body are projected outwards and the re-

sulting projected body is used. In many cases, cutting

elements within the primitive or projected volumes is all

that is required. This is true when all of the elements that
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Fig. 3. Constructing binary communication pattern for a Cartesian partitioning over 9 partitions. (�) indicates partitioning, (�) indicates
N j, and (�) indicates the resulting tree

lie within solid bodies also lie within the primitive vol-

umes. One example where this occurs is a 5-bladed pro-

peller attached to a hull where an overset mesh is used

for the propeller and a fixed background mesh is used

for the hull. The result of cutting using a rectangular,

spherical and projected volume for such a case is shown

in Fig. (5).

Cutting of primitive volumes and of solid bodies is

performed using a parallel flood-fill method. Fig. (6) de-

picts the flood-fill process for two spheres. To begin the

method, elements which intersect the surfaces of cutting

volumes must be marked. To do this, AABB of elements

are first compared to AABB of cutting volumes using

Eq.1. This calculation is only done between partitions

which overlap as found by the communication step out-

lined in the previous section. For each element found to

satisfy the relation, the nearest faces along cutting vol-

umes are found. To determine if points inside of ele-

ments lie within the cutting volume, the signed, normal

distance to nearby faces is calculated in index notation

as

dplane = (x f ,i − xp,i)n f ,i (2)

where dplane is the normal distance from a plane coin-

cident to the face, x f ,i is a point along the face, xp,i is the

test point and n f ,i is the face normal according to indice

i. As a convention, face normals along cutting surfaces

are defined to point into the body as shown in Fig. (8).

Thus if dplane≤0 the point lies within the body. In numer-

ical experiments it has been found that typically only the

closest face out of all nearby cutting volumes is neces-

sary to accurately cut using Eq. (2). In general, several

of the closest faces can be assessed for a more robust

result.

If an element is found to intersect a nearby face ac-

cording to Eq. (1) and has at least one node which is

inside a solid body according to dplane then it is masked

from the solution. These elements mark the edges of re-
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Fig. 4. Spherical particle near wall overset example before and after cutting using an angled rectangular box primitive shape. Blue (�)
regions indicate a region where overlap must be reduced. Red (�) regions indicate elements that lie within solid boundaries. Note that
elements on the background channel mesh within the particle and (�) are removed and elements on the particle mesh below the channel
wall are removed.

Fig. 5. Primitive volume cutting shown for a propeller attached to a hull. Elements removed and resulting cut using spherical, rectangular
and projected primitive volumes are shown respectively. The two meshes contain 9 million elements total and the case is partitioned over
424 processors.

Algorithm 1 Cutting Psuedocode

1: procedure Cut Volumes (Partition γ)
2: for all overlapping partitions α do
3: if cutting volumes present on γ then
4: send faces δ on volumes which overlap α

5: if faces received from α then
6: for Elems overlapping volume AABB do
7: if Elem overlaps closest δ then
8: set ψ = 0

9: for Elems with ψ == 0 do
10: for neighbors of Elem do
11: if neighbor also overlaps closest δ then
12: Start ‘Forest Fire’ flood-fill

13: Return

gions on meshes which must be filled with masked val-

ues. Elements inside these regions must then be marked

as starting points for the flood-fill algorithm. Neighbor-

ing elements to those that have been masked are assessed

for overlap using the same searching procedure as be-

fore. If the neighboring element is found to lie within

the body according to dplane of its nodes it is marked as

an internal flood element. To perform the flood we uti-

lize a ‘Forest Fire’ flood-fill algorithm which avoids re-

cursion through the use of a queueing system. The algo-

rithm is presented in pseudocode in Proc. (2). The proce-
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Fig. 6. Flood fill surface cutting for two touching spheres. Both meshes, surface cut and flood-fill starting elements and final cut mesh are
shown respectively. In the center figure elements cut along surfaces are marked with blue (�) and flood-fill starting elements are shown in
red (�) along a center slice through both spheres. In the last figure, the final removed volumes from both meshes are shown in addition to
the final mesh along a center slice through both spheres.

dure is performed starting at internal flood elements and

iteratively at elements along inter-processor boundaries

which have been marked by neighboring processors.

The outlined cutting method requires searching for

neighboring nodes and face centroids. To perform all

point searches k-dimensional, or k-d, tree data structures

are extensively used. Initially created by Bentley [16],

k-d trees are spatial partitioned binary trees in multiple

dimensions where an arbitrary list of points can be or-

ganized based on splitting planes which pass through

median points at each branch of the structure. A dia-

gram showing the resulting k-d tree for a short list of

points in 2D is shown in Fig. (7). Note that while only

1 point is included per node in the shown structure, it

possible in general to have several nearby points within

a single node. Nominally, k-d trees cost O(Nplog(Np))

to construct and O(log(Np)) to search for Nnear nearest

points from a list of Np points. This is a substantial cost

savings when compared to an exhaustive search which

is O(NnearNp). Commonly in overset assembly a list of

points must be searched many times. Thus a k-d tree can

be constructed once for many searches yielding more ef-

ficiency. This is the case for cutting where a partition

searches from the same list of overlapping solid bound-

ary faces for each overlapping element.

K-d tree data structures are similar to alternating digi-

tal tree structures (ADT) used by other overset assembly

methods [17, 18]. ADT allow for the storage and eval-

uation of finite objects in addition to points at the nodes

within the tree structure. This allows for direct evalua-

tion of geometric intersection between objects using the

tree when performing a search. One drawback is the con-

siderable cost of creation of the ADT. Additionally, the

cost of searching and required storage of an ADT is ex-

pected to be higher than a k-d tree structure due to the

finite volume information within the tree. In the present
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Fig. 7. K-dimensional tree structure for 6 points in 2D. Color indi-
cates direction of each split within tree.

method, detailed geometric overlap calculations between

finite objects are generally simplified to point searches

allowing for extensive use of k-d trees instead of ADT.

This is expected to yield improved computational effi-

ciency which is required to perform connectivity calcu-

lations between many overset meshes.

Algorithm 2 ‘Forest Fire’ Flood-Fill

1: procedure Flood-fill (Elems)

2: create Q, an empty queue of Elems

3: add Elem at end of Q

4: while Q is not empty do
5: set p equal to the first member of Q

6: Loop through neighbor Elems of p
7: if ψnbr == 1 then
8: set neighbor ψ = 0

9: add neighbor to end of Q
Return

4. Interpolation Partner Pairing

Boundaries remain around cut regions which require

boundary conditions from the solutions of overlapping

meshes. For the example of a spherical particle near a

wall, interpolation boundaries are depicted in Fig. (9).

Elements adjacent to these boundaries are treated as

ghost cells with values set through interpolation by

overlapping meshes. To construct interpolation stencils

all elements and their neighbors from different meshes

which overlap each ghost cell must be found.

Fig. 8. Evaluating point intersection with general surface. Since
nearest n f ,i and x f ,i − xp,i are in the same direction, dplane > 0 and
point is outside of body.

To conduct the search all ghost cells are communi-

cated to neighboring, overlapping partitions as deter-

mined by the communication process and an AABB

comparison. K-d trees of element centroids are con-

structed on partitions which receive ghost cells. For each

ghost cell an N-nearest neighbor search is conducted us-

ing the k-d tree. Elements must not be cut or themselves

ghost cells to be considered for interpolation. Every

found element from the search which overlaps the ghost

cell and valid neighboring elements are sent back to the

original partition. Note that all overlapping partitions of

a ghost cell perform the search such that interpolation el-

ements from several meshes can be used as desired. The

connectivity between elements is preserved during this

process such that stencils can reasonably constructed for

each ghost cell. N is set to the maximum allowed num-

ber of elements which may be used by a given ghost cell

for interpolation. This allows control of the efficiency

of the interpolation process by limiting searches when

ghost cells and overlapping elements are vastly different

in size.

In certain circumstances there are no overlapping el-

ements available for interpolation. An example of this

is a spherical particle approaching a wall as shown in

Fig. (9) where elements on the particle mesh along the
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Fig. 9. Spherical particle near a wall with marked interpolation
and IBM boundaries.

bottom wall do not have overlapping elements for inter-

polation. In every case where this occurs the surface of

a solid body is near the ghost cells. IBM is used in these

cases to impose the boundary condition of the solid sur-

face onto the non-aligning unstructured mesh. In order

to reconstruct the solid surface boundary condition the

geometry of nearest face and connectivity information

is needed. All of this information is available during

the cutting process which produced the IBM interpola-

tion boundary. Instead of performing a potentially costly

search of nearby solid boundary faces to each ghost cell,

the necessary information is stored in cut elements dur-

ing the cutting process outlined in the previous section.

As will be shown in the next section interpolation part-

ner pairing is the most expensive calculation in the as-

sembly process by a large margin. This is especially ap-

parent when elements between meshes are vastly differ-

ent in size as is the case in the previously shown pro-

peller case in Fig. (5) where interpolating elements are,

in places, found to be 1/20 in volume to their corre-

sponding ghost cells. One strategy that can be used to

alleviate the cost is to use the temporal coherence of ele-

ments within the meshes. This type of strategy has been

used effectively in work on efficient collision detection

[14, 19]. As meshes move, elements typically move rel-

atively smoothly such that most ghost cells overlap the

same elements from time step to time step. It is faster to

verify that the interpolation elements of a ghost cell are

still valid rather than performing another costly search.

Thus for interpolation partner pairing ghost cells first

verify existing interpolation connectivity. If the interpo-

lating elements no longer adequately overlap the ghost

cell or if any interpolating element is cut or becomes a

ghost cell the connectivity is marked as invalid. Any in-

valid interpolation connections are replaced by perform-

ing an interpolation search as outlined above. If an ex-

isting interpolation connection is still valid interpolation

weights are updated to reflect any potential movement

and nothing else is adjusted.

Fig. (10) shows the time savings for the previously

shown propeller case rotating for 100 time steps. In the

figure tc is the time for full overset assembly, includ-

ing communication and cutting, accounting for temporal

coherence and t f is the time for full assembly recalcu-

lated fully every time step. On average t f = 1.6 secs,

tc = 0.7 secs such that the overall savings are approxi-

mately 46% for the case described. The savings are case

dependent and vary based on the movement of elements

along interpolation boundaries with time. If the rotation

rate is increased, less savings are found with the abso-

lute maximum cost being approximately t f . If no motion

occurs the interpolation presents far less computational

cost compared to the cutting and communication proce-

dures. For the propeller example the cost of assembly is

approximately 0.2 secs with no motion. Even though the

savings reported here are specific to the propeller exam-

ple, savings are expected for most general moving body

problems so long as elements along interpolation bound-

aries do not move more than one element length between

time steps.

The timings found for the propellor are found to be

competitive to similar cases as reported in other over-

set assembly work. In particular, in the work of Roget

and Sitaraman [12] the timings for overset assembly of
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Fig. 10. Overset assembly cost savings using temporal coherence.
tc is the time each step for full overset assembly accounting for
temporal coherence. t f is the full assembly cost recalculating the
full assembly. The average values of tc = 0.7 secs, t f = 1.6 secs.
These timings were acquired using Quartz (Intel Xeon 2.1 Ghz) at
Lawrence Livermore National Laboratory (LLNL).

unstructured meshes of a helicopter fuselage and a 4-

bladed rotor, termed the HART-II case in the work, are

reported. While the geometries are not the same, the

overall number of elements per processor, speed of the

machines used to acquire the timings, and geometrical

features are similar to the propellor. It is found in the

work that the overall cost of assembly is approximately

1.3 seconds. This is similar in cost to the timings found

for the propellor without including temporal coherence.

5. 100,000 spherical particles in a channel

In order to demonstrate the method’s capability to per-

form overset assembly when many overset meshes are

present, such as is the case for PR-DNS, a strong scal-

ing study is performed for 100,000 spherical particles

in a channel. A single, unstructured spherical parti-

cle overset mesh is duplicated and distributed randomly

across a channel mesh which has dimensions selected to

match DNS studies of turbulent channel flow at friction

Reynolds number, Reτ = 180 [20]. Information about

the overset mesh and channel is listed in Table. (1). In

Algorithm 3 Interpolation Pairing Psuedocode

1: procedure Interpolation Pairing (Partition γ,n)
2: for all overlapping partitions α do
3: if ghost cells on γ then
4: send ghost cells which overlap α

5: if ghost cells received from α then
6: if Elem k-d tree not created then
7: create Elem k-d tree

8: for each ghost cell do
9: n-neighbor search (k-d tree, N nbrs)

10: send back overlapping Elems + Nbrs

11: for ghost cells on γ do
12: if Elems received for cell then
13: calculate interpolation weights

14: else
15: calculate IBM weights

16: Return

the table Lx is the length of the channel in the specified

direction with Nx as the number of elements in the corre-

sponding direction. Δbg is the uniform element spacing

in the channel, Dp is the diameter of the particle, Δe is

the element spacing at the edge of the overset, and Δs is

the spacing near the surface of the particle on each over-

set mesh. The distribution of particles in the channel and

the overset mesh is depicted in Fig. (11). The stream-

wise and spanwise boundary conditions of the chan-

nel are periodic. The vertical boundaries are chosen to

be walls. Calculating overset connectivity through pe-

riodic boundaries requires establishing communication

patterns and overlap between geometries that may be far

apart within the domain. A linear mapping which maps

points and AABB across planar periodic boundaries is

used at each step of the method to produce connectivity

with meshes across periodic boundaries. Details of the

mapping and the necessary step-by-step periodic adjust-

ments are not the focus of the present study and thus are

omitted.

In total there are approximately 2.8 billion elements

in the case. The channel spacing is chosen to be uniform

with size Δbg = Dp/5. On the overset mesh near the
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Fig. 11. Particle distribution within channel and particle overset mesh. Each point in the distribution is a particle mesh at actual scale.

Table 1. Channel and overset mesh information.

Lx × Ly × Lz Nx × Ny × Nz Dp/Δbg

4π × 2 × 4/3π 2514 × 400 × 838 5

Nelem Dp/Δe Dp/Δs Dp

15543 5 40 0.013

particle surface the mesh spacing is chosen to be nearly

uniform with Δs = Dp/40 and to grow at a rate of 5%

away from the particle surface towards the edge of the

overset mesh. The overset mesh is 15,543 elements in

size. The channel background mesh is 850 million ele-

ments in size.

For the simulations the particles are set to move at a

fixed velocity equal to the average flow velocity within a

channel according the log profile given by

u+p =
1

k
ln(y+) +C+ (3)

where up,+ is the dimensional particle velocity nor-

malized by friction velocity, and y+ is the vertical lo-

cation of the particle relative to the nearest wall in plus

units, k = 0.41 is the Von Kármán constant, and C+ =

5.0. Timings using MPI WTIME() are taken over 20

time steps of particle motion using dt = 0.001. All of

these simulations were conducted on MIRA at Argonne

National Laboratory (ANL). The number of processors

for the study ranged from 46384 to 492192 processors.

Meshes were repartitioned for each simulation for best

load-balancing. The processor load varied from 55,000

elements per processor to 5,000 elements per processor.

Several partitions were required per overset processor

for the heavier loadings with a maximum of 7 partitions

per processor being required for 46384 processors. The

total number of partitions ranged from 300,000-500,000

depending on the re-partitioning.

The resulting strong scaling is shown in Fig. (12)

and the corresponding average timings are shown in

Fig. (13). Over the range investigated excellent scaling

is found when compared to ideal linear scaling. The cut-

ting and interpolation pairing processes are both found to

individually scale. Establishing communication patterns

is found to be a relatively cheap operation over all cases

with a cost of O(10) milliseconds. Interpolation partner

pairing is the most expensive operation. Using temporal

coherence is found to reduce the cost of the interpola-

tion pairing for this case by approximately 70% over all

loadings investigated.

In strong scaling it is often found that increased com-
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Fig. 12. Strong scaling for 100,000 spherical particles in a channel.

Number of Cores

T
im

e 
(s

ec
)

Communication
Cutting
Interpolation
Interpolation w/ coherence

Fig. 13. Overset assembly timings for 100,000 spherical particles in
a channel.

munication costs result in less than ideal scaling when

large numbers of cores are present. In the current study

the number of partitions, the partition sizes, number of

interpolation elements per processor, and cut elements

per processor all decrease with increases in number of

cores. Using the current method this overall results in

a lessening of the required overset communication with

increased core count which likely yields the found scal-

ing. The use of temporal coherence is found to provide

substantial cost savings for this case. It is possible that

improvements could be made by utilizing further past

connectivity information to extrapolate more accurately

which ghost cells will need new interpolation elements

for a given time step.

Conclusions

The method presented in this work was created to con-

nect many, moving overset meshes in an efficient and

scaleable manner. Using strategies from work on colli-

sion detection a parallel master/slave spatial partitioning

method was created. Dynamic collective and point-to-

point communication is required between overlapping

mesh partitions. For collection communication a bi-

nary tree communication strategy was employed which

avoids expensive creation of MPI objects while retaining

comparable computational cost when used for reduction

operations. Point-to-point communication was handled

using an asynchronous stacking strategy. Establishing

communication patterns and performing the necessary

communication for overset assembly was demonstrated

to be efficient and scaleable up to O(105) cores and par-

titions, even when several partitions are present on each

core.

Within an overset calculation it is necessary to re-

move elements within solid boundaries and to remove

elements in regions of overlap to reduce solution re-



Wyatt James Horne et. al / Journal of Computational Physics (2018) 15

dundancy. Where possible elements are removed from

primitive volumes, such as spheres or angled rectan-

gular boxes, instead of the more complex underlying

geometry. Relatively limited amounts of information

is required to be communicated to determine overlap

using such primitive volumes and overlap calculations

are typically simpler and more efficient. A flood-fill

algorithm is used where elements along the surfaces

of primitive volumes and solid boundaries are first re-

moved and elements within the volumes are then re-

moved using a flooding algorithm. The algorithm used

ensures that detailed calculations of overlap are only

conducted locally along the surfaces of cutting volumes

rather than throughout the domain yielding reasonable

computational cost and scaleability. The cutting strategy

was demonstrated to be efficient for complex geometries

such as a 5-bladed, marine, propellor attached to a hull

the cutting strategy was found to be efficient and effec-

tive. When many meshes are present the strategy was

found to be low in computational cost and to also rea-

sonably scale.

To connect solutions throughout the domain interpo-

lation is conducted between overlapping meshes. This

requires interpolation partner pairing between overlap-

ping elements on different meshes. Primitive volume

overlap comparisons, such as AABB, are used to nar-

row required searches. K-d trees are extensively used to

conduct detailed searches for nearby elements. The tem-

poral coherence of element motion is used to retain in-

terpolation pairing connectivity as meshes move rather

than performing potentially expensive and unnecessary

searches. While the interpolation pairing procedure is

the most expensive operation, it was found to reliably

scale to large numbers of cores when many meshes were

present. The use of temporal coherence was found to

provide substantial overall cost savings for interpolation

pairing and the overset connectivity process, which was

found to be approximately 50-70% for the cases pre-

sented in this work.
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