
Journal Pre-proof

Transfer learning based multi-fidelity physics informed deep neural network

Souvik Chakraborty

PII: S0021-9991(20)30716-6

DOI: https://doi.org/10.1016/j.jcp.2020.109942

Reference: YJCPH 109942

To appear in: Journal of Computational Physics

Received date: 19 May 2020

Revised date: 9 September 2020

Accepted date: 19 October 2020

Please cite this article as: S. Chakraborty, Transfer learning based multi-fidelity physics informed deep neural network, Journal of
Computational Physics, 109942, doi: https://doi.org/10.1016/j.jcp.2020.109942.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and
formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and
review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal
pertain.

© 2020 Published by Elsevier.

https://doi.org/10.1016/j.jcp.2020.109942
https://doi.org/10.1016/j.jcp.2020.109942

Highlights

• Multi-fidelity physics informed deep neural network (MF-PIDNN) is proposed.
• MF-PIDNN blends physics-informed and data-driven deep neural networks.
• MF-PIDNN is suitable when governing equation is approximately known.
• MF-PIDNN needs no low-fidelity data
• Results presented illustrate the accuracy of MF-PIDNN.

Transfer learning based multi-fidelity physics informed deep neural

network

Souvik Chakrabortya,∗

aDepartment of Applied Mechanics, Indian Institute of Technology Delhi, Hauz Khas - 110016, India.

Abstract

For many systems in science and engineering, the governing differential equation is either not

known or known in an approximate sense. Analyses and design of such systems are governed by

data collected from the field and/or laboratory experiments. This challenging scenario is further

worsened when data-collection is expensive and time-consuming. To address this issue, this paper

presents a novel multi-fidelity physics informed deep neural network (MF-PIDNN). The framework

proposed is particularly suitable when the physics of the problem is known in an approximate sense

(low-fidelity physics) and only a few high-fidelity data are available. MF-PIDNN blends physics

informed and data-driven deep learning techniques by using the concept of transfer learning. The

approximate governing equation is first used to train a low-fidelity physics informed deep neural

network. This is followed by transfer learning where the low-fidelity model is updated by using

the available high-fidelity data. MF-PIDNN is able to encode useful information on the physics

of the problem from the approximate governing differential equation and hence, provides accurate

prediction even in zones with no data. Additionally, no low-fidelity data is required for training

this model. Two examples involving function approximations with linear and nonlinear correlation

are presented to illustrate the effectiveness of transfer learning in solving multi-fidelity problems.

Applicability and utility of MF-PIDNN are illustrated in solving four benchmark reliability analysis

problems. Case studies presented illustrate interesting features of the proposed approach.

Keywords: multi-fidelity, deep learning, physics-informed, transfer learning, reliability

1. Introduction

The governing equations used in science and engineering are often based on certain assumptions

and approximations [1]. For example, heterogeneous material properties are approximated as ho-

∗Corresponding authors
Email address: souvik@am.iitd.ac.in (Souvik Chakraborty)

Preprint submitted to Elsevier October 20, 2020

mogeneous [2], effect of environmental conditions are rarely considered [3] and critical parts such

as joints are often ignored [4]. Naturally, results obtained by solving the governing equations only

provide an approximation of the actual system behavior (i.e., low-fidelity results). An alternative

is to perform actual experiments in a laboratory environment. With modern experimental setups

and sensors, it is possible to perform highly sophisticated experiments [5, 6]. Results obtained from

such experiments are generally accurate (high-fidelity results). However, experiments are expensive

and time-consuming, and one can only perform a limited number of experiments (usually in the

order of tens). Such a small number of experiments is often not sufficient for understanding the sys-

tem behavior, specifically if dealing with problems such as uncertainty quantification and reliability

analysis. Furthermore, owning to the fact that the two data-sets are of different fidelity, merging

the two data set into one is not an option.

One possible solution to the difficulties raised above resides in multi-fidelity schemes [7–9] where

both high-fidelity and low-fidelity data can be used. The most popular multi-fidelity schemes are

perhaps the multi-level Monte Carlo (MLMC) methods [10–13]. The primary idea in MLMC is

to accelerate the calculation of the second moments of the quantity of interests. Another popular

approach for dealing with multi-fidelity data is co-Kriging [14–17]. In this method, Kriging [18–21],

aka Gaussian process [22–26], is coupled with an auto-regressive like information fusion scheme

[27–29]. Methods where the Gaussian process in co-Kriging is replaced by other machine learning

techniques can also be found in the literature [30–33]. The success of all these methods is already

well-established in the literature [34, 35]. Unfortunately, these methods only work for cases where

the low-fidelity data is able to capture the trend and the models of different fidelities have a strong

linear correlation Both co-Kriging motivated approaches and MLMC fails when the low-fidelity and

high-fidelity data have a space-dependent, complex and nonlinear correlations. To address this

issue, researchers have recently proposed methods that are rooted in Bayesian statistics [36] and

nonlinear auto-regressive algorithm [37].

The field of artificial intelligence and machine learning has recently witnessed a boom [38] and its

influence can also be observed in the multi-fidelity approaches. De et al. [39] developed two multi-

fidelity approaches by using deep neural networks. While the first framework uses transfer learning,

the second framework utilizes bi-fidelity weighted learning. Meng and Karniadakis [40], on the other

hand, proposed a composite neural network that is trained based on multi-fidelity data. A physics-

aware component was also added to this network; although, the physics-informed component is only

used for solving inverse problems. Liu and Wang [41] proposed physics constrained multi-fidelity

2

neural networks for solving partial differential equations.

Based on the discussion above, (at least) two salient conclusions can be drawn about the existing

multi-fidelity approaches.

• First, the existing multi-fidelity approaches assume the low-fidelity solver to be computation-

ally efficient so that one can generate sufficient low-fidelity data. This is not always true.

For example, compared to wind tunnel test data, a large eddy simulation [42, 43] solver can

be treated as a low-fidelity solver. However, computational cost associated with large eddy

simulation is significant, even on modern computer clusters.

• Second, the physics informed multi-fidelity approaches proposed in [41] assume that the exact

physics corresponding to the high-fidelity data is known. This is not necessarily true. There

are problems where the underlying physics is unknown [1]. Also, the apparently known gov-

erning equations are often derived based on certain assumptions and hence, only reflect the

true scenario in an approximate manner.

The objective of this paper is to present a multi-fidelity physics informed deep learning frame-

work that addresses both the limitations discussed above. Unlike some of the previous studies, it

is assumed that the data-generation process for the high-fidelity data is unknown. The low-fidelity

model is given by ordinary/partial differential equations. The proposed model needs no low-fidelity

data; instead, the initial low fidelity model is directly trained based on the (approximate) physics

of the problem. This is achieved by utilizing the recently developed physics informed deep learning

algorithm. [44–47]. With this setup, important physical laws such as invariance and symmetries

present in the low-fidelity model will be inherently captured by the deep learning framework. Trans-

fer learning [45] and available high-fidelity data is then used to update the trained deep learning

framework. Performance of the proposed framework is illustrated on selected reliability analysis

problems from the literature.

One distinct feature of the proposed framework resides in the use of transfer learning for solving

multi-fidelity problems. The basic premise in transfer learning is to store knowledge gained while

solving one problem and applying it to solve a different but related problem. This helps in improving

the sample efficiency of the model. In the proposed method, the knowledge gained by solving the

low-fidelity problem is transferred and used for solving the high-fidelity problem. This is achieved

by freezing the weights and biases of the certain layers in a deep neural network.

3

The rest of the paper is organized as follows. Section 2 provides details on the problem to

be solved. Details about the proposed approach are presented in Section 3. Numerical results

showcasing the performance of the proposed approach are presented in Section 4. Finally, Section 5

provides the concluding remarks.

2. Problem statement

Consider Ξ = (Ξ1,Ξ2, . . . ,ΞN) : Ω→ RN to be an N−dimensional stochastic vector with cumu-

lative distribution function

FΞ(ξ) = P (Ξ ≤ ξ) , (1)

where ξ is a realization from the random vector Ξ, P (·) represents the probability measure and Ω is

the input domain. In reliability analysis, one first formulates a limit-state or performance function,

J (ξ) = 0 such that J (ξ) < 0 represents the failure domain (Ωf) and J (ξ) ≥ 0 represents the safe

domain. Mathematically, this can be represented as

Ωf , {Ξ : J (ξ) < 0} . (2)

With this consideration, the probability of failure of the system can be calculated as

Pf = P (Ξ ∈ Ωf) =

∫
Ωf

dFΞ (ξ)

=

∫
Ω

IΩf
dFΞ (ξ),

(3)

where Ic is an indicator function,

Ic (ξ) =

 1 if ξ ∈ c

0 if ξ /∈ c
(4)

Although the mathematical formulation of reliability analysis discussed above is relatively simple,

the difficulty arises due to the multivariate integral in Eq. (3). Almost all the time, there exists no

closed-form solution for the multivariate integral and hence, one has to rely on numerical integra-

tion techniques or asymptotic approximations. A detailed account of different reliability analysis

methods can be found in [48, 49].

Another important player in reliability analysis is the limit-state function J (ξ). For computing

the probability of failure in Eq. (3) using numerical integration, one needs to evaluate the limit-

state function repeatedly; the inherent assumption being, the mathematical model/equation for

the limit-state function is known. In this regards, the accuracy of the limit-state function is of

utmost importance. However, for many systems in science and engineering, the governing equation

4

is either not available or available in an approximate sense [1]. Under such circumstances, one has

no option but to rely on data collected either from the field or from laboratory experiments. Further

assuming that the system under consideration is at its design phase, the option of collecting field

data becomes invalid, and performing laboratory experiments is the only feasible alternative.

Consider, Dh = [Ξhx,uh] to be the data available from laboratory experiments where

Ξhx = Ξh ⊗ xh ⊗ th. (5)

Ξh =
[
ξ(1), . . . , ξ(Nh)

]T
in Eq. (5) represents sample/data of the stochastic inputs, xh = [x1, . . . , xNx]T

are the spatial locations where data is available (sensor locations) and th = [t1, . . . , tNt]
T are the

times at which observations are available. The operator ‘⊗’ in Eq. (5) indicates Kronecker product

and uh = [u1, . . . ur] , Nr = Nh ×Nx ×Nt represents the responses. ‘h’ in the suffix indicates that

the data-collected is high-fidelity. The limit-state function J (ξ) is generally expressed in terms of

the response variable u and a threshold ut

J (ξ) = g (u(ξ, xi, tj))− ut. (6)

In case the number of data-points Nh is significant, it is possible to directly train a surrogate model,

M : (ξ, x, t)→ u and then use it to evaluate the probability of failure in Eq. (3). Popular surrogate

models available in the literature includes Gaussian process [22, 23], polynomial chaos expansion [50,

51], analysis of variance decomposition [52, 53], support vector machine [54] and hybrid polynomial

correlated function expansion [55, 56]. However, in reality, the number of laboratory experiments

that can be performed is limited and hence, the number of data-points available is often not sufficient

for training a surrogate model. To compensate for the fact that only a limited number of high-fidelity

data is available, the approximate (low-fidelity) governing equation of the system is considered,

ut + h (u, ux, uxx, . . . ; ξ) = 0. (7)

ux and uxx in Eq. (7) represent the first and second derivative of u with respect to x. As already

discussed in Section 1, solving Eq. (7) to generate sufficient number of low-fidelity data can also be

computationally expensive.

The objective of this paper is to develop a multi-fidelity deep learning framework that can be

directly trained by using the low-fidelity model in Eq. (7) (without generating data from it) and

the high-fidelity data, Dh.

5

3. Multi-fidelity physics informed deep neural network

In this section, the proposed multi-fidelity physics informed deep neural network (MF-PIDNN)

is presented. However, before proceeding to the proposed framework, details on data-driven and

physics-informed deep neural networks are discussed. Data-driven and physics informed deep neural

networks form the backbone of the proposed multi-fidelity approach.

3.1. Data-driven deep neural networks

One of the primary components of the proposed multi-fidelity approach is a deep neural network

(DNN). In this work, a fully connected DNN (FC-DNN) is used and hence, the discussion is limited

to FC-DNN only. Having said that, the framework presented is generic and can be used with

convolutional [57] and other types of neural networks as well.

An FC-DNN with L−hidden layers can be represented by using a sequence of activation functions

and linear transformations

N (·;θ) = (σL ◦WL+1) ◦ · · · ◦ (σ0 ◦W1) , (8)

where σj : R→ R and Wj+1 respectively represents the activation function and the weight matrix

associated with the edges connecting the j−th and (j + 1)−th layers. The biases of the neural

network are absorbed into the weight matrix Wj; the weight matrices {Wj}L+1
j=1 are the parameters

of the FC-DNN and are represented using θ. ‘◦’ in Eq. (8) represents operator composition. Note

that the 0−th layer in Eq. (8) represents the input and (L+ 1)−th layer represents the output. For

using the neural network in practice, the model parameters θ needs to be estimated. In a data-

driven setting, this is achieved by minimizing a loss function. For a detailed account of different

loss-functions available in the literature, interested readers may refer [38, 58]. In this work, the

mean-square loss function (Ld) has been used,

Ld =
1

Nd

Nd∑
k=1

(uk − ûk)2 . (9)

In Eq. (9), Nd represents the number of data-points, uk is the observed response corresponding to

the k−th input, ξk and ûk represents the neural network predicted response corresponding to ξk,

ûk = N(ξk;θ). (10)

The primary challenge behind the application of the DNN for engineering applications is the

need for data. It is a well-acknowledged fact that DNNs are data-hungry tools [36]. Unfortunately,

6

for the current work, the focus is on problems where one has access to very few high-fidelity data.

Therefore, the direct application of data-driven DNN is unlikely to yield satisfactory results.

3.2. Physics-informed deep neural networks

To address the over-reliance of data-driven DNNs on training data, physics informed deep neural

networks (PI-DNN) was proposed in [44]. The basic idea is to compute the DNN parameters directly

from the physics (governing ODE/PDE) of the problem. Since its inception, the PI-DNN has been

used for solving a wide range of problems in science and engineering [40, 45–47].

Consider the governing (stochastic) differential equation in Eq. (7). The objective is to solve the

stochastic differential equation so as to build a mapping from the input space (stochastic, spatial

and temporal inputs) to the response space. In conventional data-driven DNN, this is achieved in

three simple steps

• Generate training data Dh = [Ξhx,uh], where

Ξhx = Ξh ⊗ xh ⊗ th, (11)

• Represent the output u using DNN,

u = N (ξ, x, t;θ) . (12)

• Compute the DNN parameters θ by minimizing the loss-function in Eq. (9),

θ∗ = arg min
θ
Ld (θ) . (13)

In PI-DNN, the objective is to remove the data-generation step and compute the DNN parameters

θ directly from the governing differential equation in Eq. (7). Following the method presented in

[46], this is achieved in four simple steps. First, similar to the data-driven case, the response u is

represented by using a DNN,

u ≈ uNN = N (ξ, x, t;θ) . (14)

Second, the neural network outputs are modified so as to automatically satisfy the initial and

Dirichlet boundary conditions.

û(ξ, x, t) = ub(xb, ti) +B · uNN(x, t, ξ), (15)

7

where the function B is defined in such a way that B = 0 at the boundary (xb) and initial (ti)

points. The function ub(xb, ti) is defined based on the initial and boundary conditions. More details

on this can be found in [45, 46]. Note that û(ξ, x, t) can also be viewed as a DNN, N̂(ξ, x, t;θ).

In the third step, collocation points for the inputs, Dc = {ξk, xk, tk}Nc

k=1 are generated by using

some suitable design of experiment scheme [52, 59]. Using the collocation points, the physics-

informed loss function is formulated as

Lp(θ) =
1

Nc

Nc∑
i=1

R2
i , (16)

where Nc is the number of collocation points and Ri is the residual of the governing differential

equation corresponding to the i−th collocation point,

Ri = (ût)i + h ((û)i, (ûx)i, (ûxx)i, . . . ; ξi) . (17)

(û)i in Eq. (17) is obtained by substituting the i−th collocation point into Eq. (15). (ût)i, (ûx)i,

(ûxx)i are obtained by using automatic differentiation (AD) [60],

ût =
∂û

∂t
= N̂t(ξ, x, t;θ),

ûx =
∂û

∂x
= N̂x(ξ, x, t;θ),

ûxx =
∂2û

∂x2
= N̂xx(ξ, x, t;θ).

(18)

Note that the derivatives in Eq. (18) are also DNN. Since the DNNs in Eq. (18) are obtained by

differentiating Eq. (15), they have the same architecture and same parameters; the only difference

is in the form of the activation function.

In the fourth and final step, the loss function in Eq. (16) is minimized to compute the parameters

of the DNN,

θ∗ = arg min
θ
Lp(θ). (19)

For further details on PI-DNN and its application in solving reliability analysis problems, interested

readers may refer [46].

PI-DNN based reliability analysis tool proposed in [46] has two major advantages. First, unlike

other reliability analysis tools, including data-driven DNN, the PI-DNN based reliability analysis

tool proposed in [46] needs no simulation data. This is expected to reduce the computational cost

significantly. Second, PI-DNN is trained by satisfying the governing differential equation of the

system. Therefore, physical properties, such as invariance and symmetries, are satisfied. However,

despite these advantages, the whole idea of PI-DNN is hinged on the fact that the exact governing

8

differential equation for the system under consideration is available. Unfortunately, this is not

necessarily true. There exists a number of scenarios in science and engineering where the governing

differential equation is not known [1]. Even if the governing equation is known, it is often based on

certain assumptions and approximations. In other words, the governing differential equation only

represents the reality in an approximate manner. Under such circumstances, results obtained using

PI-DNN are bound to be erroneous.

3.3. Proposed approach

Neither the data-driven DNN in Subsection 3.1 nor the PI-DNN presented in Subsection 3.2 is

capable of solving the reliability analysis problem defined in Section 2. The data-driven DNN fails

because the number of high-fidelity data available, Nh is very less. On the other hand, the PI-

DNN fails as the governing differential equation in Eq. (7) only represents the actual scenario in an

approximate manner. To solve the problem defined in Section 3, a multi-fidelity physics informed

deep neural network (MF-PIDNN) is presented in this section. MF-PIDNN utilizes the concepts

of both data-driven and physics informed DNNs. Unlike available multi-fidelity frameworks, the

proposed MF-PIDNN does not assume that generating low-fidelity data is trivial. In fact, no low-

fidelity data is needed for the MF-PIDNN presented here.

The key consideration of any multi-fidelity framework is associated with discovering and exploiting

the relation between the low-fidelity and high-fidelity model/data. In most of the frameworks

available in the literature, this is achieved by using two surrogates; the first surrogate is trained

based on the low-fidelity data and the second surrogate is used to find the functional relation

between the low-fidelity and the high-fidelity data. This paper takes a separate route; instead of

using two DNNs, a single DNN is first trained for the low-fidelity model and then updated based

on the high-fidelity data. For updating the DNN, the concept of transfer learning is used in this

study. Note that the idea of using transfer learning in a multi-fidelity framework has previously

been exploited in [39]. However, unlike the proposed framework, the algorithm presented in [39] is

purely data-driven in nature.

MF-PIDNN solves the problem defined in Section 2 in two simple steps. In the first step, PI-

DNN is used to solve the low-fidelity model. To that end, the exact procedure, as discussed in

Subsection 3.2, is followed. In the second step, the low-fidelity PI-DNN is updated based on the

high-fidelity data Dhx. This is achieved by utilizing the concept of data-driven DNN. However,

unlike the first step, the second step is not straight-forward. More specifically, two specific factors

9

are considered in this step. First, the training algorithm starts by setting the initial value of the

neural network parameters to those obtained in step 1. Second, the parameters corresponding to all

the layers are not updated. Instead, the concept of transfer learning [45] is used and the parameters

corresponding to only the last one or two layers are updated. A schematic representation of MF-

PIDNN is shown in Fig. 1. The advantage of transfer learning is three-folds.

!

t

x

"##

Satisfy
BC/IC

$"

" %
& %
,()

*

+,

+-

+--

.)

Physics
induced DNN
architecture

Selected
network
architecture

/0 /0 /0

12

!

t

x

(a) Low-fidelity training phase

!

t

x

"##

Satisfy
BC/IC

$"

" %
& %
,()

*

Selected
network
architecture

+, +,

-.

+,

+/,0
+/,1

(b) High-fidelity training phase

Figure 1: Schematic representation of the proposed MF-PIDNN. During the low-fidelity training phase in (a), the

DNN has three building blocks. The physics induced DNN architecture is governed by the low-fidelity governing

differential equation of the system. At this stage, the DNN parameters are tuned by using the collocation points

Dc and minimizing the residual, (Ri) (physics-informed loss). θl (yellow box) indicates that the DNN parameters

obtained at the end of the training phase. During the high-fidelity training phase in (b), the DNN parameters for

all but the last one or two layers are fixed at θl (yellow box)). The tunable parameters θt (green box) are estimated

by minimizing the mean-squared error computed using the high-fidelity data Dh.

• First, because of transfer learning, the number of parameters to be updated is reduced. This

10

in turn, accelerates training of the DNN.

• Second, freezing the parameters of the initial layer ensures that the features, learned/extracted

from the low-fidelity model, are retained in the network.

• Thirdly, transfer learning also ensures that the DNN does not overfit the high-fidelity data,

Dh.

The steps involved in the proposed MF-PIDNN are shown in algorithm 1. For training the MF-

Algorithm 1: Transfer learning based multi-fidelity physics informed deep neural network

1 Initialize: Provide high-fidelity data Dh and the low-fidelity model. Also specify the

architecture of the DNN and the number of tunable layers, lt during transfer learning.

2 Express the unknown response using a DNN ; . Eq. (14)

3 Modify the DNN to automatically satisfy the initial and boundary conditions ; . Eq. (15)

4 Utilize the low-fidelity physics to formulate a physics-informed loss function ; . Eq. (16)

5 Minimize the physics-informed loss function to compute the network parameters, θ ;

. Eq. (19)

6 Freeze the DNN parameters for initial (L− lt + 1) layers.

7 Formulate data-driven loss function using Dh ; . Eq. (9)

8 Minimize the loss-function to tune the tunable parameters

θt = arg min
θt
Ld(θt),

where θt represents the tunable parameters.

PIDNN, RMSProp optimizer [61] followed by L-BFGS algorithm is used. Xavier initialization is

used for initializing the DNN parameters. Details on the parameters settings for the optimizers are

provided in Section 4. Once the MF-PIDNN is trained, it is possible to predict u corresponding to

some unknown inputs by using Eq. (15).

4. Numerical illustration

In this section, two sets of examples are presented to illustrate the performance of the proposed

approach. In the first set, two examples involving function approximations are presented. The

purpose of this set is to illustrate the performance of transfer learning in solving multi-fidelity

11

problems. Note that for these two examples, no physics-informed part is present; instead, both

the low-fidelity and high-fidelity models are based on data. In the second set, four numerical

examples are presented to illustrate the performance of the proposed MF-PIDNN. A wide variety of

examples involving single and multiple stochastic variables, linear and non-linear problems, ordinary

and partial differential equations are selected. For illustrating the performance of the proposed

approach, benchmark results using Monte Carlo simulation (MCS) [62] are generated. The software

accompanying the proposed approach is developed using TenserFlow [63]. Benchmark results for

the example in subsubsection 4.2.2 are generated using the FeNICS package [64]. For other examples,

the benchmark results are generated using MATLAB [65].

4.1. Problem set I

In this section, two benchmark examples from the literature are presented to illustrate the per-

formance of transfer learning in solving multi-fidelity problems. For the first example, there exists a

linear correlation between the low-fidelity and the high-fidelity models. For the second example, the

correlation is nonlinear. Results obtained using deep neural network, trained with only high-fidelity

data, is presented for comparison. For example 1, a case study by varying the number of transfer

learning layers is also presented.

4.1.1. Linear correlation example

As the first example, a continuous function with a linear correlation between the low-fidelity and

high-fidelity models is considered. The low-fidelity and high-fidelity functions are represented as

uL(x) = A(6x− 2)2 sin(12x− 4) +B(x− 0.5) + C, (20a)

uH(x) = (6x− 2)2 sin(12x− 4). (20b)

Clearly, there low-fidelity model in Eq. (20a) is linearly correlated with the high-fidelity model is

Eq. (20b). For this example, A = 0.5, B = 10 and C = −5 is considered.

For solving this problem, a deep neural network having seven hidden layers is considered. The

input to the network is x and the output is u. Each of the seven hidden layers have 50 neuron each.

Rectified linear unit (ReLU) activation is used for all but the last layer. For the last layer, linear

activation function is used. For training the low-fidelity model, the RMSProp optimizer is run for

10,000 iterations. During updating the model using transfer learning, the RMSProp optimizer is

12

run for 1,000 iterations. The maximum number of iterations for L-BFGS optimizer is set to be

10,000.

Fig. 2 shows the results obtained using transfer learning. The number of layers allowed to be

updated in transfer learning is varied from 1−4. Result corresponding to deep neural network (same

architecture and setup) trained with only high-fidelity data is also reported. Results obtained using

transfer learning is found to be significantly better as compared to the results obtained using only

high-fidelity data. As for the effect of the number of layers allowed to be updated, it is observed

that transfer learning for this example yields the best result when the last three or four layers are

allowed to update.

0 0.2 0.4 0.6 0.8 1

x

-10

0

10

20

u

Exact

HF

MF (TL = 1)

MF (TL = 2)

MF (TL = 3)

MF (TL = 4)

Figure 2: Performance of transfer learning is approximating a continuous function with linear correlation. The

models are trained with 11 uniformly distributed low-fidelity data and 5 high-fidelity data, x = [0.0, 0.4, 0.5, 0.6, 1.0].

4.1.2. Nonlinear correlation

In this section, a continuous function with nonlinear correlation is considered. The low-fidelity

and the high-fidelity functions for this example are given as

uL(x) = sin(8πx), (21a)

uH(x) = (x−
√

2)u2
L(x), (21b)

where x ∈ [0, 1]. For this example, 16 uniformly distributed samples for the high-fidelity model and

51 uniformly distributed samples for the low-fidelity model is considered.

For solving this problem, a deep neural network with seven hidden layers is considered. Each of

the seven hidden layers has 100 neurons. Similar to the previous example, for all but the last layer,

13

ReLU activation function is considered. For the last layer, linear activation function is considered.

The optimizer setup for this problem is kept the same as the previous problem. In the transfer

learning step, weights and biases corresponding to the last two layers are allowed to be updated.

Fig. 3 shows the results obtained using the transfer learning-based approach. For the sake of

comparison, the exact high-fidelity function and results obtained using deep learning with only

high-fidelity data are also reported. It is observed that the results obtained using the transfer

learning-based approach closely follows the pattern of the exact function. The deep neural network

trained only using high-fidelity data; on the other hand, yields erroneous results. This clearly

indicates the capability of the proposed transfer learning in learning from multi-fidelity data.

0 0.2 0.4 0.6 0.8 1

x

-1.5

-1

-0.5

0

0.5

u

Exact

HF

MF (TL = 2)

Figure 3: Performance of transfer learning in approximating continuous function with nonlinear correlation.

4.2. Problem set II

In the second set, four numerical examples are presented to illustrate the performance of the

proposed MF-PIDNN. The examples selected involve problems having single and multiple stochastic

variables, linear and non-linear problems, ordinary and partial differential equations. Benchmark

results are generated by using MCS. Comparison with low-fidelity PI-DNN and high-fidelity DNN

are also presented.

4.2.1. An ordinary differential equation

As the first example, a benchmark stochastic ordinary differential equation previously studied

in [66] is considered. The low-fidelity model for this problem is given by the following stochastic

ordinary differential equation,
dul
dt

= −Zul, (22)

14

where Z is the stochastic variable. The differential equation in Eq. (22) is subjected to the following

initial condition,

ul (t = 0) = 1.0. (23)

The high-fidelity model, on the other hand, is represented as

uh = t sin (t)
[
log
(
u4
l

)]2
+ 15t3 + 1.0 (24)

Clearly, the relation between the high-fidelity uh and the low-fidelity ul is non-linear. The limit-state

function for this problem is defined as

J (Z, tt) = uh(Z, tt)− u0, (25)

where u0 is the threshold, uh(Z, tt) is the response and tt is the time at which the probability of

failure is to be estimated. For this example, tt = 1.0 and u0 = 18.0 is considered. It is assumed that

15 samples from the high-fidelity model is available, and for each of the 15 high-fidelity samples,

the observations are available at t = [0.0, 1.0]. Note that the data-generation process, i.e., Eq. (24)

is not known. MF-PIDNN only have access to the high-fidelity data and the low-fidelity model

in Eq. (22). For this particular problem, the stochastic variable Z ∼ N (µ, σ2) is considered to

follow Gaussian distribution with mean µ = −2.0 and standard deviation σ = 1.0. MCS with 106

simulations yields a probability of failure of 0.045.

For solving the problem using the proposed approach, the unknown response u is first represented

by using an FC-DNN with 2 inputs, 5 hidden layers and 50 neurons per hidden layer. The 2 inputs

to the DNN are time t and decay parameter Z. Hyperbolic tangent (tanh) activation function is

considered for all but the last layer. For the last layer, linear activation function is considered. The

initial conditions in Eq. (23) is automatically satisfied by modifying the DNN output, uNN using

Eq. (15), where ub = 1.0 and B = t,

û = t · uNN + 1.0. (26)

The residual for training the low-fidelity DNN is

Ri =
dûi
dt

+ Ziûi, (27)

where Ri is the residual and ûi is obtained from Eq. (26). ‘i′ in the suffix indicates the i−th

collocation point. For training the low-fidelity model, 8000 collocation points is used and the

RMSprop optimizer is run for 15, 000 iterations. A learning rate of 0.001 is used. The other

parameters of RMSprop are kept at there default values. The maximum allowable iterations for

15

L-BFGS optimizer is set to be 10, 000.

After training the physics-informed low-fidelity DNN, the next step is to update the model based

on the high-fidelity data by using the transfer learning. The parameters corresponding to the last

two layers are only updated; parameters corresponding to all other layers are kept fixed. The

RMSprop optimizer is run for 10, 000 iterations and maximum allowable iterations for the L-BFGS

optimizer is set to be 10, 000. For RMSProp optimizer, a learning rate of 0.001 is used.

Table 1 shows the results obtained using MCS and MF-PIDNN. Along with the probability of

failure Pf , the reliability index β for this problem is also reported.

β = Φ−1 (1− Pf) , (28)

where Φ (·) represents cumulative distribution function of standard Gaussian distribution. The

results obtained using MF-PIDNN matches exactly with the MCS results. To show the utility of

the proposed approach, results obtained using only the low-fidelity PI-DNN and the high-fidelity

DNN (HF-DNN) are also presented. Both low-fidelity PI-DNN (LF-PIDNN) and high-fidelity DNN

are found to yield erroneous results.

Table 1: Reliability analysis results for example 1.

Methods Pf β Nh Nr ε = |βe−β|
βe
× 100

MCS 0.045 1.6954 106 106 × 1001 –

LF-PIDNN 0.8133 -0.8901 0 0 152.5%

HF-DNN 0.0 ∞ 15 30(15× 2) ∞

MF-PIDNN 0.045 1.6954 15 30(15× 2) 0.0%

To further illustrate the performance of the MF-PIDNN, two additional case studies are per-

formed. In the first case study, the performance of the MF-PIDNN in predicting future reliability

is investigated. To that end, it is assumed that for each of the 15 high-fidelity samples, observa-

tions are available t = [0.0, 0.5, 0.9], and the objective is to compute the reliability of the system at

t = 1.0. The difficulty, in this case, arises from the fact that this is an extrapolation problem as

no observation is available at or beyond t = 1.0. The network architecture and other parameters of

MF-PIDNN are considered to be same as before; the only difference resides in the fact that the RM-

SProp optimizer is run for 15, 000 iterations (while updating the network using transfer learning).

The results obtained are shown in Table 2. Compared to the results presented in Table 1, slight

deterioration in the results have been observed; this is expected because this is an extrapolation

16

problem. Nonetheless, the results obtained are still significantly more accurate as compared to

HF-DNN and LF-PIDNN.

Table 2: Reliability analysis results for example 1. The results presented illustrate the extrapolation capability of

the MF-PIDNN.

Methods Pf β Nh Nr ε = |βe−β|
βe
× 100

MCS 0.045 1.6954 106 106 × 1001 –

LF-PIDNN 0.8133 -0.8901 0 0 152.5%

HF-DNN 0.014 2.9173 15 45(15× 3) 29.60%

MF-PIDNN 0.05 1.6449 15 45(15× 3) 2.98%

Finally, the performance of the MF-PIDNN with variation in the number of high-fidelity data

point, Nh is investigated. For each realization of Z, the responses are observed at t = [0.0, 1.0]

and the probability of failure at tt = 1.0 is computed. The variation of the MF-PIDNN predicted

probability of failure is shown in Fig. 4. The benchmark result obtained using MCS is also reported.

With an increase in Nh, the MF-PIDNN predicted probability of failure converges to the MCS

solution. The HF-DNN results, up to Nh = 20, yields erroneous results (not shown in Fig. 4).

This is because, with only observations at two time-instants, the DNN fails to predict the trend of

the limit-state function. MF-PIDNN, on the other hand, learns the trend from the physics of the

problem and then update itself based on the high-fidelity data.

5 10 15 20

 N
h

10
-2

10
-1

10
0

 P
f

MF-PIDNN

MCS

Figure 4: Variation in the MF-PIDNN predicted results with increase in number of high-fidelity data points.

17

4.2.2. Burger’s equation

As the second problem, the well-known Burger’s equation is considered. The high-fidelity model

for this problem is

(uh)t + uh(uh)x = ν(uh)xx, (29)

with x ∈ [−1, 1] and t ∈ [0, 12]. ν > 0 in Eq. (29) represents the viscosity. The boundary and the

initial conditions for this problem are

uh(t, x = −1) = 1 + δ uh(t, x = 1) = −1, (30a)

uh(t = 0, x) = −1 + (1 + x)

(
1 +

δ

2

)
. (30b)

δ in Eq. (30) is a small perturbation that is applied to the left boundary. The problem as defined has

a transition layer at z, so that uh(z) = 0. As illustrated in previous studies [67, 68], the transition

layer is super sensitive to δ. Details on different aspects of this problem can be found in [67, 68].

The low-fidelity model, on the other hand, is considered to be

(ul)t = ν(ul)xx. (31)

Eq. (31) is obtained by ignoring the nonlinear term in the high-fidelity model. The initial and

the boundary conditions are considered to be same as the high-fidelity model. The boundary

perturbation δ ∼ U (0.0, 0.1) is uniformly distributed between 0.0 and 0.1. It is considered that the

high-fidelity model in Eq. (24) is not known; instead, data corresponding to five realizations of δ is

available. For each δ, observations at 3 spatial location and 8 temporal locations are available.

Ξhx = [0, 0.025, 0.05, 0.075, 0.1]⊗ [−1, 0, 1]⊗ [1, 2.14, 3.29, 4.43, 5.57, 6.71, 7.86, 9] . (32)

The limit-state function for this problem is represented as

J (δ, tt) = −z(δ, t) + z0, (33)

where z represents the transition layer, tt is the time at which the reliability is to be computed and

z0 is the threshold. For this example, z0 = 0.40 is considered. The objective is to compute the

probability of failure at tt = 10. Note that solution of this problem involves extrapolation as no

observation at t = 10 or beyond is available.

For solving the problem using the proposed MF-PIDNN, u is first represented by using a FC-DNN

with 6 hidden layers. Each of the 6 hidden layers has 50 neurons. The DNN has 3 inputs, x, t

and δ and one output uNN . tanh activation function is considered for all but the last layer. For

18

the last layer, linear activation function is used. To automatically satisfy the boundary and initial

conditions, the DNN output is modified as

û = uh(t = 0, x) + t(1− x)(1 + x)uNN , (34)

where uh(t = 0, x) is obtained from Eq. (30b). Using û and its derivatives, the residual of the

low-fidelity model is formulated as

Ri = (ût)i − ν(û)xx)i, (35)

where Ri is the residual. i in the suffix indicates that the quantities are evaluated corresponding to

the i−th collocation point. The physics-informed loss-function for training the low-fidelity model

is formulated by using 30, 000 collocation points and Eq. (35). Because of the simplicity of the

low-fidelity model, the RMSProp optimizer is run for 500 iterations, and the maximum allowable

iterations for the L-BFGS optimizer is set to be 1000. The learning rate in RMSProp optimizer is

set to be 0.001. Once the low-fidelity physics informed DNN is trained, the next step is to update

the DNN model by using transfer learning. To retain information gained from the low-fidelity model

and avoid over-fitting, parameters corresponding to only the last two layers of the DNN are allowed

to update; all the other parameters are frozen. The RMSprop optimizer is run for 6000 iterations

with a learning rate of 0.003. The maximum allowed iterations for the L-BFGS algorithm is set to

10,000. The L-BFGS optimizer is only allowed to update the DNN parameters corresponding to the

last layer. For this problem, the MF-PIDNN is found to be highly sensitive to the initial point of

the parameters and varies from run to run. Therefore, the MF-PIDNN results presented are mean

predictions after running the model for 20 times.

For the purpose of validation, benchmark results using MCS with 104 simulations are generated.

To that end, finite element package FeNICS [64] is used. The same-solver is used for generating the

high-fidelity data as well.

The reliability analysis results are shown in Table 3. Along with MCS and MF-PIDNN results,

LF-PIDNN and HF-DNN predicted results are also presented. Similar to the previous example, both

probability of failure and reliability index are reported. It is observed that MF-PIDNN predicted

results are extremely close to the MCS results. HF-DNN and LF-PIDNN, on the other hand, yields

erroneous results. Fig. 5 shows the performance of MF-PIDNN with increase in Nt (i.e, number

of time-steps at which high-fidelity data is available). It is observed that with an increase in the

Nt, the MF-PIDNN predicted result moves closer to the MCS results. However, at Nt = 6 and 8,

19

the probability of failure obtained is found to be similar, indicating convergence of the proposed

approach.

Table 3: Reliability analysis results for the Burger’s equation

Methods Pf β Nh Nr ε = |β−βe|
βe
× 100

MCS 0.2036 0.8288 104 104 × 33× 103 –

LF-PIDNN 0 ∞ 0 0 ∞

HF-DNN 0.932 -1.4909 5 120(5× 3× 8) 280%

MF-PIDNN 0.2242 0.7581 5 120(5× 3× 8) 8.5304%

1 2 3 4 5 6 7 8 9

 N
t

10
-3

10
-2

10
-1

10
0

 P
f

MF-PIDNN

MCS

Figure 5: Variation of MF-PIDNN predicted results with Nt.

Finally, a case study where Eq. (29) is used as both the low-fidelity and high-fidelity model

is considered. The difference between the low-fidelity and the high-fidelity model resides in the

magnitude of the viscosity; for the high-fidelity model, ν = 10−3 and for the low-fidelity model,

ν = 0.05 is considered. It is considered that the high-fidelity model is not known; instead, data

corresponding to six realizations of δ is available. At each δ, observations at 8 uniformly distributed

spatial location and 8 temporal locations are available.

Ξhx = [0, 0.025, 0.05, 0.075, 0.1]︸ ︷︷ ︸
δ

⊗

[−1,−0.71,−0.43,−0.14, 0.14, 0.43, 0.71, 1]︸ ︷︷ ︸
x

⊗

[1, 2.14, 3.29, 4.43, 5.57, 6.71, 7.86, 9]︸ ︷︷ ︸
t

.

(36)

20

Because of the lower value of ν, a finer spatial discretization is needed for solving this problem

using finite element (used for generating MCS results and HF data). Based on the convergence

study, it was decided to discretize the spatial domain into 128 elements. The boundary conditions,

limit-state function and other problem setup are kept the same as before.

Table 4 shows the results obtained using MCS, MF-PIDNN and HF-DNN. It is observed that the

results obtained using MF-PIDNN matches closely with the MCS results. HF-DINN, on the other

hand, yields erroneous results.

Table 4: Reliability analysis results for the Burger’s equation (Case 2)

Methods Pf β Nh Nr ε = |β−βe|
βe
× 100

MCS 0.2011 0.8377 104 104 × 129× 103 –

HF-DNN 0.2741 0.6005 6 384(6× 8× 8) 28.32%

MF-PIDNN 0.2087 0.8109 6 384(6× 8× 8) 3.19%

4.2.3. Nonlinear oscillator

As the third example, a nonlinear oscillator, previously studied in [69] has been considered. The

high-fidelity model for this problem is given as

d(xh)1

dt
= (xh)2,

d(xh)2

dt
= −α1(xh)2 − α2 sin ((xh)1) ,

(37)

where α1 and α2 are the stochastic parameter. The initial conditions for the problem are

(xh)1(t = 0) = −1.193, (xh)2(t = 0) = −3.876. (38)

The low-fidelity model, on the other hand, is given as

d(xl)1

dt
= (xl)2,

d(xl)2

dt
= −α1(xl)2 − α2(xh)1.

(39)

The initial condition for the low-fidelity model is considered to be same as the high-fidelity model.

Similar to the previous examples, the high-fidelity equation is assumed to be unknown and one only

has access to the low-fidelity model and high-fidelity data. More specifically, data corresponding to

five realizations of the stochastic parameters are available. For each of the realizations, the obser-

vations are available at five equally spaced time-instants in [0, 5]. The realizations of the stochastic

parameters are obtained using Latin hypercube sampling [70]. Following [69], the stochastic pa-

21

rameters α1 ∼ U (0, 0.4) and α2 ∼ U (8.8, 9.2) are considered to be uniformly distributed. The

limit-state function for this problem is defined as

J (α1, α2, tt) = − |x2(α1, α2, tt)|+ x0, (40)

where x0 is the threshold and tt is the time at which the reliability is to be evaluated. For this

problem, tt = 5.0 and x0 = 4.0 is considered.

To solve the problem using MF-PIDNN, xi, i = 1, 2 is first represented using a FC-DNN having

4 hidden layers. Each hidden layer has 50 neurons. The DNN has three inputs, t, α1 and α2 and

two outputs x1 and x2. tanh activation function is considered for all but the last layer. Linear

activation function is used for the last layer. To automatically satisfy the initial conditions, the

DNN output is modified as

x̂1 = t · xNN,1 − 1.193,

x̂2 = t · xNN,2 − 3.876,
(41)

where xNN,1 and xNN,2 are the DNN outputs. Using x̂1 and x̂2, the residuals are computed,

R1,i = ((x̂1)t)i − (x̂2)i,

R2,i = ((x̂2)t)i + (α1)i(x̂2)i + (α2)i(x̂1)i.
(42)

i in Eq. (42) indicates the i−th collocation point. Using the residuals, the physics-informed loss

function for training the low-fidelity model is formulated as

Lp(θl) =
1

Nc

Nc∑
i=1

(
R2

1,i +R2
2,i

)
, (43)

where Nc is the number of collocation points. For this problem, 10000 collocation points have been

used. The RMSProp optimizer is run for 15000 iterations with a learning-rate of 0.001. For L-BFGS

optimizer, the maximum allowable iterations is set to 10000. The trained low-fidelity model is then

updated by using transfer learning and high-fidelity data. Only the parameters corresponding to

the last two layers of DNN are allowed to be updated. A learning rate of 0.001 is used, and the

RMSProp optimizer is run for 10000 iterations. Maximum allowable iterations for the L-BFGS

optimizer is set to be 10000.

The benchmark results for validation are generated by using MCS with 104 simulations. To that

end, the differential equations are solved using the ODE45 routine in MATLAB [65]. The high-fidelity

data-set discussed earlier was also generated by using the same solver.

Table 5 shows the reliability analysis results for the nonlinear oscillator problem. Similar to

the previous examples, results obtained using HF-DNN and LF-PIDNN are also presented. The

22

MF-PIDNN is found to yield highly accurate results, matching closely with the MCS solutions. LF-

PIDNN and HF-DNN yield erroneous results. The variation of probability of failure with threshold

x0 is shown in Fig. 6. Corresponding to all the thresholds, the MF-PIDNN predicted results matches

closely with the MCS results. This indicates that the proposed MF-PIDNN is able to capture the

response over the whole domain.

Table 5: Reliability analysis results for nonlinear oscillator.

Methods Pf β Nh Nr ε = |β−βe|
βe
× 100

MCS 0.1599 0.9949 10000 104 × 103 –

LF-PIDNN 0.27 0.6128 0 0 38.41%

HF-DNN 0.19 0.8779 5 5× 5 11.76%

MF-PIDNN 0.1576 1.0044 5 5× 5 0.95%

2.5 3 3.5 4 4.5

 x
0

10
-2

10
-1

10
0

 P
f

MF-PIDNN

MCS

Figure 6: Variation of probability of failure with threshold x0.

Lastly, to illustrate the robustness of the proposed MF-PIDNN, the same model is used to com-

pute the probability of failure at a tt = 3.0 and x0 = 2.0. The results obtained are shown in Table 6.

In this case also, MF-PIDNN is found to yield accurate results outperforming both HF-DNN and

LF-PIDNN.

23

Table 6: Reliability analysis results for nonlinear oscillator at tt = 3.0 and x0 = 2.0

Methods Pf β Nh Nr ε = |β−βe|
βe
× 100

MCS 0.0651 1.5133 10000 104 × 103 –

LF-PIDNN 0.98 −2.0537 0 0 235.7%

HF-DNN 0.5955 −0.2417 5 5× 5 115.97%

MF-PIDNN 0.0729 1.4545 5 5× 5 3.88%

4.2.4. Cell signaling cascade

As the last example, a mathematical model of an autocrine cell-signaling cascade is considered.

de1p

dt
=

I

1 +G4e3p

Vmax,1

(
1− e1p

)
Km,1 + (1− e1p)

−
Vmax,2e1p

Km,2 + e1p

,

de2p

dt
=
Vmax,3e1p

(
1− e2p

)
Km,3 + (1− e2p)

−
Vmax,4e2p

Km,4 + e2p

,

de3p

dt
=
Vmax,5e2p

(
1− e3p

)
Km,5 + (1− e3p)

−
Vmax,6e3p

Km,6 + e3p

, t ∈ [0, 10],

(44)

where e1p , e2p and e3p are the state variables and denotes concentrations of the active form of

enzymes. I in Eq. (44) is the tuning parameter. The initial conditions for this problem are

e1p(t = 0) = 0, e2p(t = 0) = 1.0, e3p(t = 0) = 0. (45)

This model was first developed in [71]. Overall the model has 13 parameters, Km,1:6, Vmax,1:6 and

G4. For biological meaning and other details on the model parameters, interested readers may refer

[71].

For reliability analysis, all the 13 parameters defined above are considered to be stochastic. The

mean of the parameters are adopted from [71], and a 10% relative noise is added. For clarity of

readers, the mean of the 13 parameters is presented in Table 7. The same parameter settings have

previously been used in [69].

Table 7: Mean of the parameters for the cell signaling cascade problem

Parameters Km,1:6 Vmax,1 Vmax,2 Vmax,3 Vmax,4 Vmax,5 Vmax,6 G4

Mean 0.2 0.5 0.15 0.15 0.15 0.25 0.05 2

A low-fidelity model for this problem is set up by considering I = 0. With this, the coupled

differential equations in Eq. (44) is decoupled, and it becomes possible to solve the equations

sequentially. Moreover, the stochastic variables G4, Vmax,1 and Km,1 become inactive. This further

24

complicates the problem. It is further assumed that the governing differential equation in Eq. (44)

is not available; instead, responses corresponding to 10 realizations of the stochastic variables are

available. For each of the 10 realizations, observations are available at 5 time-steps. The observation

time-instants are equally spaced in [4, 7]

The limit-state function for this problem is

J (ξ) = e3p(ξ, tt)− e3,0, (46)

where ξ ∈ R13 represents the stochastic variables, e3,0 is the threshold parameter and tt is the

time-instants at which the reliability is to be estimated. For this problem, tt = 3.0 is considered.

Since all the high-fidelity observation are available in [4, 7], this is an extrapolation problem.

For reliability analysis using MF-PIDNN, the output responses are first represented by using a

FC-DNN. The DNN has 14 inputs (13 stochastic variables and time), 3 outputs and 4 hidden layers.

Each of the hidden layers has 100 neurons. All but the last layer of the DNN have tanh activation

function. For the last layer, linear activation function is used. To automatically satisfy the initial

conditions, the DNN outputs are modified as

ê1p = t · e1p,NN

ê2p = t · e2p,NN + 1.0,

ê3p = t · e3p,NN ,

(47)

where e1p,NN , e2p,NN and e3p,NN are the DNN outputs. The residuals for formulating the physics-

informed loss function are given as

R1,i =
(
(Km,2)i + (ê1p)i

)
((ê1p)t)i + (Vmax,2)i(ê1p)i,

R2,i =
(
(Km,4)i + (ê2p)i

)
((Km,3)i + (1− (ê2p)i))− (Vmax,3)i(ê1p)i(1− (ê2p)i),

R3,i =
(
(Km,6)i + (ê3p)i

)
((Km,5)i + (1− (ê3p)i))− (Vmax,5)i(ê2p)i(1− (ê3p)i),

(48)

where ‘i’ in suffix represents the i−th collocation point. The residuals in Eq. (48) corresponds

to the low-fidelity model and hence, I, G4 and Vmax,1 are not present. Using the residuals, the

physics-informed loss function for the low-fidelity model is computed as

Lp(θl) =
1

Nc

Nc∑
i=1

3∑
k=1

R2
k,i, (49)

where Nc represents the number of collocation points. For minimizing Lp(θ), the RMSProp opti-

mizer is run for 5000 iterations. A learning rate of 0.001 is used. As for the L-BFGS optimizer,

the maximum allowed iterations is set to 10000. The trained low-fidelity model is then updated by

25

using the high-fidelity data and transfer learning. At this stage, only the parameters corresponding

to the last layer is allowed to be tuned. All the other parameters are fixed at θl. A learning rate of

0.001 is used and the RMSProp optimizer is run for 5000 iterations. As for the L-BFGS optimizer,

the maximum allowed iterations is set to be 10000.

The benchmark results for this problem are generated by using MCS with 104 simulations. To

that end, the ODE45 routine available in MATLAB is used. The high-fidelity data discussed before

were also generated by using the same procedure.

Table 8 shows the reliability analysis results for the cell signaling cascade problem. Along with

MCS and MF-PIDNN, results obtained using LF-PIDNN and HF-DNN are also presented. The

proposed MF-PIDNN is found to yield highly accurate results with a prediction error of 1.52%.

Results obtained using LF-PIDNN and HF-DNN respectively have an error of 64.35% and 98.04%.

The variation of probability of failure with the change in threshold e3,0 is shown in Fig. 7. For all

the thresholds, MF-PIDNN predicted results are found to closely match with the MCS results. This

indicates that MF-PIDNN is able to capture the response over the whole domain.

Table 8: Reliability analysis results for cell signaling cascade problem

Methods Pf β Nh Nr ε = |β−βe|
βe
× 100

MCS 0.1663 0.9689 10000 104 × 103 –

LF-PIDNN 0.3649 0.3454 0 0 64.35%

HF-DNN 0.0275 1.9189 10 10× 5 98.04%

MF-PIDNN 0.17 0.9542 10 10× 5 1.52%

Finally, the trained MF-PIDNN is used to compute the probability of failure at different time

instants. The corresponding results are illustrated in Fig. 8. To be specific, probability of failures

around t = 3, 5, 7 and 9 are presented. The threshold e3,0 for the four cases are set to be 0.40, 0.575,

0.70 and 0.78. MF-PIDNN for all the four cases is found to yield reasonably accurate results. Do

note that high-fidelity data was only available at five equidistant time-instants between t = 4.0 and

t = 7.0. The fact that the proposed approach yields reasonable results outside this domain illustrates

the extrapolability of the proposed approach. This capability of the MF-PIDNN is because of the

fact that some physics is learnt (and retained) from the low-fidelity data.

26

0.39 0.4 0.41 0.42 0.43 0.44

 e
3,0

0

0.2

0.4

0.6

0.8

1

 P
f

MF-PIDNN

MCS

Figure 7: Variation of the probability of failure with threshold e3,0.

2.7 2.8 2.9 3 3.1 3.2 3.3

 t
t

0

0.2

0.4

0.6

0.8

1

 P
f

MF-PIDNN

MCS

(a)

4.7 4.8 4.9 5 5.1 5.2 5.3

 t
t

0

0.2

0.4

0.6

0.8

1

 P
f

MF-PIDNN

MCS

(b)

6.7 6.8 6.9 7 7.1 7.2 7.3

 t
t

0

0.2

0.4

0.6

0.8

1

 P
f

MF-PIDNN

MCS

(c)

8.7 8.8 8.9 9 9.1 9.2 9.3

 t
t

0

0.2

0.4

0.6

0.8

1

 P
f

MF-PIDNN

MCS

(d)

Figure 8: MF-PIDNN and MCS predicted results at different time-instants. The threshold e3,0 for these four cases

are set at (a) 0.40, (b) 0.575, (c) 0.70 and (d) 0.78.

27

5. Conclusions

In this paper, a multi-fidelity physics informed deep neural network (MF-PIDNN) is presented.

The proposed approach is ideally suited for problems where the physics of the problem is known

in an approximate sense (low-fidelity physics) and only a few high-fidelity data is available. MF-

PIDNN blends the concepts of physics-informed and data-driven deep learning; the primary idea is

to first train a low-fidelity deep learning model based on the available approximate physics and then

use transfer learning to update the model based on the high-fidelity data. With this, MF-PIDNN is

able to extract useful information from both the low-fidelity physics and high-fidelity data. There

are two distinct advantages of MF-PIDNN. First, the low-fidelity model is directly trained from

the physics of the problem and hence, no low-fidelity data is needed in this framework. Second,

because of the physics-informed framework within MF-PIDNN, the proposed approach is able to

capture some of the physical laws that are present in the approximate model. As a result, it provides

reasonable predictions even in zones with no-data.

Two problem sets are presented to illustrate the performance of the proposed approach. In

the first set, the ability of transfer learning in approximating functions from multi-fidelity data is

illustrated. Functions with linear and nonlinear correlations are presented. In the second set, the

proposed approach is used for solving benchmark reliability analysis problems from the literature.

For all the problems, the proposed approach is able to correctly predict the probability of failure

and the reliability index of the system. To illustrate the advantage of the proposed approach,

results obtained are compared with those obtained from only the high-fidelity data-driven model

and low-fidelity physics-driven model. The proposed approach is found to outperform both these

approaches. Case studies are also presented to illustrate different features of MF-PIDNN.

Despite the several advantages of the MF-PIDNN, certain aspects can be further enhanced.

For example, while updating the model using transfer learning, mean-squared loss-function with no

regularization has been used. This can lead to over-fitting. One future direction is to study the effect

of regularization on the results. Second, the number of tunable parameters during transfer learning

are selected manually in this study. Automating the transfer learning step will be hugely beneficial.

Third, the network architecture and the activation functions in this study are manually provided.

Automating this will also be beneficial. In future, some of these aspects will be investigated.

28

Acknowledgements

The author would like to thank Somdatta Goswami, Tanmoy Chatterjee and Rajdip Nayek for

the useful discussions during the preparation of this paper. The author also thank Govinda Anantha

Padmanabha for running the MCS code for Burger’s equation on his system. The TensorFlow codes

were run on Google Colab service.

References

[1] S. L. Brunton, J. L. Proctor, J. N. Kutz, Discovering governing equations from data by sparse

identification of nonlinear dynamical systems, Proceedings of the national academy of sciences

113 (15) (2016) 3932–3937.

[2] D. Rodrigues, J. Belinha, F. Pires, L. Dinis, R. N. Jorge, Material homogenization technique

for composites: A meshless formulation, Science and Technology of Materials 30 (1) (2018)

50–59.

[3] A. Haapio, P. Viitaniemi, Environmental effect of structural solutions and building materials

to a building, Environmental impact assessment review 28 (8) (2008) 587–600.

[4] B. Mandal, A. Chakrabarti, A simple homogenization scheme for 3d finite element analysis of

composite bolted joints, Composite Structures 120 (2015) 1–9.

[5] K. Ramesh, V. Ramakrishnan, Digital photoelasticity of glass: A comprehensive review, Optics

and Lasers in Engineering 87 (2016) 59–74.

[6] L. Mennel, J. Symonowicz, S. Wachter, D. K. Polyushkin, A. J. Molina-Mendoza, T. Mueller,

Ultrafast machine vision with 2d material neural network image sensors, Nature 579 (7797)

(2020) 62–66.

[7] B. Peherstorfer, K. Willcox, M. Gunzburger, Survey of multifidelity methods in uncertainty

propagation, inference, and optimization, Siam Review 60 (3) (2018) 550–591.

[8] M. Giselle Fernández-Godino, C. Park, N. H. Kim, R. T. Haftka, Issues in deciding whether

to use multifidelity surrogates, AIAA Journal 57 (5) (2019) 2039–2054.

[9] S. Chakraborty, T. Chatterjee, R. Chowdhury, S. Adhikari, A surrogate based multi-fidelity

approach for robust design optimization, Applied Mathematical Modelling 47 (2017) 726–744.

29

[10] C. Bierig, A. Chernov, Approximation of probability density functions by the multilevel monte

carlo maximum entropy method, Journal of Computational Physics 314 (2016) 661–681.

[11] M. B. Giles, Multilevel monte carlo path simulation, Operations research 56 (3) (2008) 607–617.

[12] M. B. Giles, T. Nagapetyan, K. Ritter, Adaptive multilevel monte carlo approximation of

distribution functions, arXiv preprint arXiv:1706.06869.

[13] S. Heinrich, Multilevel monte carlo methods, in: International Conference on Large-Scale Sci-

entific Computing, Springer, 2001, pp. 58–67.

[14] L. Le Gratiet, J. Garnier, Recursive co-kriging model for design of computer experiments with

multiple levels of fidelity, International Journal for Uncertainty Quantification 4 (5).

[15] P. Perdikaris, D. Venturi, J. O. Royset, G. E. Karniadakis, Multi-fidelity modelling via re-

cursive co-kriging and gaussian–markov random fields, Proceedings of the Royal Society A:

Mathematical, Physical and Engineering Sciences 471 (2179) (2015) 20150018.

[16] S. Koziel, S. Ogurtsov, I. Couckuyt, T. Dhaene, Variable-fidelity electromagnetic simulations

and co-kriging for accurate modeling of antennas, IEEE transactions on antennas and propa-

gation 61 (3) (2012) 1301–1308.

[17] L. Le Gratiet, Multi-fidelity gaussian process regression for computer experiments, Ph.D. thesis,

Universite Paris-Diderot (2013).

[18] S. Biswas, S. Chakraborty, S. Chandra, I. Ghosh, Kriging-based approach for estimation of

vehicular speed and passenger car units on an urban arterial, Journal of Transportation Engi-

neering, Part A: Systems 143 (3) (2017) 04016013.

[19] T. Mukhopadhyay, S. Chakraborty, S. Dey, S. Adhikari, R. Chowdhury, A critical assessment

of kriging model variants for high-fidelity uncertainty quantification in dynamics of composite

shells, Archives of Computational Methods in Engineering 24 (3) (2017) 495–518.

[20] A. Saha, S. Chakraborty, S. Chandra, I. Ghosh, Kriging based saturation flow models for traffic

conditions in indian cities, Transportation Research Part A: Policy and Practice 118 (2018)

38–51.

30

[21] I. Kaymaz, Application of kriging method to structural reliability problems, Structural Safety

27 (2) (2005) 133–151.

[22] I. Bilionis, N. Zabaras, Multi-output local Gaussian process regression: Applications to uncer-

tainty quantification, Journal of Computational Physics 231 (17) (2012) 5718–5746.

[23] I. Bilionis, N. Zabaras, B. A. Konomi, G. Lin, Multi-output separable Gaussian process: To-

wards an efficient, fully Bayesian paradigm for uncertainty quantification, Journal of Compu-

tational Physics 241 (2013) 212–239.

[24] R. Nayek, S. Chakraborty, S. Narasimhan, A Gaussian process latent force model for joint

input-state estimation in linear structural systems, Mechanical Systems and Signal Processing

128 (2019) 497–530. doi:10.1016/j.ymssp.2019.03.048.

[25] S. Chakraborty, R. Chowdhury, Graph-Theoretic-Approach-Assisted Gaussian Process for Non-

linear Stochastic Dynamic Analysis under Generalized Loading, Journal of Engineering Me-

chanics 145 (12) (2019) 04019105. doi:10.1061/(ASCE)EM.1943-7889.0001685.

[26] S. Chakraborty, S. Adhikari, R. Ganguli, The role of surrogate models in the development of

digital twins of dynamic systems, arXiv preprint arXiv:2001.09292.

[27] H. Babaee, P. Perdikaris, C. Chryssostomidis, G. Karniadakis, Multi-fidelity modelling of mixed

convection based on experimental correlations and numerical simulations, Journal of Fluid

Mechanics 809 (2016) 895–917.

[28] R. Batra, G. Pilania, B. P. Uberuaga, R. Ramprasad, Multifidelity information fusion with

machine learning: A case study of dopant formation energies in hafnia, ACS applied materials

& interfaces 11 (28) (2019) 24906–24918.

[29] P. Perdikaris, D. Venturi, G. E. Karniadakis, Multifidelity information fusion algorithms for

high-dimensional systems and massive data sets, SIAM Journal on Scientific Computing 38 (4)

(2016) B521–B538.

[30] B. Liu, S. Koziel, Q. Zhang, A multi-fidelity surrogate-model-assisted evolutionary algorithm

for computationally expensive optimization problems, Journal of computational science 12

(2016) 28–37.

31

http://dx.doi.org/10.1016/j.ymssp.2019.03.048
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0001685

[31] C. Park, R. T. Haftka, N. H. Kim, Remarks on multi-fidelity surrogates, Structural and Mul-

tidisciplinary Optimization 55 (3) (2017) 1029–1050.

[32] L. Yan, T. Zhou, Adaptive multi-fidelity polynomial chaos approach to bayesian inference in

inverse problems, Journal of Computational Physics 381 (2019) 110–128.

[33] P. S. Palar, T. Tsuchiya, G. T. Parks, Multi-fidelity non-intrusive polynomial chaos based on

regression, Computer Methods in Applied Mechanics and Engineering 305 (2016) 579–606.

[34] H. Gao, X. Zhu, J.-X. Wang, A bi-fidelity surrogate modeling approach for uncertainty propaga-

tion in three-dimensional hemodynamic simulations, Computer Methods in Applied Mechanics

and Engineering 366 (2020) 113047.

[35] A. Forrester, A. Sobester, A. Keane, Engineering design via surrogate modelling: a practical

guide, John Wiley & Sons, 2008.

[36] J. Nitzler, J. Biehler, N. Fehn, P.-S. Koutsourelakis, W. A. Wall, A generalized probabilistic

learning approach for multi-fidelity uncertainty propagation in complex physical simulations,

arXiv preprint arXiv:2001.02892.

[37] P. Perdikaris, M. Raissi, A. Damianou, N. Lawrence, G. E. Karniadakis, Nonlinear information

fusion algorithms for data-efficient multi-fidelity modelling, Proceedings of the Royal Society

A: Mathematical, Physical and Engineering Sciences 473 (2198) (2017) 20160751.

[38] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016.

[39] S. De, J. Britton, M. Reynolds, R. Skinner, K. Jansen, A. Doostan, On transfer learn-

ing of neural networks using bi-fidelity data for uncertainty propagation, arXiv preprint

arXiv:2002.04495.

[40] X. Meng, G. E. Karniadakis, A composite neural network that learns from multi-fidelity data:

Application to function approximation and inverse pde problems, Journal of Computational

Physics 401 (2020) 109020.

[41] D. Liu, Y. Wang, Multi-fidelity physics-constrained neural network and its application in ma-

terials modeling, Journal of Mechanical Design 141 (12).

32

[42] Y. Zhiyin, Large-eddy simulation: Past, present and the future, Chinese journal of Aeronautics

28 (1) (2015) 11–24.

[43] M. F. Barone, J. Ling, K. Chowdhary, W. Davis, J. Fike, Machine learning models of errors

in large eddy simulation predictions of surface pressure fluctuations, in: 47th AIAA Fluid

Dynamics Conference, 2017, p. 3979.

[44] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep learning

framework for solving forward and inverse problems involving nonlinear partial differential

equations, Journal of Computational Physics 378 (2019) 686–707.

[45] S. Goswami, C. Anitescu, S. Chakraborty, T. Rabczuk, Transfer learning enhanced physics

informed neural network for phase-field modeling of fracture, Theoretical and Applied Fracture

Mechanics 106 (2020) 102447.

[46] S. Chakraborty, Simulation free reliability analysis: A physics-informed deep learning based

approach, arXiv preprint arXiv:2005.01302.

[47] Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, P. Perdikaris, Physics-constrained deep learning

for high-dimensional surrogate modeling and uncertainty quantification without labeled data,

Journal of Computational Physics 394 (2019) 56–81.

[48] A. Haldar, S. Mahadevan, Probability, reliability, and statistical methods in engineering design,

John Wiley, 2000.

[49] A. Haldar, S. Mahadevan, Reliability assessment using stochastic finite element analysis, John

Wiley & Sons, 2000.

[50] D. Xiu, G. E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential

equations, SIAM Journal on Scientific Computing 24 (2) (2002) 619–644.

[51] B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliability Engineer-

ing & System Safety 93 (7) (2008) 964–979.

[52] S. Chakraborty, R. Chowdhury, Sequential experimental design based generalised ANOVA,

Journal of Computational Physics 317 (2016) 15–32. doi:10.1016/j.jcp.2016.04.042.

33

http://dx.doi.org/10.1016/j.jcp.2016.04.042

[53] S. Chakraborty, R. Chowdhury, Polynomial Correlated Function Expansion, in: Modeling

and Simulation Techniques in Structural Engineering, IGI Global, 2017, pp. 348–373. doi:

10.4018/978-1-5225-0588-4.ch012.

[54] A. Roy, S. Chakraborty, Support vector regression based metamodel by sequential adaptive

sampling for reliability analysis of structures, Reliability Engineering & System Safety (2020)

106948.

[55] S. Chakraborty, R. Chowdhury, An efficient algorithm for building locally refined hp–adaptive

h-pcfe: Application to uncertainty quantification, Journal of Computational Physics 351 (2017)

59–79.

[56] S. Chakraborty, R. Chowdhury, Hybrid framework for the estimation of rare failure event

probability, Journal of Engineering Mechanics 143 (5) (2017) 04017010.

[57] Y. Zhu, N. Zabaras, Bayesian deep convolutional encoder–decoder networks for surrogate mod-

eling and uncertainty quantification, Journal of Computational Physics 366 (2018) 415–447.

[58] H. D. Beale, H. B. Demuth, M. Hagan, Neural network design, Pws, Boston.

[59] B. Bhattacharyya, A Critical Appraisal of Design of Experiments for Uncertainty Quantifi-

cation, Archives of Computational Methods in Engineering 25 (3) (2018) 727–751. doi:

10.1007/s11831-017-9211-x.

[60] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, J. M. Siskind, Automatic differentiation in

machine learning: a survey, The Journal of Machine Learning Research 18 (1) (2017) 5595–

5637.

[61] T. Tieleman, G. Hinton, Lecture 6.5-rmsprop: Divide the gradient by a running average of its

recent magnitude, COURSERA: Neural networks for machine learning 4 (2) (2012) 26–31.

[62] R. Rubinstein, Simulation and the Monte Carlo method, Wiley, New York, U.S.A., 1981.

[63] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,

M. Isard, et al., Tensorflow: A system for large-scale machine learning, in: 12th {USENIX}

Symposium on Operating Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–

283.

34

http://dx.doi.org/10.4018/978-1-5225-0588-4.ch012
http://dx.doi.org/10.4018/978-1-5225-0588-4.ch012
http://dx.doi.org/10.1007/s11831-017-9211-x
http://dx.doi.org/10.1007/s11831-017-9211-x

[64] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E.

Rognes, G. N. Wells, The fenics project version 1.5, Archive of Numerical Software 3 (100).

[65] The Mathworks Inc., Natick, Massachusetts, US., MATLAB and Statistics Toolbox Release

2019b (2019).

[66] J. Li, D. Xiu, Evaluation of failure probability via surrogate models, Journal of Computational

Physics 229 (23) (2010) 8966–8980.

[67] D. Xiu, G. E. Karniadakis, Supersensitivity due to uncertain boundary conditions, Interna-

tional journal for numerical methods in engineering 61 (12) (2004) 2114–2138.

[68] J. Lorenz, Nonlinear singular perturbation problems and the Engquist-Osher difference scheme,

Katholieke Universiteit Nijmegen. Mathematisch Instituut, 1981.

[69] T. Qin, Z. Chen, J. Jakeman, D. Xiu, A neural network approach for uncertainty quantification

for time-dependent problems with random parameters, arXiv preprint arXiv:1910.07096.

[70] R. L. Iman, J. M. Davenport, D. K. Zeigler, Latin hypercube sampling (program user’s guide),

Tech. rep., Sandia laboratories (1980).

[71] S. Y. Shvartsman, M. P. Hagan, A. Yacoub, P. Dent, H. Wiley, D. A. Lauffenburger, Autocrine

loops with positive feedback enable context-dependent cell signaling, American Journal of

Physiology-Cell Physiology 282 (3) (2002) C545–C559.

35

Author Credit Statement

Souvik Chakraborty: Conceptualization, Methodology, Software/Codes, Data curation, Writing-
Original draft preparation, Visualization, Investigation, Revision following reviewers’ comments.

	Introduction
	Problem statement
	Multi-fidelity physics informed deep neural network
	Data-driven deep neural networks
	Physics-informed deep neural networks
	Proposed approach

	Numerical illustration
	blue Problem set I
	Linear correlation example
	Nonlinear correlation

	Problem set II
	An ordinary differential equation
	Burger's equation
	Nonlinear oscillator
	Cell signaling cascade

	Conclusions

