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Spherical harmonics are employed in a wide range of applications in computational science
and physics, and many of them require the rotation of functions. We present an efficient
and accurate algorithm for the rotation of finite spherical harmonics expansions. Exploiting
the pointwise action of the rotation group on functions on the sphere, we obtain the spher-
ical harmonics expansion of a rotated signal from function values at rotated sampling
points. The number of sampling points and their location permits one to balance perfor-
mance and accuracy, making our technique well-suited for a wide range of applications.
Numerical experiments comparing different sampling schemes and various techniques
from the literature are presented, making this the first thorough evaluation of spherical
harmonics rotation algorithms.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Spherical harmonics are employed in a wide range of applications in computational science. In many areas, such as quan-
tum chemistry, astronomy, geoscience, scattering theory, electromagnetics, and computer graphics, the rotation of the func-
tions is also required: given the expansion
f ðxÞ ¼
XL

l¼0

Xl

m¼�l

alm ylmðxÞ
of a function f : S2 ! R (or C) in the Hilbert spaceH6LðS2Þ spanned by all spherical harmonics ylm up to band L, one seeks the
spherical harmonics basis function coefficients �a ¼ ð�a0;0; . . . ; �al;m; . . . ; �al;lÞT of the rotated function �f ¼ R f when the rotation
group SO(3) acts pointwise on functions as �f ðxÞ ¼ f ðR�1xÞ for arbitrary R 2 SO(3).

The rotated basis function coefficients �al in the l-th spherical harmonics bandHl are a linear combination of the unrotated
coefficients al in the band and can hence be obtained with a matrix Rl as �al ¼ Rlal. Direct approaches [1,2] for computing
spherical harmonics rotation matrices Rl were already proposed in the 19th century but these are computationally expensive
and numerically unstable [3]. Recurrence schemes [4–6,3,7] alleviate some of these problems but they remain slow and be-
come numerically unstable for the large number of bands that are increasingly required in applications [8,9]. In contrast to
the literature, we do not compute spherical harmonics rotation matrices but employ a sampling formula for the l-th spherical
harmonics bandHl and exploit that the action of the rotation group SO(3) is defined point-wise. A rotated function �f l ¼ R f l is
then obtained by evaluating the unrotated function fl at rotated sampling locations �ki ¼ R�1ki and using a change of basis
from the sampling basis to spherical harmonics. Extensive numerical experiments are presented, and to our knowledge this
is the first thorough empirical validation of spherical harmonics rotation algorithms. The experiments demonstrate that our
. All rights reserved.
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technique provides accuracy comparable to the best known methods. The fastest technique currently available is a variation
of the algorithm by Pinchon and Hoggan [10], provided to us by these authors, which appears here for the first time. Our
technique provides the additional advantage that it is easy to implement, overcoming a practical limitation of other
algorithms.

The remainder of the paper is structured as follows. In Section 2 we develop our algorithm for rotating finite spherical
harmonics expansions and discuss the trade-offs that are available by the choice of sampling locations. In Section 3 exper-
imental results are presented, and in Section 4 we discuss the relevance of our algorithm and possible directions for future
work. Our paper presents the rotation of real spherical harmonics but all results hold with the usual modifications in the
complex setting.

2. Rotation of finite spherical harmonics expansions

In Section 2.1 we will derive our technique in the continuous setting, while its computer implementation is discussed in
Section 2.2 when we formulate it using linear algebra. The choice of sampling points, which is important for the performance
and accuracy of our technique, is discussed in Section 2.3.

2.1. A rotation algorithm for spherical harmonics: continuous theory

The space ðH6L; h�; �iÞ with the standard L2 inner product h �,� i over the sphere is spanned by (Legendre) spherical
harmonics
ylmðxÞ ¼ ylmðh;/Þ ¼ glm Plmðcos hÞ
sinðjmj /Þ m < 0

1 m ¼ 0
cosðm /Þ m > 0

8><
>: ; ð1Þ
where x = (h,/) is a point on the sphere, glm is a normalization constant such that the ylm form an orthonormal basis, Plm

is the associated Legendre polynomial of degree l and order m, and the indices satisfy 0 6 l 6 L and �l 6m 6 l. H6L

admits the orthogonal decomposition H6L ¼ H0 � � � � � HL and the bands Hl are closed under the action of the
rotation group SO (3). For the rotation of a function f 2 H6L it is hence sufficient to consider the restrictions fl 2 Hl

with f = f0 + � � � + fL. See for example the book by Freeden et al. [11] for a more detailed discussion of spherical
harmonics.

Our algorithm for rotating finite spherical harmonic expansions employs a biorthogonal reproducing kernel basis for the
spaceHl. A reproducing kernel k �xðxÞ is a function such that hk �xðxÞ; f ðxÞi ¼ f ð �xÞ for arbitrary �x 2 S2 and it follows from the
general theory [12,13] that for Hl it is given by
k �xðxÞ ¼
X
�l6m6l

ylmðxÞ ylmð �xÞ ¼
2lþ 1

4p
Plð �x �xÞ;
where the last equality holds by the spherical harmonics addition theorem. With a sequence k = {ki} of 2l + 1 points ki 2 S2

such that the reproducing kernel functions kiðxÞ � kki
ðxÞ at the ki are linearly independent, the functions {ki(x)} form a basis

for Hl and the associated dual basis f~kjðxÞg is uniquely defined by hkiðxÞ; ~kjðxÞi ¼ dij. Any function fl 2 Hl can then be writ-
ten as
flð �xÞ ¼
X2lþ1

i¼1

hflðxÞ; kiðxÞi ~kið �xÞ ¼
X2lþ1

i¼1

f lðkiÞ~kið �xÞ; ð2Þ
where the last equality follows from the reproducing property of the kernel functions. The basis function coefficients with
respect to the kernel basis are thus given by the function values f (ki) at the sampling locations. Eq. (2) is the analogue of the
Shannon sampling theorem for the sphere and the lack of a regular sequence on S2 is a principal reason for the biorthogo-
nality of the basis functions; in contrast, over the real line the set of sinc functions centered at the integers form an ortho-
normal basis for the space of bandlimited functions.

By Eq. (2), the representation of a rotated function �f l in the kernel basis is
�f l ¼ R f l ¼
X2lþ1

i¼1

R f lðkiÞ~ki ¼
X2lþ1

i¼1

flðR�1kiÞ~ki ¼
X2lþ1

i¼1

flð�kiÞ ~ki; ð3Þ
where we employed the point-wise definition of the rotation action. Since both the kernel basis and spherical
harmonics with fixed l span Hl, the spherical harmonics coefficients �alm of the rotated signal can be obtained by a change
of basis
�alm ¼ h�f l; ylmi ¼
X2lþ1

i¼1

f ð�kiÞ~ki ; ylm

* +
: ð4Þ
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2.2. A rotation algorithm for spherical harmonics: discrete formulation

With the isomorphism betweenHl and Euclidean space R2lþ1 provided by spherical harmonics ylm, a representation of the
reproducing kernel basis functions is given by their basis function coefficients. These can be arranged in matrix form to yield
1 For
Kl � KlðkÞ ¼

yl;�lðk1Þ . . . yl;lðk1Þ

..

. . .
. ..

.

yl;�lðknÞ . . . yl;lðknÞ

2
664

3
775 2 Rn�n ð5Þ
where n = 2l + 1. Kl provides the change of basis from spherical harmonics to the kernel basis so that fl (k) = Klal, where
fl (k) = ( f (k1), . . . , f (kn))T and al = (al,�l, . . . ,al,m, . . . ,al,l)T. Conversely, al ¼ K�1

l f lðkÞ ¼ Sl f lðkÞ. The desired spherical harmonics
coefficients �al of the rotated function are thus obtained as
�al ¼ Sl f lð�kÞ ð6Þ
where flð�kÞ ¼ ðflð�k1Þ; . . . ; flð�knÞÞT are the function values at the rotated sampling locations �ki ¼ R�1ki; it is easily verified that
Eq. (6) is equivalent to Eq. (4). Our rotation algorithm for finite spherical harmonics expansions is summarized in Algorithm
1. Note that the matrix Sl depends only on the sampling locations but not on the rotation. It can hence be precomputed.

An alternative interpretation of our algorithm is to consider it as a factorization of the classical spherical harmonics rota-
tion matrix Rl, similar in spirit to the work by Pinchon and Hoggan [10]. The rotated signal at the unrotated sampling loca-
tions is given by �f lðkÞ ¼ KlðkÞ�al and by definition �f lðkÞ ¼ flðR�1kÞ. Additionally, the unrotated signal at the rotated sampling
locations is fl (R�1k) = K l (R�1k)al. One therefore has
KlðkÞ�a ¼ �f lðkÞ
KlðkÞ�a ¼ KlðR�1

kÞa
�a ¼ K�1

l ðkÞ KlðR�1
kÞa
and the kernel matrix Kl factors the classical spherical harmonics rotation matrix Rl as Rl ¼ K�1
l ðkÞKlðR�1kÞ, and analogously

when m > n.

2.3. Sampling locations

Previously we posited the existence of sampling sequences k such that the sampling points ki yield linearly independent
kernel functions kiðxÞ ¼ kki

ðxÞ forming a basis for Hl. The existence of sampling sequences is guaranteed by a theorem due
to Müller [14, p. 13], [11, p. 51], and it can be shown that up to a set of measure zero any set of 2l + 1 points on the sphere can
be employed. However, in applications not only the existence of sampling sequences but also their quality is of critical
importance, and their choice enables balancing accuracy and performance.

By Eq. (6) and Sl ¼ K�1
l , with our technique the rotation of finite spherical harmonics expansions is equivalent to the solu-

tion of a linear system. The condition number cond(Kl) hence provides a quality measure for sampling locations. A condition
number of unity corresponds to an optimal sampling sequence with an orthogonal kernel basis while a set of locations for
which the kernel functions are not linearly independent has an infinite condition number. As one would expect, well-
distributed points on the sphere yield low condition numbers and are well-suited for our rotation algorithm. We obtain such
locations by mapping quasi-random sequences from the unit square to the upper hemisphere [15]; the restriction to the
hemisphere is advantageous since anitpodal points would yield co-linear basis functions. Additionally, we also employ
the spiral points that were proposed by Saff and Kuijlaars [16] as well-distributed sequences on S2. Fig. 1 shows that the
performance of different well-distributed sequences is qualitatively equivalent and that they outperform sampling points
obtained with a (pseudo) random number generator. The graphs also verify the close correlation between condition number
and rotation error, a connection that is only violated when a rotated sampling location is close to a pole and the accurate
evaluation of spherical harmonics is difficult.

We investigated two strategies to improve the condition numbers obtained with well-distributed point sets: increasing
the number of sampling points and optimizing their location. Previously we assumed that n = 2l + 1 sampling points are em-
ployed. When m > n points are used one obtains an overcomplete basis (or a frame) for which the dual basis functions are
defined by a left pseudo-inverse of the kernel matrix.1 It is known from the signal processing literature that oversampling of-
ten improves accuracy and robustness [17,18], and in Appendix C we show that the condition number approaches unity as the
number of sampling points goes to infinity. Fig. 1 demonstrates empirically that overcomplete representations improve the con-
dition number and the rotation error, and that a small oversampling rate is sufficient to obtain close to optimal accuracy. Over-
sampling requires more function evaluations than critical sampling, making it computationally more expensive. To improve the
accuracy of our rotation algorithm without increasing the computational costs at runtime, we employed numerical optimization
of the sampling locations to improve the condition number of the kernel matrix. We were not able to derive an analytic
our experiments we employed the Moore–Penrose pseudo-inverse that yields the minimal norm dual.
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Fig. 1. Left: Condition number (full) and average L2 rotation error (dash-dotted) as a function of the oversampling rate for l = 20. Right: Condition numbers
for different strategies to obtain sampling sequences with different oversampling rates (osr).

Algorithm 1. Rotation for general sampling points

Input : R, al, Cl, kl

Output : �al

1 Rotate sampling points, �ki ¼ R�1ki.

2 Evaluate fl 2 Hl at rotated sampling points, �f l ¼
Pl

m¼�lalm ylmð�kiÞ
n o

.

3 Compute basis function coefficients of the rotated function, �al ¼ Sl
�f l.
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expression for the gradient of cond(Kl) but a BFGS optimizer [19] with finite differences and restarts based on different, well-
distributed point sets performed well for our purposes. Fig. 1 shows the considerable improvements in the condition number
that can be obtained by optimization. The main limitation of optimization are the high computational costs, although these oc-
cur only once and during precomputation.

An interesting alternative to the sequences obtained with the above constructions is provided by sampling sequences
ki = (f, /i) with a fixed latitude f. By Eq. (1), the kernel matrix can then be factored as Kl (f) = Pl (f)F where F is the discrete
Fourier transform matrix (DFT)2 and the nonzero elements of the diagonal matrix Pl (f) are given by pmm = Plm(cos f) with
�l 6m 6 l. The basis function coefficients �alm of the rotated function can then be recovered with Algorithm 2. From the orthog-
onality of the discrete Fourier transform it follows that cond(Kl (f)) is given by cond(Pl (f)) = max(jPlm(cosf)j)/min(jPlm(cosf)j)
and the accuracy of the algorithm is determined by f. Experiments show that beyond a critical latitude the condition number
deteriorates as the distance from the equator increases and for l 6 150 latitudes with 75� 6 f < 90� should be employed. When
other latitudes are used or for very large l the accuracy is insufficient only for a very small number of rotated coefficients �alm

where Plm(f) is very small. A practical work-around is hence to compute these coefficients with Algorithm 1 using a small num-
ber of additional sampling points with h – f. An interesting choice for the latitude is f = p/2 which locates the sampling se-
quence on the equator and leads to the recent algorithm by Gimbutas and Greengard [9]; see Appendix A for details.
3. Experimental evaluation

We evaluated our algorithm for the rotation of finite spherical harmonics expansions with different choices for the sam-
pling points and compared its accuracy and performance to various techniques in the literature. As sampling sequences we
employed optimized point sets with different oversampling rates, nested sampling points where the sampling locations for
band l are a subset of those for band l + 1, and equi-latitude points with f = 9p/20 for which the fast Fourier transform was
used to speed up computations. With nested sampling points the recurrent structure of spherical harmonics evaluation can
be exploited, enabling faster evaluation at the sampling locations. Even with nesting, in particular for low bands, a large frac-
tion of the computation time is spent on spherical harmonics evaluation. We therefore determined the sample values flð�kiÞ
also from a representation of fl in the reproducing kernel basis, with primary and dual basis functions interchanged, which is
2 DFTf�f lgm refers to the mth coefficients of the Discrete Fourier Transform of �f l with �l 6m 6 l where negative m correspond to sin(jmjx) and positive m to
cos(mx).
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Fig. 2. Average L2 error of experiments (osr = oversampling rate).

Algorithm 2. Rotation for equi-latitude sampling points at f

Input : R, al, f
Output : �al

1 Construct and rotate sample points, �ki ¼ R�1ki with ki ¼ ðf;/iÞ and /i ¼ ð2piÞ=ð2lþ 1Þ:
2 Evaluate fl 2 Hl at rotated sample points, �f l ¼ f

Pl
m¼�lalm ylmð�kiÞg.

3 Compute basis function coefficients of the rotated function, alm ¼ DFTf�f lgm=ðglm Plmðcos fÞÞ:
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slightly more efficient than spherical harmonics when the spherical harmonics addition theorem is exploited and only
Legendre polynomials have to be evaluated. Our technique has a computational complexity of O(s L3) for nested sampling
points and O(s L4) for non-nested points, where s is the oversampling rate. A detailed analysis of the instruction count for
our technique is available in Appendix B.

From the literature we employed the algorithms by Ivanic and Ruedenberg [3], Blanco et al. [7], Pinchon and Hoggan [10],
and Gimbutas and Greengard [9], implemented in C/C++ using double precision and, when available, based on implementa-
tions provided by the original authors. For the algorithm proposed by Pinchon and Hoggan [10] we employed two variants:
the first obtains the spherical harmonics rotation matrix and then applies it to a coefficient vector as proposed in the original
publication (‘Pinchon Matrix’), while the second is a variation suggested to us by the authors that avoids the explicit com-
putation of the rotation matrix and applies the coefficient vector incrementally to the highly sparse factorization employed
in the work (‘Pinchon Vector’), yielding a computational complexity of only O(L2) instead of O(L3) for the original technique.

Average L2 errors per band and execution times are reported in Figs. 2 and 3. Other error norms are qualitatively equiv-
alent to the presented results and have been omitted. All graphs have been obtained by averaging over a large number of
random rotations and reference solutions were obtained as in previous work [9].

The experimental results in Fig. 3 show that nested sampling points (ShrK, osr = 1.0, nested) are more efficient than opti-
mized sampling sequences without this structure, as expected from the lower computational complexity. For lower bands, a
representation of fl in the kernel basis (ShrK, osr = 1.0, zonal) provides an additional performance advantage. For higher
bands, the fast Fourier transform makes equi-latitude points almost as efficient as nested sampling points, and we expect
even better performance when the nested structure of the equi-latitude points is also exploited. In all cases, Pinchon Vector
is the fastest algorithm, due to the lower computational complexity. As shown in Fig. 2, optimized sampling locations (Shrk,
osr = ⁄, opt.) provide significantly higher accuracy than well-distributed sequences (ShrK, osr = 1.0, nested) and equi-latitude
points, in particular when combined with oversampling. In this case only little accuracy is lost and our algorithm performs
comparably to the technique by Pinchon and Hoggan [10] which is currently the most accurate one in the literature.

4. Discussion

With our algorithm the spherical harmonics coefficients of a rotated signal are obtained using a sampling formula for the
sphere and by exploiting the point-wise definition of the action of SO(3) on functions. In contrast to most techniques in the
literature that construct spherical harmonics rotation matrices, our algorithm is simple to implement and enables one to
trade-off accuracy and performance, making it well-suited for a wide range of applications. We presented an empirical val-
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idation of our technique and to our knowledge this is the first extensive comparison of spherical harmonics rotation algo-
rithms available in the literature. The experimental results demonstrate that our technique attains accuracy comparable
to the best methods. The fastest technique currently available is those by Pinchon and Hoggan [10] when the rotation matrix
is not constructed explicitly, as was suggested and provided to us by these authors, and it has been evaluated for the first
time in this paper. A possible disadvantage of our technique is that the sampling matrices Sl have to be precomputed and
stored. However, the technique by Pinchon and Hoggan [10] suffers from similar drawbacks and for our technique it can
be avoided with equi-latitude sampling locations.

Our algorithm was inspired by work by Higgins and Kempski [20,21] and Freeden and co-workers [11] who proposed
sampling theorems for the sphere similar to Eq. (2). However, these authors did not consider biorthogonal kernel bases that
are an important ingredient to our technique. Algorithms similar to ours were proposed previously by Stern [22], see also the
paper by James [5], and Gimbutas and Greengard [9]. Unfortunately, Stern’s work received only very little attention after
its inception and he also did not investigate different sampling locations or the mathematics underlying the technique.
Gimbutas and Greengard [9] recently proposed an interesting variation of our technique with sampling points on the equator,
cf. Appendix A. Our work provides a general framework for their algorithm and clarifies its theoretical underpinning.

An interesting question for future work is the existence of optimal sampling sequences although the connection to other
point distribution problems on the sphere [16,23] makes us believe that the problem is very hard. Additionally, orthogonal
kernel bases, which are particularly desirable from a computational point of view, cannot exist [24] due to the non-existence
of tight spherical designs [25,26]. A better theoretical understanding of suitable latitudes for equi-latitude sampling points,
in particular for very large bands, is also desirable.

A Matlab implementation of our algorithm as well as the C++ framework used for the experiments, including optimized
sampling sequences, are available at http://www.dgp.toronto.edu/people/lessig/shrk/. Parts of the Matlab code are
based on Frederik Simons repository [27].
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Appendix A. Spectral spherical harmonics rotation

In this appendix we will briefly outline the connection between the recent work by Gimbutas and Greengard [9], which
they referred to as spectral method, and our algorithm. Assume equi-latitude sampling points on the equator are employed
so that f = p/2. At first sight, this choice seems unfortunate since one-half of the Plm(0) vanish and the corresponding basis
function coefficients cannot be recovered. However, the remaining coefficients al ~m with ~m ¼ f�l 6 m 6 l j Plmð0Þ– 0g can be
computed to very high accuracy. The condition number for this sub-problem is less than ten even for band 1000, cf. Fig. 1. By
exploiting that the derivative @Plm(t)/@tjt=0 of the associated Legendre polynomials on the equator is non-zero exactly for
those m̂ ¼ fmg n f ~mg where the function values vanish, we can determine the remaining alm̂ by derivative sampling, an
approach which is in fact well known in the sampling literature [28]. The closure of the derivative under rotation follows
from the equivalence with one of the vector spherical harmonics basis functions [11, Lemma 12.7.2].
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Appendix B. Instruction count

The instruction count for our technique for nested sampling points for an oversampling rate s and a maximum spherical
harmonics band L are:
mult / div
 12.66sL3 + 79.5sL2 + 62.83sL + 9s

sqrt
 0.66sL3 + 2.5sL2 + 1.83sL

sin / cos
 8sL + 4s
and for non-nested sampling points one has:
mult / div
 4.25sL4 + 3.1L3 + 49.5sL2 + 41.54sL + 9s

sqrt
 0.25sL4 + 1.66sL3 + 1.55sL2 + 0.23sL

sin / cos
 4sL2 + 8sL
The complete analysis is available at http://www.dgp.toronto.edu/people/lessig/shrk/data/shrk_instruction_count.pdf.

Appendix C. Proofs

Lemma 1. The condition number of the kernel matrix converges to unity as the oversampling rate approaches infinity.
Proof. The kernel matrix has unit condition number if and only if its columns are orthonormal. The scalar product of two
columns is an unnormalized Monte Carlo estimator for the inner product of the corresponding spherical harmonics basis
functions. Since these are orthonormal and the condition number is invariant under scalar scaling this immediately yields
the desired result. h
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