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Abstract

Based on our recently developed Maxwell iteration for the lattice Boltz-
mann method, we propose a class of single-node boundary schemes for Dirich-
let boundary conditions of the Navier-Stokes equations. The schemes all have
second-order accuracy for both straight and curved boundaries. The accuracy
and stability of two specific schemes are examined through several numerical
experiments. The results validate the second-order accuracy and show that
a boundary scheme with a convex combination of distribution functions has
better stability.

Keywords: Lattice Boltzmann equations, boundary schemes, Dirichlet
boundary conditions, Maxwell iteration

1. Introduction

The lattice Boltzmann equation (LBE) is an explicit time marching fi-
nite difference scheme of the continuous Boltzmann equation in space and
time [1, 2]. Tts kinetic nature and simplicity make the LBE a popular meso-
scopic method in the field of computational fluid dynamics (CFD) [3, 4, 5].
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Unlike the conventional numerical methods in CFD which directly obtain
macroscopic quantities such as velocity and pressure [6, 7], the LBE provides
distribution functions (DFs) at each time-space point and the macroscopic
quantities are then obtained by low order velocity moments of the DFs. This
gives rise to a fundamental challenge for the LBE in treating boundary con-
ditions (BCs), because the mesoscopic DFs coming from the boundary are
required at the fluid nodes next to the boundary (see Fig. 1) while the given
BCs usually only involve the macroscopic variables, such as the Dirichlet
BCs or pressure BCs. Thus, an important task associated with the LBE
is to construct accurate and simple boundary schemes consistent with the
macroscopic BCs and compatible with the LBE.
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Figure 1: Hlustration of a curved boundary located between two lattice nodes arbitrarily.
The thin solid straight line is the grid line and the thick curved line is the boundary.
White circles (O) are the fluid nodes, the black circle (®) is the intersection of the
boundary and the grid line, and the square box (O) is out of the fluid region.

This paper focuses on the Dirichlet BC
u(w,t) = ¢(x,1), €K, (1)

for the incompressible Navier-Stokes equations. Here w(a,t) is the macro-
scopic fluid velocity at position x and time ¢, ¢(x,t) is a given function of
x and ¢, and the boundary 0f) is often curved (as illustrated in Fig. 1) in



complex flows such as flows in porous media and two-phase flows. This kind
of BCs is the most often encountered in applications and therefore various
different boundary schemes have been proposed for it in the LBE literature
8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Many of these boundary schemes
involve a number of neighboring lattice nodes. For example, that proposed
by Lallemand and Luo in [17] involves the three nodes xf, x; and & in
Fig. 1. Other examples can be found in [13, 14, 15, 16, 19]. This class of
boundary schemes usually employs interpolations of the DFs or fluid veloc-
ities at several neighboring nodes to increase the accuracy. As commented
in [18], this class of schemes does not apply to the situation where there are
no enough neighboring nodes (see Fig. 1 in [18] for example). Even if the
single-node bounce-back scheme can be used to remedy this drawback, the
accuracy of numerical results may degrade everywhere in the domain [18].

Another class of boundary schemes involves only the current lattice node
and is free of interpolations. A typical example is the widely used bounce-
back scheme [8, 9], which only has first-order accuracy except for the case
where the boundary locates at the middle of two neighboring nodes. Other
single-node boundary schemes can be found in [10, 11, 12, 18, 20, 21]. The
schemes in [10, 11, 12] are of second-order accuracy but only for straight
boundaries, while that proposed in [18] uses the DFs of all directions and
needs to compute, at each boundary node xy, the inverse of a matrix with
entries given by complicated formulas. Consequently, the one-point scheme
[18] seems more complicated than the interpolation based schemes. In addi-
tion, those recently developed in [20, 21] are for convection diffusion equa-
tions with complex boundary conditions and the idea can be extended to
the Navier-Stokes equations. We remark that the derivation of the boundary
schemes in [12, 18, 20] relies heavily on the Chapman-Enskog expansion or
asymptotic analysis.

The aim of this work is to propose a class of single-node boundary schemes
with second-order accuracy for the Dirichlet boundary condition Eq. (1) on
curved boundaries. We start with a general linear combination of the pre-
collision and equilibrium DFs; including the single-node schemes in [20] as
a special case. Then with the recently developed Maxwell iteration for the
LBE [23], we obtain three restrictions on the combination coefficients to
have second-order accuracy. Based on the restrictions, two specific boundary
schemes are presented. Moreover, the accuracy and stability of two specific
schemes are analysed through several numerical experiments. The results
validate the second-order accuracy and show that the scheme with a convex
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combination of the DF's has better stability.

This paper is organized as follows. Section 2 introduces the multi-relaxation-
time LBE and the two-relaxation-time (TRT) model with nine velocities on
the two-dimensional square lattice (D2Q9 model). In Section 3, we use the
Maxwell iteration to obtain an expansion of the DFs. Section 4 presents
the main results of this work. A class of single-node boundary schemes with
second-order accuracy is proposed and two specific schemes are constructed.
The accuracy and stability of those boundary schemes are investigated with
several numerical experiments in Section 5. Some conclusions and remarks
are given in Section 6. The paper ends with an appendix containing details
of the Maxwell interation.

2. Two-relaxation-time lattice Boltzmann equations

Lattice Boltzmann equations (LBEs) can be directly derived from the
kinetic equation with the coupling discretization of time and space [1, 2].
Specifically, the discrete time is {t,|n = 0, 1, 2, ...} with time step ¢, and
the coupled space consists of a finite and symmetric discrete set V := {¢;} =
{—¢;} and a d-dimensional lattice space Z% with a lattice size §,. The lattice
74, the discrete velocity set V, and discrete time are coupled as the following:

x; + c;0; € Zd VCC]‘ S Zd and ¢; € V, (2)

such that the particle transport term in the original Boltzmann equation,
O f +&-Vf, is modeled by hopping from one lattice node x; to another
€ + ci(it.

The LBEs can be concisely written in a vector form:

f(x;+co, t,+6) —f(z;, t,) = Qxy, t,), (3)

where f and © are ()-dimensional vectors representing the discrete-velocity
particle distribution and the collision term, respectively. Specifically, they
are defined as

f(a; + coy, t, +0) = (folxj, tn+00)), fi(x; + 16y, ty + 61),
s fa@®y + egbiy e+ 60))T,

f(z;, tn) = (fola;, tn), fi(@), tn), -, folzg, ta)),

Qzj, tn) = ((xy, ), (T, ), -, L), ta))T,



where ¢ := (@ — 1) is the number of non-zero velocities and { denotes the
transpose; and it is always assumed that ¢y := 0.

It is natural to execute the collision process in the moment space, be-
cause relaxation of moments is directly related to dissipation processes in
hydrodynamic systems. To cast the collision in terms of relaxation process
of moments is the essence of the LBE with multiple-relaxation-time (MRT)
proposed by d’Humieres [24]. In the MRT model, the collision term in the
LBE (3) can be written in general as the following:

Q=-M"-S: [m-m?], (4)

where m and m© are Q-dimensional vectors of moments and their equilib-
ria, respectively; S is a diagonal matrix with non-negative diagonal elements
(relaxation rates); and M is the transformation matrix which maps the dis-
tribution functions { f;} to the moments {m;}, i.e.,

m:=M-f. (5)

To be concrete, we will use the nine-velocity model on two-dimensional
square lattice, i.e., the D2Q9 model, as a specific model in what follows.
For the D2Q9 model, the discrete velocities are: ¢; = e;c, eg = (0, 0),
e;=—e3=(1,0),es=—e;=(0,1), e5 = —e; = (1, 1), and e = —eg =
(=1, 1). Here ¢ := 0,/d;, and the nine moments are

m = (p, € &, Jus Qo> Jy» Gy Dar> Pry) s (6)

where p is the zeroth-order moment and the mass density; e is the second-
order moment related to energy, ¢ is the fourth-order moment related to the
energy square; j, and j, are the first-order moments corresponding to the -
and y-component of momentum, respectively; ¢, and ¢, are the third-order
moments corresponding to the z- and y-component of energy flux, respec-
tively; and p,, and p,, are the second-order moments related to the diagonal
and off-diagonal component of the stress tensor, respectively [25]. While the
moments are somewhat uniquely determined, their ordering in Eq. (6) is ar-
bitrary. With the ordering specified by Eq. (6), the transformation matrix



M is given as [25]:

1 1 1 1 11 1 1 1
—4 -1 -1 -1 -1 2 2 2 2
4 -2 =2 -2 21 1 1 1
0 1 0 -1 01 -1 -1 1
M= 0 -2 0 2 01 -1 -1 1 (7)
0 0 1 0 -11 1 -1 -1
0 0 -2 0 21 1 -1 -1
0 1 -1 1 -10 0 0 0
0O 0 0 0 01 -1 1 =1

Correspondingly, the diagonal matrix S composed of the relaxation rates {s;}
is given in the following form:

S := diag (so, 51, S2, 53, 54, S5, S5 57, 58) (8)

with 0 <s; <2 fori=1,2,4,6,7,8 [25, 26].
If we set the relaxation rates to s, for the even-order nonconserved mo-
ments ( i.e., €, €, Py, and py,) and to

2—5,
Sq:88—s (9)

for the odd-order ones (i.e., ¢, and g,) [27, 28, 29], then the MRT model be-
comes a two-relaxation-time (TRT) model. It was found in [28, 29] that the
relation (9) enforces the Dirichlet boundary conditions in w exactly and min-
imizes the slip velocity for the Poiseuille flow. With the TRT collision term,
the LBE can be written in the distribution function space as the following
concise form [27, 28, 29],

filx + ;04 t + 0;) — fi(z, 1)
L % [fi(a:, t)+ filx,t) — (fi(eq)(fc, t)+ £, t)ﬂ (10)
) % {fi(m,t) — filz,t) — (fi(eq)(wat) - fi(eq)(m’t))} ’

where f; is the distribution function corresponding to the velocity ¢; = —c;.
For the equilibria fi(eQ), we choose the following incompressible model [30]

cou (o) W (11)
c? 2¢2 2¢2| [

s

f9 = w, {p + po
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Here wy = 4/9, wio34 = 1/9 and wsg78 = 1/36; ¢; = ¢/+/3 is the sound
speed; po is the mean density; p and u are the flow density and velocity given
by

p= Zfz‘ = Zfi(eq)7 (12a)
Po = Z cifi = Z Cz’fi(ew- (12b)

3. Maxwell iteration for the TRT model

In this section, we derive an asymptotlc expressmn of the LB solution f;
in terms of the equilibrium distribution f eq) by using the Maxwell iteration
recently developed in [23] for the LB equations. To begin with, we introduce
the diffusive scaling

h:=46, and & =nh’ (13)
with 1 an adjustable parameter. This scaling means
Oy 1 1
c 3, %, Cs = \[3—77”
and
F = w, {p +po |3nhe; - u + 772h29 e u2)2 - SUQ] } ‘ .

Under the diffusive scaling above, the left-hand side of the LBE (10) can
be expanded as

fi(z + eh, t +nh?) — fi(m,t) ~ Zh& D;.ofi(x, 1),

where the differential operator D; ; is defined as

D= 3 (ei- V)™ (n0)"

mln!

m-+2n=s



with m and n two nonnegative integers. Thus the LBE (10) can be written
as

> WD fix,t)
~—3, B (filz,t) + fi(z, 1)) — % (fi(EQ)(:Jc,t) + fled) (x,t)ﬂ (15)

oy |5 U0 = ) - 3 (50 - 1w 0)

From this we use the Maxwell iteration in Appendix to derive

€ b € (&
fi :fi( Q) _ mh(ei‘v) (fi( Q)—i-af;( q))

1
1—a?

1
ab h2 |:— €; - V)Q + 7']8,5:| f;(SQ) + O(hg),

h? {(%b —a®V?) (e; - V) + bnat} flev (16)

1—a? 2<

where 5
S, — 8

Y 2 and b= )

Sy + 8¢ Sy + 8¢

a =

Taking the first-order velocity moment of Eq. (16) and using Eq. (14)
gives

b (cq)
POt =pou — Z {Cil_—th (e;- V) f; }
' (17)

- [cl_—bh (€ V) ff@‘”] +0(h?).

Recalling that
Z ciei [\ = poun + pcl



with | the 2 x 2 identity matrix, it follows from Eq. (17) that

b e ab e
O(h2) = 1_—a277h2 Z C; (Ci . V) fz( 2 + 1_—a2?7h2 Z C; (Cz . V) ff( 9

b
= mnhzv - (pouw + pcll)

b
=7 ncghQVp + O(h?)

—a

b
= h?
3= a)Vp+ O(h7),

which gives
Vp = O(h?). (18)
On the other hand, we may expand the macroscopic density as

p=> hp®

k>0

and take the leading term p(® = p, according to the asymptotic analysis in
[31, 32, 33]. Then we have

Using the relations (14), (18) and (19), we can simplify the expansion (16)
as

fi = £10 = 3nh%7 (e; - V) (wipoe; - w) + O(h?), (20)

where b 1
= = —, 21
T (21)

Relations (18)-(20) will be used to construct our boundary schemes in the
next sectiomn.

We conclude this section by mentioning that higher-order expansions of
fi can also be obtained from the Maxwell iteration and can be used to obtain
the Euler or Navier-Stokes equations [23]. We will not do it here, since
the relations (18)-(20) will be shown to be enough in deriving second-order
boundary schemes.



4. Single-node schemes for Dirichlet boundary conditions

In this section, we construct a class of single-node second-order bound-
ary schemes for Dirichlet boundary conditions (1). Inspired by the classical
bounce-back scheme [8, 9], our boundary schemes are of the following simple
form:

filzy t +0:) =afi(zs, t) + asfi(zs,t) + a3fi(eq)(mfa t)
c; b (22)

2
Cs

+ (I4fz(eq)(93fa t) + asw;po

with five coefficients ax(k = 1,2,...,5) to be determined. In (22), x; is
the interior lattice node next to the boundary point @, (see Fig. 1), and
¢ = ¢(xyp, 1) is the given boundary velocity. About such boundary schemes,
we make the following remark.

Remark 1. The general form (22) contains the classical bounce-back scheme
and the recently proposed single-node boundary schemes in [20] for convection-
diffusion equations. But it is different substantially from those in [20], be-
cause the equilibrium DFs appear explicitly in (22). It is also different from
the one-point scheme proposed in [18], for it involves the i-th and i1-th DFs
only while the latter uses the DFs of all directions. Moreover, the one-point
scheme needs to compute, at each boundary node xy, the inverse of a matrix
with entries given by complicated formulas.

To determine the coefficients, we refer to Fig. 1 and introduce the scaled
distance between x; and x; as

x| |xy — g

— — 2
@y ke (23)

Then we have
xT; = Ty, + Yhe;,

where e; = nhe; points to ¢ from xy,.
Next we expand each term in Eq. (22) at the boundary point (@, t). For

10



filxy,t+6;), we use Eq. (20) to expand it at (x, 1) as
fias, t+0;) =fi(xy +vhes, t +nh?)
= fi(@y, t) + nh?0,fi(wy, t) + hye; - V fi(xy, t)
+ %hQ’yQ (€ - V) fi(zmp, t) + O(h®)
=11V (@, t) — 3yh*7 (e; - V) (wipoe; - w) (@, ) +nh?0, {0 (1)
(i V) [£0 (@i, 1) = 3% (3 V) (wipoes - w) (i, 1)
+ %h%? (e - V) [ @y, t) + O(BY).
With Egs. (18) and (19), this can be simplified as
Jil@y t 460 = {7 (@, 1) = 30h°T (e, V) (wipoes - ) (@, 1)
+ 3nh*y (e; - V) (wipo€i - u) (y,t) + O(h?) (24)
=11V (@, t) — 3ph? (7 — 7) (€:+ V) (wipoei - w) (@, t) + O(h?).
Similarly, we have
fi(g,t) = filzy, — vhes, 1)
=fi(xy, 1) —vh (€ - V) fi@p, 1) + %’Y%Q (e: - V)? fi(an, t) + O(h?)
— 1D (@, t) — 3nh>T (€5 - V) (wipoes - ) (a, 1) (25)
= 3n7h? (&;- V) (wipoes - w) (20, t) + O(1°)
= 11D (@, t) — Bk (7 +7) (ei - V) (wipoes - u) (@, 1) + O(h?),
filzy,t) = fi(xy + vhe;, 1)
=11 (s t) = 30h*(7 —7) (e V) (wipoes - ) (. 1) + O(h),
F @ t) = [ (@, + yhei, 1)
=1 (@0, 1) + 31 (e - V) (wipoes - w) (@, 1) + O(?),
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and

D (@p,t) = [ (@ — vesh, t) (28)
= Z(eq)(wba t) — 3nyh*(e; - V) (wipoei - u) (xp, 1) + O(R®).

With these expansions, we consider
Ri = fi(zs,t +0;) — a1 fi(xy, t) — asfi(xs, t) — a3fi(eq)(xf7 t)
Ci @

2
Cs

= [ (@y, t) — 3nh2(r — ) (ei - V) (wipoe; - ) (2, 1)

— Gy E(eq)(mfa t) — aswipo

—a [FD @0, t) = 3uh2(r +7) (e: - V) (wipes - u) (@, )]
— G2 :fi(eq)(wbv t) = 3nh*(T — ) (e - V) (wipoe; - u) (s, t)}

—as fi(eq)(mbv t) + 3777h2 (€ - V) (wipoe; - u) (s, t)}

—ay :fa(eq)(wbv t) = 3nyh* (e; - V) (wipoe - w) (xs, t)]
— 3nhaswipoe; - ¢ + O(h?),
= (1 — az — a3) f{ (g, t) — (a1 + aa) 7 (s, 1)
+30h% [(y = 7) + (T +7) — azx(y = 7) — agy + ayy]
x (e; - V) (wipoe; - ) (@, t) — 3nhaswipee; - ¢ + O(h?)

= (]_ —ayp — ag — az — a4)wi {p(azb,t) + 772h2p0 5

+ 3nh(1 + ay — as — ag + ag)wipoe; - u(xy, t) — 3nhaswipoe; - ¢

+3nR* [(y — 7) + ay (T +7) — ax(y — 7) — azy + au”]

x (e; - V) (wipoe; - u) (xp, 1) + O(R?).
(29)

From the first-order term O(h) in R;, we can see that, to be consistent with

12
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2
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the Dirichlet BC Eq. (1), it is required that
1—|—a1—a2—a3+a4:a5.

Furthermore, we set the coefficients of orders O(1) and O(h?) in R; to be
zero to have second-order accuracy. In this way, we obtain the following
constraints for the coefficients ay:

1-&1-&2-&3—(1420, (30&)
14+a, —as—as+as —as =0, (30b)
T(l—a; —az) —v(14+a; —ay —az+ay) = 0. (30c)

These are our basic equations to construct second-order single-node schemes
of the form (22).

Before proceeding, we make the following remarks on the above con-
straints.

Remark 2. (1). The first two constraints in Eq. (30) ensure first-order
accuracy and, together with the third one, second-order accuracy.

(2). The classical bounce-back scheme [8, 9]

fi<$f, t + (5,5) = f;(CL'f, t) + 2wip0 CZCqu

S

is a simple example of the first-order schemes for v # 1/2. Indeed, because
the post-collision distribution is

fi*(mf’ t)
= Hast) = 5, |5 (s t) + er) = 5 (H @)+ £es0)

— 5y E (Flpt) — filwp, ) — 5 (£ t) - ff@@(wf,t))]

2
1 1 1 1 1 1 .
= (L= 580 = g8 iz, t) = (550 = gsa) fil@s, 1) + (550 — §Sq)fi( (ay, 1)
1 1 .
+ (580 + 550 i (@, 1),
2 2
(31)
the classical bounce-back scheme can be written as (22) with
ap=1—ay, ay=—az, az= 5,,;311’ a4=SVT+Sqa as = 2. (32)

13



Obviously, they satisfy the first two equations in Eq. (30), while the third
equation is satisfied only if v = 1/2.

In order to obtain specific second-order schemes, we turn to determine the
coefficients ay from Eqs. (30), which contain five parameters with only three
equations. Thus, we can construct a class of schemes with two adjustable
parameters. Precisely, we can express aq, ag and as as

ag=1—a, — %%, as = 305 —ay, a5 =2(a1+ as) (33)

with a; and a4 free. Once a; and a4 are fixed, we obtain a second-order
scheme (22). In principle, a; and a4 can be specified arbitrarily.

Here we construct two schemes. The first one is motivated by the bounce-
back scheme and we choose a; and a4 similar to those in Eq. (32):

ap = 1-— ay, ay = ’Y(SV + Sq>. (34)
With this choice, we obtain the following second-order scheme

fi(ivf, t+ 5,5) = alfz(a:f, t) + agfi(a:f, t) + (Z3fi(eq) (.’Bf, t)
i ¢ (35)

2
Cs

+ a4fa(eq)(mfa t) + 2w;po

with
a;=1—ay, as=—as, a3="2(s,—S,), as="(s,+sg). (36)

This scheme can be further written in the concise form:

% Ci @
where f7(xy,t) is the post-collision distribution in Eq. (31). This is our first
scheme and it reduces to the classical bounce-back scheme when v = 1/2.
Note that, when v > 1/2, the above scheme is not a convex combination of
[ (xs,t) and fi(xy,t), which may casue numerical instability.
To avoid the non-convex combination, we propose the following scheme
2y L, 1 2 ci o

i t z )1 i ) 38
1+27fz(wf>)+1+27f(33f )+1+27<M)0 2 (38)

fi(il:f,t + (St) =

14



which is obviously same as Scheme (37) when v = 0. With (31), it is direct to

verify that the coefficients aq, as, ..., a5 corresponding to the last boundary
scheme are
1 Y
a1 = 1+27—a4, g = 7yas — as, a3=m(5u+5q)7
(39)
ag = — (sy —8q), as= 2
4 1+27 v q) 5 1 +2’Y

These coefficients can be easily shown to satisfy the constraints (30) and
thereby the scheme has second-order accuracy. We can see that the single-
node scheme (38) is a convex combination of the pre- and post-collision distri-
butions for all 0 < v <1 and therefore is expected to exhibit good stability.
This will be demonstrated by numerical examples in the next section.

5. Numerical experiments

To validate the boundary schemes (37) and (38) for the Dirichlet bound-
ary condition (1), we conduct numerical experiments for the following three
problems: the Poiseuille flow with straight boundaries, and the Taylor-
Green vortex flow and the Taylor-Couette flow with curve boundaries. All
these flows are governed by the two-dimensional incompressible Navier-Stokes
equations

V- (u,v) =0, O (u,v) + (u,v) - V(u,v) + Vp = vA(u,v) + F  (40)

in proper domains, where v is the kinematic viscosity and F' is an external
force. They all have analytical solutions. For each numerical experiment, we
only need to specify the relaxation time 7 and lattice size h, which determine
all other parameters: 0, = h,d, = nh*,n = (1 —1/2)/(3v),s, = 1/7 and s,
is determined by s, via Eq. (9).

5.1. Poiseuille flow

The first problem is the Poiseuille flow between two parallel no-slip walls
driven by a constant body force F' = G(1,0) (see Fig. 2). This problem has
the following analytical solution

u=u(y) =4U(1 — v =0, (41)

E)E
H H’
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j=N,—1 ‘L

- /l 4‘\
vh
v

Figure 2: Configuration of the Poiseuille flow in LBE simulations with an arbitrary ~.

—>
x

for y € [0, H]. Here H is the channel width and U = GH?/8v is the maximal
velocity along the center line of the channel. Here we take

v=0.003, G=08, H=1.

In our computation, the horizontal direction is periodic. The boundary
schemes are applied at the upper and lower straight boundaries. As illus-
trated in Fig. 2, NN, is the number of meshes in the vertical direction, and
the lower and upper walls are located between j =0 and j =1, j = N, and
Jj = N, — 1, respectively. The lattice size is

H
h=———7-—/¥—— (42)
Ny — 242y
with v the scaled distance. To demonstrate the accuracy and stability of the
boundary schemes, we define the relative L?-error as

V@) w (@)
> @)l

where the summation is over all lattice nodes in the computational domain,
u* = (u,v) is the analytical solution (41), and w is the LB solution.

E, , (43)
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In our numerical experiments, we set v = 0.25,0.75 and 1, take different
7 (=0.505,0.6,1,2,3) and N, = 11,21,41,61, 81, and the number of meshes
in the horizontal direction is N, = 2(V,, — 1). Note that the lattice size h is
calculated by Eq. (42). Fig. 3 shows that with different v and 7 the conver-
gence orders are all around 2 for both schemes. These show the second-order
accuracy of the two specific schemes (37) and (38) for straight boundaries.
From the figure, we can also see that Scheme (37) loses its stability when
v > 0.5, while Scheme (38) is stable almost for all tested v and 7 except
for the cases where v = 0.25, 7 = 0.505 and N, is too small. This verifies
the aforementioned statement that Scheme (37) may lose its stability when
v > 1/2 due to the non-convex combination of the distributions.

To further examine the stability of the boundary schemes (37) and (38)
for different values of v and 7, we fix IV, = 41 and set v = 0,0.25,0.5,0.75
and 1. For each v, we find an interval of 7 in which the LB solutions of the
boundary schemes are convergent. Here by convergence we mean that

Ve lu(x, t,) — u(z, t, — 10006;)[? _
POMITIC AN

Here u(x,t,) is the LB solution at the lattice node @ and time ¢,. To avoid
too much computation time (for small 7) or too large Mach number Ma (for
large 7), we only test 7 in the interval [0.5001, 3]. With a large number of
numerical experiments, we obtain the stability intervals of 7 with different ~
for the two boundary schemes (37) and (38). The results are given in Table
1. From Table 1, it can be seen that Scheme (37) is stable for large intervals
of 7 when v < 1/2, while the stability interval shrinks as 7 increases from 1/2
to 1. This once again verifies the aforementioned statement that the scheme
(37) may lose its stability when v > 1/2 due to the non-convex combination
of the distributions. In contrast, Scheme (38) has large stability regions for
all v tested here, especially it is stable for all 7 € [0.5001, 3] when v > 1/2.
This may be attributed to the fact that the scheme is a convex combination
of the distributions for all 0 < < 1.

1071 (44)

Table 1: Stability intervals of 7 with different v for the schemes (37) and (38)

Y 0 0.25 0.5 0.75 1.0
Scheme (37) [0.509,3] [0.504,3] [0.5001,3] [0.67,2.7] [0.83,1.7]
Scheme (38) [0.509,3] [0.503,3] [0.5001,3] [0.5001,3] [0.5001,3]
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Figure 3: Convergence order of the boundary schemes for the Poiseuille flow. From top to
bottom: v = 0.25, 0.75 and 1. Left: scheme (37), right: scheme (38).

5.2. Taylor-Green vortex flow in a circular domain
The second problem is the Taylor-Green vortex flow in the circular domain
1 1

Q= )l = 5P+ - 5) < 1o
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without external forces. This problem has analytic solutions

u = —Uy cos(2mz) sin(2my)e 57,

6787r21/t7

v = Uy cos(2my) sin(27)
1

p=py— ZUS [cos(4mz) + cos(dmy)] e~ 167

with free parameters Uy and pg. In our numerical simulations reported below,

we take the parameters as

v=0.002, Uy=005 po=poc: with py=1.

The initial and boundary values are given by the above analytical solutions.
Let w = u(x,t) be the LB solution and u* = (u,v) the above analytic
solution. We define the relative L2-error as

_ \/Zm |’U,(ZE, T) & U*(mﬂ T)|2
Do (@, T

at time 7" = 1/U,, where the summation is over all lattice nodes in the
circular domain (2.

To examine the stability and accuracy of the boundary schemes (37) and
(38), we take different 7 (= 0.505, 0.6, 1,2, 3) in the simulation with a number
of spatial steps h = 1/40, 1/80, 1/120, 1/160, 1/200 and 1/240. Fig. 4 shows
that even with the curved boundary 0f2, the convergence orders are all around
2 for both schemes with different 7. Moreover, numerical results show that
the scheme (38) is stable for all 7 taken here, while the scheme (37) is stable
only for 7 = 1,2,3. This confirms our prediction that the scheme (38) has
better stability than (37).

On the other hand, it seems that the error of the scheme (38) becomes
larger with 7 increasing from 0.6 to 3. This may be roughly explained by
considering the Mach number

Ma: % _ (T— %)Uo(sm
Cs \/gl/
for the diffusive scaling. Namely, the Mach number increases as 7 increases.
Thus, when 7 is large, the compressible effect will be prominent and thus
the error will also increase. Also for this reason, the cases of 7 > 3 are not
considered here due to the large Mach number.

E,

(45)
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Figure 4: Convergence order of the boundary schemes for the Taylor-Green vortex flow.
Left: scheme (37), right: scheme (38).

5.3. Taylor-Couette flow between two concentric circular cylinders

In this flow, the outer cylinder has radius 7o and is fixed, while the inner
cylinder has radius r; ( < r2) and rotates with a constant angular velocity
w. There are no external forces. The flow has the steady analytic solution

(u,v) = ¢(r)(cos,sin 6)

with 608
0 T r
b= 1252 - )
1-p2"r T9
in the polar coordinate (r, ), where ¢g = wry, 5 =r1/ry and r € [ry,ra).
In the simulation, the kinematic viscosity v and the radius ry are fixed:

v =002 15=0.8

and the angular velocity w is 0.1/r;. The boundary schemes are applied to
the boundaries of the two cylinders. We set 7 = 1, h = r,/80 = 0.01 and
change the ratio 8 to test the stability of the two boundary schemes. As
demonstrated in Fig. 5, numerical results of the boundary schemes are in
excellent agreement with the analytical solutions. Here only the results with
the scheme (38) are plotted for simplicity.

Moreover, we fix 8 = 0.5 and compute the relative L?-error, as defined
in Eq. (43), for different 7 and h(= 0.8/32,0.8/64,0.8/96,0.8/128,0.8/160)
to test the stability and accuracy of the boundary schemes. From Fig. 6,
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one can see that the scheme (38) almost has second order accuracy for all
the values of 7 tested here, while (37) is stable only for 7 = 1,2,3. These
findings are similar to those for the Taylor-Green vortex flow. Furthermore,
based on the behaviors of the boundary schemes displayed in Fig. 4 and 6,
we recommend to choose the relaxation rate s, = 1/7 close to 1 in order to
balance the stability, accuracy and efficiency.

0 0.2 0.4 0.6 0.8 1

(r—mr1)/(ra —m)

Figure 5: Velocity profiles of the Taylor-Couette flow with different radius ratios 8. The
solid lines are the analytical solutions and the markers stand for the numerical results with
the scheme (38).

6. Conclusions and remarks

In this work, we present a class of single-node second-order boundary
schemes accompanying a TRT-LBE for the Dirichlet boundary condition of
the Navier-Stokes equations defined in a domain with curved boundaries.
The schemes are derived by using the recently developed Maxwell iteration
[23] for the LBE. Unlike the interpolation based schemes for curved bound-
aries [13, 14, 15, 17, 16, 19] which involve several lattice nodes, our schemes
apply to the situations where not enough neighboring nodes are available
[18]. In addition, our schemes are much simpler than the one-point scheme
in [18]. Moreover, two specific boundary schemes are constructed and their
accuracy and stability are investigated through several numerical examples.
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Figure 6: Convergence order of the boundary schemes for the Taylor-Couette flow. Left:
scheme (37), right: scheme (38).

The results validate the second-order accuracy of both schemes and show
that the scheme with a convex combination of DF's has better stability.

It is remarkable that only two groups of the five combination coefficients
in (22) are singled out from the three constraints (30). Other single-node
second-order boundary schemes could be constructed by fixing the five coef-
ficients satisfying the constraints, which may give better boundary schemes.

Moreover, our idea in deriving the boundary schemes for the Dirichlet BCs
is promising to be extended to Neumann BCs or more complicated BCs. In-
deed, the key formula Eq.(20) contains derivatives of the fluid velocity. Thus,
the stress tensor can be easily expressed in terms of the distribution func-
tions. With this, we may construct schemes for outflow boundary conditions
[37], boundary conditions for free interface problems [38], and the slip bound-
ary conditions in rarefied flows [39, 40]. We hope to report our progress in
the near future.

Finally, an important issue would be to apply our boundary schemes to
moving boundary problems. This seems doable but further investigations are
needed, which is beyond the scope of this work. Indeed, when the boundary
is moving, the additional work to do is to specify the unknown distribution
functions at the lattice nodes that move out of the non-fluid region into the
fluid region to become fluid nodes. This can be done by using the extrapo-
lation methods as proposed in [17, 41]. In this way, our single-node schemes
could be used to handle moving boundary problems. However, this straight-
forward application needs to be examined carefully, because our boundary
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schemes do not ensure the mass conservation. In fact, it was observed in [41]
that, for moving boundary problems, boundary schemes breaking the mass
conservation may induce excessive perturbations of the flow fields.
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Appendix

In this appendix, we use the Maxwell iteration [23, 34, 35, 36| to derive
the expansion (16) from Eq. (15).
First of all, we truncate the expansion in Eq. (15) up to O(h?) to get

h (e,- . V) fl + %hQ (e,- . V)2 fl + thatfi
( fi(eq) + fz(EQ)):|

(70 - l(eq))} oM,

1
=—35 {i(fﬂrfz)—

N = N =

e

From this we deduce that

1 1 1 eq) _ 1 e
550+ s fi = (0 =80 i = 550 — s H0 = S50+ 50) i

1
+h(ei V) fi+ 5h* (e V) fi+ WPndifi + O(h)

and thereby

_Sq

fim = S S

3
Sy + 84 Sy + 84

. (46)
hwWWﬁ+§mwfVVﬁ+Mwm-+m#>

Sy + 84
Set
a:m7 b= 2 and Ki:—afi+dfg(eq)+fi(eQ)~
Sy + 84 Sy + 84
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Then Eq. (46) can be written as
1
fi=Ki—=b {h (e;- V) fi+ §h2 (e;- V)" fi + hznﬁtf,} +O(h?). (47)

With the help of the Maxwell iteration [23, 34, 35, 36], that is, substituting
fi in Eq. (47) into its right-hand side, we obtain

fi=K; —bh(e;-V)K;+h? {(zﬂ — %b) (e;- V) — bnat} K+ O(h?).
Similarly, we have
fi = K; —bh(e;- V) K; 4+ h? [(b2 — %b) (e;- V) = bnét} K; + O(h%)
= —afi+af + 1+ h (e V) (—afi+af + £
+ R — %b) (e:- V)’ — bnat] <—a fitaf + féeq)) +O(hY).
Substituting this into Eq. (47), we obtain
fi=—afs+afl@+ f9_p [h (e:-V) fi+ %hQ (e:- V)2 fi + h*nd, fi] +O(h?)
= afi— @ — afD — abh(e; V) (—afi+ af D + 1)
— h2a [(bQ - %b) (e V) = bnat} (—a fi+afl® + f§€q’)

2
=ad’fi+(1— GQ)fi(eq) —abh (e; - V) (afz’(eq) + ff(eq))

Fafl? 4 [ —p [h (€ V) fi+ 202 (es- V) fi + thath +O0(1?)

~h%a [(bz ~ %b) (e;- V) — bnat} (aff‘” + fée”) —(L—a®)bh(e;- V) f;

—h? {(%b - %aQb —a®?) (e;- V)’ + (b+ aQb)n&} fi + O(h%).
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Notice that a®> < 1. The last equation further yields

ab
1—a2

n [(b? 5B (e V) bnat] (@fi™ + £) = bh (e V) f

fi= fi(eq) _ h (ei . V) (lei(eq) + fi(EQ))

a

11— a2
1

11— a2

1 1
h? [(§b + 5aQb —a’?) (e; - V)* + (b+ aQb)nat} fi +O(h3).

Iterating this equation once again yields

fi= = b e D) af + 1)
1—a?
a [ 1 . .
— | = 5b) (e V)~ bnat] (@i + £)

- € b2 (2] €
— bh(e;- V) fi( q) + 1(1_ a2h2 (e; - v)2 (afi( q) T fz( Q))

1 (11
- _a2h2 (§b+§a21)—a2b2) (ei-V)2+(b+a2b)n8t] £ 0n?)
L
_ leq) a’b (cq) _ _ab (cq)
. 1 2 22_12_22} 12_22 _ 2
1—a2h [(ab 2ab a“b +Qb+2ab a“b*) (e; - V)
+ (=% b+ a?)d | £
1 [ 1
- a2h2 (ab® = 5ab—@bz) (e;- V) —abn@t] FE9 L 0(n?)
. b . c
=1 = b (e V) (1 +afi™)
1 [ 1 2 (e)
— 1_ a2h2 _(§b— a2b2) (ei : V) +b7]8t:| fz ?
b, [1 .
+ 1fa2h2 §(ei-V)2+nﬁt} S L o(n).
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Consequently, we arrive at the expansion

1]

2]

e b € €
fi=f = gh (e V) () + afi ™)
1 1 e
12 h? [(ib - azbz) (€;- V)2 + bnat] fi( g

ab 21 , 2 (eq) 3
1—a2h {2(6Z V) —I—n@t] 2+ O(h).
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