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We show how mixed finite element methods that satisfy the conditions of finite element
exterior calculus can be used for the horizontal discretisation of dynamical cores for
numerical weather prediction on pseudo-uniform grids. This family of mixed finite ele-
ment methods can be thought of in the numerical weather prediction context as a gener-
alisation of the popular polygonal C-grid finite difference methods. There are a few major
advantages: the mixed finite element methods do not require an orthogonal grid, and they
allow a degree of flexibility that can be exploited to ensure an appropriate ratio between
the velocity and pressure degrees of freedom so as to avoid spurious mode branches in
the numerical dispersion relation. These methods preserve several properties of the C-grid
method when applied to linear barotropic wave propagation, namely: (a) energy conserva-
tion, (b) mass conservation, (c) no spurious pressure modes, and (d) steady geostrophic
modes on the f-plane. We explain how these properties are preserved, and describe two
examples that can be used on pseudo-uniform grids: the recently-developed modified
RTk-Q(k-1) element pairs on quadrilaterals and the BDFM1-P1DG element pair on triangles.
All of these mixed finite element methods have an exact 2:1 ratio of velocity degrees of
freedom to pressure degrees of freedom. Finally we illustrate the properties with some
numerical examples.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

There are a number of groups that have been developing dynamical cores for numerical weather prediction (NWP) and
climate modelling, based on triangular meshes on the sphere or on the dual meshes composed of hexagons together with a
small number of hexagons [22,20,25]. The principal reason for adopting these grids is that they provide a direct addressing
data structure whilst avoiding the polar singularity of the latitude-longitude grid, which introduces a bottleneck to scaling
on massively parallel architectures due to the convergence of meridians. One approach to developing numerical discretisa-
tions on triangular or hexagonal grids is to adapt the staggered Arakawa C-grid finite difference method on quadrilaterals [1]
(used in several currently operational NWP models, such as the UK Met Office Unified Model [15]) since this type of stag-
gering prevents pressure modes (non-constant functions on the pressure grid that have zero numerical gradient). By defining
discrete curl and divergence operators which satisfyr�r� ¼ 0, it is possible to construct C-grid discretisations for horizon-
tal wave propagation which have stationary geostrophic modes on the f-plane [28], a necessary condition for accurate rep-
resentation of geostrophic adjustment processes. These operators can be used to construct energy and enstrophy C-grid
discretisations for the nonlinear rotating shallow-water equations using the vector invariant form [23]. The drawback with
using the C-grid finite difference method on triangles or hexagons instead of quadrilaterals is that the ratio of velocity and
pressure degrees of freedom (DOF) is altered. The quadrilateral C-grid has one pressure DOF stored at the centre of each grid
. All rights reserved.

Cotter).

http://dx.doi.org/10.1016/j.jcp.2012.05.020
mailto:colin.cotter@imperial.ac.uk
http://dx.doi.org/10.1016/j.jcp.2012.05.020
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


Fig. 1. Diagram showing degrees of freedom in (left) BDM1 vector element, (right) augmented BDM1 vector element.
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cell, and two velocity DOF per grid cell (normal velocity is stored at each of the four edges, which are each shared with the
neighbouring cell on the other side of the face).1 This is considered the ideal ratio, since the velocity then has an equal number
of rotational and divergent DOF which are coupled together in the correct way so that there are two inertia-gravity modes (the
inward and outward propagating modes) for each Rossby mode. On the other hand, the triangular C-grid has only 3=2 velocity
DOF per grid cell, and the hexagonal C-grid has 3 velocity DOF per grid cell. This means that the triangular C-grid has four iner-
tia-gravity modes per Rossby mode; the extra spurious inertia-gravity branch has a frequency range that decreases with Rossby
deformation radius, leading to ‘‘checkerboard patterns’’ in the divergence when the deformation radius is small (as it can be in
the ocean, or when there are many vertical layers). The hexagonal C-grid has an equal number of inertia-gravity and Rossby
modes; the extra spurious Rossby mode has very low frequencies and propagates Eastwards on the b-plane ([27]). The effects
of these spurious Rossby modes has not been reported in practice but there are concerns amongst the operational NWP com-
munity that if spurious modes are supported by the grid, then they might be initialised during the data assimilation process or
by physics parameterisations [26]. It may also be the case that the spurious modes lead to spurious spread/lack of spread in
ensemble forecasts. Careful numerical experiments are required to investigate this concern.

The finite element method provides the opportunity to alter the number of degrees of freedom per triangular element to
ameliorate this problem. A number of finite element pairs on triangles have been proposed for geophysical fluid dynamics,
mostly in the ocean modelling community [29,19,18,13,11,17]. In [24], the lowest order Brezzi–Douglas–Marini element pair
[9], known as BDM1, was investigated in the context of the discrete shallow-water equations. The velocity space is piecewise
linear with continuous normal components, and the pressure space is piecewise constant. The natural data structure for the
velocity space stores two normal velocity components on each edge, and hence there are 3 velocity DOF per triangular ele-
ment and 1 pressure DOF. There are too many velocity DOF and hence there will be too many Rossby modes per inertia-grav-
ity mode, just as for the hexagonal C-grid.

In this paper we examine the application of finite element pairs that fall within the frame-work of finite element exterior
calculus [4]. This includes the BDM1-P0 element pair as an example, but we shall be advocating other choices that have a more
favourable balance of velocity and pressure DOFs. The key result of this paper is in showing that discretisations of the linear
rotating shallow water equations on the f-plane constructed using these finite element pairs on arbitrary meshes satisfy a cru-
cial property, namely that geostrophic modes are exactly steady. This is achieved by making use of the discrete Helmholtz
decomposition. As described in [2], existence of such a decomposition requires that the following diagram commutes:
1 Her
conditio
ð1Þ
where PE;PS and PV are suitably chosen projection operators. The same Helmholtz decomposition can then be used to
study the discrete dispersion relations for the numerical discretisation. Within this framework, we then conclude that an
optimal choice is to have dimðSÞ ¼ 2dimðVÞ which, at least in the periodic plane, satisfies necessary conditions for absence
of both spurious inertia-gravity and spurious Rossby waves. This motivates the use of finite element pairs that meet this
criteria, which includes the RT(kþ 1)-Qk family on quadrilaterals and the BDFM1-P1DG pair on triangles.

The rest of this paper is organised as follows. The general framework of mixed finite element methods applied to the
linear rotating shallow-water equations is described in Fig. 5, and the four properties of energy conservation, local mass
e, and in the rest of the paper, we consider compact domains without boundary such as the sphere and rectangles with double periodic boundary
ns.
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conservation, absence of spurious pressure modes and steady geostrophic modes are discussed. In Section 3, two examples
are then introduced that fit into this framework, and numerical results are presented in Section 4. Finally, we give a summary
and outlook in Section 5.

2. Mixed finite elements for geophysical fluid dynamics

In this section we describe how mixed finite elements can be used to build flexible discretisations on pseudouniform
grids. We concentrate on the rotating shallow-water equations which are regarded in the numerical weather prediction
community as being a simplified model that contains many of the issues arising in the horizontal discretisation for dynam-
ical cores. Since in this paper we are concerned with wave propagation properties, we restrict attention to the linearised
equations on the f-plane, b-plane or the sphere. First, we introduce the mixed finite element formulation applied to the linear
rotating shallow-water equations, then we discuss various properties of the formulation that are a requirement for numer-
ical weather prediction applications, namely global energy and local mass conservation, absence of spurious pressure modes
and steady geostrophic states. These properties all rely on exact sequence properties, i.e., div-curl relations, as described in
[4].

2.1. Spatial discretisation of the linear rotating shallow-water equations

In this paper we consider the discretisation of the linear rotating shallow-water equations on a two dimensional surface
X that is embedded in three dimensions (which we restrict to be compact with no boundaries, e.g. the sphere or double peri-
odic x–y plane):
ut þ f u? þ c2rg ¼ 0; gt þr � u ¼ 0; u � n ¼ 0 on @X; ð2Þ
where u ¼ ðu;vÞ is the horizontal velocity, u? ¼ k� u; f is the Coriolis parameter, c2 ¼ gH; g is the gravitational acceleration,
H is the mean layer thickness, and h ¼ Hð1þ gÞ is the layer thickness, k is the normal to the surface X, and r and r� are
appropriate invariant gradient and divergence operators defined on the surface. We form the finite element approximation
by multiplying by time-independent test functions w and /, integrating over the domain, integrating the pressure gradient
term c2rg by parts in the momentum equation, and finally restricting the velocity trial and test functions u and w to a finite
element subspace S � HðdivÞ (where HðdivÞ is the space of square integrable velocity fields whose divergence is also square
integrable), and the elevation trial and test functions g and a to the finite element subspace V � L2 (where L2 is the space of
square integrable functions):
d
dt

Z
X

wh � uhdV þ
Z

X
f wh � uh

� �?
dV � c2

Z
X
r �whghdV ¼ 0; 8wh 2 S; ð3Þ

d
dt

Z
X
ahghdV þ

Z
X
ahr � uhdV ¼ 0; 8ah 2 V : ð4Þ
After discretisation in time, these equations are solved in practise by introducing basis expansions for wh;uh;gh, and ah and
solving the resulting matrix-vector systems for the basis coefficients.

In this framework we restrict the choice of finite element spaces S and V so that
uh 2 S ) r � uh 2 V :
The divergence should map from S onto V, so that for all functions /h 2 V there exists a velocity field uh 2 S withr � uh ¼ /h.
Such spaces are known as ‘‘div-conforming’’. Furthermore we require that there exists a ‘‘streamfunction’’ space E � H1 such
that
wh 2 E ) k�rwh 2 S;
where k is the normal to the surface, and the k�r operator (which we shall write asr?) maps onto the kernel ofr� in S. A
consequence of these properties is that functions in E are continuous, vector fields in S only have continuous normal com-
ponents and functions in V are discontinuous.

2.2. Energy conservation

Global energy conservation for the linearised equations is a requirement of numerical weather prediction models for var-
ious reasons, in particular because it helps to prevent numerical sources of unbalanced fast waves. It is also a precursor to a
energy-conserving discretisation of the nonlinear equations using the vector-invariant formulation. For the mixed finite ele-
ment method, global energy conservation is an immediate consequence of the Galerkin finite element formulation. The con-
served energy of Eq. (2) is
H ¼ 1
2

Z
X
juj2 þ c2g2dV :
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Substituting the solutions uh and gh to Eqs. (3) and (4) and taking the time derivative gives
d
dt

H ¼
Z

X
uh � _uh þ c2gh _ghdV :
Choosing wh ¼ uh and ah ¼ gh in Eqs. (3) and (4) then gives
d
dt

H ¼
Z

X
uh � _uh þ c2gh _ghdV ¼

Z
X
�f uh � uh

� �?|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼0

þ c2r � uhgh � c2ghr � uh|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

dV ¼ 0:
2.3. Local mass conservation

Local mass conservation is a requirement for numerical weather prediction models since it prevents spurious sources and
sinks of mass. For the nonlinear density equation, this can be achieved using a finite volume or discontinuous Galerkin meth-
od. For mixed finite element methods of the type used in this paper applied to the linear equations, consistency and discon-
tinuity of functions in V requires that element indicator functions (i.e., functions that are equal to 1 in one element and 0 in
the others) are contained in V. Selecting the element indicator function for element e as the test function ah in Eq. (4) gives
d
dt

Z
e
ghdV þ

Z
@e

uh � ndS ¼ 0;
where @e is the boundary of element e. Since uh has continuous normal components on element boundaries, this means that
the flux of gh is continuous and hence gh is locally conserved.

2.4. Absence of spurious pressure modes and stability of discrete Poisson equation

The principle reason for using the staggered C-grid for numerical weather prediction is that the collocated A-grid, in
which pressure and both components of velocity are stored at the same grid locations, suffers from a checkerboard pressure
mode which has vanishing numerical gradient when the centred difference approximation is used, despite being oscillatory
in space. This pressure mode rapidly pollutes the numerical solution in the presence of nonlinearity, boundary conditions
and forcing, and can be easily excited by physics subgrid parameterisations or initialisation via data assimilation from noisy
data.

In the context of mixed finite element methods applied to the equation set (2), spurious pressure modes relate to the dis-
cretised gradient D/h 2 S of a function /h 2 V defined by
Z

X
wh � D/hdV ¼ �

Z
X
r �wh/hdV ; 8wh 2 S:
On uniform grids, spurious pressure modes are functions /h from the pressure space V which have zero discretised gradient
D/h even though r/h is non-zero. On unstructured grids or grids with varying edge lengths, spurious pressure modes are
functions which have discretised gradient becoming arbitrarily small as the maximum edge length h0 tends to zero, despite
their actual gradient staying bounded away from zero. Such functions would prevent the numerical solution of Eqs. (2) con-
verging at the optimal rate predicted by approximation theory. We make the following definition of a spurious pressure
mode.

Definition 1 (Spurious pressure modes). A mixed finite element space ðS;VÞ is said to be free of spurious pressure modes if
there exists c2 > 0 independent of h0 such that for all /h 2 V , there exists nonzero vh 2 S satisfying
Z

X
/hr � vhdV P c2k/

hkL2
kvhkHðdivÞ: ð5Þ
Condition (5) is one of two sufficient conditions for numerical stability of the mixed finite element discretisation of the
Poisson equation �r2/ ¼ f given by
Z

X
wh � vhdV ¼ �

Z
X
r �wh/hdV ; 8wh 2 S;Z

X
chr � vhdV ¼

Z
X
chf h; 8ch 2 V :
This discretisation is stable (i.e., small changes in the right-hand side lead to small changes in the solution field in the limit as
h0 tends to zero) if Condition (5) holds, together with the condition that there exists c1 > 0 independent of h0 such that
Z

X
vh � vhdx P c1kvhk2

HðdivÞ ð6Þ
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for all vh 2 S such that
R
r � vh/hdV ¼ 0 for all /h 2 V . As reviewed in [2], Condition (5) is satisfied if it is possible to define a

bounded projection PS : HðdivÞ ! S such that the following diagram commutes:
; ð7Þ
where PV is the usual L2 projection operator. This means that taking any square integrable velocity field u with square inte-
grable divergence, evaluating the divergence and projecting into V produces the same result as projecting u into S using PS

and evaluating the divergence. The projection PS is constructed by applying an L2 projection of normal components on ele-
ment edges, ensuring that u is L2-orthogonal to gradients of functions from V in each element, and ensuring the remaining
degrees of freedom in u are L2-orthogonal to divergence-free functions in each element. We shall explain how this is done for
the two examples described in Section 3. To check that the diagram (7) commutes, it is sufficient to show that
Z

K
chðr � u�r �PSuÞdV ; 8ch 2 V ; u 2 Hðdiv;KÞ
for each element K, since this defines the L2 projection PV into the discontinuous space V. This is easily checked using inte-
gration by parts:
Z

K
chr � udV ¼ �

Z
K
rch � udV þ

Z
@K

chu � ndS;¼ �
Z

K
rch �PSudV þ

Z
@K

chPSu � ndS ¼
Z

K
chr �PSudV
as required.
As also reviewed in [2], Condition (6) is satisfied if vector fields v 2 S with divergence orthogonal to V are in fact diver-

gence-free. This is satisfied by the types of mixed finite element methods considered in this paper since the divergence maps
from S into V, and so the projection of r � vh into V is simply the inclusion. Hence, if the divergence is orthogonal to V, the
divergence must be zero, and so (6) is satisfied.

2.5. Discrete Helmholtz decomposition

Proof of the condition that geostrophic modes are steady requires the construction of a discrete Helmholtz decomposi-
tion. Since condition (S2) holds, the discrete gradient operator D : V ! S, has only constant functions in the kernel. For
any wh 2 E, the curl r? of wh satisfies
Z

r?wh � D/hdV ¼ �
Z
r � r?wh|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼0

/hdV ¼ 0
for any /h 2 V , and hence the curl from E to S and the discrete gradient from V to S map onto orthogonal subspaces of S. This
means that there is a one-to-one mapping between elements of S and E� V , defining a discrete Helmholtz decomposition
uh ¼ r?wh þ D/h þ hh
; u 2 S; wh 2 E; /h 2 V ; hh 2 H; ð8Þ
where H � S is the space of discrete harmonic velocity fields
Hh ¼ uh 2 S : r � uh ¼ 0;
Z

X
uh � r?whdV ¼ 0; 8wh 2 E

� �
:

The dimension of Hh is the same as the dimension of the space H of harmonic velocity fields
H ¼ u 2 HðdivÞ : r � u ¼ 0;
Z

X
uh � r?wdV ¼ 0; 8w 2 H1

� �
;

i.e., velocity fields with vanishing divergence and (weak) curl (in the periodic plane, these harmonic velocity fields are the
constant velocity fields, but there are no harmonic velocity fields on the sphere); however Hh – H in the general case [4]. The
kernel ofr? in E is the subspace of constant functions, and stability results (as described in Section 2.4) imply that the kernel
of D in V is the subspace of constant functions, and hence we can use Eq. (8) to obtain a DOF count for S.
dimðSÞ ¼ ðdimðEÞ � 1Þ þ ðdimðVÞ � 1Þ þ dimðHÞ;
and hence
dimðEÞ ¼ dimðSÞ � dimðVÞ þ 2� dimðHÞ:
For our DOF requirement dimðSÞ ¼ 2dimðVÞ, we obtain
dimðEÞ ¼ dimðVÞ þ 2� dimðHÞ;
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which becomes dimðEÞ ¼ dimðVÞ for the periodic plane and dimðEÞ ¼ dimðVÞ þ 2 for the sphere. If dimðSÞ > 2dimðVÞ, then
dimðEÞ > dimðVÞ þ ð2� dimðHÞÞ and vice versa. This will become important when we examine wave propagation in Section 2.8.

2.6. Vorticity and divergence

The discrete vorticity associated with the velocity uh 2 S is defined as nh 2 E such that
Z
X
chnhdV ¼ �

Z
X
r?ch � uhdV ; 8ch 2 E: ð9Þ
It is possible to obtain u 2 S from the discrete vorticity n 2 E and the divergence dh ¼ r � uh 2 V by solving two elliptic prob-
lems for the streamfunction wh and velocity potential /h. To obtain the streamfunction wh 2 E, we use the Helmholtz decom-
position and rewrite Eq. (9) as
Z

X
chnhdV ¼ �

Z
X
rnh � rwhdV ; 8ch 2 c : c 2 E;

Z
X
cdV ¼ 0

� �
;

Z
X

whdV ¼ 0;
which is the usual finite element discretisation of the Poisson equation for wh. To obtain the vector potential /h requires the
solution of the coupled system
Z

X
ahr � D/hdV ¼

Z
X
ahdhdV ; 8ah 2 a : a 2 V ;

Z
X
adV ¼ 0

� �
;

Z
X

wh � D/hdV ¼ �
Z

X
r �wh/hdV ; 8wh 2 S;

Z
X

/hdV ¼ 0:
This is the mixed finite element approximation to the Poisson equation
r2/ ¼ d:
If the Brezzi conditions are satisfied due to the existence of the bounded projections defined in Section 2.4, the coupled sys-
tem is well-posed.

2.7. Steady geostrophic modes

On the f-plane (planar domain with constant f), geostrophic balanced states satisfying f u? þ c2rg ¼ 0 are steady since
r � u ¼ 0. The remaining solutions of the linear rotating shallow-water equations are fast inertia-gravity waves. In the qua-
si-geostrophic limit (slow, large scale motion), when nonlinear terms and spatially varying f are introduced, these steady
states become slowly-evolving balanced states that characterise large-scale weather systems. It is crucial that a discretisa-
tion gives rise to steady geostrophic states on the f-plane, otherwise when nonlinear terms and spherical geometry are intro-
duced, balanced states will emit noisy inertia-gravity waves that will pollute the numerical solution over timescales that are
much shorter than that required for a weather forecast. To show that mixed finite element methods have steady geostrophic
modes, we follow the approach of [28], namely we aim to show that vanishing divergence implies steady vorticity, then
checking that vanishing divergence and steady vorticity implies steady velocity.

To obtain a geostrophic balanced state corresponding to a given streamfunction wh, we initialise uh and gh as follows:

1. Set uh ¼ r?wh.
2. Set gh from the geostrophic balance relation
c2
Z

X
ahghdV ¼ f

Z
X

DahwhdV ; 8ah 2 V : ð10Þ
Substitution in Eq. (3) then gives
d
dt

Z
X

wh � uhdV ¼ �f
Z

X
wh � rwhdV � c2

Z
X
r �whghdV ;¼ f

Z
X
r �whwhdV � c2

Z
X
r �whghdV ;¼ 0
having noted that r �wh 2 V and so we may choose ah ¼ r �wh in Eq. (10). To show that _gh ¼ 0, first note that uh ¼ r?wh

and hence r � uh ¼ 0. Eq. (4) thus becomes
Z
X
ah _ghdV ¼ 0; 8ah 2 V
and hence _gh ¼ 0. This means that the geostrophic balanced state is steady.
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2.8. Numerical dispersion relations

In this section we consider the numerical wave propagation properties of this family of finite element discretisations, on
the f-plane and on the b-plane in the quasi-geostrophic limit.

Dispersion relations are computed by assuming time-harmonic solutions proportional to e�ixt (a valid assumption if the
equations are invariant under time translations) and studying the resulting eigenvalue problem. For the continuous equa-
tions on the periodic plane, the equations are also invariant under spatial translations and so it may be assumed that the
eigensolutions take the form eiðk�x�xtÞ where k is restricted so that the periodic boundary conditions are satisfied. Substitution
in the equations of motion leads to an algebraic system relating k to x: the dispersion relation. For the linear shallow-water
equations this system is most easily obtained by using the Helmholtz decomposition for u. Numerical dispersion relations for
continuous-time spatial discretisations are also computed by assuming time-harmonic solutions, leading to a discrete eigen-
value problem. If a structured mesh is used on the periodic plane with a set of discrete translation symmetries then eigen-
solutions satisfy the property that translating from one cell to another by Dx results in the discrete eigensolution changing by
a factor of eiðk�Dx, where k is again chosen so that the periodic boundary conditions are satisfied. This can again lead to a
numerical relationship between k and x, obtained for both the f-plane, and the b-plane in the quasi-geostrophic limit, for
the hexagonal C-grid in [27], and for the P1DG-P2 finite element pair in [12].

Here, we discuss the properties of the discrete eigenvalue problem arising from the finite element spaces from the frame-
work of this paper. The discussion makes use of the discrete Helmholtz decomposition. In the f-plane case, substitution of the
discrete Helmholtz decomposition into Eqs. (3) and (4) and assuming time-harmonic solutions yields
� ix
Z

X
rch � rwhdV þ

Z
X

frch � D/hdV ¼ 0; ð11Þ

� ix
Z

X
Dah � D/hdV þ

Z
X

fDah � rwh þ D/h
� �?	 


dV � c2
Z

X
r � DahghdV ¼ 0; ð12Þ

� ix
Z

X
ahghdV þ

Z
X
ahr � D/hdV ¼ 0 ð13Þ
for all test functions ah 2 V ; ch 2 E. Next we define projections PE : V ! E and PV : E! V by
Z
X
rch � r PE/h

� �
dV ¼

Z
X
rch � D/hdV ; 8/h 2 V ; ch 2 E;Z

X
Dah � D PVwh

� �
dV ¼

Z
X

Dah � rwhdV ; 8wh 2 E; ah 2 V :
These projections are uniquely defined since PE uses the standard continuous finite element discretisation of the Laplace
operator which is solvable by the Lax-Milgram theorem when E is restricted to mean zero functions, and PV uses the mixed
finite element discretisation of the Laplace operator using the spaces S and V which is solvable by the Brezzi stability con-
ditions when V is also restricted to mean zero functions.

Using these projections, and the fact that the divergence operator maps from S to V, Eqs. (11)–(13) become
� ixwh þ fPE/h ¼ 0; ð14Þ

� ix
Z

X
Dah � D/hdV þ f

Z
X

Dah � DPVwhdV þ
Z

X
fDah � D/h

� �?
dV � c2

Z
X
r � DahghdV ¼ 0; ð15Þ

� ixgh þr � D/h ¼ 0 ð16Þ
and elimination of wh and use of the definition of D gives
0 ¼ x x2 þ f 2� � Z
X
ahghdV þ

Z
X
ahghdV � c2

Z
X
r � DahghdV

	 

þ if 2

Z
X

Dah � D PV PE/h � /h
� �

dV �x
Z

X
fDah

� D/h
� �?

dV ; ð17Þ
where /h is obtained from Eq. (16). The first row of Eq. (17) is the discretisation of the continuous eigenvalue problem for the
rotating shallow-water equations using the mixed finite element spaces V and S. In this case the eigenvalues of this discrete
eigenvalue problem converge to the eigenvalues of the continuous problem at the optimal rate as described in [5]. However,
there are two extra terms in the bottom row of Eq. (17). The second term converges to zero for smooth /h, and use might be
made of spectral perturbation theory to examine what effect this has on the discrete eigenvalue problem; we have not yet
developed a technique to do this. However, the impact of the first term in the second row is more immediately clear, since it
involves projecting /h from V to E and back to V again. If V has larger dimension than E, which is the case for the lowest order
Raviart–Thomas element on triangles, for example, then this double projection will have a kernel, and ðPEPV � 1Þ/h will not
be small. This leads to spurious branches of inertia-gravity waves, i.e., branches of solutions of the discrete eigenvalue
problem that do not converge to solutions of the continuous eigenvalue problem as h! 0. See Danilov [14] for numerical
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examples illustrating this spurious modes, in particular Figs. 2–4. Hence, dimðVÞ 6 dimðEÞ is a necessary condition for the
absence of spurious divergent inertia-gravity modes.

A similar approach can be taken to studying the b-plane solutions in the quasi-geostrophic limit. Substitution of the dis-
crete Helmholtz decomposition into equations (3) and (4) and assuming time-harmonic solutions yields
Fig. 3.
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Snapshots of the free surface elevation for the circular Kelvin wave testcase obtained at times t ¼ 0;250;0000;500;0000. The numerical scheme
ins the geostrophic balance in the normal direction, as indicated by the lack of radiated inertia-gravity waves.



Fig. 4. Plot of errors from the Rossby convergence test with Rossby number Ro ¼ 1e� 3 and timestep size Dt ¼ 0:007996. The comparison is made after
time p=ð1þ 8p2Þ=2 after which time the wave has travelled halfway around the domain. For large Dx we observe third-order convergence in both l2 and l1
norms; for smaller Dx the error is dominated by either the timestepping error or the OðRo2Þ truncation error in the small Rossby number expansion.
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In the usual quasi-geostrophic limit, the leading order solution is
/h
g ¼ 0;

Z
X

f0Dah � rwh
gdV þ c2

Z
X
r � Dahgh

gdV ¼ 0;
where /h
g ;w

h
g and gh

g are the leading order terms in the low Rossby number expansion of /h;wh and gh respectively. This is the
same as the geostrophic steady state formula for the f-plane, and we have
f0PVwh
g ¼ c2gh

g :
The next order in the expansion of the equations (we do not make use of the next order in the /h equation) is
� ix
Z

X
rch � rwh

gdV þ
Z

X
f0rch � D/h

agdV þ
Z

X
byrch � r?wh

gdV ¼ 0; ð21Þ

� ix
Z

X
ahgh

gdV þ
Z

X
ahr � D/h

agdV ¼ 0: ð22Þ
Again, the embedding property implies that ixgh
g ¼ r � D/h

ag . Since ch is continuous and D/h
ag has continuous normal com-

ponents, we may integrate by parts in the second two terms in Eq. (21), to obtain
0 ¼ �ix
Z

X
rch � rwh

gdV � ix
Z

X

f 2
0

c2 chwh
gdV �

Z
X

bch @

@x
wh

gdV þ ix
Z

X

f 2
0

c2 ch 1� PEPV
� �

wh
gdV :
The first line is the continuous finite element approximation to the Rossby wave eigenvalue problem using the finite element
space E, which has convergent eigenvalues. The second line is a perturbation involving 1� PEPV

� �
wh

g which will not always
be small if PEPV has a non-trivial kernel. This will be the case if dimðVÞ < dimðEÞ, as occurs in the lowest order Brezzi–
Douglas–Marini (BDM1) element on triangles [9] which has P2 as the streamfunction space, and hence
dimðEÞ ¼ dimðVÞ=2þ 2� dimðHÞ. If PEPV has a non-trivial kernel, this will lead to spurious Rossby wave branches of the
numerical dispersion relation. We conclude that dimðVÞ ¼ dimðEÞ is a necessary condition for avoiding both spurious diver-
gent modes and spurious irrotational modes. Note that this is not a necessary condition since it is still possible for PEPV or
PV PE to have non-trivial kernel even in this case. This condition motivates the selection of examples of mixed finite element
spaces given in the next section.

3. Examples

In this section we provide two examples of mixed finite element spaces that are suitable for constructing pseudo-uniform
grids on the sphere, and that have the additional property that there are exactly twice as many velocity degrees of freedom
as pressure degrees of freedom, which prevents the presence of spurious mode branches. The first example is the modified
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Raviart-Thomas element on quadrilaterals, and the second example is the Brezzi–Douglas–Fortin–Marini element on
triangles.

3.1. Modified Raviart–Thomas element on quadrilaterals

There have been several efforts at developing numerical weather prediction models based on a cubed sphere grid (see
[21], for example) in which a grid on the surface of a cube is projected to a sphere. The drawback in using such is grid is that
to obtain a C-grid finite difference method with stationary geostrophic states, the scheme of Thuburn et al. [28] must be
used, which requires the grid to be orthogonal in the sense that lines joining adjacent pressure nodes must cross cell bound-
aries at right-angles. On the cubed sphere, this condition does not produce a pseudo-uniform grid since elements become
clustered near the poles as the resolution is increased. Mixed finite elements provide extra freedom to design numerical
schemes since the orthogonality condition is not a requirement; it is replaced by the conditions on finite element spaces
specified in Section 2.

The lowest-order Raviart–Thomas finite element space is the mixed finite element analogue of the C-grid since the pres-
sure space is piecewise constant functions, and the velocity fields are constrained to be have constant, continuous normal
components on element edge. This means that one normal component of velocity must be stored on each element edge, just
like the C-grid. The velocity fields are constructed on a square 1� 1 reference element bK with coordinates ðn1; n2Þ, on which
the n1-component of velocity û is obtained by linear interpolation between constant values on the n1 ¼ 0 and n1 ¼ 1 edges,
and the n2-component is obtained by linear interpolation between constant values on the n2 ¼ 0 and n2 ¼ 1 edges. In these
coordinates, the divergence is constant. In any physical element K in the mesh, we define a coordinate mapping g : n # x, and
the velocity in K is obtained via the Piola transformation
uðxÞ ¼ 1
det @g

@x

� � @g
@n
� ûðnÞ;
which preserves flux integrals
Z
c

û � ndSðnÞ ¼
Z

gðcÞ
u � ndSðxÞ
guaranteeing continuity of normal fluxes. The divergence satisfies
r � u ¼ 1
det @g

@x

� � r̂ � û;

where r̂ is the divergence in the local coordinates n. If the coordinate transformation is affine (elements are parallelograms),
the determinant of the Jacobian is constant, and so the divergence of the velocity is constant in each element. However, for
general quadrilateral elements (required for the cubed sphere), the coordinate transformation is bilinear, with linear deter-
minant of the Jacobian. The solution, proposed by Boffi and Gastadi [6], is to modify the basis functions by adding a divergent
correction with vanishing normal components on the boundary that makes the divergence constant. The corresponding
streamfunction space E is the usual continuous bilinear space on quadrilaterals, often denoted Q1, and it can easily be shown
that ther? operator maps from E into S in this case. In fact, the Boffi–Gastaldi correction adds a purely divergent component
to the velocity field and so the r? embedding property is not affected.

The RT0-Q0 finite element space has one pressure degree of freedom per quadrilateral element, and one velocity degree of
freedom per edge. Since (for periodic boundary conditions or the sphere) each edge is shared by two elements, this means
that there are exactly twice as many velocity degrees of freedom as pressure degrees of freedom. This modified Raviart–Tho-
mas finite element space satisfies all the conditions that we require in this paper and hence has potential for use on pseudo-
uniform grids for numerical weather prediction.

3.2. Brezzi–Douglas–Fortin–Marini element on triangles

There is an analogous Raviart–Thomas finite element space on triangles which satisfies the required embedding proper-
ties. However, these spaces satisfy 2dimðVÞ > dimðSÞ in general. For example, the lowest order finite element space RT0-P0
has one pressure degree of freedom per element, and one velocity degree of freedom per edge, meaning that
3dimðVÞ ¼ 2dimðSÞ. The BDM1 element on triangles has one pressure degree of freedom per element and two velocity
degrees of freedom per edge, meaning that 3dimðVÞ ¼ dimðSÞ, so 2dimðVÞ < dimðSÞ. However, the little-used lowest order
Brezzi–Douglas–Fortin–Marini (BDFM1) element together with P1DG on triangles satisfies 2dimðVÞ ¼ dimðSÞ. The BDFM
family of elements for quadrilaterals was introduced in [7], and an analogous family for triangles was described in [8]. On
triangles it is infrequently used since the BDM and RT families have less degrees of freedom for the same order of conver-
gence (after suitable post-processing). However, these extra degrees of freedom are useful to us here since they mean that
dimðVÞ ¼ dimðEÞ.

Here we describe the BDFM1 element on triangles as an augmentation of the BDM1 element on triangles, which we recall
first. Given a triangle K, we define PkðKÞ to be the space of kth order polynomials on K. We define the following spaces on K:
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velocity space SðKÞ ¼ fP1ðKÞg2
;

pressure space VðKÞ ¼ P0ðKÞ:
For a triangulation T of the domain X, we define the BDM1 velocity space
S ¼ fv 2 Hðdiv;XÞ : v jK 2 SðKÞ; K 2 Tg;
where Hðdiv;XÞ is the space of vector fields with square integrable divergence, which requires that v has continuous normal
component across triangle edges. The pressure space is
V ¼ fg : gjK 2 VðKÞg
with no continuity requirements across edges.
A convenient set of local nodal basis functions for S is defined by choosing two node points on each triangle edge, each

node located at one of the vertices belonging to that edge: a total of six node points. For example, in the triangle shown in
Fig. 1, on edge e1 there are two node points, one at vertex v3 and one at vertex v2. The basis function associated with edge e1
and vertex v3 is
/1;3 ¼ t2k3;
where t2 is the unit tangent vector to edge e2 and where fkig3
i¼1 are the barycentric coordinates associated with vertices

e1; e2 and e3 respectively. It can easily be checked that /1;3 has normal component equal to 1 at the node point located
at vertex v3 on edge e1, and normal component equal to zero at each of the other node points. The other six basis functions
are constructed in a similar manner.

To increase the number of degrees of freedom in each triangle K in the triangulation T, we define the local BDFM1 spacebSðKÞ by
bSðKÞ ¼ fv 2 P2ðKÞ2 : v � n ¼ 0 on @Kg:
Since all of the vectors in bSðKÞ vanish on the boundary of K, they do not alter the values of the normal components at the
boundary, and so there are no additional continuity constraints. The dimension of P2ðKÞ2 is 12, and there are 9 independent
degrees of freedom which do not vanish on the boundary, which means that dimðbSðKÞÞ ¼ 3.

A convenient set of local nodal basis functions for bS is defined by locating nodes that store the tangential component of
velocity at the centre of each edge. The tangential component of velocity is permitted to be discontinuous and so a different
value of the tangential component will be stored on each side of the edge. The basis function associated with the node at the
centre of edge e1 is
/1 ¼ 4t1k2k3:
It can easily be checked that /1 has vanishing normal component on all edges, tangential component equal to 1 at the centre
of edge e1 and vanishing tangential component on the other two edges. The other two basis functions are constructed in a
similar manner.

The augmented velocity space S on the triangulation T is defined as
S ¼ fv 2 Hðdiv;XÞ : v ¼ v 0 þ v̂ ;v 0jK 2 SðKÞ; v̂jK 2 bSðKÞ; K 2 Tg:
The pressure space V is defined as
V ¼ fg 2 P1ðKÞg
with no continuity requirements. For this mixed element pair the velocity space S has 6 DOF per element, and the pressure
space V has 3 DOF per element, hence there are twice as many velocity DOF as pressure DOF, just as for the C-grid finite
difference method on quadrilaterals.

For our augmented velocity space, it is easy to define the projection operator PS. The projection is computed element by
element and guarantees the continuity of u � n across element edges. The projection on an element K is defined from the
following conditions:
Z

eðiÞ
chðPSu� uÞ � ndS ¼ 0 8ch 2 P1ðeðiÞÞ; 8 edges eðiÞ 2 @K; i ¼ 1;2;3; ð23ÞZ

K
rch � ðPSu� uÞdV ¼ 0 8ch 2 P1ðKÞ; ð24ÞZ

K
r?B � ðPSu� uÞdV ¼ 0; ð25Þ
where B is the cubic ‘‘bubble’’ function (as used in the MINI element [3]). In a triangle K, the cubic bubble function BK is the
unique cubic polynomial which takes the value 1 at the barycentre and 0 on all three edges. The streamfunction space E is
E ¼ fw 2 H1ðXÞ : wjK ¼ w0jK þ aBK ; w0jK 2 P2ðKÞ; a 2 Rg:
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Eq. (23) comprises the BDM1 projection operator, fixing six degrees of freedom. The components of the extra degrees of free-
dom bSðKÞ are not affected since they all satisfy u � n ¼ 0 on @K. The vector field r?B lies inside bSðKÞ since it is quadratic
(being the skew gradient of a cubic function, B) and has vanishing normal component on @K (since B is zero on @K). If we
construct an orthogonal (relative to the L2 inner product) decomposition of bSðKÞ into r?B� eSðKÞ then we see that Eq.
(25) only involves the r?B component, and Eq. (24) only involves the remaining two eSðKÞ components, as
Z

K
rch � r?BdV ¼ �

Z
K
r? � rch|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼0

BdV þ
Z
@K
rch � n B|{z}

¼0

dS;
because B vanishes on @K. The space fv ¼ rch; ch 2 P1ðKÞg is spanned by constant vector fields, and hence Eq. (24) fixes the
two degrees of freedom in eSðKÞ. Bounds on PS can be obtained by following the steps of Brezzi et al. [9], since it simply in-
volves L2 projection onto various moments.

We define the streamfunction space E as the usual Lagrange continuous quadratic space augmented by cubic bubble func-
tions. For any function w 2 E, the curl r? maps into S: r?w 2 S. Furthermore, we may define a projection operator
PE : H1ðXÞ ! HðdivÞ by
PEwðv iÞ ¼ wðv iÞ8verticesv i; i ¼ 1;2;3;Z
ei

PEwdS ¼
Z

ei

wdS;8edgesei i ¼ 1;2;3;Z
K
PEwdV ¼

Z
K

wdV
for each element K. To show that the projections commute with r?, i.e., PSr?w ¼ r?PEw, we check each of the conditions
(23)–(25). Condition (23) becomes
Z

eðiÞ
chr?w � ndS ¼

Z
eðiÞ

chrw � dx;

¼ �
Z

eðiÞ
wrchdxþ ½chw�

vþ
eðiÞ

v�
eðiÞ
;

¼ �
Z

eðiÞ
PEwrchdxþ ½chPEw�

vþ
eðiÞ

v�
eðiÞ
;

¼
Z

eðiÞ
chr?PEw � ndS; 8ch 2 P1ðeðiÞÞ; i ¼ 1;2;3;

ð26Þ
where v�eðiÞ are the two vertices at either end of edge eðiÞ, and having noted that rch is constant for ch 2 P1ðeðiÞÞ. Condition
(24) becomes
Z

K
rch �PSr?wdV ¼

Z
K
rch � r?wdV ;

¼ �
Z

K
chr �r?w|fflfflfflfflffl{zfflfflfflfflffl}

¼0

dV þ
Z
@K

chr?w � ndS;

¼
Z

K
rch � r?PEwdV ; 8ch 2 P1ðKÞ;
where we have used Eq. (26). Finally, condition (25) becomes
Z
K
r?B �PSr?wdV ¼

Z
K
r?B � r?wdV ;

¼ �
Z

K
r2BwdV þ

Z
@K
r?B � n|fflfflfflffl{zfflfflfflffl}
¼0

wdS;

¼ �
Z

K
r2BPEwdV ;

¼
Z

K
r?B � r?PEwdV ;
since r2B is constant in K and B is zero on @K.
Counting global degrees of freedom,
dimðEÞ ¼ Nedge þ Nvert þ Nface ¼ 2Nedge þ C; dimðSÞ ¼ 3Nface þ 2Nedge; dimðVÞ ¼ 3Nface;
where C is the Euler characteristic of the domain X which is equal to 0 for the doubly-periodic domain and equal to 2 on the
sphere. On the sphere there are two extra constraints: namely that the divergence and the vorticity both integrate to zero,
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and so in both cases dimðEÞ þ dimðVÞ ¼ dimðSÞ. Finally, we note that each triangle has three edges which are each shared
with one other triangle, and hence 2Nedge ¼ 3Nface.

4. Numerical results

In this section we illustrate the properties of the BDFM1 finite element space applied to the linear rotating shallow-water
equations. The equations were integrated numerically using the implicit midpoint rule, and the resulting discrete system
was solved by using hybridisation which is a standard technique for solving elliptic problems (see [8] for a detailed descrip-
tion) in which the continuity constraints on the velocity space are dropped, and are instead enforced in the equation by La-
grange multipliers. It becomes possible to eliminate both the velocity and free surface variables from the matrix equation,
leaving a symmetric positive definite system to solve for the Lagrange multipliers. The velocity and free surface variables can
then be reconstructed element-by-element. One of the benefits of this approach is that it can be applied when the Coriolis
term is present, resulting in a fully implicit treatment of this term. In our numerical tests this system was solved using a
direct solver. In the case of BDFM1-P1DG, there are three Lagrange multipliers per element.

In the test cases with variable Coriolis parameter f, a continuous piecewise quadratic representation of f was used.

4.1. Steady states for the f-plane

We verified that the geostrophic states are exactly steady on the f-plane for the BDFM1 finite element space by randomly
generating streamfunction fields w from the streamfunction space S on the same mesh as used for the P1DG-P2 finite element
pair steady state tests in [13], with streamfunction equal to zero on the boundary. This mesh is a planar unstructured mesh
in the x–y plane in a 1� 1 square region. The velocity was initialised by setting u ¼ k�rw where k is the unit normal to the
domain i.e., k = (0,0,1), and g was obtained by solving the discrete elliptic system
Z

X
wh � vhdV þ

Z
X

c2r �whghdV ¼ 0; ð27ÞZ
X
ahr � vdV ¼

Z
X

Dah � f uh
� �?

dV ð28Þ
with c2 ¼ f ¼ 1. We then integrated the equations forward for arbitrary lengths of time and observed that the layer thickness
h and velocity u remained constant up to machine precision. We also conducted the same experiment on an icosehedral
mesh of the unit sphere with c2 ¼ f ¼ 1 (following the ‘‘f-sphere’’ experiment of Thuburn et al. [28]) and obtained the same
result.

4.2. Kelvin waves in a circular basin

Coastal Kelvin waves provide a challenging test since they propagate at the gravity wave speed along the coast but are
geostrophically balanced in the direction normal to the coast. We used the Kelvin wave initial condition for a circular basin
with unit dimensionless radius as proposed in [16], with Ro ¼ 0:1 and Fr ¼ 1. We integrated the equations until 10 dimen-
sionless time units with a time step size Dt ¼ 0:01.

The mesh used for the Kelvin wave calculation is shown in Fig. 2. Some snapshots of the numerical solution are shown in
Fig. 3. There are no spurious gravity waves observed, which means that the BDFM1 discretisation is maintaining geostrophic
balance in the normal direction as well as the Kelvin wave structure.

4.3. Rossby waves

To verify the convergence of the method we compared against the Rossby wave solution with streamfunction
wðx; y; tÞ ¼ sinð2pxÞ sin 2p yþ ctð Þð Þ; c ¼ 2p
1þ 8p2
in a square domain with nondimensional length 1, with nondimensional wave propagation speed c ¼ Ro2, and non-dimen-
sional Coriolis parameter
f ¼ 1þ Roy
Ro
and periodic boundary conditions in the x-direction. This is an exact solution of the Rossby wave equation, but is only an
asymptotic limit solution of the linearised rotating shallow-water equations as Ro! 0, with OðRo2Þ error. This means that
for sufficiently small grid width and time step size we expect the OðRo2Þ error to dominate. The numerical solution was ini-
tialised from this streamfunction following the balanced initialisation approach described in Section 4.1. A plot of the error is
shown in Fig. 4. We observe OðDx3Þ convergence until the error saturates because of the finite Rossby number. We attribute
this third order convergence to the fact that in Section 2.8 the discrete Rossby wave equation was shown to be equal to usual
continuous finite element discretisation of the Rossby wave equation using the space E, plus a perturbation. Since E contains



F
s
v

C.J. Cotter, J. Shipton / Journal of Computational Physics 231 (2012) 7076–7091 7089
all of the continuous piecewise quadratic functions, we would expect third-order convergence provided that the perturba-
tion converges to zero sufficiently fast (although we do not currently have any estimates for the convergence of the
perturbation).

To demonstrate the performance of the numerical scheme on arbitrary manifolds we constructed an unstructured mesh
of a cylinder with unit dimensionless radius and dimensionless height equal to 2. The Coriolis parameter was set to
f ¼ ð1þ RozÞ=Ro and other parameters were kept the same as the planar Rossby wave tests. We call this configuration
the ‘‘b’’-tube since it corresponds to a b-plane that has been wrapped into a cylinder. Some plots of the numerical integration
of this test case are provided in Fig. 5; no unbalanced motions are visible from the plots.

4.4. Solid rotation on the sphere

To investigate the grid imprinting caused by the finite element scheme, we integrated the linear rotating shallow-water
equations on the sphere with initial condition obtained from the streamfunction w ¼ �u0 cos h, where h is the latitude,
u0 ¼ 2pR=ð12 daysÞ, and R ¼ 6:37122� 106 is the radius of the sphere. The rotation rate jXj was 1=ð1 dayÞ, and g ¼ 9:8. This
solution is a steady state solution of the linear equations with varying f because of the cylindrical symmetry; in general we
do not expect numerical discretisations which break this symmetry to preserve the steady state.

In our experiment, we used a level 4 icosahedral mesh (each icosahedron edge being subdivided into 8) of the sphere. The
velocity and free surface elevation were initialised according to the procedure described in Section 4.1. To measure the devi-
ation from a steady state, the free surface elevation after 10 days of simulation with a timestep of 3600 s was subtracted from
the initial condition. Remarkably, as shown in Fig. 6, the errors were almost indistinguishable from round-off error. It turns
out that this is because of the mapping used between functions on the sphere, and functions on the icosahedral mesh with
flat triangular elements used for the numerical integration. The finite element streamfunction wh was initialised according to
wh ¼ w 	 /, where / is the mapping given as follows:
ig. 5. R
urface e
isible fr
/ðx; y; zÞ ¼ R2 � z2

x2 þ y2

 !1=2

x;
R2 � z2

x2 þ y2

 !1=2

y; z

0@ 1A:

This mapping preserves the value of z, and rescales x and y onto the sphere. Hence, we obtain wh ¼ z, which can be repre-
sented exactly in the streamfunction space E. The same mapping is also applied to the finite element representation f h of
the Coriolis parameter f, and we obtain f h ¼ 2jXjz which can also be represented exactly. Following the balanced initialisa-
tion procedure, the finite element free surface elevation field gh is obtained by projecting the mapping g 	 /�1 into the pres-
sure space V, where g is the continuous balanced free surface elevation. Substitution into the velocity equation gives
ossby waves on the ‘‘b-tube’’ initialised from a streamfunction on a cylinder with a coarse unstructured triangle mesh. Colour plots of the free
levation are plotted at non-dimensional times t ¼ 0:79957;19:9892;39:9784;59:9686;79:9568 from left to right. No unbalanced motions are
om the plot.



Fig. 6. Plots showing the exact steady numerical solution obtained using the balanced initialisation procedure. Top left: the free surface elevation field. Top
right: the velocity field, plotted by evaluating the finite element field at vertices and edge midpoints of each triangle. Since only the normal components are
continuous, there are multiple values of these vectors corresponding to the different elements that share those vertices/midpoints. Bottom: Close-up of the
velocity vectors near the equator.

7090 C.J. Cotter, J. Shipton / Journal of Computational Physics 231 (2012) 7076–7091
d
dt

Z
X

wh � uhdV ¼ �
Z

X
f hwh � uh

� �?
dV þ c2

Z
X
r �whghdV ;

½definition of f h;wh and gh� ¼
Z

X
f wh � rwdV þ c2

Z
X
r �whgdV ;

½integration by parts� ¼
Z

X
wh � r f w� c2g|fflfflfflfflffl{zfflfflfflfflffl}

¼0

0@ 1AdV ¼ 0;
where the second step follows sincer �wh 2 V and so we can use the fact that gh is a finite element projection of g in V, and
where in the last step integration by parts was possible since g is continuous and wh has continuous normal components.
5. Summary and outlook

In this paper we described some properties of applying finite element spaces satisfying the div and curl embedding prop-
erties, applied to the rotating linear shallow water equations, in order to illustrate their possible suitability for numerical
weather prediction on quasi-uniform grids. In this context, these methods can be thought of as more flexible extensions
of the mimetic C-grid finite difference method that is currently used in many dynamical cores. This extra flexibility means
that non-orthogonal grids and grids with rapid changes of mesh resolution can be used, and the ratio of pressure and velocity
degrees of freedom can be adjusted to avoid spurious mode branches. We showed that spurious inertia-gravity mode
branches will exist if dimðEÞ < dimðVÞ and spurious Rossby mode branches will exist if dimðVÞ > dimðEÞ. The discrete
Helmholtz decomposition implies that dimðEÞ ¼ dimðSÞ � dimðVÞ þ 2� dimðHÞ where H is the space of harmonic velocity
fields on the chosen domain. This motivates the search for finite element spaces with dimðSÞ ¼ 2dimðVÞ that can be used
on pseudo-uniform grids on the sphere. In Section 3 we gave two low-order examples: the modified RT0-Q0 element pair
for the non-orthogonal cubed sphere, and the BDFM1-P1DG element pair for triangles, the latter of which was illustrated with
some numerical examples in Section 4.

In future work, we shall aim to benchmark the augmented mixed element pair in the context of numerical weather
prediction and ocean modelling. One of the benefits of this pair is that discontinuous Galerkin methods can be used for
the nonlinear continuity equation for the density. These methods are locally conservative, have minimal dispersion and
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diffusion errors, and can be made TVB in combination with appropriate slope limiters as described in [10]. Furthermore, as
described in [30], if one wishes to have tracer transport that is both conservative and consistent, it is necessary use the pres-
sure space for tracers too. This means that tracer transport can (must) also use the discontinuous Galerkin method.

Finally, we note that although the BDFM(k)-PkDG finite element spaces do not have a 2:1 ratio of velocity DOFs to pressure
DOFs, there does exists a family of higher-order versions of the BDFM1 element pair with a 2:1 ratio, obtained by appropri-
ately augmenting the BDMðkÞ spaces (with k > 0 odd) with higher-order components that vanish on element boundaries.
This does not work out so neatly for k > 1 since it is also necessary to augment the PðkÞ space for pressure, to obtain stable
element pairs with twice as many velocity DOF as pressure DOF per triangle. In future work, we shall investigate these high-
er-order element pairs, as well as extensions to tetrahedra in three-dimensions that can be used in unstructured mesh ocean
modelling.
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