
Journal of Computational Physics 231 (2012) 394–422
Contents lists available at SciVerse ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A high order moment method simulating evaporation and advection
of a polydisperse liquid spray q

D. Kah a,b,c, F. Laurent a,b, M. Massot a,b,⇑, S. Jay c

a CNRS, UPR 288, Laboratoire EM2C, Grande Voie des Vignes, 92290 Châtenay-Malabry, France
b Ecole Centrale Paris, Grande Voie des Vignes, 92295 Châtenay-Malabry Cedex, France
c IFP – Energies nouvelles, 1 et 4 Avenue de Bois Préau, 92852 Rueil-Malmaison, France
a r t i c l e i n f o

Article history:
Received 21 November 2010
Received in revised form 24 August 2011
Accepted 31 August 2011
Available online 12 September 2011

Keywords:
Polydisperse sprays
Aerosols
High order moment method
Moment space
Canonical moments
Eulerian multi-fluid model
Maximum entropy reconstruction
Kinetic finite volume schemes
0021-9991/$ - see front matter � 2011 Elsevier Inc
doi:10.1016/j.jcp.2011.08.032

q This work was supported by a Young Investigato
Agency) and by a CNRS financial support (PEPS ‘
coordination: A. Bourdon and F. Laurent).
⇑ Corresponding author. Present address: Center

E-mail addresses: mmassot@stanford.edu, marc.m
a b s t r a c t

In this paper, we tackle the modeling and numerical simulation of sprays and aerosols, that
is dilute gas–droplet flows for which polydispersity description is of paramount impor-
tance. Starting from a kinetic description for point particles experiencing transport either
at the carrier phase velocity for aerosols or at their own velocity for sprays as well as evap-
oration, we focus on an Eulerian high order moment method in size and consider a system
of partial differential equations (PDEs) on a vector of successive integer size moments of
order 0 to N, N > 2, over a compact size interval. There exists a stumbling block for the usual
approaches using high order moment methods resolved with high order finite volume
methods: the transport algorithm does not preserve the moment space. Indeed, recon-
struction of moments by polynomials inside computational cells coupled to the evolution
algorithm can create N-dimensional vectors which fail to be moment vectors: it is impos-
sible to find a size distribution for which there are the moments. We thus propose a new
approach as well as an algorithm which is second order in space and time with very limited
numerical diffusion and allows to accurately describe the advection process and naturally
preserves the moment space. The algorithm also leads to a natural coupling with a recently
designed algorithm for evaporation which also preserves the moment space; thus polydis-
persity is accounted for in the evaporation and advection process, very accurately and at a
very reasonable computational cost. These modeling and algorithmic tools are referred to
as the Eulerian Multi Size Moment (EMSM) model. We show that such an approach is very
competitive compared to multi-fluid approaches, where the size phase space is discretized
into several sections and low order moment methods are used in each section, as well as
with other existing high order moment methods. An accuracy study assesses the order
of the method as well as the low level of numerical diffusion on structured meshes.
Whereas the extension to unstructured meshes is provided, we focus in this paper on carte-
sian meshes and two 2D test-cases are presented: Taylor–Green vortices and turbulent free
jets, where the accuracy and efficiency of the approach are assessed.
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1. Introduction

The study of multi-phase flow constituted of a disperse cloud of liquid droplets carried by a gaseous flow field, also called
sprays or aerosols depending on whether they follow the gaseous flow field or have their own dynamics, is of major impor-
tance and interest in many fields such as combustion, chemical engineering [42], rocket booster propulsion [13,14] and
atmospheric studies [50]. A key example involving this kind of flow is fuel injection in internal combustion engines. The fuel
is typically stored as a liquid phase and injected at high pressures into a gas-filled combustion chamber. Due to the inter-
actions with the surrounding gas, the dense liquid core atomizes and eventually results in a dilute polydisperse spray, in
a region located downstream of the injector and where combustion takes place. The spatial topology of the fuel mass fraction
is a direct consequence of the turbulent dispersion and evaporation of the spray in that region and is strongly related to size
distribution since droplet dynamics and evaporation are conditioned on droplet size. The spray dynamics thus governs the
resulting combustion regimes, and therefore has a strong influence on the key undesirable by-products of an engine, such as
pollutants and soots. Since experimental measurements of various combustion chamber configurations for design purposes
can be very expensive, computational models for multi-phase flows have recently become widely studied. Therefore, it is of
great interest to design reliable models for such polydisperse sprays flow, as well as numerical methods which are as accu-
rate as possible, but also tractable for large scale computations on parallel architectures. It is for this purpose that the scope
of this work is the introduction of a new numerical approach based on high order size moment methods and on a rigorous
mathematical background for dilute particulate flow regions which is both stable and computationally efficient.

Dilute gas–droplet flows are typically described by a kinetic equation modeling clouds of point particles, represented by
its number density function (NDF), through transport, droplet–fluid interactions, and eventually droplet–droplet interactions
in the framework of moderately dense cases. In most cases the sprays are polydisperse and experience size evolution due to
evaporation; in such configurations, typical of reactive flows, the description of the size distribution is of paramount impor-
tance. The Knudsen number is assumed to be high so that the collision between droplets can be neglected. Additionally, the
droplet Stokes number based on some typical gas flow time can range from very small Stokes numbers (aerosols) to Stokes
numbers of the order of one (sprays). The principal modeling challenge is the simulation of polydispersity and dynamics of
the droplet population. Therefore, in this contribution, we will consider one-way coupling for comparison purposes, i.e. we
will assume that the fluid velocity is given and influences the spray/aerosol dynamics and evaporation. Nevertheless, the
extension to two-way coupling is straightforward and all the easier since the two phases are described by an Eulerian model.

Since the direct resolution of the kinetic equation is often intractable due to the large number of independent variables,
stochastic Lagrangian methods ‘‘discretize’’ the NDF into ‘‘parcels’’, the dynamics of which is integrated. This approach has
been widely used and has shown to be efficient in numerous cases (see example [19] and references herein). While quite
accurate, its main drawback is the coupling of an Eulerian description for the gaseous phase to a Lagrangian description
of the disperse phase, thus offering limited possibilities of vectorization/parallelization. Besides, as in any statistical ap-
proach, Lagrangian methods require a relatively large number of parcels to control statistical noise, and thus are computa-
tionally expensive, especially for polydisperse unsteady flows. An alternative to the Lagrangian approach is an Eulerian
moment method. The closure of the velocity moments conditioned on size is classical and conducted through a usual hydro-
dynamic limit leading to an equilibrium velocity distribution, i.e. Maxwell–Boltzmann distribution up to zero temperature in
the framework of direct numerical simulation [32,8,27]. Once a closure has been chosen in terms of velocity moments con-
ditioned on droplet size, there are two options available for capturing the dynamics in the size phase space. One can either
rely on size phase space discretization, with low order size moments in each section, as done in the multi-fluid approach
developed in [10,8,32] from [25]. The multi-fluid model considers only one size moment which accounts for the liquid mass
density on small intervals of the size phase space called sections. Formally, the disperse phase is composed of several fluids
exchanging mass and momentum with each other and with the gas through evaporation. This model has shown to yield sim-
ple transport algorithms for transport in physical space in [10,9,8] implemented on parallel architectures [20,22]. However,
the cost of the discretization in size phase space is high and still results in numerical diffusion since the method is first order
in size discretization width [31]. Therefore, in terms of computational cost, the possibility of high order moment method
considering a single size section is attractive.

At present, several moment methods have been designed. The first one consists of solving the evolution of moments of a
presumed NDF (assumed as a log-normal law) [41]. Presumably, this is very interesting since knowing a priori, the profile of
the NDF makes its reconstruction from the moments much easier. However, this assumption is restrictive in terms of the
coverage of the physical processes. Moreover, this approach leads to serious numerical instabilities thus preventing its
use for the treatment of an evaporating spray, since during the computation, a log-normal distribution function might
not be reconstructed from the moment set dynamics. Another solution is high order moment methods, either Quadrature
Method of Moment (QMOM) where the dynamics of moments are evaluated after closing the source terms using quadrature
methods (see [38] for example and references therein), or Direct Quadrature Method of Moment (DQMOM) [34] wherein
equations are directly written on the quadrature weights and abscissas which describe the reconstructed distribution func-
tion having the same moments [19]. Such methods have proved to be very efficient in a number of configurations, such as
agglomeration, sintering, coagulation-fragmentation, etc. However, they encounter two sets of difficulties. First, they are not
able to accurately predict the evaporating flux in general (see [19] for a precise statement) since they fail to reproduce the
number density disappearing flux at zero droplet size, which is a point-wise value to be reconstructed from the set of
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moments. Consequently, further studies have been undertaken and have lead to a proper treatment of the evaporation term.
The high order moment method together with the associated numerical scheme presented in [37] is a breakthrough in terms
of accuracy, and can be effectively used for quantitative predictions of an evaporating spray. The second problem is related to
transport in physical space. There exists a stumbling block for the usual approaches using high order moment method re-
solved with at least second order finite volume method: the transport algorithm does not preserve the moment space, that
is, spatial reconstruction of moments by polynomials inside computational cells coupled to the evolution algorithm can cre-
ate N-dimensional vectors which fail to be moment vectors: it is impossible to find a size distribution for which there are the
moments. In fact two difficulties arise. The first one concerns the reconstruction of the moments in order to keep the integ-
rity of the moment set. It has been seen that for a high order scheme, an independent spatial reconstruction of each moment
does not insure that the moment space is preserved [50,38]. Besides, a second difficulty concerns the computation of the
fluxes from the reconstructed quantities. For basic explicit time intergrators such as explicit Runge–Kutta methods, the
fluxes computation will introduce truncature errors for non constant reconstructions, and the preservation of the moment
space will not be guaranteed any more, even if there were no problem in the reconstruction step. To achieve still a robust
scheme, one possibility is to use projections onto the moment space. But this requires a number of numerical tests that may
substantially impact the accuracy of the method, since the moments are artificially modified, and may increase the CPU time.
A more recent realizable high order scheme for advection relying on QMOM has recently been proposed and evaluated in
[48]. However, such an approach relies on the reconstruction of the quadrature weights whereas the quadrature abscissas
are still treated in a first order manner.

Thus, in this contribution, we provide a new method for the transport in physical space of droplet size distributions using
high order moment method in the size dimension, where the droplet size spans a compact interval, in the context of finite
volume methods. We aim at transporting a vector of integer and successive size moment up to order N, N > 2 in physical
space and since we deal with sprays, we want to naturally couple it with an algorithm for evaporation. We thus propose
a new approach as well as an algorithm which is second order in space and time with low numerical diffusion which allows
to accurately describe the advection process and naturally guarantees that the vector always belongs to the moment space if
the initial solution itself belongs to the moment space. We tackle both aerosols which are transported by the velocity of the
carrier flow as well as more inertial droplets which have their own velocity field. The main algorithm is presented on carte-
sian meshes but the extension to unstructured meshes is provided. The required ingredients are a reconstruction of the inde-
pendent canonical moments, which are well-suited since there are transported quantities, as well as the use of a time solver
based on an exact resolution of the PDE in time, leading to the fact that the fluxes introduce no truncature error with respect
to the spatial reconstruction. An exact computation of the fluxes is obtained using the fact that the equations on moments
can be derived from a kinetic equation as originally proposed in Bouchut et al. [3]. By coupling this approach to a recently
designed algorithm for evaporation which also preserves the moment space [37], polydispersity is accounted for in the evap-
oration and advection process, very accurately and at a very reasonable computational cost. These modeling and algorithmic
tools are referred to as the Eulerian Multi Size Moment (EMSM) model.

We show that such an approach is very competitive in terms of both computational efficiency and method accuracy com-
pared to multi-fluid approaches where the size phase space is discretized into several sections and low order moment meth-
ods are used in each section. A detailed accuracy and order study allows to demonstrate the proper order behavior of the
method and we even compare the precision level to the method introduced in [48]. Two 2D test-cases are presented:
Taylor–Green vortices and turbulent free jets. We thus show the accuracy and computational efficiency achievements of
the present method and discuss its ability to be extended to more complex configurations as well as on massively parallel
architectures in the conclusion.

The remainder of the paper is organized as follows. In Section 2, the kinetic equation for both aerosols and sprays are pre-
sented and the system of PDEs for high order size moment in the two cases obtained; furthermore, the main properties of the
moment space as well as canonical moments are introduced as well as the main mathematical properties of the systems of
PDEs which will be useful in order to design the new transport algorithm. Section 3 contains the development of the kinetic-
based finite volume numerical scheme for the transport in physical space, wherein reconstruction on canonical moments are
used for the computation of the fluxes. In Section 4 the essential points of the numerical scheme for the treatment of the
evaporation term are highlighted. Section 5 is the results section; it covers both validation, detailed accuracy study as well
as computational and accuracy evaluation of the numerical method and algorithm as well as its implementation for an evap-
orating polydisperse spray in 2D more complex configurations. Two 2D configurations of the gaseous flow field are consid-
ered, a Taylor Green steady and an unsteady weakly turbulent free jet. It allows us to compare the newly designed algorithm
to the multi-fluid model in terms of accuracy and computational cost. A description of the extension of the method to
unstructured meshes is presented in Appendix A.3 and the order and accuracy comparison with the method introduced
in [48], in Appendix A.2.
2. High order moment models and associated properties

This section is dedicated to the presentation of the system of PDEs modeling droplet size and velocity moments derived
from the kinetic equation governing the evolution of the NDF. The cases of aerosols and sprays are treated separately as they
lead to different systems of PDEs, even if they rely on the same basis at the kinetic level. Since we consider successive integer
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order size moments of the NDF, the structure of the moment space as well as the canonical moments are presented and the
main properties of the two systems of PDEs involving these vectors of moments are analyzed. Moreover, the closure of veloc-
ity moments for sprays introduces the pressureless gas formalism, the influence of which is briefly described.

2.1. Fundamental modeling at the kinetic level

The dilute spray of droplet is described by a NDF f(t,x,S,v), such that f(t,x,S,v)dxdSdv represents the probable number of
droplets located in x = (x1, . . . ,xd), where d is the dimension of the physical space), with size S, and velocity v.1 As the droplets
are assumed to be spherical, we choose the droplet surface to describe the size.2 The NDF is solution of a Fokker–Planck equa-
tion modeling the effects of evaporation, drag, and Brownian motion. From the kinetic level, the phase space of which contains
size and velocity variables for aerosols or sprays, we use either a singular perturbation theory based on the Stokes number or a
moment method in velocity conditioned on droplet size in order to derive ‘‘macroscopic’’ semi-kinetic system of partial differ-
ential equations (PDEs) under the form of a system of conservation laws. For the sake of legibility of the paper, such a derivation
is recalled in Appendix A.1 and leads to the following systems of conservation equations.

For aerosols, Brownian motion has to be taken into account. The number density conditioned by droplet size n(t,x,S) sat-
isfies the Smoluchowski equation [23,6]:
1 We
2 We

dR = f(t,
otnþ ox � ðugnÞ � oSðKnÞ ¼ ox � ðDoxnÞ; ð1Þ
where D is the diffusion operator and its expression is given in Appendix A.1.
In the case of spray droplets, because of their Stokes regime (St � 1), the proper droplet dynamics needs to be solved. The

gas–droplet interaction is governed by drag so that the semi-kinetic equation can be written:
otnþ oxðnuÞ � oSðKnÞ ¼ 0; ð2Þ

otðnuÞ þ oxðnu� uþ nPÞ � oSðKnuÞ � n
ðug � uÞ

St
¼ 0; ð3Þ
where n P ¼
R
ðv � uÞ � ðv � uÞf dv is the droplet pressure tensor. A hypothesis on the velocity distribution has to be made

in order to obtain a closed equation on the total number density conditioned on size, n(t,x,S). Following the example of what
is done in the multi-fluid model [25,32,8], we suppose that there is no dispersion around the mean velocity. In other terms,
we ‘‘project’’ f on a distribution with a single velocity conditioned on size: f(t,x,S,v) = n(t,x,S)d(v � u(t,x,S)), leading to P = 0.
This assumption is fully legitimate for small Stokes numbers, as u � ug in this case. Nevertheless even if St � 1, where phys-
ically some velocity slip may occur, this hypothesis leads to very good results [8,9,27]. It can be shown [36,27] that other
closure assumptions introduced in [11] can be taken into account in order to treat a higher number of velocity moments
and thus to treat particle trajectory crossing (PTC) while still describing polydispersity. Such ideas are valid with Eulerian
multi-fluid model and lead to good results [9,27]. For the sake of presenting the method in the present contribution we
rather take the simpler case of a single node quadrature, that leads to pressureless gas dynamics.

2.2. Size moment equations

In both cases, moment methods will be used for the simulations. Size moments of order 0 to N are then introduced, thus
considering the evolution of the total number density of the droplets, their mean size, their mean size squared (which can be
linked to the dispersion in size of the NDF), etc. This moments on the non dimensional interval [0,1] are defined as follows:
mkðt; xÞ ¼
Z 1

0
Sknðt; x; SÞ dS: ð4Þ
In the following, we make an additional assumption on the size-velocity correlation. We assume that the velocity of the
particles does not depend on size, that is f(t,x,S,v) = n(t,x,S)d(v � u(t,x)). The extension of the present study to size-velocity
correlation and cross size/velocity moments is conducted in [47] and requires additional ingredients. Whereas in the Eule-
rian multi-fluid model, the size-velocity correlation is automatically taken into account, since we have one velocity per sec-
tion, in the present study we only will have one velocity for the entire size spectrum. However, it will be shown in Section 5,
that the description of the size distribution through the use of several moments will allow to have a good description of the
spray dynamics in average thanks to an improvement of the global spray relaxation time in the drag force.

Since we aim at describing evaporation and transport only, the diffusion term will be omitted for the present study. Let us
notice that this does not involve any loss of generality since a dedicated scheme for diffusion can be further added in the
context of an operator splitting algorithm. For the sake of legibility, the evaporation coefficient is assumed to be independent
of the droplet size, referring to [37] for more complex evaporation laws.
refer to Doisneau et al. [14] and references therein for the treatment of droplet enthalpy.
could have also chosen to work with their radius, R or their volume, V, all corresponding NDF being linked by the relation f(t,x,R,v)

x,S, v)d S = f(t,x,V,v)dV.
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From Eq. (1) and system (2), the systems on the moments relative to the EMSM model are written:
Aerosols Spray

otðm0Þ þ ox � ðm0ugÞ ¼ �K nðS ¼ 0Þ;
otðm1Þ þ ox � ðm1ugÞ ¼ �K m0;

otðm2Þ þ ox � ðm2ugÞ ¼ �2K m1;

..

.

otðmNÞ þ ox � ðmNugÞ ¼ �NKmN�1;

8>>>>>>><>>>>>>>:

otðm0Þ þ ox � ðm0uÞ ¼ �K nðS ¼ 0Þ;
otðm1Þ þ ox � ðm1uÞ ¼ �K m0;

otðm2Þ þ ox � ðm2uÞ ¼ �2K m1;

..

.

otðmNÞ þ ox � ðmNuÞ ¼ �NK mN�1;

otðm1uÞ þ ox � ðm1u� uÞ ¼ T � K m0u:

8>>>>>>>>><>>>>>>>>>:
ð5Þ
The quantity T represents the drag term. It writes Tðt; xÞ ¼
R 1

0 Snðt; x; SÞ ug ðt;xÞ�uðt;xÞ
St dS in the Stokes regime considered here

(let us however notice that introducing a more complex drag force does not bring any difficulties). The Stokes number being
proportional to the droplet surface, let us denote h the proportionality coefficient: St = hS. The drag force is then written:
Tðt; xÞ ¼ m0

h
ðug t; xÞ � uðt; xÞð Þ: ð6Þ
Let us remark that, if the last equation of (5) had been written on m0u, then the drag term would not have been integrable
(the NDF n has generally a non zero value at S = 0 [37]).

Concerning the evaporation term, the resolution of the corresponding system will be detailed in Section 4 with an algo-
rithm developed in [37].

Let us then focus on convection of the moments. An algorithm is here designed for the resolution of the following
systems:
Aerosols Spray

otðm0Þ þ ox � ðm0ugÞ ¼ 0;
otðm1Þ þ ox � ðm1ugÞ ¼ 0;
otðm2Þ þ ox � ðm2ugÞ ¼ 0;

..

.

otðmNÞ þ ox � ðmNugÞ ¼ 0;

8>>>>>>><>>>>>>>:

otðm0Þ þ ox � ðm0uÞ ¼ 0;
otðm1Þ þ ox � ðm1uÞ ¼ 0;
otðm2Þ þ ox � ðm2uÞ ¼ 0;

..

.

otðmNÞ þ ox � ðmNuÞ ¼ 0;
otðm1uÞ þ ox � ðm1u� uÞ ¼ 0:

8>>>>>>>>><>>>>>>>>>:
ð7Þ
However, before designing such algorithm, some key properties of the moment space and of the systems of PDEs have to
be recalled. This is the subject of the next two sections.

2.3. Moment space and canonical moments

The major issue of the numerical scheme developed here is to keep the integrity of the moment sequence (m0, . . . ,mN)t.
Indeed, Wright [50] showed that independent transport of moments with algorithms of order greater than one in space, can
result in the generation of invalid moment sets.

So, let us first define the moment space. If P denotes the set of all probability measures on the Borel sets of the interval
[0,1], then the Nth-moment space gMN on the interval [0,1] denotes the following set of moment vector of dimension
N;gMN � ½0; 1�N:
gMN ¼ fcnðlÞjl 2 Pg; cNðlÞ ¼ ðc1ðlÞ; . . . ; cNðlÞÞt ; ckðlÞ ¼
Z 1

0
xk dlðxÞ:
Since we consider probability measures, we always have c0 = 1. In our case we are dealing with a number density function,
thus m0 is the droplet number density. One can associate to the moment vector M ¼ ðm0;m1; . . . ;mNÞt 2 RNþ1 the normalized
moment vector cn = (c1, . . . ,cn)t such as ck ¼ mk

m0
.

Let us then denote MN the Nth-moment space of such moment vectors M. Such a space is convex but has a rather com-
plex geometry. In order to study some of its useful properties, we will take benefit from some derived quantities: the Hankel
determinants and the canonical moments [12].

The Hankel determinants are defined by
H2mþd ¼

cd . . . cmþd

..

. ..
.

cmþd . . . c2mþd

��������
��������; H2mþd ¼

c1�d � c2�d . . . cm � cmþ1

..

. ..
. ..

.

cm � cmþ1 . . . c2m�1þd � c2mþd

��������
��������; ð8Þ
with d = 0,1; m P 0;H�1 ¼ H�1 ¼ H0 ¼ H0 ¼ 1. Necessary and sufficient conditions for a moment vector M ¼ ðm0;m1; . . . ;mNÞ
to be in the moment space MN (i.e. for the existence of a necessarily non unique NDF n(t,x,S)) are non negative Hankel deter-
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minants Hi and Hi [12]. Moreover, at least one of the Hankel determinant is zero for a moment vector lying on the border of the
moment space. Checking if a N + 1 component vector belongs to the moment space is quite tedious when N P 2. However, the
Hankel determinants provide algebraic relations to quickly determine if a vector belongs to the moment space. Moreover they
enable to derive quantities called canonical moments, linked with a one-to-one mapping to the moment space. The canonical
moment space has the very convenient property of since it maps exactly the cube ]0,1[k, and not in a strict subset of it such as the
moment space. Therefore, in order to check if the moment space is preserved, it is more practical to work with the canonical
moments.

Let us introduce the set P(ck � 1) of all probability measures on [0,1] whose moments of order up to k � 1 are cj. Dette and
Studden [12] have given the definition of the canonical moments of order k (k P 1):
pk ¼
ck � c�k ðck�1Þ

cþk ðck�1Þ � c�k ðck�1Þ
; ð9Þ
with
cþk ðck�1Þ ¼ max
l2Pðck�1Þ

ckðlÞ; c�k ðck�1Þ ¼ min
l2Pðck�1Þ

ckðlÞ; ð10Þ
ck(l) being the moment of order k of the probability measure l. The quantities cþk ðck�1Þ and c�k ðck�1Þ are respectively the
upper and lower boundary of the admissible interval for the moment ck of order k, the lower order moments being known.
If ckðlÞ ¼ cþk ðck�1Þ or ckðlÞ ¼ c�k ðck�1Þ for l 2 P(ck � 1), or equivalently if pk = 0 or pk = 1, the measure l is a sum of Dirac dis-
tributions and the vector ck belongs to the boundary of the moment space.

The cþk � c�k and canonical moments are expressed from the Hankel determinants in [12], for k P 1:
cþk � c�k ¼
Hk�1Hk�1

Hk�2Hk�2
; pk ¼

HkHk�2

Hk�1Hk�1
: ð11Þ
But practically, the canonical moments are recursively determined from the lower order ones. On the size interval [0,1], The
expressions of the first three canonical moments are:
p1 ¼ c1; p2 ¼
c2 � c2

1

c1ð1� c1Þ
; p3 ¼

ð1� c1Þ c1c3 � c2
2

� �
c2 � c2

1

� �
ðc1 � c2Þ

: ð12Þ
The canonical moments have two major properties which make them attractive to work with. First, according to the defini-
tion (9), each canonical moment independently lies in the interval ]0,1[ for a moment vector in the interior of the moment
space. It is thus straightforward to figure out if the associated moment vector belongs to the moment space. Secondly, the
canonical moments remain invariant under linear transformation of the distribution, i.e. for all k P 1; pkðf Þ ¼ pkðfSminSmax Þ,
where fSminSmax denotes the distribution induced by the linear transformation S = Smin + (Smax � Smin)x of [0,1] onto [Smin,Smax]
(we refer to [12] for the proof). That is the reason why we can work on the size interval [0,1] without loss of generality.

In addition to the two previous properties, another property given from systems (7) will be very useful when designing
the numerical scheme.

Proposition 1. Let u(t,x) be a C1 function. If the moment vector (m0,m1, . . . ,mN) is a C1 function of t and x belonging to the interior
of the moment space and such that:
otðm0Þ þ ox � ðm0uÞ ¼ 0;

otðm1Þ þ ox � ðm1uÞ ¼ 0;

otðm2Þ þ ox � ðm2uÞ ¼ 0;

..

.

otðmNÞ þ ox � ðmNuÞ ¼ 0;

8>>>>>>>>><>>>>>>>>>:
ð13Þ
then the corresponding canonical moments are transported quantities, which means that they verify the transport equation:
otpk + u oxpk = 0.
Proof. According to Eq. (11), pk is a rational fraction of the moments ck. Moreover, since the moment vector is in the interior
of the moment space, the denominator can never be equal to zero. Therefore, pk(ck) is differentiable relative to each cj, j6k.
Thus we have the relation:
otpk þ u oxpk ¼
X
j6k

ocj
pk otcj þ u oxcj
� �

: ð14Þ
But since the cj are transported quantities, we have otpk + u oxpk = 0. h
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2.4. Pressureless gas dynamics

Let us remark that the system (7) for the spray contains the pressureless gas dynamics system which has been studied by
several authors [2,4]. Indeed, this system can be written:
otU þ ox � FðUÞ ¼ 0; AðUÞ ¼ oUFðUÞ; ð15Þ
where
U ¼ m0; . . . ;mN; m1uð Þt; F ¼ m0u; . . . ;mNu; m1u2� �t
: ð16Þ
In the pressureless gas system, the Jacobian matrix of the flux A is a Jordan block, the system is weakly hyperbolic. A main
feature of this weakly hyperbolic system is the development of singularities for the conserved quantities called d-shocks, and
the emergence of the vacuum state, even when the initial distribution is regular. Such a system can be seen as a particular
case of a more general class of systems called quadrature-based moment methods in velocity space (see [5] and references
therein). Besides, as mentioned before, such quadrature-based high order moment methods allow to deal with PTC as well as
polydispersity as long as the assumption of size-velocity de-correlation is justified as done in [36,26] with the present high
order moment method in size. In the following we will only consider pressureless gas dynamics since the coupling with high
order moment in velocity is straightforward.

The key issue is thus to design a robust numerical scheme with second order in time and space for the advection of
the moments satisfying the realizability condition in both the case of aerosols as well as in the case of sprays where
singularity formation can occur. As in many cases, the construction of the discretization will rely on specific properties
of the continuous system of partial differential equations we have derived so far. The following section exposes the char-
acteristics of the scheme preserving the moment space, and capturing the singularities introduced by the pressureless
gas dynamics.
3. A new finite volume kinetic numerical scheme preserving the moment space

In this section, we present the numerical scheme used to discretize system (7) in the case of an aerosol, and its extension
to treat the case of a spray. Because of the conservative form of system (7), the finite-volume method [33] is a natural can-
didate for its discretization. Moreover, since the computations we present are enforced in a cartesian mesh, we use a dimen-
sional splitting algorithm explained by Strang [45], preserving the second order in time of the scheme and also its
mathematical properties. An alternated Lie splitting can also be used with the advantage of using the 1D transport algorithm
with the same time step in each direction [8,33], while still preserving the second order in time. So, without loss of gener-
ality, the scheme is then presented in a one dimensional framework, with the addition of the transport equation of a passive
scalar corresponding to an eventual velocity component in another direction. In the following we will fully take advantage of
the fact that we work with structured meshes in order to build a realizable second order in time and space advection scheme
with minimal numerical diffusion, which is strictly stemming from the reconstruction step in the finite volume cells. Let us
notice however, that the ingredients we introduce in order to obtain such a scheme can be used in order to design an exten-
sion of the scheme to unstructured meshes. Since this is not the primary scope of the paper, we present the principles of such
an extension in Appendix A.3.

Usually, high order cell center finite volume methods use some non-constant reconstructions of the variables to evaluate
the fluxes at the interfaces of the cells. Two difficulties have to be overcome. The first one concerns the spatial reconstruction
of the moments in order to keep the integrity of the moment set. A second difficulty concerns the temporal integration
scheme in order to perform computation at CFL = 1. Using basic explicit time intergrators with Runge–Kutta types schemes
in order to increase the order in time often requires the CFL number be smaller than one.

In order to overcome this restriction, we design a kinetic-based numerical scheme using the ideas developed by Bouchut
[3]. The time solver is based on an exact resolution of the PDE in time which relies on a micro-macro equivalence property.
An exact computation of the fluxes is obtained using the fact that the equations on moments can be derived from the kinetic
equivalent equation and thus leads to a second order in time and space with minimal numerical diffusion.

3.1. General form of the kinetic schemes

In a similar manner as in [3], a kinetic scheme is developed, based on the equivalence between the ‘‘macroscopic’’ system
and a kinetic equation. The ‘‘macroscopic’’ equation on the size distribution n(t,x,S) is:
otnþ oxðnuÞ ¼ 0; ð17Þ
where u is the gas velocity for aerosols and the droplet velocity for the spray in the direction we are dealing with. A passive
scalar v can also be considered, representing an eventual other direction in the framework of dimensional splitting for a 2D
or 3D computation. Both these variables are then a solution of:
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otðnuÞ þ oxðnu2Þ ¼ 0; ð18Þ
otðnvÞ þ oxðnuvÞ ¼ 0: ð19Þ
This ‘‘macroscopic’’ system is equivalent to the kinetic equation on f(t,x,n,f,S):
ot f þ oxðnf Þ ¼ 0; ð20Þ
with f(t,x,n,f,S) = n(t,x,S)d(n � u(t,x))d(f � v(t,x)). This kinetic equation has the exact solution f(t,x,n,f,S) = f(0,x � nt,n,f,S).
The strategy to develop the scheme is then the same one as in [3], with the difference that here, the ‘‘macroscopic’’ system
of interest (7) is not directly (17) or (17) and (18) but a system induced by taking the size moments of these equations.

In order to obtain discrete values over a mesh of constant size D x, one defines the averages mn
k;j;u

n
j and vn

j for inertial
droplets, with the usual definitions:
mn
k;j ¼

1
Dx

Z xjþ1=2

xj�1=2

mkðtn; xÞ dx; k ¼ 0; . . . ;N; ð21Þ

qn
j ¼ mn

1;j

un
j

vn
j

 !
¼ 1

Dx

Z xjþ1=2

xj�1=2

m1ðtn; xÞ
uðtn; xÞ
vðtn; xÞ

� �
dx; ð22Þ
Let us denote MN ¼ ðm0; . . . ;mNÞt the vector of moments. The discretized equations are obtained in a conservative form by
integrating Eq. (20) multiplied by (1,S, . . . ,SN,n)t over ðt; x; n; SÞ 2 ðtn; tnþ1Þ � ðxj�1=2; xjþ1=2Þ � R� ð0;1Þ:
Mnþ1
N;j ¼Mn

N;j �
Dt
Dx

F jþ1=2 � F j�1=2
� �

;

qnþ1
j ¼ qn

j �
Dt
Dx

Gjþ1=2 � Gj�1=2
� �

;

ð23Þ
where the fluxes for the size moments Fj+1/2 can be decomposed in F jþ1=2 ¼ Fþjþ1=2 þ F�jþ1=2 with:
F	jþ1=2 ¼
1
Dt

Z tnþ1

tn

Z
	nP0

Z 1

0

Z
R

1
S

..

.

SN

0BBBB@
1CCCCAn f t; xjþ1=2; n; f; S

� �
dfdSdn dt; ð24Þ
and in the same way, the flux for the momentum in the case of inertial droplets is Gjþ1=2 ¼ Gþjþ1=2 þ G�jþ1=2 with:
G	jþ1=2 ¼
1
Dt

Z tnþ1

tn

Z
	nP0

Z 1

0

Z
R

S
n

f

� �
nf t; xjþ1=2; n; f; S
� �

dfdSdndt: ð25Þ
To evaluate the fluxes, the exact solution of the kinetic scheme is used:
F	jþ1=2

G	jþ1=2

0@ 1A ¼ 1
Dt

Z Dt

0

Z
	nP0

Z 1

0

1

S

..

.

SN

S n

S vðtn; xjþ1=2 � ntÞ

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
n nðtn; xjþ1=2 � nt; SÞdðn� uðtn; xjþ1=2 � ntÞÞ dSdndt

¼ 1
Dt

Z Dt

0

Z
	nP0

m0ðtn; xjþ1=2 � ntÞ

m1ðtn; xjþ1=2 � ntÞ

..

.

mNðtn; xjþ1=2 � ntÞ

m1ðtn; xjþ1=2 � ntÞn

ðm1vÞðtn; xjþ1=2 � ntÞ

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
n dðn� uðtn; xjþ1=2 � ntÞÞ dndt:
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Let us develop the computation for Fþjþ1=2;G
þ
jþ1=2

	 

. A change of variable between t and x = xj+1/2 � nt gives:
Fþjþ1=2

Gþjþ1=2

 !
¼ 1

Dt

Z
nP0

Z xjþ1=2

xjþ1=2�nDt

m0ðtn; xÞ
m1ðtn; xÞ

..

.

mNðtn; xÞ
m1ðtn; xÞn
ðm1vÞðtn; xÞ

0BBBBBBBBB@

1CCCCCCCCCA
dðn� uðtn; xÞÞ dndx

¼ 1
Dt

Z xjþ1=2

xj�1=2

m0ðtn; xÞ
m1ðtn; xÞ

..

.

mNðtn; xÞ
m1ðtn; xÞuðtn; xÞ
m1ðtn; xÞvðtn; xÞ

0BBBBBBBBB@

1CCCCCCCCCA
Ifx;xjþ1=2�uðtn ;xÞDt6x6xjþ1=2gðxÞ dx;
the last expression being valid under the CFL condition: Dt supxju(tn,x)j 6 Dx. In the same way, the other part of the fluxes
are:
F�jþ1=2

G�jþ1=2

 !
¼ � 1

Dt

Z xjþ3=2

xjþ1=2

m0ðtn; xÞ
m1ðtn; xÞ

..

.

mNðtn; xÞ
m1ðtn; xÞuðtn; xÞ
m1ðtn; xÞvðtn; xÞ

0BBBBBBBBB@

1CCCCCCCCCA
Ifx;xjþ1=26x6xjþ1=2�uðtn ;xÞDtgðxÞ dx: ð27Þ
The fluxes are then written with the variables of interest: the moments mk of the size distribution n. The difficulty now is to
reconstruct the moments mk(tn, .) from the mn

k;j in such a way that the moment space is preserved. In order to show how this
scheme is built in a simple case, we will first compute the convective fluxes in the context of a first order kinetic scheme.

3.2. First order kinetic scheme

For a first order kinetic scheme, piecewise constant data are reconstructed:
for xj�1=2 < x < xjþ1=2

mkðtn; xÞ ¼ mn
k;j; k ¼ 0; . . . ;N

uðtn; xÞ ¼ un
j

vðtn; xÞ ¼ vn
j

8><>: ð28Þ
Under the CFL condition Dt supj un
j

��� ��� 6 Dx, the expression of the fluxes (26) and (27) are straightforward:
Fþjþ1=2 ¼Mn
N;j un

j

	 

þ
; Gþjþ1=2 ¼ mn

1;j

un
j

vn
j

 !
un

j

	 

þ
; ð29Þ
and
F�jþ1=2 ¼Mn
N;jþ1 un

jþ1

	 

�
; G�jþ1=2 ¼ mn

1;jþ1

un
jþ1

vn
jþ1

 !
un

jþ1

	 

�
; ð30Þ
with the convention u+ = max{u,0},u� = min{u,0}.
With piecewise constant reconstructions, the first order scheme considerably simplifies the reconstruction step as it

eludes the problem of preservation of the moment space which arises when non constant reconstruction are considered. In-
deed, this first order scheme can be written:
Mnþ1
N;j ¼ 1� Dt

Dx
un

j

��� ���� �
Mn

N;j �
Dt
Dx

un
jþ1

	 

�
Mn

N;jþ1 þ
Dt
Dx
ðun

j�1ÞþM
n
N;j�1 ð31Þ

¼
Z 1

0

1
S

..

.

SN

0BBBB@
1CCCCA 1� Dt

Dx
un

j

��� ���� �
fj �

Dt
Dx

un
jþ1

	 

�

fjþ1 þ
Dt
Dx

un
j�1

	 

þ

fj�1

� �
ðSÞ dS; ð32Þ
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where fj is a distribution function with the moments of order 0 to N given by Mn
N;j. Under the CFL condition, the coefficients

before each fj are non negative and then, Mnþ1
N;j is a moment vector. In the case of spray, the first order scheme also satisfies

the maximum principle on the velocity. Other properties, like entropy inequalities or the TVD property on the velocity, can
also be proved, see [2].

The first order scheme is easy to design, and robust, but, as it is well known, this scheme brings in a lot of numerical diffusion.
We thus aim at designing a second order in time and space kinetic scheme with exact time integration of the fluxes at the
inferfaces.
3.3. Second order kinetic scheme

For the purpose of a second order scheme, piecewise linear reconstructions are considered. If it can be done with the
number density m0 and the velocity u as in [3], normalized moments cannot be independently reconstructed [50]. How-
ever, reconstructing one by one the canonical moments enables to preserve the integrity of the moment set at each
point of the cell. Indeed, canonical moments are proven to be transported quantities by system (7), they satisfy a max-
imum principle. They also have the property, as explained in (2.3), to live in the full set ]0,1[k. In the context of this
paper, we will restrict ourselves on the case N = 3. A greater value for N could be considered without difficulty but
would lead to more complex algebra and computational cost without a dramatic improvement of the accuracy of the
method.
3.3.1. Reconstruction
The reconstruction writes:
for xj�1=2 < x < xjþ1=2

m0ðxÞ ¼ mn
0;j þ Dm0;j

ðx� xj; Þ
p1ðxÞ ¼ p1;j þ Dp1;j

ðx� xjÞ;
p2ðxÞ ¼ p2;j þ Dp2;j

ðx� xjÞ;
p3ðxÞ ¼ p3;j þ Dp3;j

ðx� xjÞ;
uðxÞ ¼ uj þ Duj

ðx� xjÞ;
vðxÞ ¼ v j þ Dv j

ðx� xjÞ;

8>>>>>>>>><>>>>>>>>>:
ð33Þ
where xj = (xj+1/2 + xj�1/2)/2 is the center of the jth cell and where, to simplify the notation, the tn dependance of each function
is implicit. The quantities with bars are different from the canonical moments pi,j corresponding to the moment vector Mn

3;j

and from the mean velocities un
j and vn

j . In order to have the conservation property, they are defined in such a way that
(according to (12)):
mn
1;j ¼

1
Dx

Z xjþ1=2

xj�1=2

m0ðxÞp1ðxÞ dx;

mn
2;j ¼

1
Dx

Z xjþ1=2

xj�1=2

m0ðxÞp1ðxÞ½ð1� p1Þp2 þ p1�ðxÞ dx;

mn
3;j ¼

1
Dx

Z xjþ1=2

xj�1=2

m0ðxÞp1ðxÞ ð1� p1Þð1� p2Þp2p3 þ ½ð1� p1Þp2 þ p1�
2

n o
ðxÞ dx;

mn
1;ju

n
j ¼

1
Dx

Z xjþ1=2

xj�1=2

m0ðxÞp1ðxÞuðxÞ dx;

mn
1;jvn

j ¼
1
Dx

Z xjþ1=2

xj�1=2

m0ðxÞp1ðxÞvðxÞ dx:

ð34Þ
For the first canonical moment, it is easy to see that:
p1;j ¼
mn

1;j

mn
0;j

�
Dp1;j

Dm0;j

mn
0;j

Dx2

12
; ð35Þ
When considering higher order canonical moments p2 and p3 and the velocity uj, their expression are more difficult to figure
out, since high order polynomials must be integrated, (up to order 4 for p2 and uj, and 6 for p3). Their expression are written:
uj ¼ un
j þ bu;jDuj

; v j ¼ vn
j þ bv;jDv j

; p2;j ¼ a2;j þ b2;jDp2;j
; p3;j ¼ a3;j þ b3;jDp3;j

; ð36Þ
where bu,j = bv, j is independent of Duj
and Dv j

; a2;j and b2,j are independent of Dp2;j
and a3,j and b3,j are independent of Dp3;j

. They
are given by
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bu;j

Z xjþ1=2

xj�1=2

m0ðxÞp1ðxÞ dx ¼ �
Z xjþ1=2

xj�1=2

m0ðxÞp1ðxÞðx� xjÞ dx; ð37Þ

a2;j

Z xjþ1=2

xj�1=2

fm0p1½1� p1�gðxÞ dx ¼ mn
2;jDx�

Z xjþ1=2

xj�1=2

m0ðxÞp2
1ðxÞ dx; ð38Þ

b2;j

Z xjþ1=2

xj�1=2

fm0p1½1� p1�gðxÞ dx ¼ �
Z xjþ1=2

xj�1=2

fm0p1½1� p1�gðxÞðx� xjÞ dx; ð39Þ
and
a3;j

Z xjþ1=2

xj�1=2

fm0p1ð1� p1Þð1� p2Þp2gðxÞ dx ¼ mn
3;jDx�

Z xjþ1=2

xj�1=2

fm0p1½ð1� p1Þp2 þ p1�
2gðxÞ dx; ð40Þ

b3;j

Z xjþ1=2

xj�1=2

fm0p1ð1� p1Þð1� p2Þp2gðxÞ dx ¼ �
Z xjþ1=2

xj�1=2

fm0p1ð1� p1Þð1� p2Þp2gðxÞðx� xjÞ dx: ð41Þ
The calculation of these coefficients is achieved using Maple (Maplesoft, a division of Waterloo Maple, Inc 2007) and are di-
rectly exported as Fortran 90 subroutines. Their expression is quite heavy, but, as it is just an algebraic relation, the corre-
sponding CPU cost is low. In a general way, let us write pi;j ¼ ai;j þ bi;jDpi;j

for i = 1,2,3.

3.3.2. Slope limitation
Once the conservativity of the scheme is ensured, the slopes are determined using limiters in order to satisfy maximum

principles for the transported quantities and positivity for the number density. First, for the positivity of number density, the
slope Dm0;j must verify:
Dm0;j

Dx
2

���� ���� < mn
0;j: ð43Þ
To guarantee the maximum principle on the canonical moments (i = 1,2,3):
rij 6 piðxÞ 6 Rij; x 2 xj�1=2; xjþ1=2
� �

;

where rij = min(pi,j�1,pi,j,pi,j+1) and Rij = max(pi,j�1,pi,j,pi,j+1), we must have:
ri;j 6 ai;j þ bi;jDpi;j
þ Dx

2 Dpi;j
6 Ri;j;

ri;j 6 ai;j þ bi;jDpi;j
� Dx

2 Dpi;j
6 Ri;j:

(
ð44Þ
From (35), (39) and (41), it is easy to see that jb i,jj < Dx/2 for all i = 1,2,3. The slopes must then verify:
Dpi;j

min

Ri;j � ai;j

bi;j þ Dx=2
;

ai;j � ri;j

Dx=2� bi;j

� �
;

Dpi;j
�min

ri;j � ai;j

bi;j þ Dx=2
;

ai;j � Ri;j

Dx=2� bi;j

� �
:

8>>><>>>:

In practice, we use the following slope limiter to satisfy all the conditions:
Dm0;j
¼ 1

2
sgn mn

0;jþ1 �mn
0;j

	 

þ sgn mn

0;j �mn
0;j�1

	 
	 

�min

mn
0;jþ1 �mn

0;j

��� ���
Dx

;
mn

0;j �mn
0;j�1

��� ���
Dx

;
2mn

0;j

Dx

0@ 1A;
Dpi;j
¼ 1

2
ðsgnðpi;jþ1 � pi;jÞ þ sgnðpi;j � pi;j�1ÞÞ �min

jpi;jþ1 � ai;jj
Dxþ 2bi;j

;
jai;j � pi;j�1j
Dx� 2bi;j

� �
: ð45Þ
The velocity can be treated like p2, with an additional condition linked to the CFL limitation:
Duj
¼ 1

2
sgn un

jþ1 � un
j

	 

þ sgn un

j � un
j�1

	 
	 

�min

un
jþ1 � un

j

��� ���
Dxþ 2bu;j

;
un

j � un
j�1

��� ���
Dx� 2bu;j

;
1
Dt

0@ 1A;
Dv j
¼ 1

2
sgn vn

jþ1 � vn
j

	 

þ sgn vn

j � vn
j�1

	 
	 

�min

vn
jþ1 � vn

j

��� ���
Dxþ 2bv;j

;
vn

j � vn
j�1

��� ���
Dx� 2bv;j

;
1
Dt

0@ 1A:

Let us remark that for aerosols, a simpler reconstruction can be used for the velocity u which is the gas velocity, since no
moment has to be conserved. We can then take uj ¼ un

j and Duj
can be a classical slope limiter.
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3.3.3. Fluxes computation
Then we can proceed with the evaluation of the fluxes:
Fþjþ1=2

Gþjþ1=2

 !
¼ 1

Dt

Z xjþ1=2

xL
jþ1=2

m0ðxÞ

1
p1

p1½ð1� p1Þp2 þ p1�
p1fð1� p1Þð1� p2Þp2p3 þ ½ð1� p1Þp2 þ p1�

2g
p1u

p1v

0BBBBBBBB@

1CCCCCCCCA
ðxÞ dx; ð46Þ
where xL
jþ1=2 is the abscissa of the last droplets reaching xj+1/2 at Dt.
xL
jþ1=2 ¼ xjþ1=2 � Dt

ð�uj þ Dx
2 Duj

Þþ
1þ Dt Duj

: ð47Þ
Similarly,
F�jþ1=2

G�jþ1=2

 !
¼ � 1

Dt

Z xR
jþ1=2

xjþ1=2

m0ðxÞ

1
p1

p1½ð1� p1Þp2 þ p1�
p1fð1� p1Þð1� p2Þp2p3 þ ½ð1� p1Þp2 þ p1�

2g
p1u

p1v

0BBBBBBBB@

1CCCCCCCCA
ðxÞ dx; ð48Þ
with
xR
jþ1=2 ¼ xjþ1=2 � Dt

ðujþ1 � Dx
2 Dujþ1

Þ�
1þ Dt Dujþ1

: ð49Þ
This kinetic scheme, using the property of the canonical moments, preserves the moment space directly, without the use
of an additional projection algorithm. Besides, since we want to couple it to a scheme for evaporation which will reconstruct
from the moments the most probable distribution using the maximization of entropy [37], it is essential that the advection
scheme should be well-behaved and preserves realizability inside the moment space. We summarize main characteristics of
the evaporation scheme in the next section.

4. Evaporation model and associated numerical scheme

In the context of an operator splitting algorithm, each operator of system (5) is resolved separately. For the evaporation, a
set of ODE system, one for each cell of the mesh, is obtained:
dtm0 ¼ �KnðS ¼ 0Þ;
dtm1 ¼ �Km0;

..

.

dtmN ¼ �NKmN�1;

8>>>><>>>>: ð50Þ
the evaporation coefficient being constant, which is the macroscopic equivalent of the kinetic equation:
otn� oSðKnÞ ¼ 0: ð51Þ
System (50) has to be closed. Indeed we have to estimate a term �K~njS¼0ðm0;m1;m2;m3Þ, representing the disappear-
ing flux of droplets at time t, is a point-wise value of the NDF which has to be reconstructed from the data of its first N
moments. Achieving this amounts to solve the finite Hausdorff moment problem [12] and is done using an Entropy Max-
imization [39] whereas the corresponding NDF is denoted nME(t,S). When it comes to the numerical resolution, pluging
system (50) in a standard ODE like solver leads to serious stability problems. A robust and accurate kinetic scheme was
developed in [37] which preserves the moment space. Moreover, it has been generalized to an arbitrary evaporation law,
depending on the droplet size S and on t (through the dependance on the gas variables) [37]. We summarize herein its
main features in the case of a constant evaporation rate. The solution used is to consider an integrated version in time of
system (50):
expðKDt AÞMnþ1
N ¼Mn

N �U�; ð52Þ
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where
Mn
N ¼

m0

..

.

mN

0BB@
1CCAðtnÞ; A ¼

0 0
1 0

2 . .
.

. .
. . .

.

0 N 0

266666664

377777775; U� ¼
Z KDt

0
nðtn;aÞ

1
a
..
.

aN

266664
377775 da; ð53Þ
the form of the flux being found using the analytical solution of the kinetic Eq. (51), in the context of kinetic schemes. This
integral form decouples pure transport with no flux from the evolution of the moments through the fluxes.

For the pure transport in size phase space part, a last ingredient is introduced: the computation of a quadrature of the
moment vector MN (N = 2na � 1 being odd). Indeed, there exist a unique vector of weight ðxiÞi6na

and a unique vector of
abscissas ðSiÞi6na

such that mk ¼
Pna

i¼1xiS
k
i for each k = 0, . . . ,N. The following formula shows that evaporation, when the flux

at zero size is zero, is only a translation of the abscissas and such an approach can be seen as equivalent to DQMOM [19]):
expðK Dt AÞ

Pna

i¼1
xiðtnÞ

Pna

i¼1
xiðtnÞ S iðtnÞ

..

.

Pna

i¼1
xiðtnÞ SN

i ðtnÞ

0BBBBBBBBBBB@

1CCCCCCCCCCCA
¼

Pna

i¼1
xiðtnÞ

Pna

i¼1
xiðtnÞðSiðtnÞ þ DtKÞ

..

.

Pna

i¼1
xiðtnÞðSiðtnÞ þ DtKÞN

0BBBBBBBBBBB@

1CCCCCCCCCCCA
: ð54Þ
The resulting algorithm is then [37]:

(1) Using the Entropy Maximization, we provide a reconstruction nME(tn, .) of the distribution from its moments Mn
N and

flux U� is computed from this reconstruction.
(2) The weights xi and the abscissas Si corresponding to the moment vector Mn

N �U� are computed using the QD algo-
rithm [12].

(3) The moments Mnþ1
N corresponding to the weights xi and the abscissas Si � K Dt are computed.

This algorithm is valid for a CFL-like condition K Dt < 1.

5. From numerical validation to accuracy and performance assessment

This section is devoted to three representative test-cases, with increasing difficulties, to check the robustness, the accu-
racy and computational efficiency of the proposed numerical scheme and algorithm. The first series of test-cases is one-
dimensional. First, the transport of an aerosol in a constant velocity field provides a first level of validation and an evaluation
the method accuracy. Then, a spray convection case leading to the formation of a d-shock assesses the method robustness.
Finally, a complete order accuracy study of the convection of a smooth profile shows that the method is second order in
space and time.

In a second test-case, a cloud of inertial droplets evolves in a two-dimensional Taylor–Green configuration for the gaseous
velocity field. This case study allows us to prove the computational efficiency and the good behavior of the scheme. Finally,
an injection of a polydisperse spray in an unsteady gaseous flow field constituted of a weakly turbulent free jet is investi-
gated. Such a case, while still an academic test-case, is close to more realistic configurations and shows the robustness of
the scheme in a more complex environment. We provide a detailed comparison with results given by the multi-fluid model
and assess the efficiency of the proposed approach. Let us underline that such a configuration has been introduced in the
Ph.D. Thesis of Hicham Meftah [40] at CORIA and that we have compared the Eulerian multi-fluid approach to a reference
Lagrangian simulation in [9,8]. The conclusions of this study was that the fuel mass fraction issued from evaporation was
extremely well predicted by the multi-fluid approach, thus making it also a reference solution as far as the present method
is concerned.

5.1. Validation by comparison with analytical solutions for 1D aerosol and spray transport

We first simulate the transport at constant velocity of a polydisperse aerosol. The gas velocity is taken as constant and
equal to one everywhere and an aerosol is initially present in half of the domain [0,1], and the boundary conditions are peri-
odic. Its size distribution has initially a concave shape at x = 0 (part of the sinusoid) and a convex one at x = 0.5 (decreasing
exponential). It evolves continuously between these two points:
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nðt ¼ 0; x; SÞ ¼
kðxÞ sinðpSÞ þ ð1� kðxÞÞ expð�10 SÞ; x 6 0:5;
0; x > 0:5;



ð55Þ
where k(x) = 4(0.5 � x)2. The first four size moments of this initial distribution are displayed on Fig. 1(left). The constant
velocity field is also represented. According to this velocity field, we expect a translation of all the moments at velocity
one. That is indeed what we obtain in Fig. 1(right), the numerical simulation being performed in a 200 cell grid with a con-
vective CFL number equal to one. The first conclusion, that we can draw from this simple test-case is that only numerical
diffusion alters the accuracy of the moment resolution. We must highlight the fact that this is done without an extra pro-
jection algorithm, yet yields a rather high level of precision.

In the second test-case, a quantitative comparison with an analytical solution of the transport of an evaporating spray of
ballistic droplets is performed. For this problem, we choose the same size distribution as before, but now the droplets have
their own velocity, initiated by
uðxÞ ¼
0:5; x 6 0:25;
2; x > 0:25:



ð56Þ
The initial conditions are displayed in Fig. 2(left). As we consider ballistic droplets, their dynamics is not influenced by the
gas. Besides, the droplets are assumed to be evaporated at rate K = 1. The spatial velocity discontinuity makes the droplet
cloud spread into two separate clouds with two distinct velocities. This configuration shows the ability of the method to han-
dle the vacuum zone generated by the separation of the clouds. Moreover, because of periodic boundary conditions, the fas-
ter cloud will catch up with the slower one once it has re-entered the domain on the left side. Fig. 2(right) displays the four
analytical size moments, and the size moments given by the calculation at the time t = 0.2, performed in a 200 cell grid with a
convective CFL equal to one. Fig. 3 displays the four moments at times t = 0.4. First, the numerical solution perfectly matches
the analytical one, second the moment space is automatically preserved. The initial distribution breaks into two parts. Vac-
uum is created at the initial velocity discontinuity. At t = 0.4, the fastest portion catches up with the slower one. As we con-
sider a pressureless gas formalism for the droplets, nothing prevents the droplets from accumulating. However, it must be
kept in mind that the collision probability is negligible, to that the real physical solution would result in a crossing of the
clouds without interaction such as presented through the analytical solution. Simulating jet crossing is an issue in Eulerian
models and and new methods have been recently designed in the literature and we refer to [17,5,27,48] for references. Let us
mention that the coupling of the present algorithm with particle trajectory crossing can be found in the review paper [36].
The conclusion of that test-case study reveals that our numerical approach is accurate relative to transport and evaporation
and still preserves the realizability condition even in the presence of singularity formation.

5.2. Order accuracy study

An order accuracy study is performed for the first and second order kinetic schemes for pure advection of a moment set.
The initial size distribution has the following profile:
nðt ¼ 0; x; SÞ ¼
aðxÞ aðxÞ sinðð1�xÞpSÞþð1�aðxÞÞ expð�10ð1�xÞ SÞR 1

0
aðxÞ sinðð1�xÞpSÞþð1�aðxÞÞ expð�10ð1�xÞ SÞ dS

; x 6 0:5;

0; x > 0:5;

8<: ð57Þ
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dashed curve representing the velocity field, is scaled by the right Y-axis. (right) Solution at time t = 0.4 compared to the analytical solution of the
, represented by marquers.
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Fig. 2. Evolution of a spray in a discontinuous velocity field, calculated with the EMSM model, compared to the analytical solution of the problem. (left)
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where aðxÞ ¼ exp� ð0:25�xÞ2
r2 , where r = 0.12. Such a spatial and size distribution with nonlinear coupling can be considered as

general enough for an accuracy study in order to quantify the order of convergence of the proposed scheme. The velocity
field is initiated as shown in Fig. 4(right). It writes:
uðt ¼ 0; xÞ ¼
1� x; x 6 0:5;
0; x > 0:5;



ð58Þ
The negative slope of its linear profile leads to a compression of the moment field at the rate given by solving the equation
dtm/m = �oxu = 0.5/(0.5 � 0.5t). As the final computational time is 0.5, the final value of the moments is
mk(t = 0.5,x) = 2mk(t = 0,x0), where x is the point, at t = 0.5, of the characteristic containing the point (t = 0,x0). The computa-
tion is run with CFL = 1.

Two types of results are given. The first type gives the final profile of the moments, comparing the results for the first and
second order schemes, for the 100 cell grid, with the analytical results, see Fig. 5. This clearly shows the gain of accuracy
brought by second order scheme in comparison to first order scheme. Grid convergence studies for the first and second order
advection schemes are presented in Fig. 6. For both the schemes, the profile of m0 obtained using different grid resolutions is
compared to the analytical solution. Four different uniform grids have been considered with the number of cells equal to 25,
50, 100 and 200. Fig. 6(left) shows grid convergence for the first order scheme, and Fig. 6(right) shows grid convergence for
the second order scheme. A remarkable result is the low numerical diffusion level of the second order scheme. Generally,
numerical diffusion has two origins: the reconstruction step and the flux time integration computation at the cell interfaces
in cell center finite volume schemes. The proposed second order kinetic scheme involves an exact time integration of the



Fig. 4. Order accuracy study. Initial conditions. Left: Initial moment fields. The plain curves represent, with decreasing ordering in terms of value, the four
first moments from the 0th order (highest) to the 3rd (lowest) Right: Initial velocity field.

Fig. 5. Order accuracy study. Moment profile for the final time, with a 100 cells grid. Comparison of the first and second order scheme with the analytical
solution. The plain black curve represents the analytical solution, the dashed blue curve with triangles and the dotted-dashed red curve represent the
numerical solution respectively for second and first order scheme. Left: m0. Right: m2. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 6. Order accuracy study. Profile of m0 for the final time. Results are displayed for 200 cells (red triangles), 100 cells (blue squares), 50 (dotted-dashed
brown curve), 25 (dashed green curve). Left: first order. Right: second order. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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flux, preventing any numerical diffusion to occur at this level. This comes from the fact that the velocities of the waves of the
system are explicitly known at time tn since they are not modified by any acoustic effect: this result is specific to the pres-
sureless gas formalism considered here.

Tables 1 and 2 show the numerical order results for both schemes and provide detailed results for the four moments. The
mean order is the slope of the straight line given by a linear regression of the four error results per moment. For the first
order scheme, the numerical order is lower than one (0.76). Such a result is rather classical for such a class of finite volume
method (see [48] for example). For the second order scheme, the numerical order for m0 is little lower than two (1.82). Sec-
ond order is reached for all other moments. Fig. 7 displays the order curves for the first and second order schemes, highlight-
ing the precision difference between both methods and showing the high level of accuracy reached by the second order
method. Such results can be considered as very satisfying compared to other existing methods.
5.3. Comparison with other methods in literature

The ground difference between the scheme developed here for the advection of a moment set and the type of schemes
presented in [50,38] is that the moment set integrity is preserved by the scheme itself. Thus, no additional numerical test
or additional algorithm needs to be performed. This difference is sufficiently important so that no further numerical com-
parisons are relevant.

In [48], Vikas et. al design a second order quadrature-based scheme for the transport of a velocity moment vector.
Whereas they are mainly interested in designing a second order scheme for the transport of velocity moment vectors, their
Table 1
L1 error and order of accuracy of the first order kinetic scheme.

Grid size 25 50 100 200 Order

m0 0.5176 0.3306 0.1932 0.1077 0.76
m1 0.5534 0.3673 0.2182 0.1214 0.74
m2 0.5658 0.3764 0.2247 0.1250 0.73
m3 0.5686 0.3802 0.2274 0.1268 0.72

Table 2
L1 error and order of accuracy of the second order kinetic scheme.

Grid size 25 50 100 200 Order

m0 0.1216 0.0318 0.0079 0.0028 1.82
m1 0.1667 0.0436 0.0093 0.0025 2.04
m2 0.1798 0.0478 0.0102 0.0028 2.01
m3 0.1864 0.0499 0.0110 0.0034 1.95
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ideas can be applied for the transport of size moments. Let us remark first that, in this article, we tackle the issue of the trans-
port of an evaporating spray. Indeed, evaporation is an essential process to take into account in the description of spray
dynamics. Therefore, if the main achievement of this paper concerns a second-order advection scheme preserving the mo-
ment set integrity, it is also very important that this scheme can be coupled to the evaporation solver presented in Section 4.
However, even if it could be envisioned to couple, through an operator splitting, our evaporation algorithm to the transport
algorithm proposed in [48], we still want to make sure that the accuracy is sufficient in order to obtain a global scheme that
is competitive with multi-fluid models and methods. Thus, for pure transport, it is interesting to perform a detailed accuracy
comparison between the two schemes on the previous test case. Results are detailed in Appendix A.2 which allow us to con-
clude on the high level of accuracy of our scheme as well as on the novelty of the present approach.

5.4. Two dimensional dynamics of a droplet cloud in Taylor–Green vortices

We test our high order moment method in a multi-dimensional configuration with vortices: the 2-D Taylor–Green vortex
flow, a steady solution of the inviscid incompressible Euler equations. The gaseous non-dimensional velocity field is then
given by ug, x = sin(2p x) cos(2 p y) for its horizontal component and ug, y = �cos(2 p x) sin(2 p y) for its vertical one, with
(x,y) 2 [0,1]2 and with periodic boundary conditions. The structure of the flow field is presented in Fig. 8(left) through
the velocity vectors. The initialization of the spray corresponds to a motionless cloud overlapping two different vortex areas,
which will be dragged by the gas. Fig. 8(right) shows the initial spatial mass distribution provided by a cardinal sinus func-
tion. The size distribution of the droplets is initially uniform, with a NDF as well the corresponding mass distribution func-
tion represented in Fig. 9.

Two sets of computations are presented, one for the EMSM model and the other one for the multi-fluid model with ten
sections. Both are done till time t = 2, corresponding to one eddy turn over time. Moreover, we have chosen a 200 � 200 grid
cell, to ensure that we have a sufficiently detailed description of the field and, as in the earlier cases, the CFL number is equal
to one. The results of the multi-fluid model are used as the reference to validate our method. The field compared between the
two results is the droplet mass density which is naturally solved in the multi-fluid model, whereas it is reconstructed from
the four moments (m0,m1,m2,m3) in the high order moment method, using the reconstruction nME computed by Entropy
Maximization [37].

The droplet Stokes number of the distribution, based on the typical size m1/m0, is initially 0.017 for the EMSM model, and
ranges from 0.0028 to 0.045 for the multi-fluid model with ten sections. The spray evaporation rate is set as K = 0.27. Figs. 10
and 11 show the evolution of the spatial mass distribution for both computation. Due to the cloud initial location, two parts
of it are dragged by two different vortices. That is why the main part of the cloud is dragged in the top-left vortex, whereas a
smaller part of the cloud is dragged in the top-right vortex. From [35,8,36], we know that there exists a critical value Stc = 1/
8p (�0.0398) which separates two regimes. For St < Stc, the droplets cannot escape from the Taylor–Green vortices while, for
St P Stc, they are ejected out of their original vortices. This explains that, with the multi-fluid method, a part of the mass is in
the bottom vortices: Stokes number under consideration goes beyond Stc for the last sections. However, this is not captured
by the high order moment method since only one averaged Stokes number is considered and is lower than Stc.

However, the general notice is that the level of comparison is very good. Indeed, results at t = 0.5 and t = 1 are very similar
between the two methods. At time t = 1.5 and t = 2, the fact that the droplets are dragged faster in the case of the EMSM
model comes from the computation of the drag term. In both models, the Stokes number writes hS, where h is defined in
Eq. (2.2) and S is the average droplet surface of the distribution. In the case of the multi-fluid model,
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Fig. 8. (left) Taylor–Green configuration for the gas vorticity field, (right) Initial condition for the droplets, composed of a motionless cloud. The droplet
mass is represented, which is reconstructed from the first four size moments: (m0,m1,m2,m3).
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S ¼ 3
5 S5=2

iþ1 � S5=2
i

	 

= S3=2

iþ1 � S3=2
i

	 

[31]. As indicated in Fig. 9(right), the sections with the highest mass are between 0.44 and

0.6, so that S is approximately 0.52. whereas for the EMSM model S ¼ m1=m0 ¼ 0;3487. Since the multi-fluid model consid-
ers the dynamics of ten sections, it better resolves the spray dynamics conditioned by size than the EMSM model that only
describes the droplet mean velocity. Nevertheless, in order to assess the accuracy of the models in terms of mean dynamics
of the droplets, we have performed some studies on the evolution of the mean droplet size through evaporation. First,
Fig. 12(left) displays the evolution of the droplet mass through evaporation of a motionless cloud. It can be concluded that
the multi-fluid model, with ten sections, is not as accurate as the EMSM model. Further comparisons and conclusions can be
found in [37]. In a second study, the evolution of the mean particle size through evaporation, given by both the models, are
compared. It can be seen in Fig. 12(right) that the EMSM model is more accurate than the multi-fluid model in assessing the
dynamical value of m1/m0. That means that, the term of mean drag, and thus the mean droplet velocity is better solved by the
EMSM model than the multi-fluid model. Remarkably enough, even with 40 sections, the multi-fluid model does not give as
good results as the EMSM model. The conclusion to be drawn from the previous elements is that, even if the multi-fluid mod-
el is able to capture the details of the dynamics conditioned on droplet size, the mean dynamics, for droplets below the crit-
ical Stokes number, is very well captured, even better captured, compared to the multi-fluid model. On the other hand, let us
recall that the accuracy of the description of the size distribution function is better in the EMSM model for the evaporation
process [37].

Finally we would like to emphasize the fact that, to solve this problem, only six equations are solved in our model,
whereas three equations per section are solved in the multi-fluid model, for a total of thirty equations, in two space
dimensions.
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Fig. 12. (Left) Evolution of the droplet mass of a motionless cloud through evaporation with a d2 law, and comparison with the analytical solution. (Right)
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The critical question of time efficiency is addressed in a study comparing the computation time required for the EMSM
model and for the multi-fluid model with ten sections, on the configuration described above. Three different computations
have been performed, first on a 50 � 50, then on a 100 � 100 and finally on a 200 � 200 cell grid. For each computation, the
total CPU time is assessed. Moreover, in order to evaluate the relative importance of the phase space and physical space
transport, the time spent in each and every routine is recorded. Table 3 displays the results of the analysis on the total com-
putation time and the relative time spent for the resolution of transport in phase space and physical space, respectively. This
analysis points out the time efficiency of the EMSM model, which is about 4 times faster than the multi-fluid method (MF).
This is a real achievement, given the quality of the comparison of the results. The second result provided is that the relative
importance of phase space transport decreases as the number of cells increases. Moreover, Table 4 compares the number of
variables solved for each operator resolution, for both models. For phase transport, six variables must be solved in the case of
the EMSM model (the four size moments and the two components of the velocity), while nME, the reconstructed NDF is ob-
tained from the moments by an iterative solver. On the other hand, three variables per section, the mass (denoted m3/2 as it is
proportional to the size moment of order 3/2) and the two components of the velocity, are explicitly solved in the case of the
multi-fluid model, which amounts to thirty variables in total.

It gives the ratio between the computation time of the multi-fluid to the computation time of the EMSM model. Table 4
shows that the term requiring most of the CPU time is physical transport. and the multi-fluid (with ten sections) resolution
takes four times as long as the resolution with the EMSM model.

Extrapolating from these results, we can legitimately expect that this ratio will become higher in three dimensions, and
that our new method will be much faster than the multi-fluid model, especially since most of the computation time will be
Table 3
Computation time comparison between the EMSM model and the multi-fluid model (MF). Phase denotes the relative time (in pourcent of the total time) spent
for phase space transport (evaporation and drag). Physical denotes the relative time (in pourcent of the total time). Total denotes the total computation time (in
seconds).

Grid 50 � 50 100 � 100 200 � 200

Phase Physical Total(s) Phase Physical Total(s) Phase Physical Total(s)

EMSM 49.6 % 50.4% 52 43% 57% 318 34.5% 65.5% 2140
MF 56.79% 43.21% 205 47.25% 52.75% 1269 38.39% 61.61% 8461
Ratio 4.5 3.4 3.9 4.4 3.7 4 4.4 3.7 3.9

Table 4
Comparison of the number of variables for the EMSM model and the multi-fluid model (MF), for phase space and physical space transport.
The last column represents the approximate ratio of the computational time spent for the multi-fluid model to the time spent for high order
moment method, in the phase and physical transport respectively.

EMSM MF Ratio time

Phase m0, m1, m2, m3, +nME, u, v = 6 variables + nME 10 � (m3/2,u,v) = 30 variables 4.4
Physical m0, m1, m2, m3, u, v = 6 variables 10 � (m3/2,u,v) = 30 variables 3.6
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devoted to transport in physical space [20]. We also notice that the phase space transport can easily be parallelized. As a
result, our new method proves to be very attractive for three-dimensional configurations.
5.5. Polydisperse evaporating spray in a weakly turbulent free jet configuration

In this third test-case the EMSM model is assessed on a 2-D Cartesian weakly turbulent free jet. A polydisperse spray is
injected in the jet core with the size distribution represented in Fig. 9(left). The simulations are conducted with an academic
solver, coupling the ASPHODELE solver, developed at CORIA by Julien Reveillon and collaborators [43,44], with the Eulerian
solver MUSES3D [8,36] developed at EM2C Laboratory, using the models and the numerical scheme presented in these arti-
cle. The ASPHODELE solver couples an Eulerian description of the gas phase with a Lagrangian description of the spray.

As far as the gas phase is concerned, a 2-D Cartesian low Mach number solver is used. The gas jet is computed on a
400 � 200 uniformly spaced grid. To destabilize the jet, turbulence is injected using the Klein method with 10% fluctuations
[30]. The Reynolds number based on U0,m0 and L0 is 1,000, where U0 is the injection velocity and L0 is the jet width. Dimen-
Fig. 13. Free-jet configuration at time t = 20. Gas vorticity on a 400 � 200 cell grid.

Fig. 14. Total mass density of the polydisperse evaporating spray. (Top) Results at time t = 15. (Bottom) Results at time t = 20. (Left) EMSM model. (Right)
Multi-fluid model with ten sections. The computation is carried out in a 400 � 200 cell grid.



Fig. 15. Comparison of the gas-phase fuel mass fraction. (Top) Results at time t = 15. (Bottom) Results at time t = 20. (Left) EMSM model. (Right) Multi-fluid
model with ten sections. The computation is carried out in a 400 � 200 cell grid.
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sional quantities for illustration purposes will be based on a velocity of U0 = 1 m/s and L0 = 1.5 � 10�2 m, with typical value of
m0 = 1.6 � 10�5 m2/s. Finally we have ql/qg = 580. The gas vorticity is presented in Fig. 13.

As in the previous case studies, in order to validate the developments detailed in this article, two computations have been
performed, one with our model and the second with the multi-fluid model. The efficiency of the multi-fluid model in describ-
ing polydisperse evaporating sprays has been demonstrated in [9,27].

This free jet case is computed with an evaporating spray having an evaporation coefficient K = 0.07. The droplet Stokes
number is 0.275 for the EMSM model, corresponding to a diameter d0 = 75l m, and ranges from St = 0.047 to St = 0.75 for
the multi-fluid model with ten section, corresponding to diameters from d0 = 5 lm to d0 = 85 lm. In order to correctly de-
scribe the evaporation process with the multi-fluid model, ten sections are considered, whereas only one section is consid-
ered in the EMSM model. The computation runs until t = 20. Fig. 14 displays the final mass fields for the spray. The level of
comparison between the two resulting fields is very good. One can nevertheless notice a slight difference, i.e in the multi-
fluid model with ten sections, the spray is less evaporated.

Since our primary interest is in combustion applications, the main objective of evaporating spray modeling is prediction
of the gas-phase fuel mass fraction. Therefore we present comparisons between the gas-phase fuel mass fraction obtained
from the EMSM model and multi-fluid descriptions of the spray. These simulations were once again accomplished using one-
way coupling. This enables to have the exact same gaseous field for computations with both models. Therefore, the compar-
isons are only focused on the spray models. As a consequence, the evaporated fuel is not added as a mass source term in the
gas-phase equations, but is stored in passive scalars for the gas [8]. The two fields are plotted in Fig. 15. These results confirm
the quality of the previous results. The present comparison, by showing clear similarity between the two models, highlights
the efficiency of the EMSM model and the associated numerical schemes in describing polydisperse evaporating sprays. It
has both the ability to cope with exactly zero droplet mass density and model singularities formation as well as the capa-
bility to propose an accurate Eulerian treatment of the polydisperse evaporating spray with a very limited amount of numer-
ical diffusion.

These results are a first significant step towards combustion computations with full two-way coupling or flame dynamics
in 3D such as the simulations presented in [22,20].

6. Conclusion

The aim of this paper was to present a robust scheme which is capable of describing advection and evaporation of high
order moments of a size distribution function for both polydisperse aerosols and sprays. This issue is not only limited to
aerosols and sprays, but impacts every field where successive integer moment methods are involved. We have proposed
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a new algorithm for advection which is compatible with an accurate numerical method in order to capture evaporation, is
able to automatically preserve the moment space (and thus resolves the usual stability and realizability difficulties), and has
second order in space and time on the moments. It can reach comparable levels of accuracy, with a reasonable space discret-
ization, with reference to a Lagrangian simulation, while leading to a much lower level of computational cost compared to
the standard multi-fluid approach and can also be extended naturally to unstructured grids. This scheme has been devised
using some algebra based on moment theory [12]. The moments are not the quantities which are directly transported. In-
stead we use the canonical moments which are much easier to control, and allow the moment vector to stay in the moment
space by transporting them separately. This method paves the way to better computing and predictivity capacities of Eule-
rian models with respect to Lagrangian models.

Let us underline that such a method will be especially dedicated to massively parallel computing. The standard Eulerian
multi-fluid model has been shown to scale almost perfectly on parallel architecture up to a thousand cores in [22] in the
framework of the MUSES3D code developed at EM2C laboratory by de Chaisemartin and Fréret. The EMSM method has been
implemented in MUSES3D as well as in the IFP-C3D code of IFP Energies nouvelles (unstructured grids, moving meshes-ALE)
[26,28,29,1]. The point that should be improved is the size-velocity correlation which is on its way [47] and the method
should be a powerful method in order to capture the dynamics and evaporation of polydisperse sprays on both structured
and unstructured meshes. Let us finally underline that the cost of the method will be strongly reduced compared to what we
have done so far with Eulerian multi-fluid models on 3D configurations since the number of variables we solve for will be
drastically reduced in order to capture polydispersity.

Another point that we should also underline is the fact that we can use a single section as we have done in the present
version of the paper, but the method also allows to use several sections with high order moments for each section in the
same way as it was proposed in [37] for evaporation. The method with a single section will be very precise as long as the
droplet Stokes number range remains below the critical Stokes number associated to droplet crossing. For more inertial
droplets, as presented in [37], we can consider several size intervals corresponding to similar droplet dynamics, the smaller
one being devoted to the droplets with a Stokes number below the critical one. For more inertial droplets, we have to extend
the model to droplet crossing trajectory. This work thus enlightens an interesting perspective for the use of Eulerian models
in the simulation of high Knudsen number polydisperse sprays, taking advantage of the work done in [17,10,21,9,27]. The
ground idea is to use a high order moment method for velocity moments combined with quadrature method of moments
(QMOM) such as recently done in [51] for droplets with Stokes numbers higher than the critical one. Eventually, a major
achievement would be to reach high accuracy in a code, with the dual capability to account for evaporation of sprays, as well
as to take into account droplet trajectory crossings for more inertial droplets, while using the method presented in this con-
tribution for the whole size range below the critical Stokes number where a single velocity has been shown to be accurate.
This is the subject of our current investigations.
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Appendix A

A.1. Fokker–Planck equation and derivation of semi-kinetic equations for aerosols and sprays

In the applications targeted in this paper, the droplets evolve through evaporation and interaction with gas molecules
which results in transport in physical space, drag and potentially Brownian motion. The kinetic equation verified by the
NDF is a Fokker–Planck based equation:
ot f þ oxðvf Þ � oSðRf Þ ¼ bov ðv � ugÞf þ
Q
b

ov f
� �� �

: ð59Þ
The second term of the left hand side represents transport in physical space, whereas the third term accounts for the evaporation
of the droplets. The terms of the right hand side stand for Stokes drag force and Brownian motion due to the interaction of the
droplets with the gas molecules. The evaporation rate, R, is the rate of decrease of the droplet surface,b�1 is the relaxation time of
the droplets, ug is the gas velocity, Q is the matrix of the temporal correlation of accelerations, F = (F1,F2,F3)t due to Brownian
motion in three dimensions, Q ijðtÞ ¼

R1
0 FiðtÞFjðt þ sÞ ds. We introduce dimensionless variables:
t0 ¼ tU0

L0
; x0 ¼ x

L0
; S0 ¼ S

S0
; v 0 ¼ v

U0
; u0g ¼

ug

U0
; f 0 ¼ f

U3
0L3

0S0

N0
; sg ¼

L0

U0
; St ¼ U0b

�1

L0
; K ¼ RL0

S0U0
; r

¼ Qb�1

U2
0

;
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where L0 is a reference length, U0 a reference velocity, S0 the maximum droplet size, N0 a reference number density. The char-
acteristic time of the droplets is sg, St the Stokes number, K the nondimensional evaporation rate, r the velocity variance at
equilibrium of the droplets due to Brownian motion. Written in terms of dimensionless quantities, the Fokker–Planck equa-
tion reads:
o0t f
0 þ v 0 � ox0 f 0 � o0SðKf 0Þ ¼ 1

St
ov 0 ðv 0 � u0gÞf 0 þ rov 0 f 0
h i

: ð60Þ
In the following, for the sake of legibility, we will write the dimensionless quantities without the prime sign. Before inves-
tigating the system of macroscopic partial differential equation on the size moments which is at the heart of the present con-
tribution, let us first take the moments in velocity conditioned on size and differentiate between two cases, depending on the
range of the Stokes number, aerosols for very small Stokes numbers and sprays for moderate Stokes numbers.

A.1.1. Aerosols
We first consider the aerosol dynamics for which no terms in Eq. (60) can be neglected, since the effect of the collision of

the surrounding gas molecules at thermodynamical equilibrium on the aerosol droplets results in a significative velocity var-
iance compared to the slip velocity ug � v. As it is classical in statistical physics, a Langevin equation can be associated to the
previous Fokker–Planck equation, which in the ‘‘viscous limit’’ or for large times compared to b�1 when the inertial term in
the equation of motion can be disregarded, reduces to a spatial diffusion as studied in the original works of Einstein and
Smoluchowski [6]. Since we rather work with NDF and consider the Eq. (60) as the fundamental model of our droplets,
we will obtain the spatially diffusive regime as a singular perturbation using a Chapman-Enskog type of expansion. For
the sake of clarity, let us thus rewrite Eq. (60) as:
ot f þ v � oxf 0 � oSðKf Þ ¼ 1
�

Jðf Þ; Jðf Þ ¼ ov ðv � ugÞf þ rov f
� �

: ð61Þ
The differential operator J(f) appears as a singular perturbation of Eq. (61), in the case �? 0. The NDF is solved using a Chap-
man-Enskog development (see classical references of kinetic theory of gases [24,16,7,46]), that is to say that f is decomposed
into powers of �:
f ¼ f ð0Þ þ �f ð0Þ/ð1Þ þ �2f ð0Þ/ð2Þ þ � � � ; ð62Þ

where each order of � is recursively solved from the lower orders of f. Moreover, we look at various order perturbations
which leave unchanged the macroscopic quantities. In this problem, the sole macroscopic quantity associated to the one-
dimensional subspace of invariant of operator J is the total droplet number

R
Jðf Þ dv ¼ 0, so each /(k) verifies

R
f ð0Þ/ðkÞdv ¼ 0.

The 0th order term of f, f(0), is the solution of J(f(0)) = 0, which is the kernel of operator J. It can be easily proven that f(0) is a
Maxwell–Boltzmann distribution, which reads:
f ð0Þ ¼ nðt; x; SÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞ3detðrÞ

q expð�Ctr�1CÞ; C ¼ v � ug : ð63Þ
The terms of higher order with respect to � in the Chapman-Enskog expansion (62) satisfy differential equations, the right-
hand side of which involve the lower order terms and the kernel of which is associated to the only macroscopic quantity
conserved by the J operator, that is total number density of droplets. In this context, we end up with a self-adjoint compact
differential operator with a one dimensional kernel in the proper Hilbert space, for which a Fredholm alternative guarantees
the resolvability of /(1) and leads to the macroscopic equation of order 0 in �:
otnþ ox � ðnugÞ � oSðKnÞ ¼ 0: ð64Þ
Extending the resolution of Eq. (61) to the first order of � leads to the following equation:
otnþ ox � ðnugÞ � oSðKnÞ ¼ �ox � ðroxn� nðDtugÞÞ; Dtug ¼ otug þ ðug :oxÞug ; ð65Þ
where the flux at first order in � delivers a diffusion term as well as an acceleration term which can be related to a normal-
ized pressure gradient in the framework of an incompressible flow for the gaseous phase and which will not be considered in
the following for the sake of clarity of the exposition. These assumptions allow to write the Smoluchowski [23,6] equation on
the number density conditioned on size:
otnþ ox � ðugnÞ � oSðKnÞ ¼ ox � ðDoxnÞ; ð66Þ
where the diffusion operator reads D = �r and which is valid for time scales large compared to b�1.

A.1.2. Spray
In the case of spray droplets, their Stokes regime (St � 1) is such that their dynamics is mainly governed by the drag term,

and, in most cases, for the considered time scales, they are not influenced by the small scale fluctuations of the Brownian
motion. Thus f satisfies the following kinetic equation, called Williams-Boltzmann equation [49]:
ot f þ v � oxf � oSðKf Þ þ ov
1
St
ðug � vÞf

� �
¼ 0: ð67Þ
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Contrary to the previous case, the drag term is not a singular perturbation in Eq. (67). So an equation on n, the number
density, but also on n u ¼

R
f v dv which is the droplet mean momentum conditioned on size, have to be derived. These

equations are obtained by taking the velocity moment of order 0 and 1 of Eq. (67):
otnþ ox � ðnuÞ � oSðKnÞ ¼ 0; ð68Þ

otðnuÞ þ ox � nu� uþ nPð Þ � oSðKnuÞ � n
ug � u

St
¼ 0; ð69Þ
where n P ¼
R
ðv � uÞ � ðv � uÞf dv is the droplet pressure tensor.

A.2. Order accuracy comparison with the scheme proposed in [48]

The same order accuracy study in Section 5.2 is applied to the scheme designed in [48]. The basic idea is to reconstruct
weights and velocity abscissas through the quadrature method detailed in [17,18]. While a first order scheme is applied to
the abscissas, the weights are reconstructed with 2nd but also more generally pth order schemes. Reconstructing only
weights has the great advantage of ensuring the moments conservation very easily, since the relation between moments
and weights is linear. The authors moreover show, on test cases with a constant velocity field, that the numerical order
reaches the theoretical one. The temporal integration is performed with an explicit second order Runge–Kutta scheme.

It is possible to adapt this scheme for our study, i.e. size moment advection. Like before, only nodes are reconstructed, size
abscissas and velocity values being constant in the cell. Since, for the studied case here, the initial distribution as well as the
velocity profiles are not constant, the reconstruction degenerates to first order, while only weight reconstructions are second
order. Therefore one expects the transport scheme to have a global order which is closer to one than two. This is confirmed
by Table 5 and Fig. 16 and showing the global L1 error computation relative to the analytical solution, and the deduced global
order given by the slope of the straight line obtained by linear regression from the logarithmic error values. Thus, in terms of
pure transport, and for realistic initial profiles, i.e. not assuming that they are constant, the scheme explained in this article is
second order in time and space, whereas the scheme designed in [48] degenerates to a first order scheme.

A.3. Moment vector advection scheme in the context of a non-structured grid

Although the article focuses on a numerical scheme for the advection of a moment vector in a structured mesh, it is pos-
sible, with some adjustments, to extend this scheme to a non-structured mesh based on [15]. This Appendix gives the prin-
ciple of a second order scheme for any type of cell geometry. Let T denote the grid, composed of cells denoted by K, delimited
by the area oK. A face of the cell is denoted by e, and nK;e

��! is the unitary outwards vector though e, as illustrated in Fig 17. If the
moment vector of cell K is MK ¼ ðm0;K ;m1;K ;m2;K ;m3;KÞT , then a first order scheme writes:
Mnþ1
K ¼Mn

K �
Dt
VK

X
e2oK

U Mn
K ;M

n
K;e;nK;e
��!	 


jej ð70Þ
where VK is the volume of cell K, jej is the area of the face e;Mn
K is the value of the vector M in cell K at iteration n, and Mn

K;e is
the value of the vector M of the neighbor cell through the face e. The quantity U Mn

K ;M
n
K;e;nK;e
��!	 


is the numerical flux cor-
responding to the direction of vector nK;e

��!. This flux is based on the constant states in cell K.
For the second order scheme, the vector WK ¼ ðm0;K ; p1;K ; p2;K ; p3;KÞ

T is considered for linear reconstruction:
WðxÞ ¼WK þ ~rWK � x� xKð Þ; ð71Þ
where, WK is a modified average value of the quantities computed in order for the scheme to be conservative, as explained in
the structured grid case, and xK is the center of cell K. The gradient of W, is estimated using a Green formula for a cell of the
dual mesh (see Fig. 17(right)):
Z

eK ~rWK dx ¼
Z

oeK W � nK;e
��! ds ð72Þ
Considering that ~rWK is constant on cell K (because of the linear reconstruction), one gets an estimate of it using a linear
interpolation on the face of eK through the expression:
Table 5
L1 error and order of accuracy of the scheme explained in [48].

Grid size 25 50 100 200 Order

m0 0.5745 0.3181 0.1786 0.0959 0.86
m1 0.6452 0.3822 0.2244 0.1258 0.78
m2 0.6556 0.3931 0.2324 0.1312 0.77
m3 0.6589 0.3969 0.2359 0.1336 0.77
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Fig. 16. Order accuracy study. Error curves with respect to grid refinement in logarithmic scale. The solid line represents the first order scheme, the dotted-
dashed represents the second order scheme, the dashed line represents the scheme of [48]. The symbols represent the logarithm of the error given by the
computation. Left: results for m0; Right: results for m3.
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VK
~rWK ¼

X
e2oK

Z 1

0
ð1� kÞWnðe1Þ þ kWnðe2Þ dk

� �
jejnK;e
��! ¼X

e2oK

1
2

Wnðe1Þ þWnðe2Þð ÞjejnK;e
��! ð73Þ
In order to ensure that Wmin 6WðxÞ 6Wmax for any x in the cell K; ~rWK is limited with the following expression:
~~rWK ¼min 1;
Wmax �WK

max
x2K
j~rWK � ðx� xKÞj

;
WK �Wmin

min
x2K
j~rWK � ðx� xKÞj

0@ 1A~rWK ; ð74Þ
where Wmax ¼maxe2oKðWKe Þ is the maximum value of W in the cell K, and Wmin ¼mine2oKðWKe Þ is the minimum value, WKe

denoting the value of the vector W on the edge of the cell K. Then, the value of We;K , taken at the center of the face e is as-
sessed through:
We;K ¼WK þ ~rWK � ðxe � xKÞ: ð75Þ
The computation of the bar values follows the same logic as in the structured case, that is to say that the mean value in
cell K of the moments expressed as a function of the canonical moments must be equal to the mean value of the moments.

Given this reconstruction with this slope limiter, the maximum principle for the canonical moments is satisfied and the
moment space is preserved throughout the whole cell K.

The temporal integration is performed using an explicit second order Runge–Kutta method. In this context, the solution
reads:
Mnþ1
K ¼ 1

2
Mn

K þ
1
2
fMnþ1

K � Dt
2VK

X
e2oK

U fMnþ1
K ; fMnþ1

K;e ;nK;e
��!	 


jej; ð76Þ
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where
fMnþ1
K ¼Mn

K �
Dt
VK

X
e2oK

U Mn
K ;M

n
K;e;nK;e
��!	 


jej: ð77Þ
As it is classical for non-structured grids, restrictions on the CFL number apply. The maximum possible CFL value enforcing
the scheme properties (positivity of density, of the moments and preservation of the moment space) depends on the consid-
ered mesh geometry. It can be proven that this scheme is second order in time and space since the spatial reconstruction and
time integration are both second order accurate.
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