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This paper presents an accurate and robust reinitialization equation for the conservative 
level set that does not significantly deform stationary surfaces. The compression and 
diffusion term of the reinitialization equation are reformulated to use a distance level 
set directly mapped from the conservative level set. The normals are calculated using a 
distance level set reconstructed from the interface using a fast marching method, increasing 
robustness and allowing the use of high order, non-TVD transport schemes. Using this new 
reinitialization equation, we present results for canonical test cases, such as Zalesak’s disk 
and spurious currents, which show significant improvement. A simulation of a liquid–gas 
jet with Re = 5000 is also presented to demonstrate the volume conservation properties of 
the method in more complex flows.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Multiphase flows are ubiquitous in nature and exist in many engineering applications, making their simulation very 
important. However, there are also many numerical difficulties associated with simulating multiphase flows that are not 
present in single fluid flows. With the presence of multiple phases comes the requirement to track the interface between 
the phases. Across this interface exists discontinuities in the physical properties of the phases and a singular force due to 
surface tension, both of which require special consideration when solving the equations in a discrete manner.

Level set methods [1] are often used to track this interface by representing it with a scalar field. The original level set 
method used a signed distance field, φ(x, t), defined as the distance from x to the nearest point on the interface � at time t . 
This scalar field is advected with the flow velocity, u, to effectively transport the interface with

∂φ

∂t
+ u · ∇φ = 0 . (1)

Through choosing a sign for the distance based on the local phase, the interface becomes implicitly represented as the zero 
iso-contour of φ. The transport will lead to errors in φ, requiring a reinitialization equation to reshape φ into a proper 
distance function, for which |∇φ| = 1. Neither the transport, Eq. (1), nor the reinitialization equation, are conservative, 
which leads to significant volume conservation errors, requiring additional attention and techniques to improve volume 
conservation. This is a key issue with the original level set methods, preventing their use for a wide class of problems, such 
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as turbulent atomization. For the remainder of this paper, these original level set methods, which transport and reinitialize 
the signed distance field φ(x, t), will be referred to as distance level set (DLS) methods.

In order to better conserve the enclosed volume, Olsson and Kreiss [2] and Olsson et al. [3] proposed using a conservative 
level set (CLS) function, instead of φ, to implicitly track the interface. This function is defined as

ψ(x, t) = 1

2

(
tanh

(
φ(x, t)

2ε

)
+ 1

)
, (2)

where ψ is the CLS and ε is a free parameter that determines the interface thickness. With this mapping from φ, the 
interface is now represented by the 0.5 iso-contour of ψ .

The conservative level set function, Eq. (2), can be seen as a smooth approximation of the sharp Heaviside function, 
H(φ), which has a value of 1 in one phase (φ > 0), and 0 in the other (φ < 0). As is clear, the sharper the hyperbolic 
tangent profile, i.e., the smaller the value of ε , the better the approximation of H(φ). The exact enclosed volume is given 
by the integration of the Heaviside function,

Vl =
∫

H(φ)dV =
∫

H

(
ψ − 1

2

)
dV . (3)

Similarly, the approximation of the enclosed volume using the conservative level set function is given by

Ṽl =
∫

ψdV , (4)

with lim
ε→0

Ṽl = Vl . A conservative discretization of the ψ equations (transport and reinitialization) leads to exact conservation 

of Ṽl , but only approximate conservation of Vl . The capability of the method to conserve enclosed volume, i.e. the accuracy 
with which Ṽl approximates Vl , is a central focus of this paper.

Assuming incompressibility, ψ is transported, using a conservative finite volume discretization, as

∂ψ

∂t
+ ∇ · (uψ) = 0 , (5)

and, after transporting, reinitialized back to its proper hyperbolic tangent profile, with a conservative finite volume dis-
cretization, through

∂ψ

∂τ
= ∇ · (ε (∇ψ · n)n − ψ (1 − ψ)n) , (6)

where n is the interface normal vector calculated using

n = ∇ψ

|∇ψ | . (7)

With ε controlling the interface profile thickness, and a smaller value of ε resulting in better volume conservation prop-
erties, it is desirable to set ε to a small value, typically ε = �x/2 [2]. This causes sharp gradients, which can produce 
overshoots and undershoots of ψ , causing n to switch directions when calculated with Eq. (7). Olsson and Kreiss [2] han-
dled this problem through the use of low order, total variation diminishing (TVD) schemes for transport to prevent the 
creation of new local extrema, however, this significantly reduces the overall accuracy of the method. This method will be 
referred to as the conservative level set (CLS) method.

In order to alleviate the need to use TVD transport schemes, the accurate conservative level set (ACLS) method [4] uses 
a fast marching method (FMM) [5] to reconstruct a signed distance function, φFMM, from the 0.5 iso-contour of ψ , and 
calculates the normals using φFMM as

n = ∇φFMM

|∇φFMM| . (8)

This prevents oscillatory transport errors in ψ from spuriously impacting the orientation of normals, removing the prior 
need to use TVD transport schemes. Because of this, inexpensive and high order accurate schemes can be used. At the same 
resolution, the ACLS method can therefore track finer interfacial structures than the original CLS method. Additionally, it 
was found that the use of high order transport schemes significantly improves volume conservation [4].

The reinitialization of ψ using Eq. (6), which is used in both the CLS method [2,3] and the ACLS method [4], can 
still be a significant source of numerical errors. As an example, Fig. 1 shows a spherical drop resolved by D/�x = 20, 
reinitialized in place with Eq. (6), updating the normals after each iteration. Without numerical dissipation from transport, 
errors from the reinitialization equation accumulate and lead to significant deformation of the interface, as demonstrated in 
Fig. 1(b), showing the deformation of the sphere after 1000 iterations. The obvious solution would be to reduce or eliminate 
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Fig. 1. Example of the deformation on stationary interfaces due to reinitialization errors.

reinitialization, however, this is not an appropriate response for simulations with interfaces that have both active (moving 
and deforming) and inactive (static) regions.

In order to prevent accumulating errors on inactive regions of the interface while fully reinitializing active regions, 
McCaslin and Desjardins [6] proposed a modification to the reinitialization equation that locally scales the amount of reini-
tialization based on the local strain rate tensor and an estimate of numerical diffusion derived from the interface transport 
velocity. While effectively reducing reinitialization errors on stationary interfaces, and retaining the conservative discretiza-
tion of Eq. (6), the implementation of their method leads to a more complex reinitialization equation that introduces two 
new free parameters.

An alternate solution is to directly reduce the amount of errors due to reinitialization. Shukla et al. [7] use a gradient 
form of the reinitialization equation,

∂ψ

∂τ
= n · ∇ (ε|∇ψ | − ψ(1 − ψ)) , (9)

and a direct mapping of φ,

φmap = ε ln

(
ψ

1 − ψ

)
(10)

to show that classical distance level set reinitialization [8] can replace the conservative level set reinitialization equation. 
Please note, to ensure Eq. (10) does not take values of ∞ or −∞, ψ is limited to be in the exclusive range (0, 1). Solving the 
classical distance level set reinitialization equation with the smoother φmap, for which many methods exist, greatly reduces 
errors and can then be mapped back to ψ by inverting Eq. (10), however, this approach does not have a conservative 
discretization and, consequently, poorly conserves the initially enclosed volume.

Recently, Wacławczyk [9] proposed a similar idea to Shukla et al. [7] in the context of the divergence form of the 
reinitialization equation, which we prefer due to its superior conservation properties. Using Eq. (10) to obtain φmap from ψ , 
Wacławczyk [9] rewrites the diffusion term from Eq. (6), ∇ · (ε (∇ψ · n) n). The CLS reinitialization equation then takes the 
new form of

∂ψ

∂τ
= ∇ · [ψ(1 − ψ)

(∣∣∇φmap · n
∣∣ − 1

)
n
]

, (11)

with n calculated as

n = ∇φmap

|∇φmap| . (12)

In our experience, however, we have found that this approach suffers from the same sensitivity to oscillations during 
transport as the original CLS method, and therefore requires TVD transport.

The purpose of this paper is to modify the reinitialization equation presented in Wacławczyk [9] to create a robust and 
accurate reinitialization equation in the context of the ACLS method. First, we will present our modifications to Eq. (11) that 
greatly improve its robustness while retaining the low levels of error. Results from typical interface tracking test cases such 
as Zalesak’s disk [10], the deformation of a circle [11], and a testing of spurious currents will be shown. Lastly, the new 
form of the reinitialization equation will be used alongside our flow solver to simulate the injection of a turbulent liquid jet 
into quiescent air.

2. Modifications to the reinitialization equation

As stated before, the reinitialization equation presented by Wacławczyk [9], Eq. (11), is not robust when using high order 
non-TVD transport schemes to transport ψ . To demonstrate, we will use the Zalesak disk test case [10], with ψ transported 
using a 5th order high order upstream central (HOUC-5) scheme to evaluate the face flux values [12]. This scheme is the 
optimal estimate from a 5th order weighted essentially non-oscillatory (WENO-5) stencil, used to evaluate ψ at the cell 
faces.
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Fig. 2. Zalesak disk test case, showing results after 10 rotations with shading indicating the value of ψ .

In a [−0.5, 0.5]2 domain, we initialize a slotted disk with a radius of 0.15, notch width, w = 0.05, and notch height of 
0.25, centered at (x, y) = (0.0, 0.25). The domain is resolved with a 1002 uniform Cartesian mesh, leading to w/�x = 5. 
This slotted disk is then rotated in the velocity field (u, v) = (−y, x) for 10 rotations around the midpoint of the domain at 
a convective CFL of 0.48. The reinitialization equation is advanced in pseudo-time with �τ = 1.5 × 10−3. The direct use of 
Eq. (11), performing one iteration of reinitialization per transport step, leads to spurious disconnected volumes with ψ > 0
in the domain, as shown in Fig. 2(b). This is a direct consequence of errors from reinitialization caused by spurious normal 
orientation. If instead the reinitialization equation is iterated five times per transport step, the error is seen to worsen 
significantly in Fig. 2(c). In order to ensure ψ remains bounded and Eq. (11) remains stable, flux limiting is necessary to 
enforce ψ(1 − ψ) ≥ 0.

To address these issues, after transporting ψ and calculating φmap with Eq. (10), we use a FMM [13] to solve the static 
Eikonal equation for the distance φFMM from the zero iso-contour of φmap. The normals are then calculated with Eq. (8)
instead of Eq. (12). With the decoupling of the normals from ψ through the use of φFMM, high accuracy non-TVD schemes 
can now be used, however, the boundedness of ψ is no longer guaranteed. A consequence of this is the possibility of the 
compressive fluxes, ψ (1 − ψ), switching signs. This could be prevented by using flux limiting of ψ(1 − ψ). Instead, we 
propose to reformulate the compressive fluxes to use φmap, which during its calculation similarly limits ψ to be in the 
exclusive range (0, 1). This can be accomplished by using hyperbolic trigonometric identities to rewrite ψ(1 − ψ) as

ψ (1 − ψ) = 1

4 cosh2
(

φmap
2ε

) . (13)

While Eq. (13) is an equality, once discretized, each side constitutes a different numerical approximation of the flux, leading 
to different levels of error. Calculating the compressive flux as ψ(1 − ψ) requires the interpolation of ψ to the cell faces. 
Since ψ is a relatively sharp function with a hyperbolic tangent profile, this interpolation can lead to significant error. By 
using φmap instead, which is a linear and smoothly varying function, the error introduced through interpolation to the cell 
face is greatly reduced.

Including the remapping of the compressive flux, our proposed form of the reinitialization equation is

∂ψ

∂τ
= ∇ ·

⎡
⎣ 1

4 cosh2
(

φmap
2ε

) (∣∣∇φmap · n
∣∣ − 1

)
n

⎤
⎦ , (14)

where n is calculated using Eq. (8), with the discretization as follows. To present the discretization, we will borrow notation 
from Desjardins et al. [14], where ζi represents the computational space, related to physical space xi through hi = dxi/dζi

and J = 
3
i=1hi . In Cartesian coordinates, the three components 1, 2, and 3 represent x, y, and z, respectively. We will also 

define the x j component of the second order finite difference xi face gradient of a scalar quantity a as

(∇xi a) j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ2nda

δ2ndx j
for i = j

δ2ndā2nd xi

δ2ndx j
for i �= j

(15)

where δ2nda/δ2ndx j is a second order differentiation of variable a in physical space, and ā2nd xi is the second order inter-
polation of a in physical space to the xi face. To calculate the normal, a dynamic optimal stencil is selected to minimize 
1 − |∇φFMM| [15]. For each component of the normal, a 2nd order central, 1st order forward, and 1st order backward differ-
ence calculation of ∇φFMM is performed. The combination among the 27 possibilities (three potential stencils for the three 
separate components) that minimizes 1 − |∇φFMM| is then selected to compute the normal. This differentiation with the 
optimal stencil will be represented as
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(∇xi ,opta) j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δopta

δoptx j
for i = j

δoptā2nd xi

δoptx j
for i �= j

(16)

where δopta/δoptx j is the differentiation of the scalar a with the found optimal stencil. Using this notation, the normal at 
each cell face, xi , with component j, is calculated by

nxi
j = (

nxi
)

j = (∇xi ,optφFMM
)

j . (17)

This results in an “H” shaped stencil for calculating cell face normals, further discussed in Section 3.4 of Desjardins et al. [4].
Table 1 summarizes the differences between the newly presented method, where the ACLS method [4] is reinitialized by 

Eq. (14), and other CLS based methods. Using this new form of the reinitialization equation, the same Zalesak disk test as 
before is performed, with the results shown in Fig. 3 absent of spurious behavior in ψ . Note that motion of the interface will 
happen with this conservative reinitialization equation, however, this is a desired feature since this is what allows for better 
volume conservation, i.e., the conservative level set reinitialization equation puts volume conservation ahead of preserving 
the iso-surface location.

2.1. Implemented reinitialization algorithm

To aid in implementation of this method by others, we have included a basic algorithm for using the ACLS method with 
the presented form of the reinitialization equation. While this is written for use with a staggered grid finite-volume code, 
implementation for other frameworks should be straightforward. We have also included a visual schematic of the algorithm 
in Fig. 4 to aid in understanding the order of steps. Each step is performed once per advection step.

• Calculate the maximum allowable �τ from the CFL constraint,

CFLreinit = max

(
�τreinit

�x
,

4ε�τreinit

�x2

)
(18)

• Solve the transport equation, Eq. (5), updating ψ . We use HOUC-5 [12] in all presented cases for an accurate and 
efficient transport scheme.

• Map ψ to φmap using Eq. (10).
• Use a FMM, such as [13], to solve the static Eikonal equation for the distance φFMM from the zero iso-contour of φmap, 

which implicitly represents the interface. Note that we find the zero iso-contour of φmap through linear interpolation of 
the discrete cell centered φmap values.

• Calculate the cell face normals with φFMM and Eq. (8), as discussed in Section 2.
• Update ψ using the reinitialization equation, Eq. (14), the discretization of which is given next in Section 2.1.1. For all 

remaining results presented in this paper, we use one iteration of the reinitialization equation at CFLreinit = 0.5. This 
has been found to be sufficient, as transport at a convection CFL ≤ 1 moves the interface and deforms the profile by at 
most one cell width [4].

Table 1
Comparison of the method presented in this paper to other methods that use the conservative level set, ψ .

Method TVD transport Reinitialization equation n equation

CLS [2,3] Yes ∂ψ
∂τ = ∇ · (ε (∇ψ · n)n − ψ (1 − ψ)n)

∇ψ
|∇ψ |

ACLS [4] No ∂ψ
∂τ = ∇ · (ε (∇ψ · n)n − ψ (1 − ψ)n)

∇φFMM|∇φFMM |
Wacławczyk CLS [9] Yes ∂ψ

∂τ = ∇ · [ψ(1 − ψ)
(∣∣∇φmap · n

∣∣ − 1
)

n
] ∇φmap

|∇φmap |

New method No ∂ψ
∂τ = ∇ ·

[
1

4 cosh2
(

φmap
2ε

) (∣∣∇φmap · n
∣∣ − 1

)
n

]
∇φFMM|∇φFMM |

Fig. 3. Zalesak disk test case, showing results after 10 rotations with shading indicating the value of ψ .



R. Chiodi, O. Desjardins / Journal of Computational Physics 343 (2017) 186–200 191
Fig. 4. A visual diagram of the algorithm presented in Section 2.1.

2.1.1. Discretization of the reinitialization equation
The discretization is an important part of the reformulation of the reinitialization equation. To solve Eq. (14) in a finite-

volume framework, the flux normal to the cell faces is needed. We will denote this normal flux as Fi . Note that this flux 
lives on the xi face of the cell, and is calculated as

Fi = 1

4 cosh2
(

φ̄
2nd xi
map
2ε

) (
|(∇xi φmap) jn

xi
j | − 1

)
nxi

i , (19)

with Einstein notation used only for subscripts. Using these normal fluxes and the notation presented earlier, ψ is updated 
in pseudo-time, τ , as

ψn+1 = �τ

3∑
i=1

(
1

J

δ2nd

δ2ndζi

[
J

hi
Fi

])
+ ψ� , (20)

where ψ� denotes the CLS field taken after transport but prior to reinitialization.

3. Mathematical formulation of flow solver

3.1. Governing equations

Our in-house flow solver, NGA [14,16], is used for all testing presented in this paper. For the simulations, we use a 2nd 
order, finite-volume, staggered-grid discretization with semi-implicit Crank–Nicolson time advancement. The momentum is 
calculated using the incompressible form of Navier–Stokes,

∂ρu

∂t
+ ∇ · (ρuu) = −∇p + ∇ · (μ[∇u + ∇ut]) + ρg (21)

where u is the velocity, ρ is density, p is pressure, μ is dynamic viscosity, and g is the acceleration due to gravity. With 
the assumption of incompressibility, the continuity equation is reduced to

∂ρ

∂t
+ ∇ · (ρu) = ∂ρ

∂t
+ u · ∇ρ = 0 . (22)

With two phases separated by an interface �, the density and viscosity are functions of space and time. Across this interface 
there is also a discontinuity in density, viscosity, and pressure. The jumps in density and viscosity can be written as [ρ]� =
ρl − ρg and [μ]� = μl − μg , respectively, where the subscript l and g denote whether it is a liquid or gas property. The 
pressure jump is written as

[p]� = σκ + 2[μ]�nt · ∇u · n , (23)

where σ is the surface tension coefficient, κ is the interface curvature, and n is the interface normal. The volume fractions 
of liquid and gas in each computational cell are used to calculate the density and viscosity for the flow solver through linear 
and harmonic averaging, respectively.

3.2. Discretization of equations

A detailed overview of the implementation and discretization of Eq. (21) and Eq. (22) in NGA is available in Desjardins 
et al. [16]. With the ability to maintain an accurate interface due to the new form of the reinitialization equation, the 
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Fig. 5. The droplet interface, resolved by D/�x = 20, at initialization, after 103 and after 104 iterations of the reinitialization equation.

discretization of Eq. (23) and calculation of curvature becomes important, and as such will be described in greater detail 
here.

We choose to calculate curvature using a quadratic least squares approach, as presented in Marchandise et al. [17]. To do 
this, we construct an overdetermined quadratic linear system with 10 polynomials considering 125 points from a 5 × 5 × 5
stencil. In practice, we find solving this system in a least squares sense delivers converging curvatures [4]. To localize the 
system of equations around the point of interest, we use a weighting vector, where each entry is

wi = exp

(
−�x2

i + �y2
i + �z2

i
9
4 h2

)
, (24)

with h being the characteristic mesh size and �xi , �yi , �zi being the displacement from the point of interest to the current 
point in the stencil, i. The overdetermined linear system is then solved through least squares with the form wAtAx = wAtb, 
with the contents of A, x, and b thoroughly explained in [17]. This can then be solved to obtain x and correspondingly 
compute the curvature as

κi = tr(H) − nt · H · n

|∇φFMM| , (25)

where H is the Hessian matrix, defined as H = ∇∇φFMM.
A known problem is that the calculated curvature will be at the cell center, while the curvature is needed at the interface 

to compute the source term for the pressure Poisson equation [18]. We use harmonic interpolation weighted by φFMM to 
evaluate the curvature at the interface. Using this φFMM based interpolation alongside the ghost fluid method (GFM) [4,19], 
allows a compact and accurate calculation of the pressure jump. Within the context of the ACLS method, this amounts to 
harmonically interpolating the curvature to a zero iso-surface of φFMM that lies between cells i − 1 and i as

κinterface = κi−1κi

(
φFMM,i − φFMM,i−1

)
φFMM,iκi − φFMM,i−1κi−1

. (26)

For the case where κiκi−1 ≤ 0, we resort to a linear interpolation onto the interface,

κinterface = κi−1φFMM,i − κiφFMM,i−1

φFMM,i − φFMM,i−1
, (27)

to avoid an erroneous interpolated curvature when the denominator of Eq. (26) approaches zero.

4. Results

4.1. Reinitialization of a stationary droplet

As shown in Fig. 1 in the introduction, the classical form of the reinitialization equation leads to substantial deforma-
tion of a stationary droplet. In order to confirm that the new formulation of the reinitialization equation does not suffer 
from this issue, a stationary droplet with a resolution of D/�x = 20 is once again reinitialized in place. Even after 10000 
iterations, the new form of the reinitialization equation introduces an insignificant amount of error, with the droplet in 
Fig. 5(f) only slightly deformed from the initialized droplet shown in Fig. 5(d). This is not the case for the classical form 
of the reinitialization equation, with Fig. 5(b) noticeably deformed from Fig. 5(a) after 1000 iterations of the reinitialization 
equation, and severely deformed after 10000 iterations.

In an effort to better understand the reformulated reinitialization equation’s performance at various mesh resolutions, the 
same test is repeated using the reformulated reinitialization equation and a sphere resolved by half the number of cells, with 
D/�x = 10. The result, shown in Fig. 6, displays nearly no deformation after 10000 iterations of the reinitialization equation. 
Lastly, we test the reformulated reinitialization equation at the low resolution of D/�x = 4. Once again, we reinitialize 
the droplet for 10000 iterations, with the results shown in Fig. 7. At this level of resolution, some slight deformation is 
noticeable, however, it is still far below that seen for the original reinitialization equation on the five times finer mesh.
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Fig. 6. Deformation occurring while using the reformulated reinitialization equation on droplet resolved by D/�x = 10.

Fig. 7. Deformation occurring while using the reformulated reinitialization equation on a minimally resolved droplet, D/�x = 4.

Fig. 8. Comparison of Zalesak disk problem using Eq. (6) or Eq. (14) for the reinitialization equation with a 1002 mesh. The black line is the initial interface, 
the dashed red line is after one rotation.

Table 2
The L1 and L2 error norms of the ψ field for the Zalesak disk on a 1002

mesh (w/�x = 5) after one rotation, compared to the initial profile. The 
percent change in enclosed volume is also given.

Reinitialization Eq. (6) Eq. (14)

L1 error 0.0032 0.0022
L2 error 0.021 0.016
% Vol. change −0.16 0.020

4.2. Zalesak’s disk

The Zalesak’s disk test case [10] is used to assess both forms of the reinitialization equations’ ability to preserve sharp 
edges and corners. The parameters used for these simulations are the same as those presented earlier in Section 2, except 
with �τ set to result in CFLreinit = 0.5 according to Eq. (18).

First, one rotation of the disk on a 1002 uniform Cartesian mesh (w/�x = 5) at a CFL of 0.48 is performed. Throughout 
the entire rotation, both disks are able to preserve the shape of the disk, as shown in Fig. 8. Table 2 shows the percent 
change in volume enclosed by the interface after one rotation, as well as the L1 and L2 errors, where the L1 and L2 errors 
are calculated using all computational cells, N , as

L1 = 1

VD

N∑
i=1

(
ψi,initial − ψi,final

)
Vc , (28)

L2 =
√√√√ 1

VD

N∑
i=1

(ψi,initial − ψi,final)
2Vc , (29)

where VD is the volume of the domain and Vc is the volume of a cell. Both the L1 and L2 error are similar after one rotation, 
however, the new form of the reinitialization equation leads to over an order of magnitude better volume conservation.

To study the effect of the reinitialization over long times as a function of mesh resolution, we simulate 10 rotations of 
the disk at a CFL of 0.48 on meshes of 502 (w/�x = 2.5), 1002 (w/�x = 5), and 2002 (w/�x = 10). Fig. 9 shows the results 
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Fig. 9. Comparison of Zalesak disk problem using Eq. (6) or Eq. (14) for the reinitialization equation at three levels of resolution. The black line is the initial 
interface, the dashed red line is after 10 rotations.

Table 3
The L1 and L2 error norms of the ψ field for the Zalesak disk after ten rotations, compared to the initial profile. The percent change in enclosed volume is 
also given.

Reinitialization Eq. (6) Eq. (14)

Resolution 502 1002 2002 502 1002 2002

L1 error 0.034 0.017 0.0016 0.018 0.0090 0.0015
L2 error 0.14 0.10 0.016 0.081 0.061 0.017
% Vol. change −0.96 −0.14 −0.078 2.9 0.064 −0.0014

when using the classical CLS reinitialization equation, Eq. (6), versus the reformulated reinitialization equation, Eq. (14). 
Additionally, quantitative measures of error in the form of L1 and L2 error norms for ψ , and the percent change of enclosed 
volume, are available in Table 3.

At the lowest resolution, the classical reinitialization equation has difficulty maintaining the circular shape of the disk, 
and as such, sees a loss in enclosed volume. The reformulated reinitialization equation, on the other hand, maintains the 
circular disk, however, cannot preserve the notch, and consequently gains 2.9% of its initial volume. At the middle resolution, 
the reformulated reinitialization equation continues to display a somewhat improved ability in maintaining the circular disk 
and correct notch placement over long times, leading to lower L1 and L2 errors, along with better conservation of its initial 
volume. For the highest resolution, both reinitialization equations accurately track the interface for all 10 rotations.

If the lowest resolution simulation is disregarded due to the inability to preserve the notch, test cases with Eq. (14) hint 
at near second order convergence in all displayed error metrics. The new form of the reinitialization equation also displays 
much better boundedness than the classical reinitialization equation, with maximum ψ values at the three resolutions 
of (1.00025, 1.00061, 1.00048) versus maximum ψ values of (1.00820, 1.00991, 1.00929) for the classical reinitialization 
equation.

We are also interested in the efficiency of this method; how quickly the transport and reinitialization algorithms are 
performed while maintaining a reasonable degree of accuracy. In order to get some indication of this, we will compare 
results from the reformulated reinitialization equation with ACLS to those from a recent, formally second-order, exactly 
mass conserving, unsplit semi-Lagrangian flux based volume of fluid (VOF) method, published in Section 4.1 of Owkes 
and Desjardins [20]. The L1 error, referred to as Eshape in [20], the change in enclosed volume, and the computation time 
required per timestep are compared. These simulations are performed using one compute node consisting of a dual 6-core 
X5670 3 GHz CPUs with 48 GB of RAM, the same used in [20].

In order to match the conditions given in [20], the Zalesak disk is only rotated once. The other conditions are the same 
as those discussed before. Please note, that while we will use a CFL of 0.48, a CFL is not provided for the Zalesak test cases 
presented in [20]. The L1 error norm, change in enclosed volume, and required time per timestep is listed alongside the 
results from [20] in Table 4, with the number of cells used to resolve the domain ranging from 252 to 8002 (w/�x = 1.5
to w/�x = 40). It is important to note, “Vol. change” in Table 4 is not the percent volume change, but the dimensional 
amount of volume lost, in order to match the reported results in [20]. The L1 error is plotted in Fig. 10 for both the 
presented method and the VOF method, with both displaying between first and second order convergence.

The ACLS method with the reformulated reinitialization equation can be seen to deliver comparable accuracy to the 
unsplit, semi-Lagrangian flux based VOF method, especially at moderate and high resolutions. While it does not conserve 
enclosed volume to machine precision, it does exhibit strong volume conservation properties. Most importantly, the ACLS 
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Table 4
Comparison between the L1 error, volume change, and required time per timestep for the ACLS method with the reformulated reinitialization equation and 
the unsplit, semi-Lagrangian flux based VOF method proposed in Owkes and Desjardins [20].

Resolution L1 error Vol. change Time/timestep (s)

Current [20] Current [20] Current [20]

252 2.316e−02 1.526e−02 −1.469e−04 4.629e−18 0.01 0.07
502 8.010e−03 4.066e−03 −2.865e−05 3.011e−17 0.02 0.16
1002 2.193e−03 1.257e−03 −1.160e−07 4.409e−18 0.04 0.31
2002 5.474e−04 5.684e−04 −6.692e−10 3.705e−18 0.11 0.66
4002 2.287e−04 2.348e−04 −1.960e−09 2.317e−18 0.37 1.47
8002 1.002e−04 9.221e−05 −6.534e−11 1.937e−17 1.47 3.38

Fig. 10. Plot of the L1 error after rotating the Zalesak disk once, where w/�x is the number of cells across the disk’s notch. Presented method ( ); results
from [20] ( ); 1st order convergence ( ); 2nd order convergence ( ).

method with the reformulated reinitialization equation delivers this comparable accuracy in a fraction of the time, with the 
ACLS method completing the simulation up to 8 times faster than the VOF method from [20].

4.3. Deformation of a circle

In order to test volume conservation properties when structures drop below the minimum resolvable thickness, a 2D 
circle deformation test, originally proposed by Leveque [11], is performed. In this test, a 0.3 diameter circle is initialized with 
its center at (x, y) = (0.0, 0.25), in a square [−0.5, 0.5]2 domain. The velocity field as a function of time, t , is prescribed as

u = −2 sin2(πx) sin(π y) cos(π y) cos(πt/8) , (30a)

v = 2 sin2(π y) sin(πx) cos(πx) cos(πt/8) , (30b)

which will stretch the circle into a spiral until t = 4, at which point the flow will reverse and the interface should return 
to its initial circle at t = 8. Uniform Cartesian meshes of 642, 1282, and 2562 are used for this study in order to understand 
the volume conservation properties at various levels of resolution.

Fig. 11 shows the interface at maximal deformation (t = 4) and at the end of the cycle (t = 8), as well as the normalized 
volume enclosed by the interface, for both reinitialization equations when run with an initial CFL of 0.64. The image of the 
interface at t = 4 is superimposed over results from a simulation using a 5122 uniform Cartesian mesh, while the interface 
at t = 8 is compared to the initial circle. The lowest resolution is not capable of preserving the fine ligaments that occur at 
t = 4, causing a loss in volume and significant topology change. As the flow reverses, segmented volumes of ψ recombine 
and become resolved enough to reform an interface, eventually returning close to its initial enclosed volume. This does not 
lead to a correct interface though, with the interface at t = 8 being far from the initial 0.3 diameter circle. As the mesh 
resolution increases, finer structures are maintained throughout the deformation and the minimum normalized enclosed 
volume approaches 1.

4.4. Curvature accuracy for a sphere

Prior to performing a test on spurious currents, we will study the error in calculating the curvature of a sphere (D = 0.4), 
which directly influences spurious currents. The curvature error is only calculated for faces where φFMM switches signs, since 
only these faces will contain a surface tension source term while using the GFM.
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Fig. 11. Interface at t = 4.0 and t = 8.0, as well as the time history of normalized volume enclosed by the interface, for both forms of the reinitialization 
equation. Eq. (6) ( ); Eq. (14) ( ).

To quantitatively measure the level of errors, the L2 and L∞ curvature error norms are used, calculated as

L2 =
√

1
Ninterface

∑Ninterface
i=1 (κexact − κi,sim)2

κexact
, (31)

L∞ = max(κexact − κsim)

κexact
, (32)

where Ninterface is the number of cells in the domain containing interface. These error measures are shown for several 
sphere resolutions ranging from D/�x = 4 to D/�x = 128 in Fig. 12, and display second order convergence in the L2 error 
norm and first order convergence in the L∞ error norm.

We believe the curvature calculation using a least squares fitting of φFMM is an accurate and robust way to calculate 
curvature, however, φFMM itself is of a low order of accuracy. To determine if the use of the FMM to solve the static Eikonal 
equation has a significant impact on the calculated curvature, we rerun the simulations presented above with φ specified 
as φ = D/2 − √

xtx, where x = (x, y, z) for the cell centers where φ is stored. A dramatic reduction of errors is seen in both 
error norms, indicating that a more accurate method of solving the static Eikonal equation is needed to further decrease 
the error in curvature. One possibility would be to use a Hamilton–Jacobi type reinitialization equation to obtain a more 
accurate φ field, however, this is not addressed in this paper.

The 5 × 5 × 5 stencil is quite large, leading to a relatively expensive curvature calculation. In order to understand the 
effect of going to a smaller, 3 × 3 × 3 stencil, the same cases are once again simulated and the results plotted in Fig. 12. 
The 3 × 3 × 3 stencil can be seen to deliver similar levels of error at low resolutions, however, converges more slowly for 
moderate to high resolutions when using φFMM, which contains errors. Unless otherwise noted, the 5 × 5 × 5 stencil will be 
used for calculating curvature.



R. Chiodi, O. Desjardins / Journal of Computational Physics 343 (2017) 186–200 197
Fig. 12. L2 (a) and L∞ (b) curvature error norms for a sphere with φFMM or an exact φ , using a 5 × 5 × 5 or 3 × 3 × 3 stencil. 5 × 5 × 5 stencil, φFMM ( ); 
5 × 5 × 5 stencil, exact φ ( ); 3 × 3 × 3 stencil, φFMM ( ); 3 × 3 × 3 stencil, exact φ ( ); 1st order convergence ( ); 2nd order convergence ( ).

4.5. 3D spurious currents

Due to inaccuracies in the curvature calculation and its imposition to the momentum solver through the pressure jump, 
spurious velocities can appear at the interface. One of the advantages of the new form of the reinitialization equation lies 
in its reduction of error for stationary objects. This should reduce spurious currents through the removal of interface shape 
errors usually introduced during reinitialization.

Since we are ultimately concerned about atomizing turbulent flows, we have conducted a three dimensional spurious 
currents test case using a sphere. A 0.4 diameter sphere is initialized in the center of a cubic unit domain with a uniform 
mesh of 403. A range of Laplace numbers (La = σρD/μ2) from 120 to 1200000 are covered through simultaneously increas-
ing the liquid and gas densities. Throughout all testing, both dynamic viscosities are kept constant at 0.1, and the surface 
tension is held at 1. The time step is also increased along with the Laplace number to scale with the surface tension time 
step restriction. The resulting steady state capillary numbers (Ca = |umax|μ/σ ) can be seen in Table 5. Here, |umax| is the 
maximum steady state velocity, where steady state is deemed reached when the maximum velocity in the domain changes 
by less than 1% for 25 consecutive iterations. We have found this to be a true indication of when the system has reached 
steady state, which will occur when the reinitialization errors, curvature errors, and induced flow equilibrate. Defining a 
non-dimensional time unit as t� = tσ/(μD), the minimum time a simulation takes to reach steady state is t� = 9.975, while 
the maximum time is t� = 4035. In order to study the change in spurious currents at various mesh resolutions, the Laplace 
number is held at La = 12000 and the mesh is varied from 203 to 803. The results can be seen in Table 6.

As the Laplace number increases, more iterations are required to reach a steady state, leading to an accumulation of 
error when using Eq. (6) and a corresponding increase in steady state capillary number at high Laplace numbers. The 
reformulated reinitialization equation does not suffer from this, and the steady state capillary number decreases as surface 
tension becomes less significant. Additionally, with a more accurate capturing of the interface, the steady state capillary 
number is decreased by nearly an order of magnitude across all Laplace numbers.

A significant reduction in steady state capillary number is also seen for the mesh convergence study presented in Table 6, 
with the reformulated reinitialization equation showing low steady state capillary numbers, although still larger than those 
seen from some DLS methods [21]. The classical reinitialization equation exhibits a near constant level of capillary number 
across the three resolutions, while Eq. (14) shows a continual decrease. This indicates that use of the classical reinitialization 
equation, Eq. (6), results in a leading source of error.

Table 5
Steady state capillary number for each Laplace number using the two different forms of the reinitialization equation.

La 1.2 × 102 1.2 × 103 1.2 × 104 1.2 × 105 1.2 × 106

Ca (Eq. (6)) 7.4 × 10−4 1.7 × 10−4 1.3 × 10−4 3.2 × 10−4 2.7 × 10−4

Ca (Eq. (14)) 6.8 × 10−5 2.9 × 10−5 2.4 × 10−5 2.3 × 10−5 1.9 × 10−5

Table 6
Steady state capillary number for a Laplace number of 12000 with three mesh resolutions using the two different 
forms of the reinitialization equation.

Resolution 203 403 803

Ca (Eq. (6)) 4.5 × 10−4 1.3 × 10−4 3.0 × 10−4

Ca (Eq. (14)) 1.5 × 10−4 2.4 × 10−5 2.3 × 10−5
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Table 7
Physical properties used for the spurious currents test case of a spherical water drop in air.

Phase ρ (kg/m3) μ (Pa s) σ (N/m)

Water 1000.0 8.9 × 10−4 0.07286
Air 1.225 1.81 × 10−5 –

Table 8
Steady state Ca for water–air spurious currents test cases with the reformu-
lated reinitialization equation. Both La and Ca are calculated using liquid 
properties.

D (μm) La Ca

10 920 3.0 × 10−4

100 9200 1.8 × 10−3

1000 92000 1.1 × 10−3

Using the reformulated reinitialization equation, we also perform more physically relevant spurious currents test cases 
consisting of a spherical water droplet with a diameter of D = 10 μm, D = 100 μm, or D = 1000 μm, in a quiescent air 
cubic domain. A uniform Cartesian mesh with 403 cells is used with the domain size selected to resolve the droplet by 
D/�x = 16, the same as the previous cases. The physical properties used for the water and air are given in Table 7. Once 
again the cases were run to steady state, as previously defined, and the resulting capillary numbers, shown in Table 8, are 
found to be of a reasonable magnitude.

5. Atomizing turbulent liquid jet

In order to demonstrate the ability of the ACLS method with the reformulated reinitialization equation in the context of 
more complex flows, we will simulate a turbulent liquid jet being injected into quiescent gas.

5.1. Simulation configuration

The simulation is performed using our in-house CFD flow solver, NGA [14,16], described previously in Section 3. In order 
to generate the jet inflow profile, a turbulent pipe flow simulation is run a priori and the velocity along a plane is extracted. 
To perform the atomizing turbulent jet simulation, this inflow is then used as the velocity profile for the liquid jet while 
it is injected into the domain of quiescent gas. An initial liquid hemisphere is also placed in the domain to represent the 
parabolic entering front of the liquid jet.

The jet of diameter D j is injected into a 15D j × 6D j × 6D j domain with a uniform Cartesian mesh of 1000 × 400 ×
400 cells. The domain itself is decomposed into 4 × 24 × 18 sub-domains using 1728 processors on XSEDE’s SDSC Comet 
supercomputer [22]. The non-dimensional properties governing the physics of the liquid jet are given in Table 9. Although 
the mesh used might not capture all of the small scales present in the turbulent flow, no sub-grid scale model is used. This 
should not hinder the main goals of this simulation to demonstrate the capabilities of the presented ACLS method.

5.2. Simulation results

A rendering of the liquid–gas interface at four different times separated by t� = tU j/D j = 3, where U j is the mean jet 
velocity, can be seen in Fig. 13. The actual enclosed volume in the simulation from t� = 0 to t� = 13.5, when liquid begins 
to exit the domain, is also compared to the exact value, calculated as

V e = ACS,inU jt
� + Vo , (33)

where ACS,in is the cross-sectional area of the liquid inflow and Vo is the initialized liquid volume of the hemispherical jet 
cap. This measurement of conservation is plotted over time in Fig. 14. Lastly, the percentage of time spent in each portion 
of the code is shown in Fig. 15, with the time required per step in each portion given in Table 10.

Table 9
Non-dimensional parameters for the liquid jet. A subscript j denotes a jet 
property, while the subscript o denotes a property of the ambient quiescent 
gas.

r m ReD W eD

ρ j
ρo

μ j
μo

ρ j U j D j
μ j

ρ j U
2
j D j

σ

40 40 5000 10000
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Fig. 13. Renderings of the liquid–gas interface at t∗ = 3,6,9,12.

Fig. 14. Volume conservation of enclosed volume for the liquid–gas jet.

Fig. 15. Percentage of time spent in each category for the multiphase jet simulation.

Table 10
Time required per step for the major sections of the code.

Routine Pressure Multiphase Velocity Other

Time per step (CPU-hours) 2.81 2.20 0.767 0.102
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The ACLS method with the reformulated reinitialization equation shows good conservation properties, with a maximum 
volume loss of 3.5% over the �t� = 13.5 time span. Note that the multiphase portion of the timing presented in Fig. 15 and 
Table 10 represents the cumulative time taken each timestep for interface tracking, reinitialization, the FMM to obtain φFMM, 
and calculating the curvature. Of these, calculating the curvature is a significant fraction. If the stencil used to construct the 
least squares linear system is reduced to a 3 × 3 × 3 stencil, the total time in multiphase routines is reduced by 30%.

6. Conclusion

In this paper, we present a reformulation of the reinitialization equation that improves its accuracy yet remains robust 
for simulating complex multiphase flows. Through basing both the compression and diffusion terms in the reinitialization 
equation on φmap from Eq. (10), differentiation errors are reduced. To calculate the normals, a FMM is used to obtain φFMM
from the implicit interface in φmap, which is shown to increase robustness by providing consistent normals, preventing 
the formulation of spurious volumes of ψ and allowing the use of high order, non-TVD transport schemes. This new form 
of the reinitialization equation is then shown to reduce interface errors and spurious currents, especially for stationary 
surfaces. Lastly, the ACLS method with the reformulated reinitialization equation is used to simulate an atomizing liquid jet, 
exhibiting excellent mass conservation properties.
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