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In the present work, a new method for simulation of rarefied gas flows is proposed, a 
velocity-space hybrid of both a DSMC representation of particles and a discrete velocity 
quasi-particle representation of the distribution function. The hybridization scheme is 
discussed in detail, and is numerically verified for two test-cases: the BKW relaxation 
problem and a stationary Maxwellian distribution. It is demonstrated that such a velocity-
space hybridization can provide computational benefits when compared to a pure discrete 
velocity method or pure DSMC approach, while retaining some of the more attractive 
properties of discrete velocity methods. Further possible improvements to the velocity-
space hybrid approach are discussed.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Perhaps the most widely adopted approach to simulation of rarefied gas flows is the Direct Simulation Monte Carlo 
(DSMC) method developed by G.A. Bird [1,2]; however, it suffers from statistical noise and requires significant computational 
and memory resources to accurately simulate trace populations, such as those of the tails of a distribution function, of 
high-lying internal energy states, or of trace species present in the mixture. As such, DSMC can have problems when 
the trace species are either the main species of interest (for example, heavy molecules in a light carrier gas in substrate 
deposition processes [3]); when low populations can have a large influence on the flow, for example, high-velocity tails in 
dissociation or ionization reactions; in a beam skimmer set-up [4]; or in the case of a high-velocity beam colliding with a 
cold gas [5].

Several modifications to DSMC have been proposed to improve the resolution of trace species [3,6] and reduce the 
statistical variance of the method [7–9]. However, the developed weighting approaches improve the accuracy of modeling of 
trace species only, and do not improve the resolution of the stochastic representation of the non-trace species’ distribution 
function.

The discrete velocity family of methods has been developed as an alternative to DSMC [10–12], and various interpolation 
schemes are used in order to conserve mass, momentum and energy during the collision process [12–16]. An overview 
of discrete velocity methods can be found in [17] and [5]. Discrete velocity methods are capable of accurate representa-
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tion of weakly-populated tails of the distribution function, and have been successfully applied to high-fidelity modeling of 
populations of high-lying internal energy states [18,19].

Lattice Boltzmann Equation methods [20–22], while also restricting the set of possible velocities, differ from the above 
discrete velocity methods in their use of the BGK linear collision operator [23], whereas discrete velocity methods referenced 
in the previous paragraph can model the full non-linear collision operator rather than a simplified BGK operator.

Discrete velocity methods can also benefit greatly from variance reduction techniques [24,25], which not only decrease 
the noise in the distribution function, but also provide a significant speed-up of the simulations. These techniques were 
originally developed in the context of removing stiffness in explicit time integration of discrete velocity models in the limit 
of a low Knudsen number [26] and later adapted to DSMC simulations [7]. Outside of DSMC and discrete velocity methods, 
variance reduction has been applied to Particle-in-Cell methods [27,28], as well as to Fokker-Planck-type equations [29–31]. 
Variance reduction may also be applied to flows of gases with internal degrees of freedom [5]. Other notable features of 
the discrete velocity method include the ability to adapt resolution in velocity space (and have independent velocity grids 
for different species) [18], adapt the noise level (without incurring additional memory cost) [15], accurately model chem-
ical reactions even when reaction probabilities are extremely low [32], and determine the complete distribution function 
(including internal states) even over many orders of magnitude of variability.

However, the discrete velocity method has its own set of drawbacks: it requires a numerical scheme for the convection 
step (compared to the straightforward convection step in DSMC); treatment of boundary conditions may require ghost 
cells and calculation of number density fluxes; and velocity space discretization can be a source of “ripples” in the values of 
computed macroscopic quantities in case of discontinuous boundary conditions [33–37]. Also, discrete velocity methods have 
not yet incorporated the vast range of physical models and capabilities available to DSMC (such as state-specific inelastic 
cross-sections, including those of chemical reactions [38,39], ionization [40] and radiation processes [41,42]; coupling with 
Particle-in-Cell (PIC) codes [43,44]; the possibility of coupling with quasi-classical trajectory simulations [45]), and in general 
have seen less application to large-scale simulations.

Research in the area of hybrid methods involving the Boltzmann equation has been mostly focused on the hybridization 
of DSMC and CFD solvers, using continuum methods in flow regions with a low Knudsen number and utilizing DSMC to 
accurately model the rarefied parts of the flow; examples of such approaches can be found in [46–49]. While this hybrid 
approach allows one to save computational effort (compared to a pure DSMC computation of the same flow), the interface 
between the DSMC and CFD regions, and the noise associated with DSMC (which is a source of noise in the macroscopic 
boundary conditions for the continuum region) remains an outstanding issue. It is worth mentioning that the lower noise 
of the discrete velocity method might make it more amenable to such a physical space hybridization with continuum 
solver [50], especially when the trace species and/or tails of the velocity distribution function are important to the flow 
dynamics as can be the case in atmospheric pressure gas discharges [51].

However, to the authors’ knowledge, few works have attempted a hybridization in velocity space. In [52], an approach 
based on solving Euler equations in a region of velocity space (assuming a Maxwellian distribution) and a BGK model 
equation outside of that “equilibrium” region was developed. In [53] several approaches based on discrete velocity models 
applied to the BGK model equation were considered, including a velocity-space hybrid approach, in which the tails of the 
distribution function were represented by particles with arbitrary velocities, while the bulk of the distribution function 
was represented by particles on a discrete velocity grid. However, such a hybridization loses some of the more attractive 
properties of the discrete velocity methods — namely, the ability to accurately simulate the tails of the distribution function. 
In [54], the DSMC method was used to represent the bulk of the distribution function, and a discrete Galerkin approach 
was used to model the tails of the distribution; however, no extensive studies of the errors and computational efficiency of 
such a scheme were undertaken. In [55], a similar approach was investigated, but the tails of the distribution function were 
modeled using the BGK collision operator, rather than the full Boltzmann equation.

Therefore, it is of interest to develop and study a computational scheme that is hybrid in its velocity-space representa-
tion and does not rely on the assumptions of a near-equilibrium distribution function and the BGK collision operator: the 
majority of the mass in a cell in physical space being represented by a few large DSMC-type particles (whose velocities 
are not restricted to a discrete grid), while the tails of the distribution function are simulated using the discrete velocity 
method. The expected benefits of such an approach are an improvement in computational efficiency compared to a pure 
discrete velocity method, while retaining the flexibility of DSMC, and ability to accurately resolve the tails of the distribution 
functions, as well as the populations of trace species.

The paper is structured as follows: In Sect. 2, a brief overview of our present discrete velocity method is given for a 
single-component gas with no internal degrees of freedom. Then, in Sect. 3, the approach to hybridization in velocity space 
is described in detail. After that, the hybrid method is applied to two spatially homogeneous problems, results of numerical 
simulations are presented, and various approaches to modeling of rarefied gas flows are compared.

2. The Boltzmann equation and the discrete velocity method

Let φ(r, η, t) be the density of the mathematical expectation of the number of particles in an element of phase space 
(r, r + dr), (η, η + dη) at time t .

The definitions of macroscopic quantities such as the bulk velocity u, number density n and temperature T through the 
function φ are well-known and not given here, the reader is referred to works such as [2,56,57]).
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Defining a reference temperature Tr , mass mr , number density nr and a cross-section σr , and a characteristic length L, 
one can define the reference velocity as

ηr =
√

2kTr

mr
, (1)

where k is Boltzmann’s constant. One can also introduce a reference mean free path λr :

λr = 1

σrnr
, (2)

and define a Knudsen number as Kn = λr
L .

Now we can introduce dimensionless quantities:

η̂ = η/ηr; t̂ = tηr/L; σ̂t = σt/σr; r̂ = r

L
; φ = φ/nr, (3)

where σt is the total collision cross-section, integrated over all scattering angles.
One can then write the Boltzmann equation in a scaled form [24]:

∂φ

∂ t̂
+ η̂ · ∇r̂φ = 1

Kn

∫
ζ̂

[
φ(η̂′

)φ(ζ̂
′
) − φ(η̂)φ(ζ̂ )

]
ĝσ̂tdζ̂ , (4)

where ζ̂ is the scaled velocity of the colliding particle, ĝ =
∣∣∣ζ̂ − η̂

∣∣∣ is the magnitude of the relative collisional velocity, and 
primed variables denote the post-collisional quantities.

Equation (4) can be discretized by defining the velocity distribution function φ on a finite set of points in velocity space. 
For a uniform discrete velocity grid, it takes on the following form [24]:

∂φ

∂ t̂
+ η̂ · ∇r̂φ = β3

Kn

∑
ζ̂ �=η̂

[
φ(η̂′

)φ(ζ̂
′
) − φ(η̂)φ(ζ̂ )

]
ĝσ̂t . (5)

Here β = 	η/ηr is the scaled step size in velocity space. We can define φ̂ = β3φ, with φ̂(ζ̂ ) being the density of the 
mathematical expectation of the number of particles in a volume of size β3 centered around the velocity ζ̂ . Equation (5)
then takes on the following form:

∂φ̂

∂ t̂
+ η̂ · ∇r̂φ̂ = 1

Kn

∑
ζ̂ �=η̂

[
φ̂(η̂′

)φ̂(ζ̂
′
) − φ̂(η̂)φ̂(ζ̂ )

]
ĝσ̂t . (6)

While the collision operator can be evaluated in a deterministic fashion, this requires O(N2
v ) operations, where Nv is 

the number of points on the discrete velocity grid, and thus is very expensive from a computational view. However, the 
collision operator can be computed using a stochastic Monte-Carlo scheme [5,24], which is the method used in the present 
work. The number of collisions to be performed is computed as

Ncoll = nint

(
	t̂ T̂ 2/3

KnC2
RM Sm̂2/3

r β3

(
n̂ − 2n̂neg

n̂

)2
)

, (7)

where nint denotes rounding to the nearest integer, m̂r is the scaled collision-reduced mass, n̂neg is the amount of negative 
mass in the numerical representation of the velocity distribution function at that particular location in physical space (ex-
plained below), and C RM S is a parameter that is proportional to the user-defined level of acceptable noise in the distribution 
function at equilibrium [5]. Decreasing the value of C RM S leads to lower noise in the distribution function, at the cost of 
having to compute more collisions.

A collision is computed by selecting a pair of locations on the discrete velocity grid for depletion. The probability of a 
location being selected is proportional to the absolute magnitude of the distribution function at that point:

P (η̂) = |φ̂(η̂)|∑
ζ̂ |φ̂(ζ̂ )| . (8)

Once two velocity locations are chosen for a collision, the density at those locations is depleted by the quantity

	φ̂ = 	t̂
(n̂ − 2n̂neg)

2

sign
(
φ̂(η̂)φ̂(ζ̂ )

)
ĝσ̂t . (9)
2KnNcoll
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The removed mass is then immediately replenished — its velocity is computed using standard collision mechanics [2]; 
however, since the post-collision velocity does not necessarily lie on the discrete velocity grid, a remapping scheme is 
used [13,15], which conserves mass, momentum and energy. The remapping scheme utilizes a 7-point stencil; and the 
scheme delivers negative mass to 3 of the stencil points in order to yield a net conservation of energy. This can result in 
small amounts of net negative mass at a few velocity space locations, typically near the tails of the distribution function 
(see [5]). The presence of negative mass is accounted for in Eqns. (7) and (9).

3. Description of the velocity-space hybrid method

Let D ⊂R3 denote the set of discrete velocities used for the computation. Let us also define a region F ⊂R3 of velocity 
space in which particles can have any velocity (i.e. a particle whose velocity lies in F is not restricted to the discrete velocity 
grid), as well as define a region Q = D \F in which the distribution function is defined only on the discrete velocity grid.

Fig. 1 shows a schematic of such a hybrid representation of the velocity distribution function (for some fixed value of 
vz).

The basic velocity-space hybrid algorithm for simulation of rarefied gas flows consists of the following steps (performed 
during a single simulation timestep):

1. Collide particles in region F using DSMC collision mechanics, that is, a No-Time-Counter (NTC) [2] scheme or some 
other DSMC collision scheme, such as the Majorant Frequency method [58];

2. Collide mass in region Q with mass in Q and particles in F using discrete velocity collision mechanics;
3. Remap any particles that lie outside region F to the discrete velocity grid in Q;
4. Perform merging of particles in region F (the necessity of this procedure will be discussed in the next subsections);
5. Perform convection, using a finite difference or finite volume scheme for the distribution function defined on the dis-

crete velocity points in Q and using Lagrangian convection for the particles in F .

During step 1, a post-collision velocity of a particle may lie in Q, in which case it is remapped onto the discrete velocity 
grid (this is done after all the collision steps have been performed, so as to allow a DSMC particle to undergo multiple 
collisions during a single timestep). Conversely, during step 2, a post-collision velocity of the replenishment quantity may 
lie inside F , in which case the mass is not remapped onto the discrete velocity grid, but rather immediately created as a 
new particle in F . Finally, during the remapping procedure, one or more points of the remapping stencil may lie inside F , 
in which case the mass replenished at these points is also created as new particles which are not restricted to the discrete 
velocity grid. It is important to note that all particles in F have a different weight associated with them, unlike standard 
DSMC, where particles usually have identical weights. Even if one started the simulation with equal-weight particles in F , 
due to the remapping scheme, particles with different computational weights will be created in F .

While variable weight DSMC algorithms have been developed that combine the splitting and merging steps [3,59], they 
are generally not conservative, and utilize various workarounds in order to ensure energy conservation; in order to avoid 
this issue, in the present work the collisions of variable weight particles and the merging step are performed separately in 
order to construct a conservative scheme.

3.1. Collision algorithm

As described previously, three types of collisions are possible:

1. Collisions between particles in region F ;
2. Collisions between particles in region F and mass in region Q;
3. Collisions between mass in region Q.

Since one of the aims of discrete velocity methods is to have a low amount of noise in the tails of the distribution 
function, collisions of types 2 and 3 are treated using the Monte Carlo collision scheme as detailed in [5]. Collisions between 
particles in region F are treated using DSMC collision mechanics, and are performed first — since collisions of types 2 and 
3 might create a large number of DSMC particles. In the present work, the No-Time-Counter collision method will be 
utilized [2] (although the Majorant Frequency method also works well). However, a modified version of the method has to 
be used to account for the fact that, in general, particles in F have different weights.

The required number of collisions (for a single-species gas) is computed as follows [60]:

Ncoll,F = 1

2

Np(Np − 1)(Fnumσ g)max	t

V
, (10)

where Np is the number of particles in F , V is the volume of the cell in physical space in which the collisions are 
considered, Fnum is the number of real gas particles represented by a single model DSMC particle in F , and 	t is the 
timestep of the simulation. (Fnumσ g)max denotes the maximum value of the product Fnum · σ · g (taken over the whole 
region F ).
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Fig. 1. Schematic showing the velocity-space hybrid representation of the velocity distribution function (for a fixed value of the z-velocity vz ). Blue bars 
denote the distribution function defined at the discrete grid points in Q (with their height corresponding to the value of the distribution function at that 
point), the red circles denote the DSMC particles (with their size corresponding to their computational weight, see below for details) in region F (shown 
here as the dark gray rectangle). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Re-writing (10) in terms of the scaled quantities, we obtain

Ncoll,F = 1

2Kn
Np(Np − 1)(n̂σ̂ ĝ)max	t̂, (11)

where (n̂σ̂ ĝ)max is the maximum value of n̂ · σ̂ · ĝ taken over the region F .
When a particle pair is tentatively chosen for a collision, it is accepted with a probability of

P = n̂1σ̂ ĝ

(n̂σ̂ ĝ)max
. (12)

Here n̂1 denotes the weight (dimensionless number density) of the heavier of the two colliding particles.
When a pair is accepted for a collision, the heavier particle (whose weight is denoted n̂1) is split into two particles: one 

with weight n̂2 (the weight of the lighter collision partner) and one with weight n̂1 − n̂2. The particles with weights n̂2
collide and their post-collision velocities are computed based on the cross-section model used in the simulation, while the 
particle with weight n̂1 − n̂2 does not have its velocity affected.

Due to the fact that the remapping scheme causes negative mass to be created at the “exterior” stencil points, negative 
mass particles may be present in region F . When colliding a negative mass particle from F with another particle from F , 
if one uses the particle splitting scheme as described above, an additional negative mass particle is created as a result of 
the splitting. Another option is to treat such collisions using the discrete velocity method Monte Carlo collision scheme [24]
(which, due to the small depletion quantity involved, might not create as much negative mass in the system), and use the
DSMC collision scheme only for collisions between positive mass particles from F . This is the approach used in the present 
work.

It should be noted that the developed algorithm places no constraints on the size of F or where it lies in velocity space 
(e.g., in Fig. 1 it is offset from the center); moreover, for a multi-species flow, different-sized regions F may be defined for 
each species. As a limiting case, one can also do species-wise velocity hybridization, treating some chemical species in a 
flow using the discrete velocity method, and modeling others with DSMC.

In the present work, we consider the case where F contains the bulk of the distribution function. As such, the values of 
the lower-order moments (number density, velocity, temperature) are governed by the particles in F , and therefore, it is ex-
pected that the performance of the hybrid scheme in terms of dependence on Knudsen and Mach numbers will be similar to 
that of standard DSMC. Possible improvements at low Knudsen numbers might be obtained by using a Fokker-Planck-based 
DSMC scheme [61,62].

3.2. Merging algorithm

It can be seen that the number of particles in F will constantly grow, both due to particle splitting and due to creation 
of new particles as a result of both the remapping scheme and some post-collision replenishment quantities appearing in F . 
Additionally, the total amount of negative mass will also keep increasing, which leads to an increase in the computational 
cost of the collision loop (due to a larger number of collisions as defined by (7)), as well as to an increase in the level of 
noise in the representation of the distribution function. Therefore, a strategy for merging particles in F is also needed.

While merging algorithms for performing a 2 : 1 merge have been extensively developed [63–66], they are non-
conservative by their nature, and employ various techniques to reduce errors and enforce conservation. In order to preserve 
mass, momentum and energy, a N : 2 merge needs to be performed (with N ≥ 3) [67–69]. Moreover, in order to avoid ex-
cessive thermalization of the distribution function, particles should be merged together based on their proximity in velocity 
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Fig. 2. Example of a merging grid for a fixed value of V̂ z; blue symbols denote the points on the discrete velocity grid, gray dots denote the DSMC particles, 
black lines denote the boundaries of F , and the red lines show the merging grid cells — M = 16 in this V̂ z plane, M = 64 in total. The left subplot shows 
the pre-merge particle, the right — the post-merge particles (a merge in a velocity-space cell does not necessarily produce particles that lie in the same 
merging cell, therefore, the number of post-merge particles in a velocity-space merging cell is not necessarily equal to 2).

Fig. 3. Flow chart of the hybrid velocity-space algorithm, t0 is the start time of the simulation and tend is the end time.

space [69]. It should be noted that performing a N : 3 or N : 4 merge, while providing the possibility of conserving of all 
second-order moments (and some third-order moments in the case of the N : 4 merge), is complicated by having to solve a 
system of non-linear equations numerically [70], and thus, such approaches are not investigated in the present paper.

In the present work a uniform grid (unrelated to the discrete velocity grid) is overlaid over F , and all particles within 
a single grid cell are merged into two particles (N : 2 merge). An example of such a grid is shown in Fig. 2. Due to the 
possibility of a particle having negative mass, the merge within a single such cell might fail, if either one of the following 
conditions is found to be true: 1) the total mass in the cell is negative or 2) the total energy in the cell is negative. However, 
the frequency of such events is relatively low, and if a total negative mass and/or energy is accumulated in a merging cell 
at a time-point, in most cases, during the next timestep, enough positive mass and/or energy will be input into the cell for 
the merge to be performed.

The merging algorithm is linear with respect to the number of particles N p , and requires O(M) additional memory, 
where M is the number of cells in the velocity-space merging grid. We note, however, that such extra memory is used for 
only one spatial cell at a time and so is trivial for realistic multidimensional problems. Therefore, the memory required by 
the hybrid scheme scales linearly with the number of physical dimensions and spatial grid cells, as in standard DVM and 
DSMC methods. The amount of memory required by the merging procedure is constant and independent of the number of 
physical grid cells, since collisions and merging are done on a cell-by-cell basis.

The algorithm iterates over the particles three times, first computing and storing the number density in each merging 
grid cell, as well as computing and storing the bulk velocity of the particles in each cell. On the second pass, the kinetic 
energy (relative to the bulk velocity) in each cell is computed and stored, and after that, the mass and velocity components 
of the two-post merge particles in each cell are computed.

While it would be reasonable to assume that this merging procedure limits the number of particles in F to 2M , the 
number M of cells in the merging grid does not set a strict limit on the number of particles being simulated – as discussed 
above, due to the presence of negative mass, it is possible that no merging will be performed at all in some merging cells. 
However, on average, the number of particles is indeed limited to approximately 2M (see results of numerical simulations 
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below). Use of adaptive merging algorithms in order to better conserve higher-order moments and avoid issues related to 
the presence of negative mass will be explored in future work.

Fig. 3 presents the developed hybrid approach in a flow chart form for convenience.

4. Numerical results and discussion

In order to verify the velocity-space hybrid method, two spatially homogeneous test cases were considered: the BKW 
relaxation problem [71,72] and the case of an initial Maxwellian distribution. For both test cases, the reference temperature 
was set to 273 K, the reference number density was equal to 1023 m−3.

The extent of the discrete velocity grid was ±3.5 for both test cases (that is, the velocity grid extends to ±3.5 times the 
mean thermal speed ηr in each Cartesian direction), and two grids were considered: a “fine” grid with 29 ×29 ×29 = 24, 389
points (with a grid spacing of β = 0.25) and a “coarse” grid with 15 × 15 × 15 = 3, 375 points (with a grid spacing of 
β = 0.5). The region F was considered to be a cube centered around the origin in velocity space. Two different extents 
of the region F were considered: ±1.375 and ±1.875 (that is, ±1.375 and ±1.875 times the mean thermal speed ηr in 
each Cartesian direction). The two different-sized regions F will be denoted as Fsmall and Flarge , correspondingly. On a fine 
grid, when the gas is initialized with a Maxwellian distribution, approximately 86% of the mass is contained in Fsmall , and 
98% – in Flarge; these regions occupy 1331 and 3375 points of the discrete velocity grid, respectively. On a coarse grid, the 
corresponding values are similar at 80% and 96%; Fsmall occupies 125 points of the discrete velocity grid and Flarge occupies 
343 points.

Three different merging grids were used in the hybrid simulations, all with an equal number of merging cells in each 
velocity direction: with M = 4 × 4 × 4 = 64 cells (corresponding to ∼128 post-merge particles), M = 6 × 6 × 6 = 216 cells 
(corresponding to ∼432 post-merge particles), and M = 8 ×8 ×8 = 512 cells (corresponding to ∼1024 post-merge particles).

Initialization was performed in the following manner: the initial distribution function (either the BKW distribution or the 
Maxwellian distribution) was evaluated at each grid point in D, and the value of the distribution function at each discrete 
velocity was then normalized by the same factor so that the total number density was equal to 1. In case of a hybrid code, 
all the mass in F was treated as DSMC-type mass, and a merge was performed at t = 0 (otherwise the number of DSMC 
particles at t = 0 will be equal to the number of velocity grid points inside F , and can be much higher than the number of 
DSMC particles during the following timesteps in case a fine grid is used). It should be noted that the initialization scheme 
used in the simulations only preserves the number density (compared to the true initial distribution), and leads to some 
small error in the higher-order moments; this can be mitigated by using a finer discrete velocity grid. Using a coarser grid 
leads to underestimation of the moments, as discussed in [5]. Another approach for the Maxwellian test-case would be to 
compute the exact equilibrium discrete distribution, as described in [52,73], and use it for initialization, however, for the 
purposes of this work this is not required. The problem of how to best represent a smooth analytic probability density 
function on a cubic grid for the purpose of simply establishing the initial conditions for a simulation will not be further 
examined here.

The simulations were run with the following values of C RM S : 7.5 × 10−4, 1.5 × 10−3, 2.5 × 10−3, 5 × 10−3, 7.5 × 10−3, 
1 ×10−2. At higher values of C RM S , the discrete velocity method can become unstable to due large amounts of negative mass 
in the tails of the distribution function caused by the large depletion quantity being used during the crudely represented 
collisions.

The test gas considered was argon, and the Variable Hard Sphere (VHS) cross-section was used for the Maxwellian test 
case, with a collision diameter dcoll = 4.17 Å and ω = 0.81 (for the BKW relaxation test case, a pseudo-Maxwell model was 
used for the collision cross-section). For all the test cases, a scaled time step equal to 0.1 of the scaled collision time was 
used: 	t̂ = 0.1t̂ .

4.1. BKW relaxation

The BKW relaxation is an analytic time-dependent solution of the Boltzmann equation for the case of a pseudo-Maxwell 
collision cross-section [71,72]. The analytic expression for the distribution function is given by

f (v, t) = 1

(πC)3/2

1

2C

(
5C − 3 + 2(1 − C)v2

C

)
exp(−v2/C), (13)

where C = 1 − 2/5exp(−t/6) is defined for all t ≥ 0.
Analytic expressions for the moments of the distribution can also be obtained, and take on the following form (moments 

are scaled so that their limit as t → ∞ is equal to 1):

M̂an
2l (t) = Cl (l − (l − 1)C) , (14)

where M̂an
2l is the analytic moment of order 2l.

Fig. 4 shows the temporal evolution of the 4th dimensionless moment as a function of the dimensionless time. The black 
line denotes the analytic solution as defined by expression (14). We see that in general, increasing the size of region F , 
as well as decreasing the number of merging cells M leads to an increased amount of noise in the simulation (even with 
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Fig. 4. 4th dimensionless moment (averaged over 200 ensembles) as a function of the dimensionless time for different combinations of grids, sizes of hybrid 
regions and number of merging cells. “QUIPS” denotes the non-hybrid discrete velocity simulations. For all the simulations, C RM S = 5 × 10−3 was used. The 
6th and 8th moments show a similar trend and are not presented.

Fig. 5. The 4th dimensionless moment computed on a fine grid with Fsmall for different numbers of merging cells M; a value of C RM S = 0.005 was used. 
The moments are plotted with the semi-transparent regions showing a range of plus/minus one standard deviation. 200 ensembles were used to compute 
the means and the standard deviations. The 6th and 8th moments show a similar trend and are not presented.

the ensemble averaging used). It can be seen that moments computed using the hybrid code relax towards the equilibrium 
value at approximately the expected rate for some of the simulation parameters. Using a low number of merging cells leads 
to a systematic underestimation of the moments due to 1) a low number of DSMC particles used, which leads to a negative 
bias [74,75] and 2) a bias introduced by the merging procedure (discussed in detail in Appendix A).

Fig. 5 shows convergence of the 4th moment in the number of DSMC particles used in the simulation (as governed by 
the number of merging regions M). Using a larger number of DSMC particles leads to a satisfactory convergence to the 
expected result. Because of the initialization scheme used (via a discrete velocity grid), further increase in the number of 
merging cells will provide diminishing returns due to the error in the initial distribution.

We now pose the question: how can we quantify the relative benefit of using a hybrid DSMC/discrete velocity approach 
targeted at improving the representation of the tails of the distribution function in a non-equilibrium flow? Let us consider 
the following metric: computational efficiency vs deviation of the moments when compared to the analytic solution. The 
Root Mean Square Error (RMSE) of the Nth moment, MN , compared to the analytic solution is defined as follows:

RM S E(M̂N) =

√√√√∑10
t̂=0

(
M̂N − M̂an

N

)2

100
, (15)

that is, it is computed over the first 100 timesteps (10 collision times). In equation (15) we consider instantaneous values of 
the moments, and not ensemble-averaged quantities. Ensemble averages of the RMSE themselves yield satisfactorily smooth 
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Fig. 6. Average time spent on collisions during a single timestep as a function of the RMSE in the 4th and 8th dimensionless moments (when compared to 
the analytic solution). Different points on the same curve correspond to different values of the C RM S parameter (the pure discrete velocity curves have the 
lowest and highest values of C RM S annotated).

results. The amount of computational time spent on calculating the collisions during a single timestep was used as a metric 
for the computational efficiency of the considered algorithms.

Fig. 6 shows the time spent on calculating the collisions plotted against the error in the moments (compared to the 
analytic solution). Different points on each curve correspond to different values of C RM S — lowering the value of C RM S
leads to increased computational cost and lower error in the moments. It is evident that the C RM S parameter does not 
have a significant impact on the error in the lower-order moment (the various curves are nearly vertical and the amount 
of statistical scatter does not change with varying C RM S values) for the hybrid code. This is due to the lower influence of 
the tails of the distribution function on the lower-order moments. For the higher-order moment (8th moment), the tails of 
the distribution function have a more significant influence, and thus, the error in the moments in the hybrid simulations is 
more strongly influenced by the value of C RM S , which mostly affects the Q region.

To better compare the speed-vs-error performance between the different codes, we also consider the following ratio:(
tcoll · RM S E(M̂8)

)
Q U I P S

tcoll · RM S E(M̂8)
, (16)

that is, the ratio of the computational time per collision step multiplied by the RMSE of the 8th moment for the discrete 
velocity code divided by the computational time per collision step multiplied by the RMSE of the 8th moment for a hybrid 
code (on the same velocity grid). This allows us to simultaneously compare both the noise level and computational efficiency 
of the various approaches. Fig. 7 shows these ratios as functions of C RM S . In general it can be seen that the hybrid approach 
can provide an improvement over the purely discrete velocity method, either speed- or error-wise, and this improvement 
is especially large on a coarse velocity grid. If one only considers computational time, the hybrid code can provide up to a 
5-fold speed-up and improved RMSE compared to a pure discrete velocity simulation (see gray and pink curves on Fig. 6). 
The benefit of the approach of hybridization in velocity-space is especially true for higher-order moments; however, with 
the considered simulation parameters, the hybrid method cannot achieve as low an error as the discrete velocity method 
on a fine grid; lowering the error further would require more DSMC particles (more merging cells M).

4.2. Maxwellian distribution

The second test case considered was the behavior of a gas initialized with a Maxwellian distribution. Due to the stochas-
tic nature of the collision algorithm, a certain amount of noise will be present in the numerical simulation; the objective of 
this test case was to study the influence of various parameters on the noise in the tails of the distribution function and to 
confirm that the hybrid scheme does not force the equilibrium distribution away from Maxwellian. The tails of the distribu-
tion function are defined as all the discrete velocity points lying outside a cube with extent ±1.375, that is, all the points in 
Qtail =D \Fsmall . Since for the larger hybrid region Flarge the value of φ̂ is 0 at some of the grid points in Qtail , in order to 
perform a consistent comparison, during the output step, the particles in Flarge are remapped to the discrete velocity grid 
and the resultant distribution function summed with φ̂ (this is strictly a visualization procedure and the remapping does 
not affect the actual particles and values of φ̂ used further in the simulation).
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Fig. 7. Ratio of average time spent on collisions during a single timestep multiplied RMSE of the 8th moment for the discrete velocity code divided by the 
same quantity for a hybrid code as a function of C RM S . A ratio of larger than 1 means that the hybrid code is outperforming a pure discrete velocity code 
in terms of either computational speed, RMSE, or both.

At each timestep, given the values of φ̂tail (the set of values of φ̂ in the tails region of velocity space), two metrics are 
computed, the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), defined as

RM S E(φ̂tail) =

√√√√∑
η̂∈Qtail

(
φ̂tail(η̂) − φ̂

eq
tail(η̂)

)2

Mtail
, (17)

M AE(φ̂tail) =
∑

η̂∈Qtail

∣∣∣φ̂tail(η̂) − φ̂
eq
tail(η̂)

∣∣∣
Mtail

, (18)

where Mtail is the number of points on the velocity grid in region Qtail , and φ̂eq
tail is the equilibrium distribution function of 

the tails. These metrics are computed over 200 timesteps and their means calculated, to be used as measures of noise in 
the tails of the distribution function.

Due to the initialization procedure which does not produce an exact equilibrium distribution at the initial time t =
0 on the truncated discrete grid, one has to let the simulation code run for a few collision times before beginning to 
accumulate the errors in the tails, so that the initial coarse representation of the Maxwellian distribution can relax to 
its true equilibrium. The equilibrium distribution of the tails φ̂eq

tail can be computed as a long time-average of the tails 
distribution φ̂tail:

φ̂
eq
tail =

t̂2∑
t̂=t̂1

φ̂tail(t̂)

Nt
, (19)

where t̂1 and t̂2 are the starting and ending times of the averaging process, and Nt is the number of timesteps over which 
the averaging is performed.

In the present work, the computation of the equilibrium distribution function was begun after 20 collision times (cor-
responding to 200 timesteps) had elapsed, and the averaging was performed over 300 timesteps (this number of timesteps 
was found to be sufficient).

Fig. 8 shows the number of particles in region F as a function of the dimensionless time for different numbers of 
merging cells M . We see that the number of particles does not grow in an unrestricted fashion, but occasional increases 
occur due to the presence of negative mass and/or energy in the merging grid cells.

As for the BKW test case, we also want to compare the pure discrete velocity method with the hybridized approach 
both in terms of noise and computational efficiency, and thus also consider the time spent on performing collisions during 
a single timestep.

To expand the scope of the present work, we also compare to a pure variable-weight DSMC code based on the hybrid 
code, as well as the open-source SPARTA DSMC code [76]. The hybrid code can be run as a pure DSMC code (with variable-
weight particles) if one assumes that F =R3; the initialization step is still based on evaluation of the distribution function 
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Fig. 8. Number of particles in region F as a function of time for different numbers of merging cells M; a value of C RM S = 0.005 was used.

Fig. 9. Time spent on performing collisions during a single timestep plotted against RMSE (left) and MAE (right) in the tails. For the hybrid and QUIPS 
codes, different points on the same curve correspond to different values of the C RM S parameter (the pure discrete velocity curve on a coarse grid has the 
lowest and highest values of C RM S annotated); for the variable weight DSMC calculation, different points on the curve correspond to different numbers of 
merging cells M); for the SPARTA computation, different points correspond to different numbers of model particles Np .

on a discrete velocity grid (which is only required at this initial step). The total number of DSMC particles is governed by 
the number of merging cells M , as before (although without any issues related to negative mass). The SPARTA code uses 
particles with equal computational weight, and thus does not require any merging procedures.

Fig. 9 shows the time spent on performing collisions during a single timestep plotted against the RMSE and MAE tail 
noise metrics. Different points on the curves correspond to different values of C RM S , which directly affects the computational 
cost — the upper-left corner of the plot corresponding to low C RM S (high computational cost, low error) and the lower-right 
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Fig. 10. Time spent on performing collisions during a single timestep plotted against RMSE in the 4th and 8th dimensionless moments. Different points on 
the same curve correspond to different values of the C RM S parameter (the pure discrete velocity curve on a coarse grid has the lowest and highest values 
of C RM S annotated); for the variable weight DSMC calculation, different points on the curve correspond to different numbers of merging cells M); for the 
SPARTA computation, different points correspond to different numbers of model particles Np .

corner corresponding to high C RM S (low computational cost, high error). Increasing the size of the region F leads to 
increased noise in the distribution function, however, the computational effort is reduced only slightly (see orange and red 
curves). Increasing the number of merging regions M reduces error without a significant increase in computational cost 
(since the NTC collision procedure is much faster than the Monte Carlo evaluation of the collision integral for the collisions 
involving mass in Q). It can be seen that at high C RM S values, the hybrid approach is marginally more effective than 
the pure discrete velocity method, if one looks at the Mean Absolute Error (MAE) metric. The fact that the MAE metric, 
which is not as sensitive to large errors as is RMSE, is seen to decrease with decreasing values of C RM S for the hybrid 
method, supports the hypothesis that the noise introduced by the merging procedure and hybridization with a low number 
of DSMC-type particles is more significant than the noise introduced by the Monte-Carlo scheme for evaluation of collisions 
involving particles from region Q (which is influenced by the choice of C RM S ). It should be noted that our present hybrid 
code has not been specifically optimized and thus the metrics presented only serve as a coarse comparison between the 
non-hybrid and hybrid approaches. Moreover, the computational cost of maintaining accuracy of an already equilibrium 
distribution is likely different than maintaining accuracy in an evolving flow in which the tails and/or trace species play an 
important role in the dynamics.

For achieving very low-noise results, the pure discrete velocity method can be seen to be computationally more efficient 
than DSMC or hybrid computations.

Fig. 10 shows the computational time spent on a collision step plotted against the root-mean-square error in the 4th and
8th moments. While the discrete velocity method can achieve significantly lower noise in the 4th moment than the hybrid 
or DSMC methods, it does so at a noticeable increase in computational cost. For the higher order (8th) moment, the hybrid 
approach requires less computational time for a given noise level than the pure discrete velocity method. Both the SPARTA 
and pure DSMC computations are more cost-efficient than the hybrid and discrete velocity methods for the higher-order 
moments.

Another important aspect of computational efficiency is memory usage — modern supercomputers are often limited in 
their computational speed by memory bottlenecks, rather than processing power [77]; this is especially true for hybrid 
(GPGPU/CPU) architectures, since passing data between General Purpose Graphics Processing Units and CPUs is slow, and 
therefore, a code with a lower memory usage might be more amenable to large-scale computations. GPGPU units have been 
successfully used both for DSMC [78–80] and discrete velocity method [81] computations, and therefore, a comparison of 
memory usage of various computational methods might be indicative of potential scaling issues. It is important to note that 
for a given velocity grid, achieving lower noise with a discrete velocity method does not require additional memory (only 
more sampling operations are performed to better approximate the collision integral), whereas as with DSMC, the noise is 
inversely correlated with the number of simulation particles Np . That is, to achieve less noise in DSMC, one has to incur not 
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Fig. 11. Memory usage in Mb plotted against RMSE in the tails. Left subplot shows pre-merge memory usage, right subplot shows post-merge memory 
usage. Different points on the same curve correspond to different values of the C RM S parameter (the pure discrete velocity curve on a coarse grid has the 
lowest and highest values of C RM S annotated; for the pure DSMC calculation, different points on the curve correspond to different numbers of merging 
cells M); for the SPARTA computation, different points correspond to different numbers of model particles Np .

only an increased computational cost, but also an increased memory cost. Moreover, for practical multidimensional problems 
low noise DSMC requires high memory usage for all cells (or at least many cells) in physical space. Even if a collision 
scheme that requires a relatively low number of particles per cell to be accurate is used (such as the simplified Bernoulli 
trials collision procedure [82]), and time or ensemble averaging is employed, it still is problematic to use fixed-weight 
DSMC to correctly model flows with large number density ratios between different species. For example, if modeling an 
Ar/e− mixture with a ratio of the number densities of electrons and argon atoms equal to 0.001, approximately 1000 argon 
simulator particles are required for each electron model particle; moreover, if the trace species (in this case electrons) are 
initialized with a non-equilibrium distribution, a larger number of particles is required to avoid initialization bias [75].

Fig. 11 shows the pre- and post-merge memory usage plotted against the RMSE metric for the distribution function. The 
amount of memory used by the discrete velocity code is dependent only the number of points on the velocity grid, and is 
not affected by the choice of C RM S ; for the hybrid code, the memory usage immediately before the merging procedure (after 
all the collisions at a given timestep have been performed and the number of particles in F is high) was used to produce 
the left subplot. It can be seen that for a given velocity grid and size of F , the memory usage of the hybrid method is 
virtually independent of the number of merging regions M . This is due to the fact that the plot shows peak memory usage 
(number of particles before merging), and the number of particles in F before merging is mostly governed by the choice of 
C RM S . While the pre-merge memory usage of the hybrid code can be rather high compared to a pure discrete velocity code, 
it should be emphasized that this is only needed to store the large amount of particles that are created in F due to the 
depletion-replenishment collision scheme; and this amount of additional memory would not increase even if one increases 
the number of cells in physical space, since the collision and merging steps are performed on a cell-by-cell basis. This is 
in contrast with the SPARTA code, in which memory usage does not change (due to an absence of a merging step), which 
can make it unfeasible to run complex simulations with large numbers of model particles. The pure (variable-weight) DSMC 
version of the developed hybrid code is marginally more effective with regards to memory usage than SPARTA, which might 
be due to its ability to better resolve the tails via particles with small computational weights.

For the hybrid code, the post-merge memory usage still has a dependence on C RM S due to failed merges — if a merge in 
a merging grid sub-cell fails, a lower C RM S means that more particles remain in that sub-cell, and memory usage is higher. 
This problem could be alleviated with a more sophisticated merging procedure.

Finally, Fig. 12 shows the pre- and post-merge memory usage plotted against the RMSE of the 8th moment of the 
distribution function. When one considers the post-merge memory usage, it can be seen that the hybrid method and 
variable-weight DSMC approaches, as well as the discrete velocity method, are noticeably more memory efficient than a 
fixed-weight DSMC code.
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Fig. 12. Memory usage in Mb plotted against RMSE of the 8th moment. Left subplot shows pre-merge memory usage, right subplot shows post-merge 
memory usage. Different points on the same curve correspond to different values of the C RM S parameter (the pure discrete velocity curve on a coarse 
grid has the lowest and highest values of C RM S annotated; for the variable weight DSMC calculation, different points on the curve correspond to different 
numbers of merging cells M); for the SPARTA computation, different points correspond to different numbers of model particles Np .

It can be concluded that with additional optimization of the computational procedures, the developed hybrid scheme 
in velocity space might be an attractive strategy for a given acceptable error in the tails, especially if variance reduction is 
implemented (as that can provide benefits both in terms of computational efficiency and noise level).

5. Conclusion

A new approach to modeling rarefied gas flows based on a hybridization in velocity space has been developed and 
verified for a single-species monatomic gas.

The hybrid approach has been tested on the BKW relaxation problem, and has been shown to provide improvement 
in the computational effort-to-noise ratio in moments of the distribution function compared to a purely discrete velocity 
simulation.

The influence of various simulation parameters on the noise in the tails of the distribution function as well as noise in 
the moments of the distribution function has been studied for a Maxwellian distribution.

It is shown that the main source of noise in the tails of the distribution function when using the hybrid approach is the 
low number of DSMC-type particles, rather than the value of C RM S (the noise parameter in the discrete velocity method).

With the basic principle of hybridization having now been successfully demonstrated, further modifications of the hybrid 
method may include its generalization to flows containing particles with internal energies, multiple-species flows, flows 
with chemical reactions, and flows in which one implements a variance reduction algorithm [25]; these features have 
already been proven in DSMC and discrete velocity methods separately, as discussed earlier. The use of a more complex 
adaptive merging scheme to minimize the amount of noise in the distribution function introduced by the merging process 
and resolve issues with impossibility of merging due to presence of negative mass will be investigated in future work. 
The development of other metrics (perhaps more problem-specific) to better understand the trade-offs between various 
numerical methods and their parameters introduce also remains to be investigated.
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Appendix A. Bias introduced by the merging procedure

To estimate the influence of the particle merging procedure on the higher-order moments, and to better understand the 
amount of noise and bias introduced by the merging, the BKW relaxation test case was run with a 29 × 29 × 29 velocity 
grid with Fsmall and different values of the number of merging cells M . The simulation was run with a scaled timestep of 
0.1 for 100 timesteps (10 collision times); and at each time step, the difference between the post- and pre-merge value of 
the considered moments was computed:

	M̂l(t) = M̂ post
l (t) − M̂ pre

l (t). (A.1)

Here M̂ pre
l (t), M̂ post

l (t) are the values of the scaled moment of order l at time t before and after the merging procedure, 
correspondingly. The time-averages of these time-series were taken:

	M̂l =
∑10

t̂=0 	M̂l(t̂)

100
, (A.2)

and ensemble-averaged over 200 ensembles.
Fig. A.13 shows the temporal evolution of the 4th moment for a single run with M = 8 and explicitly shows the changes 

in the values of the moment due to the merging procedure (red lines). We see that for such a low number of merging cells 
(8), the merging adds considerable noise.

Fig. A.14 shows the average bias introduced in the 4th moment by the merging procedure as a function of number of 
merging cells M . It can be seen that merging causes a consistent underestimation of the moments, and that increasing the 
number of merging cells leads to a reduction in the bias. The bias introduced in the 4th moment was also approximated as 
a function of M:

log10(−	M4) ≈ 0.44 − 0.917M1/5, (A.3)

and the analytic fit is also shown on Fig. A.14.

Fig. A.13. Time evolution of the 4th moment for the BKW relaxation. The black curve is the analytic solution. The red lines connect the pre- and post-merge 
moments at a fixed timestep, while the blue lines connect a post-merge moment at timestep i with a pre-merge moment at timestep i + 1, that is, they 
show the temporal evolution of the moment. A C RM S value of 0.005 was used, and the number of merging grid cells M was equal to 8.
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Fig. A.14. Average difference in the 4th moment introduced by the merging procedure for different numbers of merging cells M . Note that all cases lead to 
a negative change in M4, but that with a moderate number of merging cells M the magnitude of the error can be quite small. The error bars show a range 
of plus/minus one standard deviation.
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