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We formulate and validate a finite element approach to the propagation of a slowly 
decaying electromagnetic wave, called surface plasmon–polariton, excited along a conduct-
ing sheet, e.g., a single-layer graphene sheet, by an electric Hertzian dipole. By using 
a suitably rescaled form of time-harmonic Maxwell’s equations, we derive a variational 
formulation that enables a direct numerical treatment of the associated class of boundary 
value problems by appropriate curl-conforming finite elements. The conducting sheet 
is modeled as an idealized hypersurface with an effective electric conductivity. The 
requisite weak discontinuity for the tangential magnetic field across the hypersurface 
can be incorporated naturally into the variational formulation. We carry out numerical 
simulations for an infinite sheet with constant isotropic conductivity embedded in two 
spatial dimensions; and validate our numerics against the closed-form exact solution 
obtained by the Fourier transform in the tangential coordinate. Numerical aspects of our 
treatment such as an absorbing perfectly matched layer, as well as local refinement and a 
posteriori error control are discussed.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The manipulation of the electronic structure of low-dimensional materials has recently been the subject of active re-
search with applications in spintronics, quantum information processing, and energy storage [1–7]. In particular, the electric 
conductivity of atomically thick materials such as graphene and black phosphorous yields an effective complex permittivity 
with a negative real part in the infrared spectrum [7,8]. This feature allows for the propagation of slowly decaying electro-
magnetic waves, called surface plasmons–polaritons (SPPs), that are confined near the material interface with wavelengths 
much shorter than the wavelength of the free-space radiation [9,7]. These SPPs are promising ingredients in the design of 
ultrafast photonic circuits [9].

Experimental efforts to generate SPPs focus on the requisite phase matching between waves sustained in free space and 
the material of interest [10]. This matching is enabled by the excitation of sufficiently large wave numbers tangential to 
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the associated interface. A technique to achieve this goal is to place a resonant antenna on a graphene sheet [11,12]. The 
prediction of the resulting waves relies on solving an intricate boundary value problem for the time-harmonic Maxwell 
equations.

Our purpose with this paper is three-fold. First, we aim to develop a general variational framework for the numeri-
cal treatment of electromagnetic-wave propagation in conducting materials modeled as hypersurfaces in a Euclidean space 
of arbitrary dimension. These hypersurfaces are irradiated by fields produced by external, compactly supported current-
carrying sources operating at a fixed, yet arbitrary, frequency. Second, we validate this framework by comparison of finite 
element numerical simulations to an exact solution of Maxwell’s equations in the simplified case when the conducting sheet 
is infinite and embedded in a two-dimensional (2D) space in the presence of a Hertzian electric dipole directed vertically to 
the sheet. Third, we demonstrate that our numerical approach is capable of efficiently resolving SPP structures. To this end, 
goal-oriented adaptivity for local mesh refinement and a perfectly matched layer are tailored to the fine structure of SPPs.

This work has been broadly motivated by the growing urge to engineer microscopic details of low-dimensional conduct-
ing materials in order to establish desired optical properties at larger scales [9]. A key objective is to elucidate how the 
electric conductivity of the material affects characteristics of electromagnetic wave propagation [13]. There is a compelling 
need for controllable numerical schemes which, placed on firm mathematical grounds, can reliably describe the SPPs in a 
variety of geometries. Our paper offers a systematic approach to solving this problem. In particular:

– We formulate a variational framework suitable for the finite element treatment of electromagnetic wave propagation 
along conducting sheets embedded in spaces of arbitrary dimensions in the presence of external sources (Section 2.3).

– We discretize our variational formulation by use of appropriate curl-conforming Nédélec-elements. This scheme is im-
plemented in a modern C++ framework [14] and accounts for the fine scale of the SPP as well as for the requisite 
radiation condition at infinity via a perfectly matched layer (PML) (Section 4). Our approach does not require regulariza-
tion of the conducting sheet.

– We validate our numerical treatment by comparison of numerics to a tractable exact solution in the simplified case with 
a vertical electric dipole radiating over an infinite, planar conducting sheet; for convenience, we consider an ambient 2D 
Euclidean space. In particular, we numerically single out the SPP; and also compare it to the slowly-varying radiation 
field (see Sections 3 and 5).

The extensive literature in plasmonics attests to the rich variety of computational methods and tools; see, e.g., [15,16]. 
For example, an approach is to model graphene as a region with finite thickness (as opposed to a boundary) [17]. In the 
present work, we demonstrate the ability of curl-conforming Nédélec-elements to accurately capture the fine scale of the 
SPPs, by replacing the conducting sheet with a set of boundary conditions on a hypersurface.

Note that our setting and objectives in this work, focusing on the propagation of SPPs along low-dimensional conducting 
materials, are distinctly different from the modeling and computation of the interaction of plasmonic nanoparticles with 
electromagnetic fields [18,19]. Our focus on the computation of SPPs along low-dimensional conducting materials and its 
validation against recently derived analytic solutions [20] is also distinct from the more classical study of surface plasmons 
on bulk materials [21]. However, our formulation and general approach is also applicable in this setting.

Throughout the paper, we assume that the reader is familiar with the fundamentals of classical electromagnetic wave 
theory; for extensive and comprehensive treatments of this subject, see, e.g., [22–24].

1.1. Motivation: surface plasmonics

Atomically thick conducting materials such as graphene, black phosphorus, and van der Waals heterostructures have been 
the focus of intensive studies [5,9]. The dispersion relations of these structures for electromagnetic wave propagation have 
novel features. The implications of this dispersion at the infrared spectrum is a theme of essence in surface plasmonics [25,
7]. Specifically, in the terahertz frequency range, the effective electric conductivity, σ� , emerging from the coordinated 
motion of quasi-free electrons, can have an appreciable imaginary part. Furthermore, it has been predicted via numerical 
simulations that the decoration of graphene by chains of organic molecules may result in a dramatic alteration of σ� [13,
26]. This prediction paves the way to unconventional means of controlling electronic transport.

From the viewpoint of Maxwell’s equations, the effective dielectric permittivity of a conducting sheet may have a neg-
ative real part. The resulting metamaterial has optical properties different from those of a conventional conductor [7]. In 
particular, electromagnetic waves of transverse-magnetic (TM) polarization possibly propagating through the atomically 
thick material are characterized by a dispersion relation that allows for transmitted wave numbers much larger than the 
free-space wave number, k. For an isotropic and homogeneous ambient space, with wave number k = ω

√
ε̃μ and scalar 

and x-independent μ and ε̃, and an isotropic and homogeneous conducting sheet, the condition |ωμσ� | � |k| yields the 
simplified dispersion relation [25,27,21]√

k2 − k2
x ≈ −

(
2k

ωμσ�

)
k (1)

for TM waves; kx denotes the wave number tangential to the material interface. Hence, if k is positive, (1) has an admissible 
solution, kx , provided Imσ� > 0 under an assumed e−iωt time dependence. Note that |kx| � |k|.
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The excitation of SPPs on a homogeneous conducting sheet cannot be achieved by direct illumination of the material by 
an incident plane wave. There is intrinsic need for phase matching between the waves propagating in different materials, 
e.g., air and conducting sheet [10,25]. An indirect means of establishing this matching is to add metal contacts to the inter-
face [28]. More generally, it is plausible to prescribe current-carrying sources of compact support that optimize attributes of 
the SPP by variation of the frequency or size of source or the esheet conductivity [13,12,11].

1.2. Our approach

A jump condition created by an electric conductivity on an interface is a key ingredient in the modeling of thin conduct-
ing materials such as graphene, black phosphorus, and a variety of heterostructures resulting from stacking a few distinct 
crystalline sheets on top of each other. One of our tasks with this work is to construct a variational formulation, well-suited 
for the finite element method, that naturally incorporates such a jump condition in the presence of external sources.

The variational formulation is implemented by utilizing an appropriate curl-conforming finite element space that only 
enforces the continuity of the tangential components across elements. The use of higher-order conforming elements is well 
suited for the numerical problem at hand. The weak discontinuity across the interface can be aligned with the triangulation 
and the regularity of the solution away from the interface leads to high convergence rates. For overcoming the two-scale 
character with much finer SPP structures close to the interface, an adaptive, local refinement strategy based on a posteriori 
error estimates is used. The a posteriori error estimates are computed by solving an adjoint problem (dual weighted residual 
method) [29] and lead to optimally refined meshes.

Notably, our approach does not require the regularization of the conducting sheet by a layer with artificial thickness. In-
stead, the sheet can be directly approximated as a lower-dimensional interface. Further, we treat the full scattering problem 
with an incident wave generated by a Hertzian dipole source instead of merely solving the associated eigenvalue problem 
for the SPP.

For validation of our treatment, the finite element computations stemming from our approach are compared to the exact 
solution of Maxwell’s equations for a vertical electric dipole over an isotropic and homogeneous conducting sheet in 2D. In 
this case, all field components are expressed via 1D Fourier integrals and, thus, are amenable to accurate numerical integra-
tion. By this formalism, the SPP is defined as the contribution from a simple pole in the Fourier domain. This contribution 
is to be contrasted to the slowly-varying radiation field. Our numerics indicate that the SPP dominates the scattered field 
at distances of the order of the free-space wavelength from the dipole source, in agreement with analytical estimates from 
the exact solution.

1.3. Related work

Electromagnetic wave propagation along boundaries, especially the boundary separating air and earth or sea, has been 
the subject of studies for over a century. A review can be found in [22].

This insight is valuable yet insufficient for plasmonic applications related to low-dimensional materials. It is compelling 
to consider implications of the metamaterial character of atomically thick conducting sheets in the terahertz frequency 
range [10]. In particular, in the presence of an electric Hertzian dipole source, boundary condition (3) with Imσ� > 0 can 
result in a SPP [10], to be contrasted to surface waves in radio-frequencies which have wave numbers nearly equal to the 
free-space one [22].

In the last few decades, several groups have been studying implications of surface plasmonics; for a (definitely non-
exhaustive) sample of related works, see [10,27,30,12,20,31,21,25,28]. For instance, in [10] the authors review macroscopic 
properties of the electric conductivity of graphene, derive dispersion relations for electromagnetic plane waves in inhomo-
geneous structures, and discuss methods for exciting SPPs; see also the integral-equation approach in [28]. On the other 
hand, the problem of a radiating dipole source near a graphene sheet is semi-analytically addressed in [27,30]. In the 
same vein, in [31] the authors numerically study the field produced by dipoles near a graphene sheet, recognizing a region 
where the scattered field may be significant. Most recently, two of us derived closed-form analytical expressions for the 
electromagnetic field when the dipole source and observation point lie on the sheet [20].

In the aforementioned works, the rigorous numerical treatment of Maxwell’s equations is not of primary concern. Our 
work here aims to build a framework that places the finite element treatment of a variational boundary value problem 
on firmer mathematical grounds. This opens up the possibility of numerically studying SPPs in experimentally accessible 
geometries in an error-controllable fashion. The finite element treatment of Maxwell’s equations is a well-established area 
of research [32–36]. In particular, our work is related to an adaptive finite element framework for Maxwell’s equations 
[32,33] that uses a residual-based a posteriori error estimator for adaptive local refinement of a triangular mesh. Further, 
we point out that the well-posedness of our variational approach (see Section 2) is closely connected to the question of 
well-posedness of time-harmonic Maxwell’s equations with sign-changing dielectric permittivity [37]. The reason for this 
connection is that the jump condition for a field component across a boundary with a complex-valued conductivity (which 
we use to model graphene) can be understood as the zero-thickness limit of a bulk graphene region with a negative dielectric 
permittivity.
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1.4. Open problems

Our work here focuses on the development of a reasonably general variational framework. We validate this formulation 
by comparison of the ensuing finite element numerical computations to the exact solution of Maxwell’s equations in a 
relatively simple yet nontrivial geometry in 2D. We deem these tasks as necessary first steps in establishing the proposed 
numerical framework; these steps should precede applications to more complicated cases of physical interest.

Therefore, our work admits several extensions and leaves a few pending issues, from the viewpoints of both analysis and 
applications. For example, we have not made attempts to fully characterize error estimates following from our treatment. 
The subtleties related to the possible spatial variation or anisotropy of surface conductivity, σ� , lie beyond our present 
scope. The numerics for a current-carrying source over a conducting film in 3D [27,20] have not been carried out, because 
of the expensive computations involved. The more elaborate yet experimentally accessible case with a receiving antenna 
lying on the material interface [11], where the current distribution on the source forms part of the solution, is a promising 
topic of near-future investigation.

1.5. Outline of paper

The remainder of our paper is organized as follows. In Section 2, we provide the desired variational characterization for 
boundary value problem (2)–(4). Section 3 focuses on the derivation of an exact solution for (2)–(4) in 2D, assuming that 
the external current-carrying source is a vertical electric dipole and the conducting sheet is homogeneous and isotropic. 
In Section 4, we describe the discretization of our variational formulation in the context of finite elements; in particular, 
we discuss the error control by our treatment (Section 4.2). Section 5 present computational results stemming from our 
approach for an infinite conducting sheet in 2D, along with comparisons with an exact solution. Finally, Section 6 concludes 
our paper with a summary of our results and an outlook.

2. Variational formulation

In this section, we derive a variational formulation for the time-harmonic Maxwell equations with an interface jump 
condition. We introduce a slightly modified rescaling of the associated equations to dimensionless forms that are best 
suited for the numerical observation of the SPP in our treatment. The interface jump condition (3) enters the variational 
formulation in the form of a weak discontinuity (with the second jump-condition for E being naturally encoded in the ansatz
space).

2.1. Preliminaries: boundary value problem

Next, we formulate the corresponding boundary value problem for the conducting sheet, emphasizing the discontinuity 
of the magnetic field across the sheet. The starting point of our analysis is the strong form of Maxwell’s equations for the 
time-harmonic electromagnetic field, (E(x, t), B(x, t)) = Re

{
e−iωt(E(x), B(x))

}
, viz., [24]⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−iωB + ∇ × E = −Ma ,

∇ · B = 1

iω
∇ · Ma ,

iωε̃E + ∇ × (
μ−1 B

) = J a ,

∇ · (ε̃E
) = 1

iω
∇ · J a .

(2)

A few comments on (2) are in order. The (constant) parameter ω is the temporal angular frequency (ω > 0). We assume that 
all material parameters are time independent; furthermore, the time-independent, externally applied, compactly supported 
electric- and magnetic-current densities, J a(x) and Ma(x), respectively, arise from the time-harmonic densities J a(x, t) =
Re

{
e−iωt J a(x)

}
and Ma(x, t) = Re

{
e−iωt Ma(x)

}
. The second-rank tensors μ(x) and ε̃(x) represent the effective magnetic 

permeability and complex permittivity of the corresponding medium; the latter is ε̃(x) = ε(x) + iσ(x)/ω, where ε(x) and 
σ(x) are the (second-rank tensorial) dielectric permittivity and conductivity. We assume that (E, B), ( J a, Ma) and (ε̃, μ) 
in (2) are x dependent with some (weak) regularity of the fields to ensure unique solvability, as discussed in Section 2.3.

Equations (2), interpreted in the strong sense, hold in appropriate unbounded regions of the n-dimensional Euclidean 
space, Rn (n = 2, 3), excluding the set of points comprising the conducting sheet. We now turn our attention to the requisite 
boundary conditions along the sheet. This is modeled as an idealized, oriented hypersurface �, � ⊂ R

n , with unit normal 
ν and effective surface conductivity σ�(x) [10,27,30]. This consideration amounts to a jump condition in the tangential 
component of the magnetic field while the tangential electric field is continuous, viz., [10]⎧⎪⎨⎪⎩

ν × {(
μ−1 B

)+ − (
μ−1 B

)−}∣∣∣
�

= σ�(x)
{
(ν × E) × ν

}∣∣∣
�

,

ν × {
E+ − E−}∣∣∣

�
= 0 ,

(3)



130 M. Maier et al. / Journal of Computational Physics 339 (2017) 126–145
where F± (F = E, B) is the restriction of the vector-valued solution to either side (±) of the hypersurface. The surface 
conductivity, σ�(x), is in principle a second-rank tensor and is responsible for the creation of the SPP under the appropriate 
source ( J a, Ma) [10]; see section 1.1. At the terahertz frequency range in doped graphene, for example, it is possible that 
the jump in the tangential component of the magnetic field is small compared to the magnitude of the field itself [10]. For 
the appropriate polarization and imaginary part of σ� , this feature may yield a surface wave, the SPP, with a wavelength of 
the order of a few microns, much smaller than the free-space wavelength [10,27,20].

In addition, the electromagnetic field (E, B) must satisfy the Silver–Müller radiation condition, an extension of the 
Sommerfeld radiation condition, if the ambient (unbounded) medium is isotropic [23]. This amounts to the requirement 
that F (F = E, B) approach a spherical wave uniformly in the radial direction as |x| → ∞ for points at infinity and away 
from the conducting sheet. We need to impose

lim|x|→∞{B × x − c−1|x| E} = 0 , lim|x|→∞{E × x + c|x| B} = 0 , x /∈ � ; (4)

c is the speed of light in the respective medium. In the formulation of our numerical scheme, we avoid making explicit use 
of condition (4) by using appropriate boundary conditions together with a PML, which eliminates reflection from infinity.

2.2. Rescaling

Loosely following Colton and Kress [38], as well as Monk [34], we introduce a rescaling for the time-harmonic Maxwell 
equations (2). The key differences of our formulation from the above treatments [38,34] are:

– The additional rescaling of every length scale in our problem by the free-space wavelength 2πk−1
0 := 2π(ω

√
ε0μ0)

−1, 
where ε0 and μ0 denote the vacuum dielectric permittivity and magnetic permeability, respectively. This rescaling 
recognizes that the typical length scale of the SPP is one to two orders of magnitude smaller than the corresponding 
free-space wavelength [10]; consequently, 1/k0 is the appropriate macroscopic length scale.

– The rescaling of E , B , J a , and Ma by a typical electric current strength, J0. In our case, J0 is the strength of the prescribed 
dipole source at location a in the ei direction in Cartesian coordinates:

J a = J0 ei δ(x − a).

Accordingly, we rescale μ and ε̃ by μ0 and ε0, respectively; cf. (2):

μ −→ μr = 1

μ0
μ, ε̃ −→ ε̃r = 1

ε0
ε̃. (5)

Furthermore, by use of the free-space wave number, k0 = ω
√

ε0μ0, and the dipole strength, J0, the rescaling of the vector 
fields and coordinates is carried out:

x −→ x̂ = k0 x, ∇ −→ ∇̂ = 1

k0
∇, (6)

J a −→ Ĵ a = 1

J0
J a, Ma −→ M̂a= k0

ωμ0 J0
Ma, (7)

E −→ Ê = k2
0

ωμ0 J0
E, B −→ B̂ = k0

J0
μ−1 B. (8)

In addition, the interface conductivity is rescaled as follows:

σ� −→ σ�
r =

√
μ0

ε0
σ�. (9)

Finally, rescaling time-harmonic Maxwell’s equations (2) results in the following system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−iμr B̂ + ∇̂ × Ê = −M̂a,

∇̂ · (μr B̂
) = 1

i
∇̂ · M̂a,

−iε̃r Ê − ∇̂ × B̂ = − Ĵ a,

∇̂ · (ε̃r Ê
) = 1

i
∇ · Ĵ a.

(10)

To lighten the notation, the hat (ˆ) on top of a rescaled quantity will be omitted in the remainder of this paper. (This 
simplification avoids confusion of the rescaled quantities with the Fourier transforms of fields invoked in Section 3.)
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Fig. 1. Schematic of the computational domain, 	, with boundary ∂	 and outer normal n. An electric Hertzian dipole, J a , is situated above a prescribed 
hypersurface, � .

2.3. Variational statement

Let 	 ⊂ R
n (n = 2, 3) be a simply connected and bounded domain with Lipschitz-continuous and piecewise smooth 

boundary, ∂	. Further, let � be an oriented, Lipschitz-continuous, piecewise smooth hypersurface. Fix a normal field ν on 
� and let n denote the outer normal vector on ∂	; see Fig. 1. Substituting B from the first equation of (10) into the third 
equation yields

∇ × (
μ−1

r ∇ × E
) − ε̃r E = i J a − ∇ × (

μ−1
r Ma

)
. (11)

Multiplying (11) by the complex conjugate, ϕ̄ , of a smooth test function ϕ and integrating by parts in 	 \ � lead to∫
	

(μ−1
r ∇ × E) · (∇ × ϕ̄)dx −

∫
	

ε̃r E · ϕ̄ dx −
∫
�

[
ν × (μ−1

r ∇ × E + μ−1
r Ma)

]
�

· ϕ̄T dox

+
∫
∂	

(
ν × (μ−1

r ∇ × E + μ−1
r Ma)

) · ϕ̄T dox = i

∫
	

J a · ϕ̄ dx −
∫
	

μ−1
r Ma · ∇ × ϕ̄ dx, (12)

where the subscript T above denotes the tangential part of the respective vector, F T = (ν ×F) × ν , and [ . ]� denotes the 
jump over � with respect to ν , viz.,[

F
]
�

(x) := lim
s↘0

(
F(x + sν) −F(x − sν)

)
(x ∈ �). (13)

For the computational domain 	, an absorbing boundary condition at ∂	 is imposed:

ν × B +
√

μ−1
r ε̃r E T = 0 (x ∈ ∂	). (14)

The last boundary condition is obtained by using a first-order approximation of the Silver–Müller radiation condition, equa-
tion (4), truncated at ∂	 [39]. We will occasionally refer to (14) as the first-order absorbing boundary condition. We assume 
that μ−1

r and ε̃r are scalar functions such that the square root in (14) is well defined. In our numerical computation, we 
combine the above absorbing boundary condition with a PML; see Section 5.2.

An advantage of variational formulation (12) is that the jump condition over the conducting sheet can be expressed as 
a weak discontinuity. Rewriting jump condition (3) as well as absorbing boundary condition (14) in terms of B and Ma by 
utilizing the first equation of (10) yields[

ν × (μ−1
r ∇ × E + μ−1

r Ma)
]
�

= i σ�
r E T on �, (15)

ν × (μ−1
r ∇ × E + μ−1

r Ma) = −i
√

μ−1
r ε̃r E T on ∂	. (16)

The last two relations allow us to enforce the jump and boundary conditions weakly by simply substituting them into (12). 
We summarize our main result below.

Proposition 1 (Variational formulation). In order to ensure unique solvability, we assume that σ�
r ∈ L∞(�)3×3 is matrix-valued and 

symmetric, with semi-definite real and complex part. Further, let ε̃r be a smooth scalar function and μ−1
r be a constant scalar such 

that

– Im
(
ε̃r ) = 0, or Im

(
ε̃r ) ≥ c > 0 in 	,

–
√

μ−1
r ε̃r is real-valued and strictly positive on ∂	.
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Define the Hilbert space (cf. [34, Th. 4.1])

X(	) =
{
ϕ ∈ H(curl;	) : ϕT

∣∣
�

∈ L2(�)3, ϕT

∣∣
∂	

∈ L2(∂	)3
}

equipped with the norm ‖ϕ‖2
X = ‖∇ × ϕ‖2 + ‖ϕT ‖2

L2(�)
+ ‖ϕT ‖2

L2(	)
. In the above, H(curl; 	) denotes the space of vector-valued, 

measurable and square integrable functions whose (distributive) curl admits a representation by a square integrable function.
The rescaled, weak formulation of (2) with jump condition (3) and absorbing boundary condition (14) can be stated as follows: Find 

E ∈ X(	), such that

A(E,ϕ) = F (ϕ), (17)

for all ϕ ∈ X(	). Equation (17) admits a unique solution. The sesquilinear form and the right-hand side are given by

A(E,ϕ) :=
∫
	

(μ−1
r ∇ × E) · (∇ × ϕ̄)dx −

∫
	

ε̃r E · ϕ̄ dx (18)

− i

∫
�

(σ�
r E T ) · ϕ̄T dox − i

∫
∂	

√
μ−1

r ε̃r E T · ϕ̄T dox,

F (ϕ) := i

∫
	

J a · ϕ̄ dx −
∫
	

μ−1
r Ma · ∇ × ϕ̄ dx. (19)

Proof. The existence result for time-harmonic Maxwell’s equations with an absorbing boundary condition [38,40,34] can be 
applied almost directly to problem (17); the additional interface integral in A(E, ϕ),

− i

∫
�

σ�
r E T · ϕ̄T dox (20)

requires a careful discussion. For this we split the integral into two contributions,

− i

∫
�

σ�
r E T · ϕ̄T dox = − i

∫
�

Re
(
σ�

r

)
E T · ϕ̄T dox +

∫
�

Im
(
σ�

r

)
E T · ϕ̄T dox. (21)

The first term on the right-hand side of (21) can be treated similarly to the absorbing boundary condition on ∂	 (cf. [34, 
Sec. 4.5]). For the second term in (21), involving Im

(
σ�

r

)
, we have∫

�

Im
(
σ�

r

)
E T · Ē T dox ≥ 0. (22)

Thus, this term does not affect any proof based on showing coercivity of a modified sesquilinear form and using Fredholm’s 
alternative on a compact perturbation.

In order to prove uniqueness we follow the strategy in [34, Sec. 4.6]. First, test the homogeneous equation A(e, ϕ) = 0
with e itself and take the imaginary part,∫

	

(Im(ε̃r ) e
) · ē dx +

∫
�

(Im(σ�
r ) eT ) · ēT dox +

∫
∂	

√
μ−1

r ε̃r eT · ēT dox = 0.

This immediately implies eT = 0 on ∂	 and �. The (nontrivial) conclusion e = 0 now follows verbatim by the proof of [34, 
Th. 4.12]. �

The following remarks are in order.

Remark 1 (2D model of a conducting sheet). The 3D problem description given by (17) readily translates into a corresponding 
problem in 2D: Assume that the interface �, the electric field E , the permeability μr , as well as the permittivity ε̃r and 
surface conductivity σ�

r are translation- and mirror-invariant in the z-direction. Thus, the term ∇ × E and, consequently, 
the B field have nonzero components only in the z-direction. Hence, we can rewrite (17) with the 2D curl

∇ ×F := ∂xFy − ∂yFx. (23)
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Fig. 2. Schematic of a vertical electric dipole at distance a from conducting sheet � in 2D. The dipole has current density J a = J0δ(x − a) e y , where 
x = xex + ye y and a = a e y . The sheet lies in y = 0, separates the space into region 1 (half space {y > 0}) with wave number k1 and region 2 ({y < 0}) 
with wave number k2, and has surface electric conductivity σ� .

Remark 2 (TM polarization in 2D model). In the 2D version of Maxwell’s equations with a vertical electric dipole (see Sec-
tion 3), the magnetic field, B , given by

B = μ−1
r

(
Ma + ∇ × E

)
, Ma ≡ 0 , (24)

only has a z-component when viewed as a vector field in R3. Thus, this field is parallel to the hypersurface � and orthogonal 
to the computational domain, 	 (which is part of the xy-plane). Consequently, the SPP in this 2D setting, and in the 
corresponding numerical simulation, has the desired TM polarization [10].

3. Exact solution for 2D infinite conducting sheet

In this section, we derive an exact solution to the three-dimensional (3D) version of boundary value problem (2)–(4)
in the case with a 2D vertical electric dipole radiating at frequency ω over an infinite conducting sheet embedded in 
an isotropic and homogeneous space of (scalar) magnetic permeability μ; see Fig. 2. For physical clarity, we invoke the 
vector-valued electromagnetic field without rescaling, unless we state otherwise.

The sheet separates the space into region 1 ({y > 0}) with wave number k1 and region 2 ({y < 0}) with wave number 
k2; k2

j = ω2ε̃ jμ where ε̃ j is the complex permittivity ( j = 1, 2). We assume that the surface conductivity, σ� , of the sheet 
is a scalar constant. Note that we assign different complex permittivities to each half-space (regions 1, 2). In the end of this 
section, we set them equal.

The dipole has current density J a = J0 δ(x − a) e y where x = x ex + y e y and a = a e y ; es is a unit Cartesian vector 
(s = x, y). Now define the Fourier transform, F̂ j(ξ, y), of the vector-valued field F j(x, y) (F = E, B) in region j through the 
integral formula

F j(x, y) = 1

2π

∫
R

dξ F̂ j(ξ, y) eiξx . (25)

The transformation of 3D Maxwell’s equations (2) in region j yields

− iξ Ê jy + ∂ Ê jx

∂ y
= −iω B̂ jz , (26)

− ∂ B̂ jz

∂ y
= ik2

j

ω
Ê jx , −iξ B̂ jz = − ik2

j

ω
Ê jy + μδ(y − a) , (27)

where we set E jz ≡ 0, B jx ≡ 0, and B jy ≡ 0 by symmetry; F jz (F = E, B) is the component perpendicular to the xy-plane.
Equations (26) and (27) furnish the differential equation

∂2 B̂ jz

∂ y2
+ β2

j B̂ jz = −iξμδ(y − a) , β2
j := k2

j − ξ2 ,

which has solution

B̂ jz(ξ, y) =
⎧⎨⎩ C> eiβ1 y − ξμ

2β1
eiβ1|y−a| , if j = 1 (y > 0) ;

C< e−iβ2 y , if j = 2 (y < 0) .

(28)

This solution is consistent with radiation condition (4) provided

Imβ j(ξ) > 0 ( j = 1, 2) . (29)
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Furthermore, we apply conditions (3) in order to determine integration constants C> and C< . Specifically, we impose(
B̂1z − B̂2z

)∣∣
y=0= μσ� Ê1x

∣∣
y=0 ,

(
Ê1x − Ê2x

)∣∣
y=0= 0 . (30)

Accordingly, by (27) and (28) we find

C> = − ξμ

2β1

k2
2β1 − k2

1β2 + ωμσ�β1β2

k2
2β1 + k2

1β2 + ωμσ�β1β2
eiβ1a , C< = − μk2

2ξ eiβ1a

k2
2β1 + k2

1β2 + ωμσ�β1β2
.

We can now write down all field components in view of (25)–(28). In particular:

E1x(x, y) = ωμ

4πk2
1

∞∫
−∞

dξ ξ

[
k2

2β1 − k2
1β2 + ωμσ�β1β2

k2
2β1 + k2

1β2 + ωμσ�β1β2
eiβ1(y+a) + sgn(y − a) eiβ1|y−a|

]
eiξx (y > 0) ; (31)

E2x(x, y) = −ωμ

2π

∞∫
−∞

dξ ξβ2
eiβ1a−iβ2 yeiξx

k2
2β1 + k2

1β2 + ωμσ�β1β2
(y < 0) . (32)

In the above, sgn(y) = 1 if y > 0 and sgn(y) = −1 if y < 0.
Note that all field components have Fourier transforms defined in the ξ -plane with: (i) branch points at ξ = ±k j ( j =

1, 2); and (ii) simple poles at points where

k2
2β1(ξ) + k2

1β2(ξ) + ωμσ�β1(ξ)β2(ξ) = 0 , (33)

under condition (29) which defines the appropriate branch of the multiple-valued β j(ξ). Equation (33) is the dispersion 
relation for the SPP [21,20]. In particular, if k1 = k2 = k and |ωμσ� | � |k|, (33) reduces to (1) with ξ = kx .

This observation motivates the following definition within the 2D model [20].

Definition 1 (SPP in the 2D setting). For an infinite conducting sheet, the SPP is identified with the part of the electromagnetic 
field equal to the contribution to the Fourier integrals of the simple pole ξ = km , Imkm > 0, that solves (33) under (29).

For the sake of completeness, we conclude this section by focusing on the case with k1 = k2 = k (identical half-spaces). 
In particular, we provide explicit expressions for two distinct physical contributions to the x-component of the electric 
field on the sheet (y = 0), which is continuous across the sheet. After suitable rescaling of the variables and parameters 
(Section 2.2), by (32) the pole contribution to Ex := E1x(x, 0) = E2x(x, 0) takes the form

Ex,p = −2i
μr ε̃r

(σ�
r )2

exp
[
ikm,r x − (2i/σ�

r )ar] , (34)

where km,r = km/k0 and ar = k0a; cf. (33). Equation (34) expresses the SPP pertaining to the tangential electric field (see 
Definition 1).

A separate physical contribution expresses the radiation part of the scattered field, Esc = E − Epr, where Epr is the 
(primary) dipole field in the absence of the sheet. To single out this contribution for the x-component, Ex , we choose to 
integrate in the ξ (Fourier) variable around the branch cut emanating from the branch point ξ = k after removal of the 
primary field component. The result reads

Esc
x,bc = 1

4π

1

σ�
r

{ 1∫
0

dξ ξ

√
1 − ξ2 ei

√
μr ε̃r x ξ 1

ξ2 + 4 μr ε̃r

(σ�
r )2 − 1

·
(

4
√

μr ε̃r cos
(√

μr ε̃r a
√

1 − ξ2
) − 2iσ�

r

√
1 − ξ2 sin

(√
μr ε̃r a

√
1 − ξ2

))
−

∞∫
0

dς ς

√
1 + ς2 ei

√
μr ε̃r x ς 1

ς2 − 4 μr ε̃r

(σ�
r )2 − 1

·
(

4
√

μr ε̃r cos
(√

μr ε̃r a
√

1 + ς2
) − 2iσ�

r

√
1 + ς2 sin

(√
μr ε̃r a

√
1 + ς2

))}
. (35)

Fig. 3 shows a comparison of the two contributions, Ex,p and Esc
x,bc, for a typical choice of parameters (a = 1.0, σ� =

2.00 × 10−3 + 0.200i) by use of formulas (34) and (35) with μr = 1 and ε̃r = 1. We observe that the SSP (pole contribution) 
dominates in the (rescaled) range 10 ≤ x ≤ 25 but is eventually dominated by the branch-cut contribution which has the 
(slower) algebraic decay.
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Fig. 3. Real (a) and imaginary (b) part of branch-cut contribution (35) and SPP (34) for a dipole with (rescaled) elevation distance a = 1.0 and SPP wave 
number km,r = 10.0 + 0.1i. The ambient space has ε̃r = 1 and μr = 1.

4. Numerics: discretization scheme

In this section, variational formulation (17) is discretized on a non-uniform quadrilateral mesh with higher-order, curl-
conforming Nédélec elements [35,36,41]. Such a conforming discretization is an ideal choice for the problem at hand. The 
interface with the (weak) discontinuity can be aligned with the mesh and away from it; and the regularity of the solution 
leads to high convergence rates. Key ingredient of our treatment is the use of an appropriately defined PML (Section 4.1), as 
well as local mesh refinement based on a posteriori error estimates (Section 4.2).

Let Xh(	) ⊂ X(	) be a finite element subspace spanned by Nédélec elements. We will in particular use second-order 
Nédélec elements in the numerical computations. Then, under the assumption of a sufficiently refined initial mesh, the 
variational equation to find Eh ∈ Xh(	) such that

A(Eh,ϕ) = F (ϕ), ∀ϕ ∈ Xh(	), (36)

is uniquely solvable [34, Section 7.2].

Remark 3. From an approximation theory point of view, we expect the convergence∥∥E − Eh
∥∥

X ∼ O(h2) = O(#dofs) (37)

for second-order Nédélec elements and under the conditions of Proposition 1, i.e., quadratic convergence in terms of a 
uniform refinement parameter h, or linear convergence in the number of degrees of freedom. This is evidenced by our 
numerical results presented in Section 5. We refrain from stating a rigorous convergence result at this point because the 
use of non-uniform, locally refined meshes with an additional approximation of a curved boundary significantly complicates 
the classical approximation theory (see [34, Section 7.3] and references therein).

The interface jump condition on the sheet introduces a pronounced two-scale character to the problem that needs special 
numerical treatment. Depending on the surface electric conductivity, σ� , of the sheet, the observed SPP may have a rescaled 
wave number, km,r , that is one to two orders of magnitude higher than that produced by the dipole radiation in free space 
(which has rescaled wave number kr = 1). This fact has important consequences with respect to the refinement strategy 
and boundary conditions. In particular:

– First-order absorbing boundary conditions alone are in principle not well suited for conducting sheets sustaining SPPs. 
These boundary conditions lead to a significant suppression of the SPP amplitude. This is especially an issue for config-
urations where the SPP given by (34) has a significantly smaller amplitude than the branch-cut contribution (35).
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Fig. 4. The computational domain 	 with a vertical dipole J a situated above a planar conducting sheet � located on the x-axis.

– A much finer minimal mesh refinement is necessary near the interface � in order to resolve the highly oscillatory SPP. 
In addition, failure to sufficiently resolve the interface in the whole computational domain results in a suppression of 
the SPP due to non-local cancellation effects (pollution effect); see Section 5.2 for computational examples.

One of the major advantages of a finite element approach for discretizing variational formulation (17) is the fact that no 
regularization of the interface by a layer with artificial thickness is necessary. Instead, the sheet can be directly approximated
as a lower-dimensional interface.

In the remainder of this section, we discuss our choice of a PML to remedy the negative effect of the absorbing boundary 
condition on the SPP amplitude. Further, a strategy for adaptivity and local mesh refinement is introduced, which is based on 
a posteriori error control combined with a fixed (a priori) local refinement of the interface.

4.1. Perfectly matched layer

In this subsection, we carry out a construction of a PML [42–44] for the rescaled Maxwell equations with a jump 
condition. The concept of a PML was pioneered by Bérenger [42]. It is essentially a layer with modified material parameters 
(ε̃r , μr ) placed near the boundary such that all outgoing electromagnetic waves decay exponentially with no “artificial” 
reflection due to truncation of the domain. The PML is an indispensable tool for truncating unbounded domains for wave 
equations and often used in the numerical approximation of scattering problems [34,45,43,42,44].

We use an approach for a PML for time-harmonic Maxwell’s equations outlined by Chew and Weedon [43], as well as 
Monk [34]. The idea is to use a formal change of coordinates from the computational domain 	 ⊂ R

3 with real-valued 
coordinates to a domain 	́ ⊂ {z ∈ C : Im z ≥ 0}3 with complex-valued coordinates and non-negative imaginary part [34]; 
and transform back to the real-valued domain. This results in modified material parameters ε̃r , μr and σ�

r within the PML.
We assume that a PML is imposed as a concentric spherical shell in a small outer region near the boundary ∂	; see 

Fig. 4. The transformation is chosen to be a function of distance ρ in radial (er -) direction from the origin. Furthermore, 
assume that the normal field ν of � is orthogonal to er (for x ∈ � ∩ (PML)) and that J a ≡ 0 and Ma ≡ 0 within the PML. 
Introduce a change of coordinates 	 → 	́ with

x �→ x́ =

⎧⎪⎪⎨⎪⎪⎩
x + ier

r∫
ρ

s(τ )dτ if r ≥ ρ,

x otherwise,

(38)

with r = er · x and an appropriately chosen, nonnegative scaling function s(τ ) [34]. This prescription leads to a modified 
system of Maxwell’s equations defined on 	́, which takes the following (rescaled) form within the PML:{

∇́ × (
μ−1

r ∇́ × É
) − ε̃r É = 0,[

ν × (μ−1
r ∇́ × É)

]
�

= i σ�
r É T on �,

(39)

where the accent on top of E and ∇ indicates the dependence on as well as the differentiation with respect to x́. Next, we 
transform (39) back from 	́ to 	 with the help of diffeomorphism (38). It follows that [34]

∇́ × F́ = A(∇ × BF), ν × F́ = C(ν × BF), (40)
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for ν orthogonal to er . In the above, we introduce the 3 × 3 matrices

A = T −1
exer

diag
( 1

d̄2
,

1

dd̄
,

1

dd̄

)
Texer , B = T −1

exer
diag

(
d, d̄, d̄

)
Texer , (41)

C = T −1
exer

diag
(1

d̄
,

1

d̄
,

1

d

)
Texer ,

where

d = 1 + i s(r), d̄ = 1 + i/r

r∫
ρ

s(τ )dτ , (42)

and Texer is the rotation matrix that rotates er onto ex . Thus, applying the rescaling⎧⎪⎨⎪⎩
μ−1

r −→ μ̆−1
r = Bμ−1

r A,

ε̃r −→ ε̆r = A−1ε̃r B−1,

σ�
r −→ σ̆ �

r = C−1σ�
r B−1,

(43)

to (39) leads to the system (with Ĕ := B É){
∇ × (

μ̆−1
r ∇ × Ĕ

) − ε̆r Ĕ = 0,[
ν × (μ̆−1

r ∇ × Ĕ)
]
�

= i σ̆ �
r Ĕ T on �,

(44)

within the real-valued domain 	. Note that outside of the PML matrices A, B , and C simply reduce to the unit matrix. Thus, 
E = Ĕ and (44) is identical to (11) with jump condition (15). The modified equations for the PML can be implemented by 
suitably replacing ε̃r , μ−1

r , and σ�
r by their counterparts according to (43) within the PML. For the 2D model discussed in 

Remark 1, the scalar μ−1
r is transformed via

μ−1
r −→ μ̆−1

r = μ−1
r

d
, (45)

where d is given by (42).

4.2. A posteriori error estimation and local refinement

One of the computationally challenging aspects of the numerical simulation is the two-scale behavior of problem (17). 
A much finer minimal mesh refinement is necessary near the interface � in order to resolve the highly oscillatory SPP. In 
this subsection we give a brief overview of a local mesh adaptation strategy based on goal-oriented a posteriori error esti-
mation. This leads to a substantial saving in computational costs (see Section 5), due to local refinement, while maintaining 
an optimal convergence order in a quantity of interest[46]. We focus primarily on aspects of implementation—a full, detailed 
discussion is beyond the scope of this paper and will be the subject of future work.

An efficient method for a posteriori error control is the dual weighted residual (DWR) method developed by Becker and 
Rannacher [29,47,46]. This method constructs estimates of local error contributions in terms of a target functional J with 
the help of a “dual problem”. More precisely, let J (E) be a quantity of interest given by a possibly non-linear Gâteaux-
differentiable function, viz.,

J : H(curl;	) →C. (46)

The corresponding dual problem to (17) is to find a solution Z ∈ H(curl; 	) such that

A(ϕ, Z) = DEJ (E)[ϕ] (47)

for all ϕ ∈ H(curl; 	). Here, DE .[ϕ] denotes the Gâteaux derivative in direction ϕ with respect to E . The following result 
can be directly applied to variational problem (17).

Proposition 2 (Becker and Rannacher [46]). Let E and Z be the solution of (17) and (47), respectively. Let E H and Z H be finite element 
approximations of the primal and dual solution associated with a discretization TH(	) of 	. Then, up to a term R of higher order:∣∣J (E) −J (U )

∣∣ ≤
∑

Q ∈TH

ηQ + R, with (48)

ηQ := 1

2

∣∣∣ρQ (E H , Z − Z H ) + ρ∗
Q (Z H , E − E H )

∣∣∣. (49)
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Here, ρQ and ρ∗
Q denote the primal and dual cell-wise residual, respectively, associated with variational equations (17)

and (47):

ρQ (E H , Z − Z H ) = F
(
(Z − Z H )χQ

) − A
(

E H , (Z − Z H )χQ
)
, (50)

ρ∗
Q (Z H , E − E H ) = DEJ (E)[(E − E H )χQ ] − A

(
(E − E H )χQ , E H

)
, (51)

with the indicator function χQ that is 1 on the cell Q , and 0 otherwise. The local error indicator ηQ given by (49) can now 
be approximated and used in a local refinement strategy [46].

Our goal is an optimal local refinement for the numerical observation of SPPs on the conducting sheet �. In principle, 
a number of choices for the quantity of interest, J (E), are possible in order to achieve this goal. Here, we choose the 
quantity

J (E) :=
∫
	

�(x)
∥∥∇ × E

∥∥2
dx, (52)

with an appropriate (essentially bounded), non-negative weighting function �(x) that localizes the integral around the 
interface �; see Section 5 for the concrete choice of � for our simulations. The choice (52) for the quantity of interest 
leads to a localized right-hand side J of the dual problem that is sensitive to the highly oscillatory SPP associated with the 
electric field, E . Consequently, the weight Z − Z H in residual (50) is generally large near the interface and at points where 
the influence of the solution on quantity (52) is high.

Remark 4. A purely residual-based error estimator on the other hand corresponds to a uniform weight distribution. The 
DWR method (with our choice of right hand side) will lead to a more localized refinement.

In order to guarantee a uniform refinement over the interface �, the local refinement strategy is augmented by addition-
ally selecting all cells Q for refinement that fulfill

1 − (1/2)#cycle−1 ≤ �(xQ )/max(�), (53)

where xQ denotes the center of Q .

Remark 5 (Evaluation of residuals). A classical approach to evaluate (50) and (51) is to use a higher-order approximation for 
Z and E and transform ρQ and ρ∗

Q into a strong residual form [46]. We follow a different strategy that does not involve 
solving higher-order solutions. Instead of a higher-order approximation of Z , we use a patch-wise projection π(2)

2H Z H to a 
higher-order space on a coarser mesh level [48], viz.,

Z − Z H ≈ π
(2)
2H Z H − Z H , E − E H ≈ π

(2)
2H E H − E H , (54)

in combination with the (variational) residuals (50) and (51).

Remark 6 (Mixed form of error estimator). Error estimator (54) also has a form with only the primal residual ρ( . )( . ) ap-
pearing. However, the mixed form of the above error estimator should be used here to ensure adequate, simultaneous 
refinement not just only with respect to a localized SPP (on the interface), but also with respect to a singular right-hand 
side J a (modeling of a Hertzian dipole).

5. Numerical results

In this section, we present a number of computational results pertaining to the excitation by a vertical electric dipole 
of an SPP on a 2D conducting sheet. First, we construct a PML which involves use of a certain parameter, s0. Second, we 
demonstrate the necessity for a PML and carry out a study for the suitable choice of s0. Third, we compare the analytical 
results of Section 3 to (direct) numerical simulations based on our finite element formulation of Section 4. All numerical 
computations are carried out with the C++ finite element toolkit deal.II [49,14]. We use the direct solver UMFPACK [50,
51] for the resulting linear system of equations.

5.1. Setup

In order to carry out the numerical simulations, we consider a vertical electric dipole positioned at a = (0, 0.75) and 
a = (0, 1) above the conducting sheet. Recall that the corresponding current densities are

J a =
(

0
J0

)
δ(x − a), Ma = 0. (55)
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The conducting sheet has surface conductivity σ�
r = (σ1 + iσ2)I in tensor form (I: unit second-rank tensor). Below, we carry 

out a parameter study with different values of constant scalar σ�
r .

The computational domain 	 is chosen to be the ball with radius R = 8π , which is 8 times the free-space wavelength 
of the dipole radiation. A PML is used in the outer region at distance ρ > 0.8 R from the origin; see Section 4.1. Following 
Monk [34], the (nonnegative) scaling function s(ρ) is chosen to be

s(ρ) = s0
(ρ − 0.8R)2

(R − 0.8R)2
, (56)

where s0 is a free parameter; the suitable choice of s0 is discussed in Section 5.2.
We use the adaptive refinement strategy that was outlined in Section 4.2 with the quantity of interest (52) and the 

choice

�(x) =
{

cos2
(π

2

y

d�

)
, if |y| ≤ d� ,

0 otherwise.

(57)

The parameter d� controls the width of the region around the interface that is uniformly refined and is chosen to be 
d� = 1.5625, a few multiples of the SPP wavelength 2π/(Re km,r). The current density of the dipole source is regularized 
according to

δ(x − a) ≈
⎧⎨⎩

(π

2
− 2

π

)−1
d−2 cos2

(π

2

‖x − a‖
d

)
for ‖x − a‖ < d,

0 otherwise,
(58)

with d = 0.15625. The regularization parameter d should be chosen as small as possible and has to be scaled with the initial 
mesh size such that J a is always well integrated numerically. Fig. 4 summarizes the aforementioned setup.

5.2. On perfectly matched layer

In this subsection, we demonstrate the necessity for a PML. In our numerical setup, the challenging part of a direct finite 
element simulation is the two-scale character that the electromagnetic wave exhibits in the spatial resolution. Recall that 
the desired SPP has a wavelength much smaller than the one manifested by the dipole free-space radiation field.

In particular, we are interested in observing SPPs with an associated wave number Re km,r ≈ 10–100, compared to the 
(rescaled) free-space wave number kr = 1. Moreover, the amplitude of the SPP scales exponentially with the distance, a, of 
the dipole from the interface; hence, certain configurations of physical appeal exhibit a ratio in amplitude of about 1:10 to 
1:1000 between the SPPs and the dipole free-space radiation field. It turns out that absorbing boundary condition (14) that 
we use—although it is a first-order absorbing boundary condition—is not well suited for the numerical study of the SPP. 
A significant suppression of the SPP amplitude can be evident.

In order to study the influence of the absorbing boundary condition on the SPP, we perform a series of numerical 
simulations for the geometry given in Fig. 4, for different values of s0 which controls the absorption strength of the PML; 
specifically, we use s0 = 0, 0.25, 0.5, 1.0, 2.0, 4.0, and 8.0, respectively. The material parameters are set to μr = ε̃r = I . We 
choose a = (0, 1) for the position vector of the dipole, with sheet of relatively small, purely imaginary surface conductivity, 
i.e.,

σ�
r = iσ2 = 0.15 i. (59)

This value corresponds to a relatively weak SPP, i.e., with a relatively small amplitude, that has a purely real-valued wave 
number, km,r ≈ 13.33. This can be understood as follows: Because Reσ�

r = 0, the sheet does not cause any dissipation and, 
thus, the corresponding SPP does not exhibit any decay.

In order to examine the influence of different boundary conditions and choices of parameters in some detail, we extract 
the x-component of the scattered electric field, Esc

x = Ex − Epr
x , on the interface �, and plot this component as a function 

of x, where Epr is the (primary) dipole field in the absence of the sheet; see Fig. 5. Boundary condition (14) without PML 
(s0 = 0) has a strong influence on the observed scattered field. While branch-cut contribution (35) of the scattered field 
can be observed in the numerical simulation, pole contribution (34), which is responsible for the fast oscillation with wave 
number km,r , is suppressed (Fig. 5a). This property can be explained by the fact that boundary condition (14), viz.,

n × B +
√

μ−1
r ε̃r E T = 0,

is only applicable to dipole radiation with a wave number kr = 1. In the case where the pole contribution is characterized, 
e.g., by km,r ≈ 13.3, this boundary condition causes a reflection that results in a suppression of the fast spatial oscillation 
of the SPP. In light of the parameter study (Fig. 5), we choose a PML with strength s0 = 2 for all subsequent computations. 
This is a balanced choice between a PML that is strong enough to minimize the influence of the boundary (s0 ≥ 2) and the 
unwanted influence of the PML (s0 ≤ 2); cf. Fig. 5c.
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Fig. 5. Real part of x-component of scattered field, ReEsc
x = Re(Ex − Epr

x ), on the interface � as a function of position, x; E pr
x is the primary dipole field 

component, in the absence of the sheet. (a) Comparison of no PML with a PML of parameter s0 = 2; (b) zoom into the PML with parameter values 
s0 = 0, 0.25, 0.5, 1.0; (c) zoom into the PML with s0 = 1.0, 2.0, 4.0, 8.0.

Table 1
Values of σ�

r used in the parameter study along with 
the predicted SPP wave numbers km,r by (60).

Surface conductivity σ�
r Predicted km,r

2.56 × 10−4 + 0.160i 12.5 + 0.02i
1.78 × 10−4 + 0.133i 15.0 + 0.02i
1.28 × 10−3 + 0.160i 12.5 + 0.1i
8.89 × 10−4 + 0.133i 15.0 + 0.1i

5.3. Comparison of numerical results to analytical solution

In this subsection, we compare our numerical results to the analytical solution of Section 3. In particular, we expect to 
observe the SPP described by (34). The (complex-valued) wave number km,r associated with this SPP scales with the surface 
conductivity σ�

r as follows (given in rescaled quantities, as explained in Section 2.2):

km,r =
√

μr ε̃r − 4μr
2ε̃r

2

(σ�
r )2

; km,r ≈ 2i μr ε̃r

σ�
r

if |2
√

μr ε̃r | � |σ�
r |. (60)

In order to test our numerical method (Section 4) against the analytical results (Section 3), we carry out a parameter study 
for a variety of different values of σ�

r ; see Table 1.
Our computations are performed for dipole elevation distances a = 0.75, 1.00. For each choice of parameters, we start 

with a relatively coarse mesh (with 10k degrees of freedom) for the numerical simulation and run 6 mesh-adaptation 
cycles (with approximately 1.6M degrees of freedom on the finest mesh.) Fig. 6 shows the x-directed scattered field for 
σ�

r = 4.0 × 10−4 + 0.2i (km ≈ 10.0 + 0.02i), and σ�
r = 2.0 × 10−3 + 0.2i (km ≈ 10.0 + 0.1i). For this choice of parameters, 
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Fig. 6. Real part of x-directed scattered electric field, Re (Esc
x ), on interface � , computed for: (a) σ�

r = 4.0 × 10−4 + 0.2i (km ≈ 10.0 + 0.02i); and (b) σ�
r =

2.0 × 10−3 + 0.2i (km ≈ 10.0 + 0.1i). The dipole elevation distance is a = 1.00.

Fig. 7. The locally refined mesh (a) obtained with the adaptive method outlined in Section 4.2. The mesh has a total number of around 200 thousand cells; 
the finest resolution around the interface corresponds to a uniformly refined mesh of around 5 million cells.

a relatively strong pole contribution can be observed as shown in Fig. 6(b). Fig. 7 shows the locally refined mesh after the 
final refinement cycle.

For a comparison of our numerical method to the analytical results of Section 3, the pole contribution (34) and branch-
cut contribution (35) are computed numerically. For this purpose, we use a summed trapezoidal rule to evaluate the two 
integrals involved in the branch-cut contribution. For the improper integral over (0, ∞), we further exploit an exponential 
decay of the integrand (as a function of the integration variable, ς ) and introduce a cutoff at ς ≈ 1/

√
hx, where h is the 

interval size of the summed trapezoidal rule. This h is chosen adaptively in an iterative cycle such that the relative change 
in the value of the integral between 2h and h is less than 0.5%.
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Fig. 8. Real part (a) and imaginary part (b) of the x-component of scattered electric field, Esc
x , as a function of position x on interface � , in the presence 

of a vertical electric dipole at distance a from the conducting sheet. The plots (a)–(b) show the numerical simulations based on our method as well as the 
analytical results computed by (34) and (35) for the values a = 1.00, km,r = 12.5 + 0.02i.

Fig. 9. Real part (a) and imaginary part (b) of the x-component of scattered electric field, Esc
x , as a function of position x on interface � , in the presence 

of a vertical electric dipole at distance a from the conducting sheet. The plots (a)–(b) show the numerical simulations based on our method as well as the 
analytical results computed by (34) and (35) for the values a = 0.75, km,r = 15.0 + 0.1i.
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Table 2
Convergence history and L2 error of the real part of the scattered electric field in x-direction between the numerical and analytical solution computed 
outside of the PML on the interface � . The columns after the L2 error are the log2 reduction rates of the error.

Cycle km,r ≈ 12.5 + 0.02i km,r ≈ 12.5 + 0.1i

Cells DoFs L2-error Cells DoFs L2-error

1 1280 10304 2.49e−2 – 1280 10304 1.52e−2 –
2 2624 21660 7.08e−1 −4.83 2624 21660 2.03e+0 −7.06
3 5474 45580 2.48e−2 4.84 5450 45388 1.41e−2 7.17
4 11930 99020 1.41e−2 0.82 11882 98636 8.09e−3 0.80
5 27908 229872 7.00e−3 1.01 27842 229344 4.03e−3 1.00
6 71246 582828 3.60e−3 0.96 71114 581796 2.03e−3 0.99
7 191906 1561336 1.81e−3 0.99 191672 1559404 1.02e−3 1.00

(a) a = 0.75, km ≈ 12.5 + 0.02i, km ≈ 12.5 + 0.1i

Cycle km,r ≈ 15.0 + 0.02i km,r ≈ 15.0 + 0.1i

Cells DoFs L2-error Cells DoFs L2-error

1 1280 10304 5.33e−3 – 1280 10304 4.35e−3 –
2 2624 21660 4.94e−3 0.11 2624 21660 1.24e−2 −1.51
3 5474 45556 9.10e−3 −0.88 5474 45556 4.40e−3 1.50
4 11906 98828 4.17e−3 1.13 11906 98828 2.18e−3 1.01
5 27890 229704 1.78e−3 1.23 27890 229704 1.04e−3 1.06
6 71228 582684 9.28e−4 0.94 71228 582672 5.27e−4 0.99
7 191978 1561852 4.69e−4 0.99 191978 1561852 2.64e−4 1.00

(b) a = 0.75, km ≈ 15.0 + 0.02i, km ≈ 15.0 + 0.1i

Cycle km,r ≈ 12.5 + 0.02i km,r ≈ 12.5 + 0.1i

Cells DoFs L2-error Cells DoFs L2-error

1 1280 10304 2.96e−3 – 1280 10304 2.81e−3 –
2 2600 21504 1.37e−1 −5.54 2600 21504 3.94e−1 −7.13
3 5402 44980 1.33e−3 6.69 5402 44980 8.96e−4 8.78
4 11786 97868 6.39e−4 1.06 11786 97868 4.02e−4 1.16
5 27728 228240 3.26e−4 0.97 27728 228240 2.06e−4 0.96
6 71366 584010 1.68e−4 0.96 71366 583998 1.04e−4 0.99
7 194786 1584772 8.74e−5 0.94 194786 1584760 5.91e−5 0.82

(c) a = 1.00, km ≈ 12.5 + 0.02i, km ≈ 12.5 + 0.1i

Cycle km,r ≈ 15.0 + 0.02i km,r ≈ 15.0 + 0.1i

Cells DoFs L2-error Cells DoFs L2-error

1 1280 10304 2.30e−3 – 1280 10304 2.20e−3 –
2 2600 21504 6.43e−4 1.84 2600 21504 2.20e−3 0.00
3 5426 45196 6.24e−4 0.04 5426 45196 4.38e−4 2.32
4 11834 98276 1.84e−4 1.76 11834 98276 1.66e−4 1.40
5 27812 228876 9.29e−5 0.98 27812 228876 8.67e−5 0.94
6 71546 585474 4.96e−5 0.90 71546 585474 4.60e−5 0.91
7 195095 1587232 3.30e−5 0.59 195095 1587232 3.15e−5 0.55

(d) a = 1.00, km ≈ 15.0 + 0.02i, km ≈ 15.0 + 0.1i

In Figs. 8 and 9, the analytical and numerical results are compared graphically for dipole elevation distances a =
0.75, 1.00 and km,r = 12.5 + 0.02i, 15.0 + 0.1i. The real and imaginary parts of the scattered electric field in the x-direction, 
Esc

x , are plotted as a function of position x on the interface, �. It is evident that the numerical and analytical results are in 
excellent agreement outside the PML (0 ≤ x ≤ 20).

Table 2 summarizes the parameter study quantitatively. The L2-error between numerical and analytical result is com-
puted outside of the PML on the interface �. The SPP is generally well approximated after the 4th cycle with a resolution of 
around 100 thousand degrees of freedom. According to (37), we expect a convergence order of ‖Eh,T − E T ‖L2(	) ∼O(#dofs). 
Indeed, we observe a linear convergence of the error with respect to the number of refinement steps, and thus, a linear 
convergence in number of degrees of freedom.

6. Conclusion and outlook

In this paper, we developed a variational framework for the numerical simulation of electromagnetic SPPs excited by 
current-carrying sources along an infinitely thin conducting sheet, e.g., single-layer graphene. The sheet is modeled by 
an idealized, oriented hypersurface. The effect of the induced surface current of the sheet was taken into account in the 
corresponding boundary value problem of Maxwell’s equations via jump condition (3) for the tangential component of the 
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magnetic field; this jump is proportional to the surface current density. The conductivity of the sheet is a parameter that 
controls the strength of this discontinuity.

One of the main advantages offered by our approach is the natural incorporation of the jump condition in a variational 
formulation as a weak discontinuity, without regularization of the interface by a layer of finite thickness. We tested our 
numerical treatment against analytical predictions in the case with a vertical dipole radiating over an infinite conducting 
sheet in 2D, and observed excellent agreement. In our numerical treatment, a linear asymptotic reduction rate could be ob-
served for all testcases. Notably, the use of an adaptive local refinement procedure within our approach achieved significant 
economy in the total number of degrees of freedom in comparison to uniform mesh refinement.

Our numerics admit several generalizations and extensions. For instance, the treatment of the jump condition as a weak 
discontinuity over an interface is not limited to a simple (lower-dimensional) hyperplane; it can be generalized to reasonably 
arbitrary hypersurfaces. In fact, technically speaking, our variational framework can be readily used without modifications 
to model any geometry that is meshable by quadrilaterals. This flexibility should enable efficient numerical simulations of 
complex geometries, e.g., waveguides that contain a few graphene layers [16]. Although our numerical results focused on 
2D thus far, our underlying choice of local adaptivity can lead to a significant reduction of computational cost in higher 
spatial dimension.
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