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a b s t r a c t

This paper describes the development of an efficient numerical model, namely scaled
boundary finite-element method (SBFEM) for linear waves interaction with cylindrical
structures of arbitrary shapes. The two-dimensional Helmholtz equation is firstly weak-
ened in the circumferential direction, so that the governing partial differential equation
is transformed to an ordinary matrix differential equation in radial direction, and is solved
fully analytically. As a key element, a virtual porous circular cylinder surrounding the cylin-
drical structures is introduced so that the entire computational domain is partitioned along
the virtual cylinder into an unbounded and several bounded sub-domains with common
interfaces. The principle innovation is that, the present SBFEM model chooses Hankel func-
tion as a base solution for the unbounded sub-domain, while a power series is used for the
internal bounded sub-domains. The approach discretises only the common interfaces of
the sub-domains with surface finite-elements, and fewer elements are required to obtain
very accurate results. Numerical simulations show that the new SBFEM model offers a con-
siderable improvement by far in its numerical performance, as well as in the range of phys-
ical phenomena that is capable of simulating. The wave forces and run-ups are presented
for a single and multiple cylindrical structures of different cross sectional shapes. Influ-
ences of the incident wave parameters and structural configurations on the hydrodynamics
are examined.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Interaction of water waves with a large vertical cylinder has been widely investigated both numerically and experimen-
tally due to its theoretical and practical importance, especially to ocean engineers. Havelock [1] developed the theory ini-
tially for the special case of infinite water depth, and it was later extended by MacCamy and Fuchs [2] to apply in finite
water depth. The analytical solution for linear plane waves diffracted by a large vertical circular cylinder in intermediate
water depths was later validated by Chakrabarti and Tam’s experiment [3]. Chakrabarti and Tam [3] revealed that the linear
diffraction solution is reasonably accurate at least for H=h 6 0:25 (H is wave height and h is water depth) and a range of ka (k
is wave number and a is cylinder radius) between 0 and 3. On the basis of the linearised long-wave approximation, Chen and
Mei [4] presented an exact solution of wave forces on an elliptical cylinder via Mathieu functions. Their solution was later
compared by Williams using two approximate methods [5].
. All rights reserved.
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For a cylinder with cross-sections other than a circle or ellipse, however, no analytical solution has been reported. Thus,
numerical approximation is mainly resorted to investigate the wave run-ups and forces on the cylinder besides physical
model experiments. Most of the previous numerical studies were based on the two versatile numerical schemes: finite-ele-
ment method (FEM) (e.g., [6]) and boundary element method (BEM) (e.g., [7,8]). Although FEM has achieved remarkable suc-
cesses in structural mechanics and fluid mechanics with its great advantage of a wide variety of element types, absorbing
boundary condition or infinite-element technique has to be introduced for wave-structure interaction in unbounded domain.
For short incident waves especially in three-dimensional problems, the whole computation work is enormous. BEM, on the
other hand, has the inherent advantage for wave-structure interaction in unbounded domain with the property of reducing
the spatial dimension by one. However, fundamental solutions are required and singular integrals exist. Futhermore, it may
suffer from the problems caused by irregular frequencies and sharp corner.

Recently, the scaled boundary finite-element method (SBFEM), originally developed to solve soil-structure interaction
problems (e.g., [9]), has been successfully applied to water wave diffraction, in which the radiation condition at infinity is
required to be satisfied by the scattered waves. Tao et al. [10] applied the SBFEM to solve short-crested waves interaction
with a circular cylinder. Instead of using an algebraic series, Tao et al. [10] chose Hankel function to solve the Helmholtz
equation in the unbounded domain. The radial differential equation is solved fully analytically in all frequency ranges. With-
out relying on any other numerical schemes, the semi-analytical model for the wave diffraction by a circular cylinder is
shown to reproduce the analytical solution for all the physical properties including wave run-ups, effective inertia and drag
coefficients, and total force very accurately and at very low computational cost.

Most of the approximate theories for simple structure geometries, as well as the numerical solutions for the two-dimen-
sional structures of circular cross-section provide an important step in understanding the effects of wave diffraction on large
bodies. The solutions have a wide range of applications, but are limited by the special geometry and are generally not appli-
cable to large offshore structures of general geometry. Hence, it becomes necessary to take up the case of cylindrical struc-
tures of arbitrary cross-section in order to deal with the variety and complexity of design configurations encountered in
modern offshore structures.

In this paper, the SBFEM model is further extended to solve water waves interaction with: (1) a single cylindrical struc-
ture of arbitrary shape; (2) multiple structures system. The present approach applied domain decomposition technique by
introducing a porous circular cylinder surrounding a single or multiple cylinders of arbitrary cross-section. The fluid domain
is therefore divided into an unbounded sub-domain and several bounded sub-domains. For the outer unbounded sub-do-
main, a semi-analytical solution is obtained by employing a base solution in terms of the Hankel function of the first kind
which satisfies the radiation boundary condition at infinity, while for the bounded sub-domains, the semi-analytical solu-
tions are given by matrix power series. Detailed numerical results on wave forces and run-ups over broad range of incident
wave parameters as well as structure configurations are presented.

2. Mathematical model and numerical implementation

2.1. Boundary-value problem

Consider a monochromatic wave train propagating at an angle h with positive x-axis. A structure system consisting of sev-
eral vertical cylinders extends from the sea bottom to above the free surface of the ocean along z-axis (see Fig. 1).

Tao et al. [10] showed that the solution process can be significantly simplified by choosing the Hankel function as a base
function for wave diffraction by a circular cylinder. However, it is no longer valid for a cylinder with arbitrary cross-section.
In order to preserve the accuracy and efficiency of the SBFEM model and overcome the convergence problem associated with
the algebraic series base function, an artificial porous circular cylinder ðCcÞ enclosing the structure system consisting of
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Fig. 1. A sketch of the water wave diffraction by multiple bodies.
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several vertical cylinders is introduced. The origin is placed at the centre of the exterior circular cylinder on the mean water
surface (Fig. 1). The whole fluid region is then divided into two regions, the interior bounded region and the unbounded re-
gion outside of the cylinder S0. The interior region is further divided into q sub-domains, S1; S2; . . . ; Sq. The following notation
have been used in the paper: Uj = total velocity potential in jth sub-domain, UI

0 = velocity potential of incident wave in
S0; US

0 = velocity potential of scattered wave in S0, k = total wave number, kx = wave number in x-direction, ky = wave number
in y-direction, x = wave frequency, h = water depth, A = amplitude of incident wave, a = the characteristic length of the inte-
rior cylinders, c = the radius of the porous circular cylinder, t = time, q = mass density of water, and g = gravitational accel-
eration. The subscripts jðj ¼ 0;1;2; . . . ; qÞ denote the physical parameters in the solution sub-domain Sj.

The velocity potentials can be decomposed by separating the vertical variable z and the time t from each component as
Ujðx; y; z; tÞ ¼ /jðx; yÞZðzÞe�ixt in Sj; ð1Þ

UI
0ðx; y; z; tÞ ¼ /I

0ðx; yÞZðzÞe�ixt in S0; ð2Þ

US
0ðx; y; z; tÞ ¼ /S

0ðx; yÞZðzÞe�ixt in S0; ð3Þ
where
ZðzÞ ¼ cosh kðzþ hÞ
cosh kh

; ð4Þ
leading to the seabed boundary condition being satisfied. The diffraction problem in S0 is then governed by Helmholtz equa-
tion with the boundary condition at the porous interface Cc , and the radiation condition at infinity:
r2/S
0 þ k2/S

0 ¼ 0 in S0; ð5Þ
/S

0;n þ /I
0;n ¼ �/adj;n ¼ �iG0kð/adj � /S

0 � /I
0Þ on Cc; ð6Þ

lim
kr!1
ðkrÞ1=2 /S

0;r � ik/S
0

� �
¼ 0 on C1; ð7Þ
where G0 is a measure of the porous effect [11] and G0 ¼ 0;1 represent a solid wall and a transparent boundary respectively,
r is the radial axis, i ¼

ffiffiffiffiffiffiffi
�1
p

is the imaginary unit, n denotes the normal to the boundary, ‘‘adj” in the subscript denotes the
physical quantities in the adjacent sub-domain, and comma in the subscript designates the partial derivative with respect to
the following variable.

The function /jðx; yÞ ðj ¼ 1;2; . . . ; qÞ in the interior region is governed by the Helmholtz equation with the boundary con-
ditions at the interface of the sub-domains Cs and Cc , and body boundary Cb:
r2/j þ k2/j ¼ 0 in Sj; ð8Þ
/j ¼ /adj on Cs; ð9Þ
/j;n ¼ �/adj;n on Cs; ð10Þ
/j;n ¼ �/S

0;n � /I
0;n ¼ iG0kð/j � /S

0 � /I
0Þ on Cc; ð11Þ

/j;n ¼ 0 on Cb: ð12Þ
According to Mei [12], the linear incident plane wave can be expressed by the real part of
UI ¼ �
igA
x

ZðzÞeiðkxxþkyy�xtÞ; ð13Þ
and the relationship of total velocity potential, scattered wave, and incident wave velocity potentials are
U0 ¼ UI
0 þUS

0; /0 ¼ /I
0 þ /S

0: ð14Þ
Eqs. (5)–(12) constitute two sets of the governing equation and boundary conditions for the diffraction of plane waves by a
cylindrical structure system with a porous surrounding circular cylinder, corresponding to boundary-value problems in sev-
eral bounded sub-domains and an unbounded sub-domain, respectively. The boundary condition on the porous interface is
eliminated by matching the unbounded sub-domain solution and bounded sub-domain solutions on Cc , corresponding to
G0 ¼ 1. After obtaining Uj by solving the above boundary-value problems, the velocity, free surface elevation and the dy-
namic pressure can be calculated respectively from
vj ¼ rUj; ð15Þ

gj ¼
ix
g

/j; ð16Þ

pj ¼ �qUj;t: ð17Þ
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2.2. Scaled boundary finite-element transformation

In this section, /j and /S
0 will both be denoted as / for brevity, and the region Sj will be denoted as X. If the velocity

boundary is defined by Cv , we have
/;n ¼ �vn; on Cv ; ð18Þ
where the overbar denotes a prescribed value.
The finite-element method requires the weighted residuals of the governing equation to be zero. Hence Eqs. 5, 8 and 18

are multiplied by a weighting function w and integrated over the flow domain and the boundary. Performing integration by
parts, the resulting equation becomes
Z

X
rT wr/dX�

Z
X

wk2/dX�
I

C
w�vn dC ¼ 0: ð19Þ
SBFEM defines the domain X by scaling a single piecewise-smooth curve S relative to a scaling centre ðx0; y0Þ, which is chosen
at the centre of the porous cylinder in this case (see Fig. 2). The circumferential coordinate s is anticlockwise along the curve
S and the normalised radial coordinate n is a scaling factor, defined as 1 at curve S and 0 at the scaling centre. The whole
solution domain X is in the range of n0 6 n 6 n1 and s0 6 s 6 s1. The two straight sections s ¼ s0 and s ¼ s1 are called side-
faces. They coincide, if the curve S is closed. For bounded domain, n0 ¼ 0 and n1 ¼ 1; whereas, for unbounded domain,
n0 ¼ 1 and n1 ¼ 1. Therefore the Cartesian coordinates are transformed to the scaled boundary coordinate n and s with
the scaling equations
x ¼ x0 þ nxsðsÞ; y ¼ y0 þ nysðsÞ: ð20Þ
By employing SBFEM, an approximate solution of / is sought as
/Aðn; sÞ ¼ NðsÞaðnÞ; ð21Þ
where NðsÞ is the shape function, the vector aðnÞ is analogous to the nodal values same as in FEM. The radial function ajðnÞ
represents the variation of the scattered wave potential in the radial axis n at each node j, and the shape function NðsÞ inter-
polates between the nodal potential values in the circumferential axis s.

By performing scaled boundary transformation, the operator r can be expressed as [9]:
r ¼ b1ðsÞ
@

@n
þ 1

n
b2ðsÞ

@

@s
; ð22Þ
where b1ðsÞ and b2ðsÞ are dependent only on the boundary definition
b1ðsÞ ¼
1
jJj

ysðsÞ;s
�xsðsÞ;s

( )
; b2ðsÞ ¼

1
jJj
�ysðsÞ
xsðsÞ

� �
; ð23Þ
and jJj is the Jacobian at the boundary
jJj ¼ xsðsÞysðsÞ;s � ysðsÞxsðsÞ;s: ð24Þ
From Eqs. (15) and (22), the approximate velocity can be expressed as
vAðn; sÞ ¼ B1ðsÞaðnÞ;n þ
1
n

B2ðsÞaðnÞ; ð25Þ
where
B1ðsÞ ¼ b1ðsÞNðsÞ; B2ðsÞ ¼ b2ðsÞNðsÞ;s: ð26Þ
O  (x0 , y0 )

s=s0

s=s1ξ=ξ1

ξ=ξ0

S(ξ=1)

S

ξ

Typical
e lement

Fig. 2. The coordinate definition of SBFEM.
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Applying the Galerkin approach, the weighting function w can be formulated using the same shape function as in Eq. (21)
wðn; sÞ ¼ NðsÞwðnÞ ¼ wðnÞT NðsÞT : ð27Þ
Substituting Eqs. 21, 22, 26 and 27 into Eq. (19) results in
Z
X

B1ðsÞwðnÞ;nþ
1
n

B2ðsÞwðnÞ
� �T

B1ðsÞaðnÞ;nþ
1
n

B2ðsÞaðnÞ
� �

dX�
Z

X
k2wðnÞT NðsÞT NðsÞaðnÞdX�

I
C

wðnÞT NðsÞT �vn dC¼ 0;

ð28Þ
where the incremental volume is [9]
dX ¼ jJjndnds: ð29Þ
For convenience, coefficient matrices are introduced here as
E0 ¼
Z

S
B1ðsÞT B1ðsÞjJjds; ð30Þ

E1 ¼
Z

S
B2ðsÞT B1ðsÞjJjds; ð31Þ

E2 ¼
Z

S
B2ðsÞT B2ðsÞjJjds; ð32Þ

M0 ¼
Z

S
NðsÞT NðsÞjJjds; ð33Þ

FsðnÞ ¼ Nðs0ÞTð��vnðn; s0ÞÞjJðs0Þj þ Nðs1ÞTð��vnðn; s1ÞÞjJðs1Þj: ð34Þ
The above integrals Eqs. (30)–(33) can be computed element by element and assembled together for the entire boundary.
Expanding Eq. (28) and integrating the terms containing wðnÞ;n by parts with respect to n using Green’s theorem leads to
wðn1ÞT E0n1aðn1Þ;n þ ET
1aðn1Þ �

Z
S

NðsÞTð�vnðn1; sÞÞn1 ds
� �

�wðn0ÞT E0n0aðn0Þ;n þ ET
1aðn0Þ þ

Z
S

NðsÞTð�vnðn0; sÞÞn0 ds
� �

�
Z n1

n0

wðnÞT E0naðnÞ;nn þ ðE0 þ ET
1 � E1ÞaðnÞ;n � E2

1
n

aðnÞ þ k2nM0aðnÞ � FsðnÞ
� �

dn ¼ 0: ð35Þ
To satisfy all sets of weighting function wðnÞ, the following conditions must be satisfied:
qðn1Þ ¼
Z

S
NðsÞTð�vnðn1; sÞÞn1 ds; ð36Þ

qðn0Þ ¼ �
Z

S
NðsÞTð�vnðn0; sÞÞn0 ds; ð37Þ

E0n
2aðnÞ;nn þ ðE0 þ ET

1 � E1ÞnaðnÞ;n � E2aðnÞ þ k2n2M0aðnÞ ¼ nFsðnÞ; ð38Þ
where
qðnÞ ¼ E0naðnÞ;n þ ET
1aðnÞ: ð39Þ
Eq. (38) is the so-called scaled boundary finite-element equation. By introducing the shape function, the Helmholtz equation
has been weakened in the circumferential direction, so that the governing partial differential equation is transformed to an
ordinary matrix differential equation in radial direction. The rank of matrices E0; E1; E2; M0 and vector aðnÞ is m (where m is
the number of nodes in the curve S). In the present study, the side-faces either coincide or are impermeable so that the term
FsðnÞ vanishes. Therefore, the final governing equation, Eq. (38), is a homogeneous second-order ordinary matrix differential
equation in terms of matrix of rank m.

Boundary conditions, Eqs. (6) and (7) or Eqs. (12) and (10), (11), are weakened in the form of Eqs. (37) and (36)
respectively, indicating the relationship between the integrated nodal flow on the boundary and the velocity poten-
tials of the nodes. For the wave diffraction problem in the unbounded region S0; n0 ¼ 1 on the boundary of exterior
porous cylinder and n1 ¼ þ1 at infinity. For the boundary-value problem in the bounded region Sjðj – 0Þ; n0 ¼ 0 and
n1 ¼ 1.

2.3. Solution procedure

2.3.1. Solution for unbounded sub-domain S0

For the exterior porous circular cylinder, we have
xsðsÞ ¼ c cosðs=cÞ; ysðsÞ ¼ c sinðs=cÞ: ð40Þ
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From Eqs. (20), (23), (24), (26), (31)–(33), xsðsÞ;s; ysðsÞ;s; b1ðsÞ; b2ðsÞ; jJj; B1ðsÞ; B2ðsÞ; E0; E1; E2, and M0 can be calculated
accordingly. The following relationships hold:
E1 ¼ 0 � I; E�1
0 M0 ¼ c2I; ð41Þ

E0 ¼
1
c

Z
S

NðsÞT NðsÞds; ð42Þ
where I is the identity matrix of rank m.
Using Eq. (41), pre-multiplying both sides of Eq. (38) by E�1

0 and simplifying, we have
f2aðfÞ;ff þ faðfÞ;f � E�1
0 E2aðfÞ þ f2aðfÞ ¼ 0; ð43Þ
where
f ¼ kcn: ð44Þ
Eq. (43) is the matrix form of Bessel’s differential equation. Considering the Sommerfeld radiation condition Eq. (7), it is log-
ical to select Hrj

ðfÞTj as a base solution of Eq. (43) in region S0.
The solution for a0ðfÞ is then expressed in the series form:
aS
0ðfÞ ¼

Xm

j¼1

cjHrj
ðfÞTj ¼ THðfÞC; ð45Þ
where Tj are vectors of rank m; cj are coefficients, Hrj
ðfÞ are the Hankel functions of the first kind, and
T ¼ ½T1;T2; . . . ;Tm�; ð46Þ
C ¼ ½c1; c2; . . . ; cm�T ; ð47Þ
HðnÞ ¼ diag½Hr1 ðkcnÞ;Hr2 ðkcnÞ; . . . ;Hrm ðkcnÞ�; ð48Þ
where ‘‘diag” denotes a diagonal matrix with the elements in the square brackets on the main diagonal.
Substituting Eq. (45) into Eq. (43), and using the following properties of Hankel function
f2H00rj
ðfÞ ¼ �f2Hrj

ðfÞ þ fHrjþ1ðfÞ � rjHrj
ðfÞ þ r2

j Hrj
ðfÞ; ð49Þ

fH0rj
ðfÞ ¼ �fHrjþ1ðfÞ þ rjHrj

ðfÞ; ð50Þ
where the prime and the double prime denote the first and second derivatives with respect to the argument f respectively,
we have
Xm

j¼1

ðE�1
0 E2 � r2

j IÞTj � cjHrj
ðfÞ ¼ 0: ð51Þ
For any cjHrj
ðfÞ, Eq. (51) yields
ðE�1
0 E2 � r2

j IÞTj ¼ 0: ð52Þ
Let kj be the eigenvalues of E�1
0 E2, then rj ¼

ffiffiffiffi
kj

p
, and Tj are the eigenvectors of E�1

0 E2.
Since the Sommerfeld radiation condition (7) has been satisfied by the Hankel functions, we now only consider the

boundary condition (37) of the circular cylinder
qS
0ðkcÞ ¼ E0kc

Xm

j¼1

cjH
0
rj
ðkcÞTj ¼ �

Z
S

NðsÞT NðsÞds
� �

�vS
0n; ð53Þ
where �vS
0n is the vector of nodal normal velocity of scattered wave on Cc.

Using Eq. (45), the boundary condition on Cc can be written as
qS
0ðkcÞ ¼ kcE0THbhT�1aS

0ðkcÞ ¼ �
Z

S
NðsÞT NðsÞds

� �
�vS

0n; ð54Þ
where
Hbh ¼ diag½Hr1 ðkcÞ0=Hr1 ðkcÞ; . . . ;H0rm
ðkcÞ=Hrm ðkcÞ�: ð55Þ
2.3.2. Solution for bounded sub-domain Sjðj ¼ 1; 2; . . . ; qÞ
Define
XðnÞ ¼
aðnÞ
qðnÞ

� �
; ð56Þ
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Eq. (38) can be written as
fXðfÞ;f ¼ �ZXðfÞ � f2MX; ð57Þ
where
f ¼ kan; ð58Þ

M ¼ 1
a2

0 0
M0 0

� �
; ð59Þ
and
Z ¼
E�1

0 ET
1 �E�1

0

�E2 þ E1E�1
0 ET

1 �E1E�1
0

" #
: ð60Þ
According to Wolf [9], the Hamiltonian matrix Z of rank m consists of two groups with opposite sign eigenvalues, K0 and
�K0, where the real parts of eigenvalues in K0 are all nonnegative and sorted in descending order.

The eigenvalue problem is formulated as
ZV ¼ �VK: ð61Þ
where
K ¼
K0 0
0 �K0

� �
: ð62Þ
Usually there is one zero eigenvalue in K0 (marked as km ¼ 0), indicating a constant velocity potential component in the
solution domain. This behaviour, however, leads to two linearly dependant eigenvectors in V ðVm and Vmþ1Þ, making the ma-
trix of eigenvectors V irreversible.

Solving the eigenvalue problem of
Z2W ¼ �WK; ð63Þ
and marking the eigenvector corresponding to the zero eigenvalue as Wm, a reversible Jordan matrix is constructed as
Jj ¼
Vj 1 6 j < m or mþ 1 < j 6 2m;

�ZWj j ¼ m;
Wj�1 j ¼ mþ 1;

8><>: ð64Þ
with the property of
ZJ ¼ �JbK; ð65Þ
where
bK ¼
bK0

0 1
0 0

� �
�bK0

26664
37775 ð66Þ
and bK0 is an diagonal matrix with all the eigenvalues of K0 except zero on the main diagonal.
Similar to [9], the analytical solution of Eq. (57) can be expressed as
XðfÞ ¼ JRðfÞfKfUD; ð67Þ
where U is an upper-triangular matrix with zeros on the diagonal, D is a coefficient vector, and
RðfÞ ¼ Iþ f2R1 þ f4R2 þ � � � þ f2kRk þ . . . : ð68Þ
Writing YðfÞ ¼ fU and KðfÞ ¼ JRðfÞ, and partitioning all the matrices into block matrix with m�m dimensions and block vec-
tor with m� 1 dimensions, respectively, Eq. (67) becomes
XðfÞ ¼
K11 K12

K21 K22

� �
fK0 0
0 f�K0

" #
Y11 Y12

0 Y22

� �
D1

D2

� �
: ð69Þ
The value at f ¼ 0 should be finite, thus D2 ¼ 0.
Define
AðfÞ ¼ K11ðfÞfK0 Y11ðfÞ; ð70Þ
Q ðfÞ ¼ K21ðfÞfK0 Y11ðfÞ; ð71Þ
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then
aðfÞ ¼ AðfÞD1; ð72Þ
qðfÞ ¼ Q ðfÞD1: ð73Þ
Eliminating the constant vector D1, we have
qðfÞ ¼ Q ðfÞA�1ðfÞaðfÞ ¼ K21ðfÞK�1
11 ðfÞaðfÞ: ð74Þ
Assembling the matrices in all the sub-domains and noting the boundary conditions 6 and (9)–(11), the whole problem can
then be solved.

All the other physical properties of engineering interest including velocity, surface elevation, and pressure can now be
determined based on the velocity potentials by Eqs. (15)–(17). The total wave force can then be obtained by integrating
the pressure along the body boundary of the cylinder.

The following point is worth noting regarding the use of different base solutions, i.e. Hankel function for unbounded sub-
domain and power series for bounded sub-domains. Similar to the approach of Wolf [9] in obtaining a solution for soil-struc-
ture interaction, here a power series is adopted in the form ð

P1
0 Cm

�nmÞ in bounded sub-domains. The solutions are obtained
as series expansions to limited radial distance ðcÞ, and the computation has revealed that the solution procedure is very accu-
rate and efficient. However, in the unbounded sub-domain, the solution in the form of algebraic series ð

P1
0 Cm

�n�mÞ would
involve sums to infinity. For large values of �n the series approaches the exact solution rapidly and only a few terms in the
series need to be computed. However, this is only the case at the cylinder boundary ð�n ¼ kcÞ for high frequency waves.
For low frequency waves, the series hardly converges to the exact solution. The Hankel function, on the other hand, is a per-
fect choice in unbounded domain to ensure the radiation condition at infinity being satisfied.
3. Model validation and applications

In this section, the SBFEM model is first validated by comparing its semi-analytical predictions with analytical solutions
and published results using other numerical methods or experiments for special cases such as wave diffraction by a circular
cylinder and a square cylinder. Then the model is further applied to more complicated interaction problems between waves
and one and two rectangular cylindrical structures with variable wave parameters and structure configurations.

3.1. Wave diffraction by a circular cylinder ðG0 ¼ 0Þ

When the porous effect parameter G0 ¼ 0, the external circular cylinder is impermeable, leading to the limiting case of
wave diffraction by a circular cylinder. For this special case, there is only an unbounded solution domain and the problem
of wave diffraction by a circular cylinder can be solved explicitly by matching the no-slip condition on the cylinder boundary.
Due to the symmetry of the physical problem, only half of the circumference needs to be discretised. Three-noded quadratic
elements are used in the circumferential direction as shown in Fig. 3.

Accurate evaluation of the wave run-up and the wave exciting forces are of paramount importance in the analysis of dy-
namic responses of an offshore structure. Fig. 4 is a comparison of wave run-ups on a circular cylinder between the present
SBFEM results and the analytical solutions given in [12]. As shown in Fig. 4, for small ka (=0.5), i.e., in the range proposed by
Mei [12] where the theory and the experiments have good agreement, the SBFEM results given by even two elements agree
well with the analytical solutions. As ka increases from 0.5 to 5.0, the convergence of the SBFEM scheme is clearly evident as
the number of elements is increased. Even at ka = 5.0, accurate numerical results were obtained when merely eight elements
were used for the SBFEM computation.

Fig. 5 is a comparison of wave run-ups computed by the SBFEM, BEM and the analytical solutions of [12] for ka = 2.0. Forty
(40) constant boundary elements are used in BEM. As can be seen in Fig. 5, the SBFEM results obtained with only four ele-
ments are almost identical to the analytical solutions, a clear demonstration of its superior to traditional BEM.
Scaling centre

unbounded
domain

Side faceSide face

Fig. 3. Scaled boundary finite-element mesh for a circular cylinder.
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The relationship between ka and the required element number for computation of wave forces on a circular cylinder are
shown in Fig. 6. Excellent computational efficiency and accuracy of the present SBFEM scheme are further demonstrated by
examining the hydrodynamic forces. It is seen that the results of the SBFEM model using 8 elements is valid until ka = 10, and
the model returns to satisfactory results in the entire linear range (0.2 < ka < 0.65) by even using two elements. This clearly
demonstrates the efficiency of the present SBFEM model.
3.2. Wave diffraction by a cylindrical structure system other than a circular cylinder

The accuracy and efficiency of the present SBFEM model is demonstrated by the above wave diffraction problem. How-
ever, the case of wave interaction with a circular cylinder is relatively simple, the analytical solution exists and accurate
numerical results can be easily obtained by traditional numerical methods. As a key element of the present SBFEM model,
the introduction of the virtual cylinder to decompose the solution domain into bounded and unbounded sub-domains and
apply different strategies in solution techniques in these sub-domains, will be further demonstrated by the following lim-
iting cases.

For the porous effect parameter G0 ¼ 1, the external circular cylinder is transparent, corresponding to wave diffraction by
structures in the interior region surrounded by the virtual circular cylinder. Here we apply the SBFEM model to solve the
wave diffraction by a single and multiple cylindrical structures other than a circular cylinder, in which no fundamental solu-
tions exist. The solution domain is then divided into one unbounded sub-domain outside the virtual circular cylinder and
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Fig. 5. Wave run-ups on a circular cylinder ðka ¼ 2:0Þ.
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several bounded sub-domains inside the circular cylinder as shown in Fig. 1. By matching the boundary conditions on the
virtual circular cylinder due to G0 ¼ 1, the solutions of the bounded and unbounded sub-domains are solved separately.

3.2.1. Wave diffraction by a single square cylinder
For a cylinder with sharp corners, the scaling centre in the associated bounded sub-domain is chosen at the corner. The

discretisation along the interfaces of the sub-domains with three-node quadratic elements are shown in Fig. 7, where a is the
half width of the cylinder in x-direction and b is the half length of the cylinder in y-direction. For square cylinder, b ¼ a. If the
physical problem is symmetric (e.g. incident wave angle h ¼ 0;�p=2;p), only half of the sub-domains need to be discretised.
In the following validation, h ¼ 0 is chosen so the total elements number are reduced to half and the wave forces in y-direc-
tion are equal to zero.

Mogridge and Jamieson [13] measured the wave forces on a large square caisson. Two square caissons were tested indi-
vidually in the experiment. One is 12 in. by 12 in., the other is 2 ft. by 2 ft. Monochromatic waves were generated in five
water depths ranging from 9.7 to 29 in. and nine wave periods were tested from 0.77 to 2.58 s. A number of wave heights
were generated for each water depth and period tested [13]. Fig. 8 is a comparison of wave forces computed using the pres-
ent SBFEM model, experimental data of [13] and BEM solutions. The meshes of the SBFEM solution are shown in Fig. 7, where
N1 is the element number in one of the interfaces of the interior sub-domains and N2 is the element number in one of the
interfaces of an interior sub-domain and exterior sub-domain. Convergence test plotted in Fig. 8 shows that the wave forces
Scaling centre for unbounded domain

Scaling centre for bounded domain

Side face for bounded domain

Node

N 1

N 1
N 2

a

b
x

y

Fig. 7. Scaled boundary finite-element mesh for a square cylinder.
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converge rapidly as the number of elements increases. Even the very coarse mesh ðN1 ¼ 1 and N2 ¼ 3Þ achieves excellent
results, while the BEM requires finer mesh for the similar accuracy.

Fig. 9 shows the nondimensional wave forces computed using the present SBFEM model and conventional BEM. Sixteen
three-node quadratic elements are used in the BEM solution and a very coarse mesh ðN1 ¼ 1 and N2 ¼ 2Þ is chosen in the
SBFEM computation. It is seen in Fig. 9 that BEM is unable to provide accurate result around ka ¼ 3:5 where the irregular
frequency occurs. However, the solution given by the present SBFEM model using a very coarse mesh is seen to produce very
accurate results without suffering the irregular frequency, a clear demonstration of the superiority of the present SBFEM
model.

3.2.2. Wave diffraction by a rectangular cylinder
For wave diffraction by a rectangular cylinder, the solution process is very similar to the process in Section 3.2.1. How-

ever, as the side lengths are no longer equal (b – a in Fig. 7), the maximum wave forces is different from the forces on the
square cylinder. Fig. 10 shows the effect of incident wave angle h on the nondimensional total wave forces
jFT j=4qgAa2 tanhðkhÞ. It is seen in the figure that the maximum wave force on a rectangular cylinder occurs when the inci-
dent wave is normal to the longer side ðh ¼ 0� or 90�Þ, while the maximum wave force on a square cylinder always occurs as
the incident wave is parallel to the diagonal of the square ðh ¼ 45�Þ. The minimum wave force, however, is not only depen-
dent on the incident wave direction, but also related to the nondimensional incident wave number ka. For small ka, the min-
imum wave force arises as the incident wave is normal to the shorter side, while for large ka, it appears that minimum force
ka
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Fig. 9. Comparisons of the nondimensional wave forces on a square cylinder: SBFEM vs BEM.
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can be resulted from two varying incident angles depending on the configuration and incident wave number. Thus, detailed
calculation should be carried out before design to fully optimise the structure configuration according to the dominant
incoming wave direction.

The effect of the nondimensional side lengths ka and kb on the nondimensional wave forces jFT j=4qgAb2 tanhðkhÞ and
jFT j=4qgAa2 tanhðkhÞ for h ¼ 0 are examined in Figs. 11 and 12, respectively. As kb is the nondimensional length of the side
normal to the incident wave, a similar trend of increasing wave forces with different slope as kb increases for all different ka
values is observed (Fig. 12). However, as can be seen in Fig. 11, increasing ka (incoming wave direction) may increase or re-
duce the wave forces on the cylinder depending on the value of kb.
3.3. Wave diffraction by two adjacent rectangular cylinders

For water wave diffraction by multiple bodies as sketched in Fig. 13, the interaction of the scattered waves of the multiple
structures is not negligible. In this section, a cylindrical structure system consists of two rectangular cylinders placed close to
each other in a wave field is computed using the present SBFEM model. The results of the nondimensional wave forces
jPj ðjPj ¼ jFxj=4qgAah½tanhðkhÞ=kh�Þ on the two cylinders are compared with BEM solutions for different configurations
d=L ðL ¼ 2a; B ¼ 2bÞ. PL and PR represent wave force on left cylinder (upstream) and right cylinder (downstream) respec-
tively. As can be seen in Fig. 14, excellent agreement is achieved between the SBFEM solutions and BEM results for cases
of relative spacing between the two cylinders from d=L ¼ 0:1—0:5. However, it is worth pointing out that the SBFEM com-
putation is based on merely total 14 elements discretised along the cylinder boundaries and interfaces.

Fig. 15 is a plot of wave forces on two cylinders against relative spacing. Wave forces on both cylinders is seen to have a
brief increase with increasing spacing between the cylinders at very small gap. Such a brief increase is followed by a steady
decrease in wave forces on both cylinders as the spacing increases until reaches their respectively minimum at approxi-
mately d=L ¼ 1:0 for this particular incident wave ðkL ¼ 2Þ. Beyond this value, wave forces on both cylinders tend to increase
again as d=L continue to increase. It is interesting to note that for the given incident wave, the upstream cylinder tends to
experience larger wave force than downstream one when the spacing is small. However, within a range of the spacing close
to the side length of the rectangle cross-section ðLÞ, the wave force on the downstream cylinder appears to be slightly larger
than its upstream counterpart. When the spacing continue to increase, the wave force on the upstream cylinder increases in
a more rapid path and tends to be greater than that experienced by the cylinder in the downstream.
θ

L Ld

B

Fig. 13. The sketch of wave diffraction by a cylindrical structure system of twin cylinders.
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Fig. 16 shows the influence of the gap between the two cylinders on the wave forces on the two cylinders respectively for
given wave conditions ðkL ¼ 0:1; 0:5;1:0;1:5Þ. In general, the upstream cylinder appears to experience larger wave force than
the cylinder placed in the downstream. The oscillatory behavour of the wave forces, dependent on the gap, experienced by
the two cylinders are the clear evidence of the impact on the hydrodynamics due to the existence of one cylinder to another.
By identifying the peak values of the wave forces associated with each configuration, this important characteristic in the
forces can be effectively applied in a design to reduce the wave impact on coastal and offshore structures.

Similar to the wave diffraction by a single rectangular cylinder, Fig. 17(a) shows an initial decrease of wave force on the
upstream cylinder at low kL, followed by a sharp increase as kL increases. For the configuration calculated with relative spac-
ing d=L ¼ 0:25—1:5, however, the cylinder in the down stream experiences increasing wave force as kL increases even at very
small low kL (Fig. 17(b)). Since the flow region in the wake immediate downstream of the left cylinder has been significant
altered due the its existence, the cylinder in the downstream interact with a flow field different with the incident wave from
far field resulting different hydrodynamic behaviour. Increasing the gap further between the two cylinders, however, the
hydrodynamics of the downstream cylinder should reassemble its upstream counterpart as the interference between the
two cylinders becomes very weak. It is seen in Fig. 17 that wave forces on both cylinders reach their respective maximums
at kL ¼ 1:0—2:0 depending on the gap, then rapidly decrease as kL continue to increase.

It is worth noting that the SBFEM model can be applied to more general complex structure system by assigning realistic
porous effect parameter G0. Example applications in coastal and offshore engineering include rock-filled porous breakwaters
outside harbors, and porous outer protective structures with the main structures in its interior, such as the Ekofisk gravity
offshore structure in the North Sea.
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4. Conclusions

A new semi-analytical scaled boundary FEM model is developed to simulate the interaction of linear waves with cylin-
drical structures of arbitrary cross-sectional shapes. Several techniques are applied to ensure that the new SBFEM model
is capable of solving wave interaction with single or multiple structures of complex configuration while achieving overall
high efficiency and accuracy. The solution domain is partitioned by the introduction of a virtual porous circular cylinder sur-
rounding the structures. A set of the boundary-value problems in an unbounded sub-domain and several bounded sub-do-
mains are then solved semi-analytically by using different base solutions. Computations of different cases of complex
configuration have demonstrated significant advantages exhibited in the present SBFEM model including a reduction of
one in the spatial dimension is achieved with the solution procedure as the governing equations are solved analytically in
the radial direction; the new technique requires no help from any fundamental solutions as required by conventional bound-
ary element method; choice of the base solution in the form of Hankel function of the first kind for the unbounded sub-do-
main while applying the power series for the bounded sub-domains to further improve the computational accuracy and
efficiency.

The newly developed semi-analytical method is shown to reproduce the analytical solutions and other published results
for all the physical properties including wave run-ups and wave forces very accurately for wave interaction with simple
structures. Furthermore, in solving the linear wave interaction with multiple complex structures, the SBFEM model is seen
to provide solutions with excellent accuracy at very low computational cost. The method holds promise in solving more
practical ocean engineering problems with increased complexity.
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