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We discuss a phase field method for shape optimization in the context of electromagnetic
wave propagation. The proposed method has the same functional capabilities as the level
set method for shape optimization. The first advantage of the method is the simplicity of
computation, since extra operations such as re-initialization of functions are not required.
The second is compatibility with the topology optimization method due to the similar
domain representation and the sensitivity analysis. Structural shapes are represented by the
phase field function defined in the design domain, and this function is optimized by solving
a time-dependent reaction diffusion equation. The artificial double-well potential function
used in the equation is derived from sensitivity analysis. We study four types of 2D or
2.5D (axisymmetric) optimization problems. Two are the classical problems of photonic
crystal design based on the Bloch theory and photonic crystal wave guide design, and two
are the recent topics of designing dielectric left-handed metamaterials and dielectric ring
resonators.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Geometrical optimization has been studied to solve the problem of what shape is optimal in various problems. Recent
development of optimization enables us to optimize geometry drastically, including topology. In recent studies, these meth-
ods have been used not only to optimize the existing structure but also generate a new shape having a specified function.
These uses of optimization have contributed to the development of pure and applied physics (e.g. [1–10]). The contribution
of geometrical optimization seems to be strongest for electromagnetic wave propagation, since research on finding geometry
having new electromagnetic characteristics is active, as reviewed in [11].

Topology optimization is the most popular geometrical optimization method [12–14]. The basic idea is replacing the
shape optimization problem by a two phase material distribution problem consisting of an original material and an ersatz
material mimicking voids. With this formulation this method can generate holes for the target domain. However, since the
original problem is ill-posed, homogenization is applied and the original problem is represented as a composite material
optimization problem, namely, an optimization problem of a volume fraction of these materials. This representation raises
the further problem of how to obtain clear shapes from the optimal density distribution [13,14].

Recently, the level set method for geometrical optimization [15–18] has been proposed to avoid the drawbacks described
above. In this method, the target configuration is represented as a zero contour of the level set function, and the front moves
along its normal direction according to the Hamilton–Jacobi equation. The moving direction of the front is decided by using
shape sensitivity, which is used in classical shape optimization [19,20] as the velocity field for the Hamilton–Jacobi equation.
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Level set methods allow topological changes (limited to eliminating holes), significantly improving structural performance.
Moreover, this method is free from re-meshing, since the level set function is defined in an Eulerian coordinate system. The
level set method was originally proposed by Osher and Sethian [21–23] as a numerical method for tracking free boundaries
according to the mean curvature motion, and the mathematical background was subsequently clarified by several researchers
[24–26]. The level set method has been applied to many optimization problems (e.g. [27–37]), including electromagnetic
wave propagation.

As with the level set method, the phase field method is capable of handling the motion caused by domain states such as
temperature and the motion caused by the domain shape, such as the mean curvature motion, and so can also be applied
to geometrical optimization. The phase field method was developed as a way to represent the surface dynamics of phase
transition phenomena such as solid–liquid transitions. Research on such physical modeling can be traced back to Cahn and
Hilliard [38] and Allen and Cahn [39]. The mathematical fundamentals for these physical models were constructed by several
researchers [40–42]. In the early stage of this research, contributions to computing actual phase transition phenomena were
made by [43,44]. Outlines of the above history and methodologies can be found in several comprehensive reviews [45–47].
Bourdin and Chambolle [48] were the first to propose applying the phase field method to structural optimization, when it
had initially been used to implement perimeter constraints [49,50]. After that, several useful structural optimization methods
were developed that incorporate the phase field method (e.g. [51–54]).

Another shape optimization technique has been proposed using the phase field method for simulation with a mov-
ing boundary [55,56]. (Hereafter, when “phase field method” is used in the sense of shape optimization, it mentions this
methodology.) This method has the almost same function as in the level set method, meaning it is a shape optimization
based on a moving boundary accepting the topology change. This method has two advantages. The first is that it does not
need to re-initialize the function as needs to be done in the conventional level set method. The second is that it is very
compatible with topology optimization. The domain in the phase field method is represented by a density function, the
same as in the topology optimization. The front motion is decided by the sensitivity with respect to the variable defined
on the domain and not the boundary. Thus, despite the fact that the phase field method is basically a shape optimization
method different from topology optimization, the sensitivity analysis framework developed by topology optimization can be
applied to the phase field method. A disadvantage of the method is the thickness of the front domain corresponding to the
actual boundary of the object. It must have a thickness including several grids to represent smooth motion of the boundary.
This is not a serious problem in a 2D problem but cannot be overlooked in 3D problems.

Since above methods were mainly developed through linear elastic static and dynamic problems, another physical prob-
lem should be solved to confirm the utility of the methods. We choose electromagnetic wave propagation as the second
target physical problem. First, the 2D method is a useful way to analyze a polarized in-plane wave device, especially in
the field of photonics. Thus, the drawback of the phase field method with respect to 3D analysis is not serious. Second,
optimization of the electromagnetic wave device is mainly done by topology optimization as mentioned at the start of the
introduction. The phase field method can easily follow this analysis due to its compatibility with topology optimization.
Moreover, few studies have been reported on using the phase field method to solve the electromagnetic problem.

In this research, we study the phase field method for shape optimization of electromagnetic wave propagation. First,
we review the phase field method for shape optimization proposed in [55]. The structural shape is represented by the
phase field function defined in the design domain containing the optimal configuration. The numerical computation is
performed over the whole domain as the distribution optimization problem of two phase materials, as in conventional
topology optimization. We optimize the phase field function by using a time-dependent reaction diffusion equation called
the Allen–Cahn equation. An artificial double-well potential used in the equation is derived from sensitivity analysis to move
the front in the direction decreasing the objective function. Then Maxwell’s equations are used as the state equations. We
explain the four types of 2D or 2.5D (axisymmetric) optimization problems in this paper. Two are classical topics, photonic
crystal design based on the Bloch theory and photonic crystal wave guide design, and two are recent topics, design of
dielectric left-handed metamaterials and dielectric ring resonators. We perform sensitivity analysis for each problem to
construct the optimization procedure. The numerical results are finally shown for each problem to show the validity of the
proposed method.

2. Phase field method for shape optimization

2.1. Phase field method

We define a phase field function φ(x) over an entire analysis domain to represent the phase of the local points therein,
as shown in Fig. 1. From a physical point of view, the phase field function provides the average phase of the local points.
Consider a closed system composed of two phases, one of which corresponds to the value α of the phase field function
while the other corresponds to the value β (α < β). We represent the boundary of each phase as a smooth function that
interpolates the different values φ, which we term the “diffuse interface”. The Van der Waals free energy of the system is
given by

F (φ) =
∫ (

ε2

2
|∇φ|2 + P (φ)

)
dx, (1)
Ω
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Fig. 1. Examples of the phase field function. (a) A 2D domain represented by the phase field function. (b) A 1D illustration of the phase field function.

where ε > 0 is a coefficient determining the effect of each term. The first term represents the interaction energy term of
the field in mean field theory, and the second term represents a double well potential with the value P ′(α) = P ′(β) = 0.
The double well potential indicates that there are lower free energy values with minima corresponding to each phase.

Next, we consider the time-dependent evolution equation of the phase field function φ. The change of the phase field
function with respect to time is assumed to be linearly dependent upon the direction in which the free energy function is
minimized:

∂φ

∂t
= −K (φ)

δF (φ)

δφ
, (2)

where K (φ) is a variation rate function. Substituting Eq. (1) into Eq. (2), we obtain

∂φ

∂t
= K (φ)

(
ε2∇2φ − P ′(φ)

)
. (3)

Eq. (3) is known as the Allen–Cahn equation [39]. According to this equation, the front moves in its normal direction at
a speed determined by the difference between each minimum of the double well potential P (φ) and the curvature of the
diffuse interface as follows [57–59]:

v = s + 1

t
H + O

(
1

t2

)
, t � 1, (4)

where s is the speed due to the difference between each minimum of the double well potential P (φ), and H is the mean
curvature of the diffuse interface. If the potential has equal minima, the motion is only governed by the mean curvature.

2.2. Domain representation of the target domain in the phase field method for shape optimization

We use a general shape optimization problem to explain the phase field method. Let Ω be the domain that varies during
the optimization process, with the state of the domain Ω represented by some partial differential equations. The boundary
∂Ω of Ω is divided into two boundaries, a boundary ∂ΩD with Dirichlet boundary conditions and a boundary ∂ΩN with
Neumann boundary conditions. The state variable u is calculated based on the state equations that have these boundary
conditions. We introduce the extended design domain D that contains Ω . Here, a set of admissible shapes in D can be
represented as

Uad = {
Ω ⊂ D

∣∣ Ω ∈ R
d}. (5)

Thus, the shape optimization problem for Ω is defined as

minimize
Ω∈Uad

J (Ω), (6)

where J (Ω) is a functional with respect to state variable u whose value depends on the shape of Ω .
We represent the shapes of optimized domains using a phase field function as shown in Fig. 2. The phase field function

φ(x) (0 � φ � 1) is defined in the domain D . We consider a setting where the domain Ω1 (x ∈ D | φ(x) = 1) corresponds
to the optimized shape Ω and the domain Ω0 (x ∈ D | φ(x) = 0) corresponds to D \ Ω . However, this setting is insufficient
because a diffuse interface region exists when the phase field method is used. Let ξ represent the diffuse interface region.
The domain representation of D is then formulated as

φ = 1 ⇐⇒ x ∈ Ω1,

0 < φ < 1 ⇐⇒ x ∈ ξ,

φ = 0 ⇐⇒ x ∈ Ω0, (7)
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Fig. 2. The domain representation by the phase field function.

where

(Ω1 ∪ ξ) ⊃ Ω and (Ω0 ∪ ξ) ⊃ D \ Ω. (8)

That is, the original domain Ω is represented as a subset of the union of Ω1 and ξ . In the above setting, the position of the
boundary ∂Ω is unclear except that it lies in ξ . However, as explained in Section 2, the diffuse interface region becomes
very thin when ε is very small, in which case ξ can be regarded as approximately representing ∂Ω . We can easily pick out
a clear shape in a plot by choosing an arbitrary contour value such as φ = 0.5 in the diffuse interface.

To achieve optimization of Ω in the phase field method, we consider the distribution of a physical property of the target
domain as the design variable and clip the shape of the domain from the physical property distribution. Let us consider a
domain with a phase field function φ defined over it, and the state u is dominated by a PDE having a term with coefficient
A(φ) that is a function of φ. The three states Ω1, Ω0 and ξ are considered in this domain according to Eq. (7). Ω1 is filled
with a material whose physical property is A, and Ω0 is assumed to be filled with a material having a very small one
that mimics a void to avoid singularities in the calculation. In addition, the material in the diffuse interface ξ has a virtual
physical property using an interpolation function E(φ) defined in the range Emin � E(φ) � Emax. Accordingly, we represent
the distribution of the physical property E∗ of the entire domain as

E∗(φ) =
⎧⎨
⎩

Emax, if x ∈ Ω1,

E(φ) (Emin < E(φ) < Emax), if x ∈ ξ,

Emin, if x ∈ Ω0.

(9)

2.3. Evolution of the phase field function

The phase field function evolves with a virtual time t in the interval t1 � t � t2, corresponding to a descent step of the
function in the optimization problem. The evolution equation is formulated as⎧⎪⎨

⎪⎩
∂φ

∂t
= κ∇2φ − P ′(φ) (t1 � t � t2),

∂φ

∂n
= 0 on ∂ D,

(10)

where κ = ε2 is a positive coefficient of the diffusion term and P (φ) is a double well potential. As explained in Section 2,
when the phase field function follows Eq. (10), the diffuse interface moves in a normal direction with the velocity deter-
mined by the difference between the minima of the double well potential. The double well potential P (φ) is determined by
sensitivity analysis to achieve motion in a direction that reduces the value of the objective function. The conditions that the
double well potential P (φ) must satisfy are as follows:

P (0) = 0, P (1) = a J ′(φt1), P ′(0) = P ′(1) = 0 (a > 0), (11)

where J ′(φ) is the sensitivity of the objective function with respect to φ, φt1 is the value of φ at time t1 and a is its
positive coefficient. A sketch of the double well potential is shown in Fig. 3. Since the function evolves in the direction
of the smaller minimum of the double well potential, the objective function can be minimized in the same way as for
conventional steepest-descent methods.

Moreover, since the sensitivity distribution depends on the interpolation function E(φ) in Eq. (9), the boundary motion
of the proposed methodology depends on the interpolation function the same way as with topology optimization.
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Fig. 3. Double well potential.

Note that some methods have been proposed that apply the perimeter minimization of the phase field method to perime-
ter control of topology optimization methods [48,51]. We remark that the primary difference between these methods and
the proposed methodology is in their origin and functions. Since the aforementioned methods came from topology opti-
mization, which updates the density function based on sensitivity analysis, nucleation of holes in the target structure is
possible. Conversely, the proposed methodology aims for the same outcome using the level set method for shape opti-
mization, whose roots are in classical shape optimization based on boundary variation. Thus, there are no hole nucleation
mechanisms in our method. Because of this characteristic, the proposed methodology has an initial dependency unlike the
topology optimization.

3. Phase field method for dielectric domain optimization in electromagnetic wave propagation

3.1. Domain representation

In the phase field method, the shape of the dielectric domain is represented as the distribution of the phase field
function. The optimization is performed by representing the physical property as a function of the phase field function φ.
The relative permittivity over the design domain ε is expressed as the function of the phase field function φ (0 � φ � 1)
using the permittivity of the original dielectric material ε1 and that of air ε0 according to Eq. (9). The optimal shape of the
dielectric domain can then be specified as a distribution in φ. Both ε0 and ε1 are assumed to be isotropic. The interpolation
function used in the phase field interface is decided according to the target problem.

3.2. Equations of state

The 3D vector Helmholtz equations are the equations of state representing resonance-mode wave propagation within the
dielectric domain with relative permittivity ε and the same permeability as that of open space. Assuming a time harmonic
solution with angular frequency ω, we write the Helmholtz equation for the electric field E derived from Maxwell’s equation
as

∇ × (∇ × E) + ε
ω2

c2
E = 0, (12)

where c is the speed of light. Conversely, the Helmholtz equation for the magnetic field H is written as

∇ ×
(

1

ε
∇ × H

)
+ ω2

c2
H = 0. (13)

H and E can be calculated from the following Maxwell–Ampère equation without the current density term:

∇ × H = ε
∂ E

∂t
. (14)

The following boundary conditions are introduced for the domain governed by the above equations depending on the
target problem. We show only the formulations with respect to the electric field are shown here. By replacing E by H , we
can applied them to the magnetic field.

Floquet periodic boundary condition: E = Esrce− jk·rper on Γpe, (15)

First-order absorbing boundary condition: n × (∇ × E) + ikn × (n × E) = 0 on Γab, (16)

First-order absorbing boundary with incident wave: n × (∇ × E) + ikn × (n × E) = −2ikn × (n × E inc), (17)

Perfect electric (magnetic) wall: E × n = 0 on Γpw, (18)

where Esrc is the electric field vector on the source boundary in the periodic boundary condition, k is the wave number
vector with respect to the coordinate system, rper is a vector perpendicular to the periodic boundaries with a magnitude
equal to the distance between them, n is the unit vector normal to the boundary, k is the wave number in free-space and
E inc is the incident electric field vector.
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Fig. 4. An outline of a 2D photonic crystal composed of dielectric columns homogeneous along the z direction and its unit cell. The triangle in the unit cell
represents the Brillouin zone.

3.3. Optimization problems

We now apply the optimization method to designing photonic crystal unit cells, photonic crystal wave guides, dielectric
left-handed metamaterials (LHMs) and dielectric ring resonators.

3.3.1. Design of photonic crystal
Our first case study is designing the unit cell of a 2D photonic crystal [60], which is the classical problem in designing di-

electric devices for electromagnetic wave propagation first discussed in [61]. In this problem, we consider periodic structures
that extend along the z direction as shown in Fig. 4. The shape of a unit cell on the xy plane is designed to prevent light
propagation from all directions in a certain frequency range. We limit the target wave to a transverse-magnetic (TM) wave
with an electric field only in the z direction and a magnetic field only in the xy plane (E = [0,0, Ez]T , H = [Hx, H y,0]T ).
We assume that the square unit cell has the mirror symmetrical shape on the horizontal center line, vertical center line and
diagonal center line. Due to the symmetry, the wave vectors k are considered on only the irreducible Brillouin zone [60]
shown in Fig. 4. The design domain is also set to this zone. That is, the distribution of the dielectric material is optimized
there, and the resulting shape is repeated in other areas of the unit cell.

The photonic band gap is calculated as the gap between the upper and the lower eigenfrequencies of the target order in
every possible k in the irreducible Brillouin zone. The calculation is performed by solving the Helmholtz equation in Eq. (12)
only for Ez as the eigenvalue problem under the Floquet periodic boundary condition in Eq. (15) on 2D domain. We evaluate
the performance of the photonic crystal using the absolute difference between the two dimensionless frequencies formulated
as (ωtarget+1 − ωtarget)d/2πc [1,4], where ωtarget and ωtarget+1 represent the lower and upper angular eigenfrequencies of
the optimized gap and d is the length of the unit cell. (On the other hand, the band gap is evaluated as a relative value by
dividing the gap by the sum of the maximum value of the lower frequency and the minimum value of the upper frequency
in [5].) Thus, we define the objective function for photonic crystal design as maximizing the gap between the eigenvalues
Λ = ω2. The optimization is formulated as the following unconstrained problem:

minimize J1(φ) = −[
min

{
Λtarget+1(φ,k)

} − max
{
Λtarget(φ,k)

}]
. (19)

This objective function contains the effects minimizing the maximum value of the target order eigenvalue and maximizing
the minimum value of the target + 1 order eigenvalue independently of the existence of the gap. Thus, if there is no gap in
the target structure, the optimization decreases the “band crossing” represented as a positive objective function. After the
objective function becomes zero, which means the band crossing is zero, the objective function becomes negative and the
band is generated. Note that the described objective function works for cases where the upper band lies above the lower band for all
k-values, that is, where the target and target + 1 order eigenvalues can be distinguished. If not, numerical techniques are required to
specify these eigenvalues.

3.3.2. Design of photonic crystal wave guide
Second, we study design optimization of the photonic crystal wave guide. The design domain is set to the corner of the

L-shaped photonic crystal wave guide as shown in Fig. 5. This problem was also studied in the early stage of electromag-
netic wave propagation optimization [2]. In this problem, we optimize the distribution of the dielectric material for the
target wave, which is limited to a TM wave as in the first example. The calculation is performed by solving the Helmholtz
equation in Eq. (12) only for Ez as a frequency response problem for the input wave in a 2D domain. For designing photonic
crystal wave guides, we use the integrated time-averaged Poynting vector in the specified domain for the objective func-
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Fig. 5. An outline of a 2D photonic crystal waveguide composed of dielectric columns homogeneous along the z direction.

tion. By summing the Poynting vector corresponding to several frequencies in the optimization, the optimization problem is
formulated as the unconstrained problem

minimize J2(φ) =
i∑

m

Ĵ2i(φ) =
i∑

m

∫
D

C1(x)Re(E i × H̄ i)dx, (20)

where m represents the number of frequencies considered in the optimization, E i and H i are the electric and magnetic
fields corresponding to the i-th input frequencies, C1(x) is a coefficient function denoting the location of the target domain
and the component of the Poynting vector, Re(·) and Im(·) represent respectively the real and imaginary parts of the variable
and the bar expresses the conjugate.

3.3.3. Design of dielectric left-handed metamaterials
As a case study dealing with a recent topic in optimizing electromagnetic wave propagation, we consider the design of

a dielectric 2D LHM with negative permeability studied in [62]. Dielectric LHMs have an advantage over conventional ones
using metallic split-ring resonators or thin wires in terms of avoiding metallic loss and wider effective frequency regions.
The LH behavior can be observed in periodic dielectric media as shown in Fig. 4. A Mie resonance mode occurring at a
certain frequency provides the LH characteristic for periodic media (e.g. [63–65]). In this problem, the wave is a transverse-
electric (TE) wave with a magnetic field only in the z direction and electric field only in the xy plane (E = [Ez, E y,0]T ,
H = [0,0, Hz]T ). We analyze the device with the unit cell model considering periodicity. The Helmholtz equation for the
magnetic field H simplified to a TE wave is solved on the domain as a frequency response problem for a wave incident from
the left. The right side is considered as an output side. We set a first-order absorbing boundary condition to both the input
and output sides. A perfect electric wall is set to the upper and the lower sides to represent the periodicity. To evaluate the
performance of the LHM, we use the following effective permeability [66] formulated by the S-parameters:

μeff = neff Zeff, (21)

where

neff = 1

kd
cos−1

{
1

S21

(
1 − S11

2 + S21
2)}, (22)

Zeff =
√

(1 + S11)2 − S21
2

(1 − S11)2 − S21
2
, (23)

and k is the wave number, d is the length of a unit cell, neff is the effective refractive index and Zeff is the effective
impedance. S11 and S21 are S-parameters formulated as

S11 =
∫
Γin

(E − E inc
1 ) · E inc

1 ds∫
Γin

|E inc
1 |2 ds

, (24)

S21 =
∫
Γout

E · Esc
2 ds∫ |Esc|2 ds

, (25)

Γout 2
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Fig. 6. (a) An outline of a dielectric ring resonator. (b) The analysis and design domain in cylindrical coordinates.

where Γin and Γout are the input and output boundaries of the wave corresponding to ports 1 and 2 respectively, and E inc
1

and Esc
2 are incident and scattering electric fields on the input and output boundaries respectively. The objective function is

formulated to make the real or imaginary part of the effective permeability by minimizing each as follows:

minimize J3(φ) = Re(μeff) or Im(μeff). (26)

3.3.4. Design of dielectric ring resonator
The above three design problems are performed in a 2D domain. As a 2.5D (axisymmetric) design problem, we perform

the cross-sectional design of dielectric ring resonators in a cylindrical coordinate system studied in [67]. The optical modes,
set up in these devices by emissions from input light, form circular continuous closed beams governed by internal reflections
along the boundary of the resonator as shown in Fig. 6(a). The mode shape with the circular electric field distribution is
called a whispering-gallery (WG) mode. This type of resonator has potential applications to low-threshold micro-cavity
lasers and light-matter systems for quantum networking [68–70]. Optical resonators exploiting WG modes have attained
high performance levels such as high quality factor (Q factor), which measures the inverse of the energy decay rate, and
low mode volume, which signifies the spatial confinement of the light [69].

In this problem, TM waves are considered as emissions. We use cylindrical coordinates to model a WG ring resonator
centered on the origin in free space as illustrated in Fig. 6(b). The coordinate system consists of the axial, azimuthal, and
radial coordinates. We treat the vertical cross-sectional device shape in the z–r plane as the design target and obtain the
final axisymmetric form by generating the solid of revolution. The Helmholtz equation for the magnetic field H is solved
as an eigenvalue problem in the cylindrical coordinate system. To suppress spurious modes in the analysis, we introduce a
weak penalty term [71] to yield the following modified equation used in [72]:

∇ ×
(

1

ε
∇ × H

)
− p∇(∇ · H) + ω2

c2
H = 0, (27)

where p is a coefficient. The first term describes perfect magnetic conduction and the latter term first-order absorption on
the boundary. The state variable is the set comprising the time-dependent radial, azimuthal, and axial components of the
magnetic field vector H(r, t). We factorize the azimuthal dependence from the variable to obtain

H(r) = eiMφ
[

Hr(r, z), iHφ(r, z), Hz(r, z)
]T

, (28)

where M is the azimuthal mode order.
The performance criteria in designing a WG ring resonator are the Q factor and mode volume. In calculating the Q factor,

we consider only the radiation loss, for which Qrad is calculated as follows [69,73]:

Qrad = Re( f )

2 Im( f )
. (29)

In the analysis for the domain surrounded by the perfect matched layer (PML) domain, the real part of the frequency
represents the total energy of the domain, whereas the imaginary part represents the rate of energy absorption by the PML
domain, i.e. the radiation loss (Chapter 5 in [74]).

In addition, the mode volume is formulated as [69,73]

Vmode =
∫

D ε|E|2 dx
2

. (30)

max(ε|E| )
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During optimization, we target the following three tasks:

1. Maximizing the Q factor associated with emissions as expressed by Eq. (29).
2. Minimizing the mode volume as expressed by Eq. (30).
3. Specifying the emission wavelength λ = c/Re( f ).

We first fulfill task 3 by introducing the corresponding equality constraint. Assuming normalized eigenmodes H
(
∫

D |H |2 dx = 1) in the eigenfrequency analysis, the total electric energy over the analysis domain equals the square of the
angular eigenfrequency (

∫
D ε|E|2 dx = Re(ω)2) [75,76]. That is, by pre-specifying the emission wavelength and azimuthal

mode order, both numerators in the expressions for the Q factor and mode volume are constant during optimization. Thus,
the objective functions for Task 1, JQ, and Task 2, JV, and the equality constraint h for Task 3 are formulated as

minimize
φ

JQ(φ) = Im( f ), (31)

or

minimize
φ

JV(φ) = −max
(
ε|E|2), (32)

subject to

h(φ) = λ − λ0 = 0, (33)

with λ0 denoting the specified wavelength.

3.4. Sensitivity analysis

The gap of the double well potential P (φ) is set based on sensitivity analysis of the objective function with respect to
φ, which is the function defined on D . Here, we show only the results of the sensitivity analysis and explain the detailed
derivation in Appendix A. The sensitivity of the i-th eigenvalue Λi used in the objective function in Eq. (19) is given by

Λ′
i(φ) = −ε′(φ)

Λi

c2
E i · E i, (34)

where E i is the i-th eigenvector. As explained in Appendix A, the sensitivity of the eigenvalue can be calculated without
adjoint variables.

Note that, when the eigenvalue is repeated, it is not differentiable in the normal sense. In this case, only directional
derivatives can be obtained [77,78].

The sensitivity of the Poynting vector in the specified domain in Eq. (20) is calculated as

Ĵ ′
2(φ) = −ε′(φ)

ω2

c2
E · p, (35)

where p is the adjoint variable calculated from the following adjoint equations:

∫
D

C1 · 1

2
Re

{
v ×

(
− 1

jωμ
∇ × E

)
+ E ×

(
− 1

jωμ
∇ × v

)}
dx

+
∫
D

(∇ × v) · (∇ × p)dx −
∫
D

ε(φ)
ω2

c2
v · p dx −

∫
Γ

n · {v × (∇ × p)
}

ds = 0, (36)

n × ∇ × p + ikn × n × p = 0 on Γab and Γinc. (37)

The sensitivity of the S-parameters used in calculating the effective permeability in Eq. (21) is calculated with

S ′
11(φ) = − 1∫

Γin
|E inc

1 |2 ds
(∇ × H) ·

(
ε′(φ)

ε2
∇ × H

)
, (38)

S ′
12(φ) = −(∇ × p) ·

(
ε′(φ)

ε2
∇ × H

)
, (39)

where p is the adjoint variable calculated from the adjoint equations
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1∫
Γout

|Esc
2 |2 ds

∫
Γout

v · Esc
2 ds +

∫
D

(∇ × v) · (∇ × p)dx −
∫
D

ε(φ)
ω2

c2
v · p dx −

∫
Γ

n · {v × (∇ × p)
}

ds = 0, (40)

n × ∇ × p + ikn × n × p = 0 on Γin and Γout, (41)(
− 1

jωμ
∇ × p

)
× n = 0 on Γpw. (42)

In the case of the ring resonator design problem, the sensitivity of the eigenfrequency is required in Eq. (31), which is
calculated from the sensitivity of the i-th eigenvalue Λi given by

Λ′
i(φ) = −(∇ × H i) ·

(
ε′(φ)

ε2
∇ × H i

)
. (43)

The maximum local energy density used in the objective function in Eq. (32) is calculated by using a function C2(x)

having the value 1 at the maximum energy point and the value 0 at other points:

∂ max(ε|E|2)
∂φ

= ∂C2(x)ε|E i |2
∂φ

= ∂C2(x)μ|H i|2
∂φ

. (44)

Thus, its sensitivity is obtained as

∂ max(ε|E i |2)
∂φ

= −
∫
D

(∇ × p) ·
(

ε′(φ)

ε2
∇ × H i

)
, (45)

where p is the adjoint variable calculated from the following adjoint equations∫
D

C2(x)v · p dx −
∫
D

(∇ × v) ·
(

1

ε
∇ × p

)
dx

−
∫
D

Λi

c2
v · p dx −

∫
D

p(∇ · p)(∇ · v)dx −
∫
Γ

n · {v × (∇ × p)
}

ds = 0, (46)

n × ∇ × p + ikn × n × p = 0 on Γab. (47)

4. Numerical implementation

4.1. Algorithm

Based on the above formulation, the optimization algorithm is constructed as follows.

1. Set the initial value of the phase field function φ expressing the initial shape of domain Ω .
2. Iterate the following procedure until convergence.

(a) Calculate the state variable u and adjoint state p with respect to φn at the n-th iteration by solving the state
equation and the adjoint equation using the finite element method.

(b) Calculate the objective function and constraints.
(c) Calculate the sensitivity of the objective function and prepare the evolution equation for φ.
(d) Calculate the updated value of φ by solving the evolution equation.

3. Obtain the optimal shape of Ω expressed as the optimal distribution of φ.

4.2. Setting the evolution equation

We set the double well potential satisfying Eq. (11). We set it to be

P (φ) = W (x)w(φ) + G(x)g(φ), (48)

where

w(φ) = φ2(1 − φ2), g(φ) = φ3(6φ2 − 15φ + 10
)
, (49)

which are the same as those used in [79]. w(φ) is a function satisfying w(0) = w(1) = w ′(0) = w ′(1) = 0, and g(φ) is
one with g(0) = 0, g(1) = 1 and g′(0) = g′(1) = 0. Sketches of these functions are shown in Fig. 7. W (x) and G(x) are
coefficients of these functions. W (x) determines the height of the wall of the double well potential, which affects the
thickness of the diffuse interface. W (x) is set to be 1 here. The value of G(x) is chosen to be G(x) = a J ′(φt1 ) as explained
4
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Fig. 7. Sketches of functions (a) w and (b) g .

Section 2.3. To avoid complicated parameter settings due to the order difference of J ′(φ) depending on the optimization
problem, we first normalize the sensitivity by dividing by its L2-norm, and the new coefficient η is set as

G(x) = η
J ′(φt1)

‖ J ′(φt1)‖
. (50)

Substituting Eqs. (48)–(50) into Eq. (10), we obtain

∂φ

∂t
= κ∇2φ − ∂

∂φ

(
W (x)w(φ) + G(x)g(φ)

)
= κ∇2φ −

(
1

4
w ′(φ) + η

J ′(φt1)

‖ J ′(φt1)‖
g′(φ)

)

= κ∇2φ + φ(1 − φ)

{
φ − 1

2
− 30η

J ′(φt1)

‖ J ′(φt1)‖
(1 − φ)φ

}
(t1 � t � t2). (51)

4.3. Numerical method for the evolution equation

The finite difference method is used to solve Eq. (51) numerically. We discretize the time derivative term using the
forward Euler scheme and solve the equation with the explicit scheme. The time step �t is restricted by the following
Courant–Friedrichs–Lewy (CFL) condition for stable convergence in the 2D case:

κ

(
�t

(�x)2
+ �t

(�y)2

)
� 1

2
, (52)

where �t > 0 is the time step and �x and �y are space steps in the x and y directions respectively.
Aside from the above CFL condition, we must consider the convergence of the reaction term. Here, the reaction term is

discretized by a so-called semi-implicit scheme [79], in which forward time terms are partly included. In the 2D case, let
φn

i, j be the value of φ at the n-th iteration at the point xi, j . The scheme then leads to the following discretization:

φn+1
i, j − φn

i, j

�t
= κ

(
φn

i−1, j − 2φn
i, j + φn

i+1, j

(�x)2
+ φn

i, j−1 − 2φn
i, j + φn

i, j+1

(�y)2

)

+
{

φn+1
i, j (1 − φn

i, j)r(φ
n
i, j) for r(φn

i, j) � 0,

φn
i, j(1 − φn+1

i, j )r(φn
i, j) for r(φn

i, j) > 0,
(53)

where

r
(
φn

i, j

) = φn
i, j − 1

2
− 30η

J ′(φt1)

‖ J ′(φt1)‖
φn

i, j

(
1 − φn

i, j

)
. (54)

This discretization guarantees that φ remains in the interval 0 � φ � 1 even when the time step is large. Although the
forward time term φn+1 is included in the right side of the above equation, φn+1 can obviously be calculated easily without
solving a linear system, and the computational cost is almost equal to that for the ordinary explicit scheme.

4.4. Handling of equality constraint

Normally, we use the sensitivity in Eq. (50) to choose the double well potential gap that decides the moving direction
of the phase field interface. This way, the constraint is embedded in the objective function using the Lagrange multiplier
method [18]. However, when handling equality constraints like Eq. (33), the solution of Eq. (51) oscillates around the limit
of the equality constraint and does not converge easily to the optimal solution. Here, as a special numerical technique for
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handling the equality constraint, we decide the potential gap based on sequential linear programing (SLP). SLP is one of
the simplest methods that can handle the equality constraint problem directory. Let us consider the minimization of the
objective function J (X) with an equality constraint h(X) = 0 with respect to a design variable vector X = [X1, X2, . . . , Xn].
In SLP, the increment �X of the design variable X is obtained as the solution of the following linear programming problem:

minimize J (X) + ∇ J (X)T �X, (55)

subject to

h(X) + ∇h(X)T �X = 0, (56)

�Xlow � �Xi � �Xup for i = 1, . . . ,n, (57)

where �Xlow and �Xup are the lower and upper bounds of �Xi and the upper suffix T denotes the transpose.
It is only in designing dielectric ring resonators that the above linear programming problem is solved in each optimiza-

tion iteration using the discretized phase field function as the design variable, and the obtained increment is used to form
the double well potential gap. Note that in this method the obtained increment of the phase field function works only
on the phase field interface. Thus, unlike the ordinary SLP method, the equality constraint might not always be satisfied,
although this method worked well in the numerical example of this study.

5. Numerical examples

To confirm the validity of the proposed method, we study the four numerical examples described in Section 3. In all
examples, we regard a material representing a void as air with relative permittivity ε0 = 1. We ignore the frequency de-
pendence of the relative permittivity of the dielectric material. The relative permeabilities of the both air and the dielectric
material are set to 1. The coefficient of normalized sensitivity η in Eq. (50) is set to 20. At each iteration, we perform a
finite element analysis of the state equation and one update of the evolution equation for the phase field function by solving
the finite difference equation of the semi-implicit scheme. The time step �t is set to be 0.9 times the limit of the Courant
number. All optimal configurations are plotted as the distribution of the phase field function of the optimal results. All
finite element analyses are performed with a commercial software, COMSOL Multiphysics, using the second-order Lagrange
element. The design domain is discretized by the square element that is used for both finite element and finite difference
analyses. We set the evaluation point of the phase field function on the center of the square element. Let the grid interval
of the finite difference mesh be l. The diffusion coefficient κ in Eq. (51) is based on the value 0.1 × l2.

5.1. Design of photonic crystal

We perform the first optimization for designing the unit cell of a photonic crystal. One unit cell is modeled with the
finite element method. The length d of the unit cell is set to 1 as a dimensionless parameter. Since we assume mirror
symmetries in the unit cell, we only regard the area shown in Fig. 8 as the design domain, and resulting configurations
are copied to other areas on the unit cell. In the design domain, the relative permittivity is formulated as a function of the
phase field:

ε(φ) =
{

1

ε0
+ φ

(
1

ε1
− 1

ε0

)}−1

. (58)

The relative permittivity ε1 of the dielectric material is set to 8.9 (alumina). The unit cell domain is meshed with 100 × 100
square elements. The diffusion coefficient κ is set to 0.5 × l2. We calculate the wave vector k of the Floquet periodic
boundary condition in Eq. (15) in the triangular irreducible Brillouin zone, with a step size of 0.05. We maximize the band
gap above the first-, second- and third-order eigenfrequencies. The initial shape and the corresponding dispersion diagram
are shown in Fig. 8. The initial shape does not have any band gaps in the depicted frequency range.

Because the first and second eigenvalues and the first, second and third eigenvalues are repeated at points X and M respectively in
the initial shape, we calculated all possible directional derivatives and accepted the best one for updating the density function at the
first iteration to identify target eigenvalues. Fig. 9 shows the convergence histories of the objective functions until convergence
with 50 iterations. The variation of the objective function from negative to positive indicates generation of the band gap
through the first few optimization iterations. Fig. 10(a), (c) and (e) shows the 3 × 3 array of the optimal configuration of
the unit cell of the last iteration for the three cases. Fig. 10(b), (d) and (f) shows the calculated dispersion diagram for the
shape. Each dispersion diagram shows the dimensionless frequency ωd/2πc. The band gaps were certainly obtained above
the specified eigenfrequency, although the optimization started with no band gap shape. The optimal configuration for the
first band gap is nearly 0.2 circle radius, which is the reference shape in [60]. The optimal configurations of the second and
third band gaps were also similar to the one proposed by [4], although the size of each part is different because of the
difference in permittivity of the dielectric material. These comparisons also confirm the validity of the proposed method.
The increases in the objective function after extracting black and white shapes are 0.84%, 0.60% and 1.83%. These values
show the modeling error caused by the shape representation of the field function.
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Fig. 8. (a) Initial shape for the photonic crystal design problem. The inset triangle shows the irreducible Brillouin zone and the design domain. (b) The
dispersion diagram of the initial shape.

Fig. 9. Convergence history of the objective function of the photonic crystal optimization.

Fortunately, our optimization did not encounter any eigenvalue crossing problem [80] around the target band gap order
in any examples studied. However, it could occur depending on the initial shape. One way to overcome this is introducing
a so-called mode tracking technique (e.g. [80]).

5.2. Design of photonic crystal wave guide

For the second optimization we design the shape of the corner part of a photonic crystal wave guide. The analysis domain
is shown in Fig. 11. The dielectric material is located periodically over the domain, and the wave guide is constructed by
removing it according to the intended wave path. The length d of the unit cell is 0.57 μm. The incident wave enters from
the port on the left bottom side, and the output port is set on the upper right side. The design domain is set on the corner
of the wave guide. We use the upper right part of the domain as the reference domain for evaluating the Poynting vector. In
the design domain, we formulate the relative permittivity the same way as in the previous example using Eq. (58). We set
the relative permittivity ε1 of the dielectric material to 11.4 (GaAs). The design domain is meshed with 200 × 200 square
elements. Other domains are meshed with triangular elements. The diffusion coefficient κ is set to 0.2 × l2.

Since the preferred range of the dimensionless frequencies ωd/2πc is from 0.35 to 0.42 for this wave guide [60], those
of the incident waves are set to 0.38, 0.39 and 0.40 as a middle range. We set the electric field of the incident wave to
the constant value 1 on the boundary. The initial shapes are set to two types as shown in Fig. 12 considering the initial
dependency of the proposed method. The first is a periodic dielectric material, which does not propagate the wave. The
second is the reference shape reported in [60], which directs wave propagation in the specified range.

Fig. 13 shows convergence histories of objective functions until 50 iterations. Fig. 14 shows optimal configurations after
41 iterations from the initial shape shown in Fig. 12(a) and 44 iterations from the initial shape shown in Fig. 12(b). The
objective functions calculated from Fig. 14(a) and (b) are −3.35 × 10−16 W and −3.36 × 10−16 W (2.8% improvement from
the reference shape), which are similar results. Although the optimization started from the shape that does not direct
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Fig. 10. Optimal configurations and dispersion diagrams. (a) and (b) First band. (c) and (d) Second band. (e) and (f) Third band.

wave propagation, the optimal shapes that propagate the wave with the specified frequency were obtained in Fig. 14(a).
Fig. 15 shows the electric field distribution for the incident wave with the dimensionless frequency 0.39 in both optimal
configurations. We observed a smooth bending of the electric field in both cases. Fig. 16 shows the integrated Poynting
vector in the reference domain when the dimensionless frequency of the incident wave is from 0.35 to 0.42. Both shapes
achieve slightly higher values than the reference shape in the middle frequency range from 0.38 to 0.40. The changes in the
objective function after extracting black and white shapes are 0.30% and 0.60%.

5.3. Design of dielectric left-handed metamaterial

For the third optimization we design a dielectric LHM. The design target is assumed to be a periodic arrangement of
dielectric poles as in the first example. The analysis domain is set as a square unit cell including the inner square design
domain shown in Fig. 17. The length d of the unit cell is 120 μm. Assuming mirror symmetry along the x and y axes, the
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Fig. 11. Analysis domain for designing the photonic crystal wave guide including the design domain.

Fig. 12. Two initial shapes for designing the photonic crystal wave guide. (a) Periodic dielectric materials. (b) Reference shape.

optimization is performed on the upper right side of the design domain. We set the length of the design domain to 80 μm.
To represent the periodicity along the y direction, we set a perfect electric wall at the top and bottom sides of the domain.
Both sides are given a first-order absorbing boundary with a wave incident on the left side and scattered to the right side
along the x direction. We formulate the relative permittivity in the design domain as

ε(φ) = ε0 + φ(ε1 − ε0). (59)

The relative permittivity ε1 of the dielectric material is set to 100 − i as a virtual material including a little loss for the
numerical stability as done in [62]. The analysis domain is meshed with 120 × 120 square elements. The electric field of the
incident wave is set to the constant value 1 on the boundary. We set the target frequency, which we use as the frequency
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Fig. 13. Convergence history of the objective function of the photonic crystal wave guide optimization.

Fig. 14. Optimal configurations for the photonic crystal wave guide. (a) From initial shapes shown in Fig. 12(a). (b) From initial shapes shown in Fig. 12(b).

Fig. 15. Electric field distribution with the incident wave with dimensionless frequency 0.39. (a) Optimal configuration shown in Fig. 14(a). (b) Optimal
configuration shown in Fig. 14(b).

of the incident wave, to 0.3 THz. The initial shape is set to a 60 μm diameter circle. The diffusion coefficient κ is set to
0.1 × l2. We first minimize the imaginary part of the effective permeability. Then, we optimize the real part.

Fig. 18 shows convergence histories of the real and imaginary part of the effective permeability. We performed 94 and
16 iterations for the imaginary and real part optimizations respectively. Fig. 19 shows the optimal configurations for the
imaginary and real parts of the effective permeability. These results are similar to those obtained in [62]. Fig. 20 shows
the magnetic field distributions and electric field directions in these optimal configurations. Fig. 21 shows the effective
permeability for both configurations obtained by varying the frequency of the input wave from 0.2 THz to 0.5 THz. The
imaginary and real parts of the effective permeability take the negative peaks at the specified frequency. So-called Mie
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Fig. 16. Integrated Poynting vectors in the reference domain of the optimal and reference configurations.

Fig. 17. Analysis model for designing the dielectric LHM including the design domain.

Fig. 18. Convergence history of the effective permeability of the dielectric metamaterial optimization.

resonance modes are observed in Fig. 20(c) and (d), which has a localized distribution of the magnetic field on the center
of the dielectric material. This is the main mode for the dielectric LHM. We see in Fig. 20(a) and (b) that although the hot
spot of the magnetic field is slightly off the center of the dielectric material after we optimize the imaginary part, the hot
spot is exactly in the center after we optimize the real part. The change in the objective function after extracting black and
white shapes is 1.85%.
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Fig. 19. Optimal configurations obtained after optimizing (a) the imaginary part and (b) the real part of the effective permittivity.

Fig. 20. Distribution of magnetic field and arrows indicating the direction of the electric field for the 0.3-THz incident wave. (a) and (c) are results from the
optimal configuration shown in Fig. 19(a). (b) and (d) are results from the optimal configuration shown in Fig. 19.

5.4. Design of dielectric ring resonator

As our final numerical example, we optimize a dielectric ring resonator. To perform iterating numerical optimization
based on the finite element method, we need the target WG eigenmode to be automatically selected from the numerous
resulting eigenmodes. We introduce the two-step analysis proposed in [72] to specify the target mode during the iteration
using the analysis domains shown in Fig. 22. First, we solve the small closed finite-element model composed of a device
surrounded by a perfect magnetic wall, as drawn in Fig. 22(a), to obtain the eigenfrequency of the target WG mode. The
first eigenmode of the model corresponds to the target WG mode. Second, we solve for the original model surrounded by
PML domains, as drawn in Fig. 22(b), specifying the target eigenfrequency obtained by the closed model.
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Fig. 21. Effective permeability of the optimal configurations with an incident wave from 0.2 to 0.5 THz.

Fig. 22. Analysis domain for designing the dielectric ring resonator including the design domain. (a) Closed model only used for finding the frequency
corresponding to the target WG mode. (b) Open model used for the optimization.

In the design domain, the relative permittivity is formulated the same way as in the third example using Eq. (59).
Optimizations are performed with specified TM modes (p = 1, M = 11). The design domain is meshed with 75 × 100
square elements. The other domains are meshed with triangular elements. The diffusion coefficient κ is set to 0.1 × l2.
Assuming horizontal mirror symmetry of the optimal shapes, we only optimize the upper half of the design domain. Thus,
the 3750 design variables are updated during optimization. The medium constituting the resonator is assumed to be GaAlAs
with ε1 = 11.28. We maximize the Q factor and minimize the mode volume V using Eqs. (31) and (32), respectively. The
phase field function is updated by using the SLP based method of Eqs. (55)–(57) to handle the equality constraint directory.
The initial shape for both optimizations is shown in Fig. 23. We chose it for the ease of mode volume optimization since
its initial dependency is stronger than that of the Q factor optimization because Eq. (32) handles the local maximum
energy.

Fig. 24 shows convergence histories of Q factor, mode volume and wavelength. Figs. 25 and 26 show the optimal con-
figuration, the distribution of the electric energy density ε|E|2 and the electric field intensity |E|2 for each optimization.
These figures are shown in the design domain, which is a 1.5 μm × 2 μm box whose left side corresponds to the center
axis. The procedure needed 100 and 30 iterations until convergence. The resulting Q factor, mode volume and wavelength
are Qrad = 6.000 × 107, Vmode = 1.760 × 10−19, λ = 1207 nm and Qrad = 3.943 × 104, Vmode = 4.767 × 10−20, λ = 1200 nm
in Figs. 25 and 26 respectively. These results are similar to those obtained in [67], although the two-step optimization com-
posed of topology optimization and phase field in [67] differs from the proposed framework. In Fig. 25, the optimal shape
has a large smooth convex form covering the electric-field hot spot to reduce radiation losses. In contrast to high-Q-factor
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Fig. 23. Initial shapes for designing the dielectric ring resonator.

Fig. 24. Convergence history of (a) Q factor, (b) mode volume and wavelength of the dielectric ring resonator optimization.

Fig. 25. Optimal shapes obtained by maximizing Qrad. (a) Optimal shape. (b) Electric field intensity |E|2 distribution. (c) Electric energy density ε|E|2
distribution.

shape, the low-mode-volume optimal shape shown in Fig. 26 has a small concave form near the center to enhance the
maximum electric energy. The variations of the Q factor and constraint after extracting black and white shapes are 4.49%
and 0.00%, respectively, in Fig. 25. The variation of the mode volume and constraint after extracting black and white shapes
are 12.15% and 1.67%, respectively, in Fig. 26. Since the center of the optimal configuration is very thin, the density of one
element has a large effect on the performance of the shape with optimal mode volume.

6. Conclusion

We have developed the phase field method for shape optimization in the context of designing dielectric devices for elec-
tromagnetic wave propagation. The proposed method achieves shape optimization using an implicit domain representation
function that accepts the topology change as in the level set method. Comparing with the level set method, our method
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Fig. 26. Optimal shapes obtained by maximizing Vmode. (a) Optimal shape. (b) Electric field intensity |E|2 distribution. (c) Electric energy density ε|E|2
distribution.

has an advantage in terms of simplicity, since it does not require extra re-initializing operations of the domain-representing
function. We performed four successful optimizations using this method.

The most important advantage of the proposed method is its compatibility with the topology optimization. The domain
representation and sensitivity analysis are identical to those of topology optimization in their formulation. Thus, the nu-
merous electromagnetic wave propagation problems studied through topology optimization can be solved with the phase
field method. Since the proposed methodology has initial dependency, the optimization can be more effective by generating
initial shapes with topology optimization as performed in [67].

The drawback of the phase field method is the thickness of the front domain corresponding to the actual boundary of
the object. Thus, errors in shapes and performances are inevitable in the actual and numerical models. We studied the error
in each optimization by depicting black and white shapes in the optimal configuration. The error is under about 5% when
one element is small enough. However, when it is not, the error becomes large as in the last example. In this case, a finer
mesh or adaptive mesh method should be used. However, since the proposed method can generate an optimal shape from
a very different one, we can say it has enough performance as the optimization methodology.
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Appendix A. Sensitivity analysis

We derive the objective functions with respect to the phase field function based on [81]. We use coefficients A and B to
represent the Helmholtz equations in general form with respect to the electric field E and the magnetic field H :

∇ × (A∇ × u) + B
ω2

c2
u = 0, (A.1)

where u = E , A = 1 and B = ε for the electric field representation and u = H , A = 1
ε and B = 1 for the magnetic field

representation. The weak form of this equation on the domain D and its boundary Γ are represented as

a(u, v) − ω2b(u, v) − c(u, v) = 0, (A.2)

where

a(u, v) =
∫
D

(∇ × v) · (A∇ × u)dx, (A.3)

b(u, v) =
∫
D

B
1

c2
v · u dx, (A.4)

c(u, v) =
∫
Γ

n · {v × (∇ × u)
}

ds, (A.5)

and v is the test function. When the wave excitation with frequency ω exists, the state equation is solved deterministi-
cally with respect to the variable u. However, when the eigenfrequency ω is calculated without any wave excitation, the
above equation is solved as an eigenvalue problem. In that case, ω2 and u represent the eigenvalue and the eigenmode
respectively.
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First, we consider the deterministic problems with wave excitation. The general objective function is defined as the
functional on the domain D:

J (φ) =
∫
D

j(u)dx. (A.6)

The derivative of this function in the direction θ is then

〈
J ′(φ), θ

〉 = ∫
D

j′(u)
〈
u′(φ), θ

〉
dx =

∫
D

j′(u)v dx, (A.7)

where v = 〈u′(φ), θ〉. Using the state equation and the objective function, and considering the test function of the state
equation as the adjoint variable p, the Lagrangian is

L(φ, u, p) =
∫

j(u)dx + a(u, p) − ω2b(u, p) + c(u, p). (A.8)

Using this, the derivative of the objective function can be expressed as〈
J ′(φ), θ

〉 = 〈
L′(φ), θ

〉
=

〈
∂L

∂φ
(φ, u, p), θ

〉
+

〈
∂L

∂u
(φ, u, p),

〈
u′(φ), θ

〉〉

=
〈
∂L

∂φ
(φ, u, p), θ

〉
+

〈
∂L

∂u
(φ, u, p), v

〉
. (A.9)

Consider the case where the second term is zero. The second term is〈
∂L

∂u
, v

〉
=

∫
j′(u)v dx + a(v, p) − ω2b(v, p) − c(v, p) = 0. (A.10)

The second term of Eq. (A.9) can be ignored when the adjoint state p satisfies the above adjoint equation. On the other
hand, replacing the test function v by the adjoint variable p, the derivative of Eq. (A.2) with respect to φ in the θ direction
is

a(v, p) − ω2b(v, p) − c(v, p) +
∫
D

(∇ × p) · (A′(φ)∇ × u
)
θ dx −

∫
D

B ′(φ)
ω2

c2
p · uθ dx = 0. (A.11)

Substituting Eq. (A.11) into Eq. (A.10), we obtain∫
j′(u)v dx =

∫
D

(∇ × p) · (A′(φ)∇ × u
)
θ dx −

∫
D

B ′(φ)
ω2

c2
p · uθ dx. (A.12)

Substituting Eq. (A.12) into Eq. (A.7), the derivative of the objective function is

J ′(φ) = (∇ × p) · (A′(φ)∇ × u
) − B ′(φ)

ω2

c2
p · u. (A.13)

Substituting the objective function in Eq. (20), u = E , A = 1 and B = ε into Eqs. (A.13) and (A.10), we obtain Eqs. (35)
and (36). When we use the sensitivity of the S-parameter to the magnetic field H in the objective function in Eq. (26), we
use A = 1

ε and B = 1. When the objective function is S12, we directly obtain Eqs. (39) and (40) by using Eq. (A.13) and
substituting Eq. (25) into Eq. (A.10). On the other hand, when the objective function is S11, we obtain an equation similar to
the state equation (13) with the boundary condition in Eqs. (16)–(18) obtained by substituting Eq. (24) into Eq. (A.10). This
equation represents the response for the incident wave E inc/

∫
Γin

|E inc
1 |2 ds on the boundary Γin. The result is calculated by

multiplying 1/
∫
Γin

|E inc
1 |2 ds by the state variable. Thus, the sensitivity in Eq. (38) is obtained without calculating the adjoint

variable.
Next, we consider the eigenvalue problem without any wave excitation. When the state equation (A.2) is solved to obtain

the i-th-order eigenvalue Λi = ω2
i and eigenmode ui , and the objective function is Λi , we define the Lagrangian considering

the test function of the state equation as the adjoint variable p:

L(φ, ui, p) = Λi + a(ui, p) − Λib(ui, p) − c(ui, p). (A.14)

The derivative of L is obtained the same way as with Eq. (A.9). Here, the second term that should become zero is
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〈
∂L

∂ui
, v

〉
= 〈

Λ′
i(ui), v

〉(
1 − b(ui, p)

) + a(v, p) − Λib(v, p) − c(v, p) = 0, (A.15)

where v = 〈u′
i(φ), θ〉. Here, when v = p = ui , the right side of the above equation becomes zero. Thus, the optimization of

the eigenvalue is self-adjoint. However, the derivative of the eigenvalue in Eq. (A.2) is

a(v, p) − Λib(v, p) − c(v, p) − 〈
Λ′

i(φ), θ
〉
b(ui, p)

+
∫
D

(∇ × p) · (A′(φ)∇ × ui
)
θ dx −

∫
D

B ′(φ)
Λi

c2
p · uiθ dx = 0. (A.16)

Substituting p = ui into the above equation, the sensitivity of the eigenvalue is obtained as

Λ′
i(φ) = (∇ × ui) · (A′(φ)∇ × ui

) − B ′(φ)
Λi

c2
ui · ui . (A.17)

Substituting ui = E i , A = 1, and B = ε and ui = H i , A = 1
ε and B = 1 into Eq. (A.17), the sensitivities in Eqs. (34) and (43)

are obtained respectively. Note that when designing the dielectric ring resonator, the operator c(u, v) in Eq. (A.2) is replaced
by

∫
D p(∇ · p)(∇ · v)dx + ∫

Γ
n · {v × (∇ × u)}ds in the derivation. However, the same result is obtained since these terms

do not depend on the phase field function φ.
We represent the objective function as an eigenmode as follows:

J (φ) =
∫
D

j(ui)dx. (A.18)

The derivative of this function in the θ direction is then

〈
J ′(φ), θ

〉 = ∫
D

j′(ui)
〈
u′

i(φ), θ
〉
x dx =

∫
D

j′(ui)v dx. (A.19)

The Lagrangian is defined considering the test function of the state equation as the adjoint variable p as follows:

L(φ, ui, p) = J (φ) + a(ui, p) − Λib(ui, p) − c(ui, p). (A.20)

The derivative of L is obtained the same way as with Eq. (A.9). Here, the second term that should become zero is〈
∂L

∂ui
, v

〉
=

∫
j′(ui)v dx − 〈

Λ′
i(ui), v

〉
b(ui, p) + a(v, p) − Λib(v, p) − c(v, p) = 0. (A.21)

The term 〈Λ′
i(ui), v〉 becomes zero from the eigenvalue definition. Thus, the above equation is simplified as follows:∫

j′(ui)v dx + a(v, p) − Λib(v, p) − c(v, p) = 0. (A.22)

When the adjoint state p satisfies the above adjoint equation, the second term of Eq. (A.9) can be ignored. Substituting
Eq. (A.16) into Eq. (A.21), we obtain the following equation:∫

j′(ui)v dx − b(ui, p)

{∫
D

(∇ × ui) · (A′(φ)∇ × ui
)
θ dx −

∫
D

B ′(φ)
Λi

c2
ui · uiθ dx

}

+
∫
D

(∇ × p) · (A′(φ)∇ × ui
)
θ dx −

∫
D

B ′(φ)
Λi

c2
p · uiθ dx = 0. (A.23)

Substituting Eq. (A.23) into Eq. (A.19), the derivative of the objective function is

J ′(φ) = −b(ui, p)

{
(∇ × ui) · (A′(φ)∇ × ui

) − B ′(φ)
Λi

c2
ui · ui

}

+ (∇ × ui) · (A′(φ)∇ × p
) − B ′(φ)

Λi

c2
ui · p. (A.24)

Substituting the objective function in Eq. (32), ui = H i , A = 1
ε and B = 1 into Eq. (A.24) and Eq. (A.22) and replacing the

operator c(u, v) by
∫

p(∇ · p)(∇ · v)dx + ∫
n · {v × (∇ × u)}ds, we obtain Eqs. (45) and (46).
D Γ
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