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analysis and convergence results do not require regularity assumptions of the model 
problems. Numerical results are given to support our theoretical findings.
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1. Introduction

Fractional partial differential equations (FPDEs) have found many impressive applications in lots of fields, such as finance, 
phase transitions, stratified materials, anomalous diffusions (see [25] and references therein). To solve them, both analytical 
and numerical methods are used in the literature. The analytical methods like the Fourier transform method, the Laplace 
transform method and the Mellin transform method have been developed to seek closed-form analytical solutions [29]. 
Since such closed-form analytical solutions are unavailable in most cases, extensive researches have already been carried 
out on the development of numerical methods for fractional partial differential equations like finite difference methods (see 
e.g., [4,8,14,22,23,34,36]), finite element methods (see e.g., [9,10,19]), and spectral methods [15,17].

Let � be a polyhedral domain in Rd , we consider the space fractional partial differential equations (SFPDEs): find u(x)
such that (see [11])

−
∫

Sd−1

D2α
z u(x) M̃(z)dz + cu(x) = f (x), x ∈ �, (1.1)

u|Rd\� = 0, (1.2)

where 1/2 < α ≤ 1, c ≥ 0, f is a source term, Sd−1 = {z ∈ Rd; ||z||2 = 1}, M̃(z) is a probability density function on Sd−1, 
|| · ||2 denotes the standard Euclidean norm, and D2α

z , which will be given later, denotes the directional derivative of order 
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2α in the direction of the unit vector z. Here we assume M̃ is symmetric about origin, i.e., M̃(z) = M̃(z′) if z, z′ ∈ Sd−1

satisfy z + z′ = 0, which means that the considered problem is a symmetric one.
One special case of (1.1) is

−
d∑

i=1

(pi−∞D2α
xi

+ qi xi D2α∞ )u + cu = f (1.3)

and pi, qi ≥ 0 satisfying pi = qi and 
∑d

i=1(pi +qi) = 1, where −∞ D2α
xi

, xi D2α∞ denote Riemann–Liouville fractional derivatives. 
Actually, (1.3) can be obtained from (1.1) by taking M̃ = ∑d

i=1 piδ(z − ei) +qiδ(z + ei), where ei is the ith column of identity 
matrix in Rd×d and δ the Dirac function on Sd−1. The corresponding time-dependent equation of (1.1) can be used to 
describe a general super-diffusion process (see [20]), which is an appropriate extension from one dimensional problem

∂u

∂t
− (p−∞D2α

x + qx D2α∞ )u + cu = f . (1.4)

As to the super-diffusion, please refer to [24] for details.
One of the greatest challenges for numerically solving SFPDEs is how to reduce the computation costs. Due to the non-

local properties of fractional differential operators, numerical methods for linear SFPDEs tend to yield the linear equations 
Ax = b with the following characteristics: (1) the coefficient matrix A is dense or full; (2) the condition number of A in-
creases fast, as the mesh becomes fine. Reducing the computation costs for SFPDEs is harder than doing it for the integer 
order PDEs. Some methods have already been designed to overcome this difficulty, such as alternating-direction implicit 
methods (ADI) [23,39,40], and iterative methods [16,27,28,30,40–43].

Iterative methods seem to be efficient tools for solving SFPDEs. Actually two issues in this situation need to be concerned 
for efficiency: one is to do the matrix–vector multiplications efficiently, and the other is to find good preconditioners. As to 
the first issue, some literatures are contributed: in [38], with the notice of Toeplitz-like structure of the coefficient matrix, 
the matrix–vector multiplications are done with O (N log N) complexity by using a fast Fourier transform (FFT) [5,6]. This 
technique of “matrix–vector multiplication” has been widely used to improve the efficiency of iterative methods for the 
SFPDEs [16,28,40–43]. As regards the second issue, some literatures should be listed as follows: the first relevant paper may 
be [2] in which a multilevel preconditioner of fractional power was put forward; in [16], the authors propose preconditioners 
constructed by some banded matrices of fixed bandwidth; in [42], the authors present a preconditioner by some symmetric 
positive Toeplitz matrices; moreover a new preconditioner is designed in [13] through some circulant matrices.

It is known that multigrid methods are optimal iterative procedures, which have been widely used for integer order PDEs 
(see e.g., [3,35]). In recent years, some researchers begin to investigate multigrid methods for solving SFPDEs. For instance, 
in [46], Zhou and Wu apply the multigrid method to solve one dimensional steady SFPDEs, and in [28], the authors consider 
the V-cycle multigrid method for solving corresponding time-dependent problems. But till now, no satisfactory convergence 
results have been obtained for the multigrid methods for solving SFPDEs. Actually, in [28], the authors only conduct the 
theoretical analysis for the two-level multi-grid method, and Zhou and Wu in [46] get the convergence results only under 
the assumption that the adjoint problem has sufficiently smooth solution.

In this paper, we introduce a V-cycle multigrid method with one smoothing step on each level to solve linear algebraic 
systems resulting from the finite element approximations of the SFPDEs (1.1). It is shown that our V-cycle multigrid methods 
are optimal, which means the convergence rates are independent of the mesh size and mesh level. Moreover, our theoretical 
analysis and the convergence results in this paper do not require any regularity assumptions of the model problems. To the 
best of our knowledge, this paper is a first attempt to give a rigorous theoretical analysis for the V-cycle multigrid methods 
for the finite element approximations of SFPDEs in any dimensions.

This paper is also the first work to design the fast solver for the SFPDE (1.1) with M being a continuous function. Among 
the current numerical methods for SFPDEs, most of them are for one dimensional problems and for some special high 
dimensional problems like (1.3), and only a few are for more general problems like (1.1). Actually, only [11,31] study the 
numerical methods for (1.1): in [11], the authors consider the finite element approximation for (1.1) and in [31], the author 
studies the corresponding time-dependent case.

In the rest of the paper, without loss of generality, we restrict ourselves to the case d = 2, namely, we consider the 
problem (1.1) in R2. For � ⊂R

2, denote by L2(�) the space of all measurable functions v on � satisfying 
∫
�
(v(x))2dx < ∞, 

and by C∞
0 (�) the space of infinitely differentiable functions with compact support in �. Set

(v, w)� =
∫
�

v wdxdy, ||v||� = (v, v)
1/2
� ,

and they are abbreviated as (v, w) and ||v|| respectively if � =R
2.

To simplify our statement, we make a convention here: function v defined on a domain � ⊂ R
2 also denotes its extension 

on R2 which extends v by zero outside �. The constant C with or without subscript will denote a generic positive constant 
which may take on different values in different places. These constants will always be independent of the mesh sizes and 
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levels in the multigrid methods. Following [44], we also use symbols �, � and ≈ in this paper. That a1 � b1, a2 � b2 and 
a3 ≈ b3 means that a1 ≤ C1b1, a2 ≥ C2b2 and C3b3 ≤ a3 ≤ C ′

3b3 for some positives C1, C2, C3 and C ′
3.

The rest of the paper is organized as follows: for the sake of completeness, in Section 2.1, we give our model problem 
and the corresponding finite element discretization. In Section 3, we present our V-cycle multigrid methods and introduce 
some basic theoretical results. In Section 4, we shall prove the convergence of the multigrid methods. In Section 5, the 
numerical results are given to verify our theoretical findings.

2. The model problem and its discretization

In this section, we shall present the SFPDE in R2, and then introduce its variational formulation and corresponding finite 
element discretization.

2.1. The model problem

We first introduce the concepts of directional integrals and derivatives [11].

Definition 2.1. (See [11].) Let μ > 0, θ ∈ R. The μth order fractional integral in the direction z = (cos θ, sin θ) is defined by

D−μ
z v(x, y) := D−μ

θ v(x, y) =
∞∫

0

τμ−1

	(μ)
v(x − τ cos θ, y − τ sin θ)dτ ,

where 	 is the Gamma function.

Definition 2.2. (See [11].) Let n be a positive integer, and θ ∈ R. The nth order derivative in the direction of z = (cos θ, sin θ)

is given by

Dn
θ v(x, y) :=

(
cos θ

∂

∂x
+ sin θ

∂

∂ y

)n

v(x, y).

Definition 2.3. (See [11].) Let μ > 0, θ ∈ R. Let n be the integer such that n − 1 ≤ μ < n, and define σ = n − μ. Then the 
μth order directional derivative in the direction of z = (cos θ, sin θ) is defined by

Dμ
z v(x, y) := Dμ

θ v(x, y) = Dn
θ D−σ

θ v(x, y).

If v is viewed as a function in x, Dμ
0 , Dμ

π are just the left and the right Riemann–Liouville derivatives (see e.g., [29,33]). 
The fractional derivative operators in problem (1.1) are related to the following fractional derivative:

Definition 2.4. (See [11].) Assume that v : R2 → R, μ > 0. The μth order fractional derivative with respect to the measure 
M̃ is defined as

Dμ

M̃
v(x, y) :=

∫
S1

Dμ
θ v(x, y)M̃(θ)dθ,

where S1 = [0 + ν, 2π + ν) with a suitable scalar ν , and M̃(θ), which satisfies 
∫ 2π+ν
ν M̃(θ)dθ = 1, is a periodic function 

with period 2π . Without loss of generality, we take ν = 0.

Remark 2.5. It is easy to check that

D2
M̃

v(x, y) = a11
∂2 v

∂x2
+ a22

∂2 v

∂ y2
+ 2a12

∂2 v

∂x∂ y
,

where a11 = ∫ 2π
0 cos2 θ M̃(θ)dθ , a22 = ∫ 2π

0 sin2 θ M̃(θ)dθ and a12 = 2 
∫ 2π

0 cos θ sin θ M̃(θ)dθ (see also [21]). Denote by L a 
positive integer, let θk ∈ [0, 2π) and pk ≥ 0, k = 1, 2, . . . , L, satisfy 

∑L
k=1 pk = 1. Assume that Dμ

θ v is continuous in θ , and 
then

Dμ

M̃
v =

L∑
pk Dμ

θk
v(x, y), (2.1)
k=1
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if

M̃ =
L∑

k=1

pkδ(θ − θk), (2.2)

where δ denotes Dirac delta function.

For u :R2 →R, define differential operator Lα in R2 as

Lαu = −D2α
M̃

u + cu.

Denote by � a polygonal domain in R2, set 1/2 < α ≤ 1, and then the model problem of this paper is to find u : �̄ → R

such that{
Lαu = f , in �,

u = 0, on ∂�,
(2.3)

where f is a source term and we assume that M̃(θ) satisfies M̃(θ) = M̃(θ + π) for θ ∈R, i.e., (2.3) is a symmetric problem. 
Here, we recall the convection made in Section 1, i.e., u also denotes its extension by zero outside �.

2.2. The variational formulation

Definition 2.6. (See [37].) Let μ ≥ 0, F v(ξ1, ξ2) be the Fourier transform of v(x, y), |ξ | =
√

ξ2
1 + ξ2

2 . Define norm

||v||Hμ(R2) :=
∥∥∥(1 + |ξ |2)μ/2|F v|

∥∥∥ .

Let Hμ(R2) := {v ∈ L2(R2); ||v||Hμ(R2) < ∞}.

For v ∈ Hμ
0 (�), we also denote ||v||Hμ(R2) by ||v||Hμ(�) . It is known that Hμ(R2) is a Hilbert space equipped with the 

inner product (v, w)Hμ(R2) = ((1 +|ξ |2)μF v, Fw) and C∞
0 (R2) is dense in Hμ(R2) (see [37]). Now, we introduce and prove 

some useful results for the fractional directional derivatives of functions in C∞
0 (R2).

Lemma 2.7. (See [11].) For μ ∈R, v ∈ C∞
0 (R2), the Fourier transform of Dμ

θ v is

F(Dμ
θ v(x, y)) = (2π i(ξ1 cos θ + ξ2 sin θ))μ F v(ξ1, ξ2).

Lemma 2.8. For μ, s > 0, v, w ∈ C∞
0 (R2),

(Dμ
θ v, w) = (Dμ−s

θ v, Ds
θ+π w),

where D0
θ v = v.

Proof. By Lemma 2.7 and (A.1), we know FDμ
θ v = (2π i(ξ1 cos θ + ξ2 sin θ))μF v , FDμ−s

θ v = (2π i(ξ1 cos θ + ξ2 sin θ))μ−s ×
F v , FDs

θ+π w = (2π i(ξ1 cos θ + ξ2 sin θ))sFw . Then the lemma follows by Parseval’s formula. �
We define the weak fractional directional derivative according to the relation (Dμ

θ v, w) = (v, Dμ
θ+π w) which is a special 

case of Lemma 2.8 (see also Lemma 5.7 in [11]). Let L1
loc(R

2) denote the set of locally integrable functions on R2.

Definition 2.9. Given μ > 0, θ ∈ R, let v ∈ L2(R2). If there is a function vμ ∈ L1
loc(R

2) such that

(v, Dμ
θ+π w) = (vμ, w), ∀w ∈ C∞

0 (R2),

then vμ is called the weak μth order derivative in the direction of θ for v , denoted by Dμ
θ v , i.e., vμ = Dμ

θ v .

It is not hard to see that the weak derivative Dμ
θ v is unique if it exists and that the weak derivative coincides with 

the correspondent derivative defined in Definition 2.3 if v ∈ C∞
0 (R2). In the following, we use Dμ

θ v to denote the weak 
derivative.



378 Y. Jiang, X. Xu / Journal of Computational Physics 302 (2015) 374–392
Lemma 2.10. Let μ > 0. For any v ∈ Hμ(R2), 0 < s ≤ μ and θ ∈ R, the weak derivative Ds
θ v exists and satisfies

FDs
θ v(ξ1, ξ2) = (2π iξ1 cos θ + 2π iξ2 sin θ)sF v(ξ1, ξ2), (2.4)

||Ds
θ v|| ≤ C ||v||Hμ(R2). (2.5)

Proof. Since C∞
0 (R2) is dense in Hμ(R2), there is a Cauchy sequence {vn} ⊂ C∞

0 (R2) such that ||vn − v||Hμ(R2) → 0 as 
n → 0. By Lemma 2.7, FDs

θ w = (2π i(ξ1 cos θ + ξ2 sin θ))s Fw for w ∈ C∞
0 (R2). By Parseval’s formula and 0 < s ≤ μ, it is 

not hard to see that ||Ds
θ w|| = ||FDs

θ w|| ≤ C ||w||Hμ(R2) . So we have ||Ds
θ vn − Ds

θ vm|| ≤ C ||vn − vm||Hμ(R2) and {Ds
θ vn} is 

a Cauchy sequence in L2(R2). Denote by vs ∈ L2(R2) the function to which {Ds
θ vn} converges to. By Lemma 2.8, for any 

w ∈ C∞
0 (R2),

(vn, Ds
θ+π w) = (Ds

θ vn, w).

Taking the limits of both sides of the above equation, we obtain (v, Ds
θ+π w) = (vs, w) for any w ∈ C∞

0 (R2). So Ds
θ v exists 

and is equal to vs by Definition 2.9. By the definition of Fourier transform for the function in L2(R2),

((2π i(ξ1 cos θ + ξ2 sin θ))s F vn, v) = (Ds
θ vn,F v), ∀v ∈ C∞

0 (R2). (2.6)

Because

||vn − v||Hμ(R2) =
∥∥∥(1 + |ξ |2)μ/2|F(vn − v)|

∥∥∥ → 0,

it is not hard to see that (2π i(ξ1 cos θ + ξ2 sin θ))s F vn converges to (2π i(ξ1 cos θ + ξ2 sin θ))s F v in L2(R2). Taking the 
limits of both sides of (2.6), we obtain (2.4) by the definition of Fourier transform. (2.5) can be proved directly by (2.4) and 
Parseval’s formula. �
Lemma 2.11. Let μ, s > 0 with μ − s > 0. For v, w ∈ Hμ+s(R2),

(Dμ
θ v, Dμ

θ+π w) = (Dμ+s
θ v, Dμ−s

θ+π w). (2.7)

Proof. For any g ∈ Hμ+s(R2), ||Dμ
θ g||, ||Dμ

θ+π g||, ||Dμ+s
θ g|| and ||Dμ−s

θ+π g|| are all bounded by C ||g||Hμ(R2) by Lemma 2.10. 
Then the lemma follows from that C∞

0 (R2) is dense in Hμ+s(R2) and Lemma 2.8. �
Assume that the solution u of (2.3) is sufficiently smooth (indeed, that u ∈ C2(�) with u|∂� = 0 is sufficient). Multiplying 

both sides of the first equation in (2.3) with v ∈ C∞
0 (�) and integrating over � give

−
2π∫
0

(D2α
θ u, v)M̃(θ)dθ + c(u, v) = ( f , v), v ∈ C∞

0 (�). (2.8)

Then employing the relation (D1
θ w, v) = (w, D1

θ+π v) (it can be obtained by integration by parts), we obtain

−
2π∫
0

(D2α−1
θ u, D1

θ+π v)M̃(θ)dθ + c(u, v) = ( f , v), v ∈ C∞
0 (�). (2.9)

Then by Lemma 2.11, (2.9) can be rewritten as

−
2π∫
0

(Dα
θ u, Dα

θ+π v)M̃(θ)dθ + c(u, v) = ( f , v), v ∈ C∞
0 (�). (2.10)

Define the bilinear form B̃ : Hα
0 (�) × Hα

0 (�) →R as

B̃(u, v) := −
2π∫
0

(Dα
θ u, Dα

θ+π v)M̃(θ)dθ + c(u, v).

By M̃(θ) = M̃(θ + π) for θ ∈ R, it is easy to check that B̃(v, w) is a symmetric bilinear form, i.e., B̃(v, w) = B̃(w, v) for 
v, w ∈ Hα

0 (�). The variational formulation of (2.3) is (see also [11]) to find u ∈ Hα
0 (�) such that

B̃(u, v) = ( f , v), ∀v ∈ Hα(�). (2.11)
0
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Now we restate some results in [11] about the solvability of (2.11). To guarantee the existence of the solution of (2.11), we 
assume that M̃(θ) satisfies

2π∫
0

|(ξ1 cos θ + ξ2 sin θ)|2α M̃(θ)dθ ≥ C0|ξ |2α (2.12)

for some positive C0. Denote κ = 2π(ξ1 cos θ + ξ2 sin θ), E1 = {(ξ1, ξ2) ∈ R
2 : ξ1 cos θ + ξ2 sin θ > 0}, E2 = {(ξ1, ξ2) ∈ R

2 :
ξ1 cos θ + ξ2 sin θ < 0}, and then by Parseval’s formula and Lemma 2.10,

(Dα
θ v, Dα

θ+π v) = ((iκ)2αF v,F v)

= (|κ |2α exp(iαsign(κ)π)F v,F v)

= (|κ |2α exp(iαπ)F v,F v)E1 + (|κ |2α exp(−iαπ)F v,F v)E2

= cos(απ)(|κ |2αF v,F v) + i sin(απ)
(
(|κ |2αF v,F v)E1 − (|κ |2αF v,F v)E2

)
= cos(απ)(|κ |2αF v,F v), (2.13)

where for the computation of complex please refer to Appendix A, in the fourth equality, the Euler formula exp(iκ) =
cos(κ) + i sin(κ) is used, the last equality is because the value of (Dα

θ v, Dα
θ+π v) is real and the imaginary part must be zero 

(for another proof for this equality please refer to [11]). Furthermore, by (2.12) and cos(απ) < 0

−
2π∫
0

(Dα
θ v, Dα

θ+π v)M̃(θ)dθ = − cos(απ)

∫∫
R2

|F v|2
2π∫
0

|2π(ξ1 cos θ + ξ2 sin θ)|2α M̃(θ)dθ dξ1dξ2

�
∫∫
R2

|ξ |2α|F v|2dξ1dξ2. (2.14)

For v ∈ Hα
0 (�), we have

||v||2 ≤ C1||Dα
θ v||2 = C1

∫∫
R2

|2π(ξ1 cos θ + ξ2 sin θ)|2α |F v|2dξ1dξ2

≤ C2

∫∫
R2

|ξ |2α|F v|2dξ1dξ2, (2.15)

where the inequality is by (5.15) in [11] and the equality is by Parseval’s formula. With the combination of (2.14) and (2.15), 
we conclude under condition (2.12),

B̃(v, v) � ||v||2Hα(�), v ∈ Hα
0 (�). (2.16)

By Lemma 2.10, it is easy to verify that

B̃(v, w) � ||v||Hα(�)||w||Hα(�), v, w ∈ Hα
0 (�). (2.17)

By (2.16) and (2.17), using Lax–Milgram theorem, we know that the variational formulation (2.11) admits a unique solution 
in Hα

0 (�).

Remark 2.12. Condition (2.12) is easily satisfied. For example, it holds if M̃(θ) is non-zero over a connected set of positive 
measure in [0, 2π) (see [11]), and it holds when M̃(θ) = ∑4

k=1 pkδ(θ − kπ/2)dθ , with pk ≥ 0 and p1 + p3 = 1, p2 + p4 = 1.

2.3. The finite element discretization

Let Th be a quasi-uniform triangulation of � such that �̄ = ∪K∈Th K , hK be the maximal length of the sides of the 
triangle K and h = maxK∈Th hK . Denote by P1(K ) the space of polynomials of degree less than or equal to 1 on K ∈ Th . 
Define the finite dimensional subspace V associated with Th as

V := {v ∈ C0(�̄) : v|∂� = 0, v|K ∈ P1(K ),∀K ∈ Th}.
It is known that V ⊂ H1

0(�) ⊂ Hα
0 (�). Thus the finite element approximation for (2.11) is to find ũh ∈ V such that

B̃(ũh, v) = ( f , v), ∀v ∈ V . (2.18)

The error estimates for the finite element solution ũh are given in [11].
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Although our V -cycle methods and the relevant theories are valid for (2.18), the finite element discretization (2.18) can 
not be implemented when M̃ is a continuous function. So in practical applications, we use the finite element discretization 
(2.18) only when the probability density function M̃ has the discrete form as that in (2.2). For the case that M̃(θ) is the 
continuous function, we propose an alternative finite element discretization instead of (2.18). Here we focus on the case 
M̃(θ) ∈ C1[0, 2π ] is a periodic function with period 2π to present our alternative finite element problem: find ūh ∈ V such 
that

B̄(ūh, v) = ( f , v), ∀v ∈ V , (2.19)

where B̄(·,·) is an approximation of B̃(·,·). Exactly in this paper, set a positive integer Nθ such that Nθ is a multiple of 4. 
Letting θi = 2iπ/Nθ , i = 0, . . . , Nθ − 1 and denoting �θ = 2π/Nθ , we use the compound trapezoid formula to get B̄(·,·), i.e., 
for v, w ∈ V ,

B̃(v, w) = −
2π∫
0

(Dα
θ v, Dα

θ+π w)M̃(θ)dθ + c(v, w)

≈ −�θ

Nθ−1∑
i=0

(Dα
θi

v, Dα
θi+π w)M̃(θi) + c(v, w) := B̄(v, w).

The fact that M̃(θ) = M̃(θ + π) and Nθ is a multiple of 4 guarantees that B̄(v, w) is a symmetric bilinear form as well, i.e., 
B̄(v, w) = B̄(w, v). By Parseval’s formula, we have

(Dα
θ v, Dα

θ+π w)� = ((2π iξ1 cos θ + 2π iξ2 sin θ)2αF v,Fw)

≤ C ||v||Hα(�)||w||Hα(�) (2.20)

and

d

dθ
(Dα

θ v, Dα
θ+π w)� = 2α

(
(−2π iξ1 sin θ + 2π iξ2 cos θ)(2π iξ1 cos θ + 2π iξ2 sin θ)2α−1F v,Fw

)
≤ C ||v||Hα(�)||w||Hα(�). (2.21)

By the error formula for the compound trapezoid formula, it is easy to verify that

|B̃(v, w) − B̄(v, w)| ≤ C�θ ||v||Hα(�)||w||Hα(�), (2.22)

where C is a positive constant independent of θ, v and w . Combining (2.22) with (2.16) and (2.17), we know for sufficiently 
small �θ ,

B̄(v, v) � ||v||2Hα(�), v ∈ Hα
0 (�),

B̄(v, w) � ||v||Hα(�)||w||Hα(�), v, w ∈ Hα
0 (�). (2.23)

By Lax–Milgram theorem, (2.19) has a unique solution. The first Strang lemma (see [7]) holds here, i.e.,

||u − ūh||Hα(�) � C inf
v∈V

{
||u − v||Hα(�) + sup

w∈V

|B(v, w) − B̄(v, w)|
||w||Hα(�)

}
� C inf

v∈V

{||u − v||Hα(�) + �θ ||v||Hα(�)

}
.

Finally, the finite element approximation of (2.3) is unitedly presented as: find uh ∈ V such that

B(uh, v) = ( f , v), ∀v ∈ V , (2.24)

where B(v, w) = − 
∫ 2π

0 (Dα
θ v, Dα

θ+π w)M(θ)dθ + c(v, w), M(θ) is equal to a discrete form 
∑L

k=1 pkδ(θ − θk) such that B(·,·)
is a symmetric bilinear form,

B(v, v) � ||v||2Hα(�), B(v, w) � ||v||Hα(�)||w||Hα(�), v, w ∈ Hα
0 (�), (2.25)

and 
∫ 2π

0 M(θ)dθ � 1. Specially for the cases mentioned above, the finite element problem (2.24) represents problem (2.18)

if M(θ) = M̃(θ) = ∑L
k=1 pkδ(θ − θk) and problem (2.19) if M(θ) = �θ

∑Nθ −1
δ(θ − θi)M̃(θi).
i=0
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3. Multigrid algorithm

In this section, for (2.24), we shall present our V-cycle multigrid algorithm and a general framework for our convergence 
analysis.

Take fh ∈ V such that ( fh, v) = ( f , v), ∀v ∈ V and define a linear operator A : V → V as follows:

(Av, w) = B(v, w), ∀v, w ∈ V . (3.1)

The finite element approximation of system (2.24) can be restated as to find uh ∈ V such that

Auh = fh. (3.2)

In the following, we shall use the operator equation (3.2) to construct our multigrid algorithm. Since B(v, w) is a symmetric 
bilinear form, we know, by (2.25), that A : V → V is symmetric positive definite with respect to (·,·), i.e.,

(Av, w) = (v, Aw), v, w ∈ V ; (Av, v) > 0, 0 
= v ∈ V .

Then bilinear form

(v, w)A := (Av, w), v, w ∈ V ,

also induces an inner product on V . Set norm

||v||A = (Av, v)1/2, v ∈ V .

By (2.25), we have

||v||A ≈ ||v||Hα(�), ∀v ∈ V . (3.3)

3.1. Algorithm

Assume that the triangulation Th of � is constructed by a successive refinement process. To be precise, let T J = Th for 
some J > 1, and Tk for k ≥ 0 be a nested sequence of quasi-uniform triangulations, i.e., Tk = {τ i

k} consists of simplexes τ i
k

of size hk such that � = ∪iτ
i
k; τ l

k−1 is a union of simplexes of τ i
k . We further assume that there is a positive constant γ < 1, 

independent of k, such that hk is proportional to γ k and the simplexes in T1 are of diameter ≈ 1.
For each partition Tk , we may define finite element spaces Vk by

Vk = {v ∈ C0(�̄) : v|∂� = 0, v|τ ∈ P1(τ ),∀τ ∈ Tk}. (3.4)

Obviously, the following inclusion relation holds: V 1 ⊂ V 2 ⊂ · · · ⊂ V J = V . Our V-cycle multigrid methods are based on the 
subspace decomposition V = V 1 + V 2 + · · · + V J .

For each k ∈ {1, 2, . . . , J }, define projectors Q k, Pk : V → Vk by

(Q k v, w) = (v, w), (Pk v, w)A = (v, w)A, v ∈ V , w ∈ Vk,

specially, set Q 0 : V → V as Q 0 v = 0, and define the linear operator Ak : Vk → Vk

(Ak v, w) = (Av, w), v, w ∈ Vk.

It is easy to verify that

Ak Pk = Q k A, k = 1,2, . . . , J . (3.5)

It is obvious that Ak is symmetric and positive definite with respect to (·,·). Denote by λk ∈ R, k = 1, 2, . . . , J , the maximal 
eigenvalue of Ak .

Let uk = Pkuh and fk = Q k fh , we may get the operator equation in subspace

Akuk = fk. (3.6)

Our multigrid algorithm is essentially an iterative procedure in which the subspace equation (3.6) is approximately solved 
successively to get new approximations to (3.2) from old approximations. More precisely, denote by Rk : Vk → Vk the 
approximate inverse of Ak , and by uold the old approximation to u. Correcting the residual of uold in Vk gives

unew = uold + Rk Q k( fh − Auold).

We take Rk to be symmetric with respect to (·,·) such that

(Rk v, v) ≈ 1

λk
(v, v), ∀v ∈ Vk,k = 1,2, . . . , J . (3.7)
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Remark 3.1. In this paper, we have h1 = O (1) and take R1 = A−1
1 . By Lemma 4.3, (3.3) and the definition of norm || · ||Hμ(�) , 

we know that (v, v) � (A1 v, v) � h−2α
1 (v, v), and λ1 = O (1). Then we have (R−1

1 v, v) ≈ 1
λ 1(v, v).

Next we give our V-cycle multigrid algorithm.

V-cycle multigrid algorithm. Let u0 = 0 ∈ V , assume that uk ∈ V has been obtained. Then uk+1 is generated by

uk+1 = uk + B J ( fh − Auk), (3.8)

where B J is defined inductively: Let B1 = A−1
1 , and assume that Bk−1 : Vk−1 → Vk−1 has been defined; then for g ∈ Vk , 

Bk : Vk → Vk is defined as follows:
Step 1. v1 = Rk g;
Step 2. v2 = v1 + Bk−1 Q k−1(g − Ak v1);
Step 3. Bk g = v2 + Rk(g − Ak v2).

3.2. A general framework

For the V-cycle multigrid method, we have

uh − uk+1 = (I − B J A)(uh − uk).

Denote

E J = (I − T J )(I − T J−1) · · · (I − T1), E∗
J = (I − T1) · · · (I − T J−1)(I − T J ) (3.9)

with T1 = P1, Tk = Rk Ak Pk , k = 2, 3, . . . , J . Then we have (I − B J A) = E J E∗
J . Define the operator norm as

||E J ||A = sup
v∈V

||E J v||A

||v||A
.

It is easy to see that E∗
J is the (·,·)A -adjoint of E J , i.e.,

(E J v, w)A = (v, E∗
J w)A, v, w ∈ V

and that

||E J ||A = ||E∗
J ||A, ||E J E∗

J ||A ≤ ||E J ||2A .

The main work in this paper is to establish the contraction property: there is a constant 0 < δ < 1 independent of the 
mesh size and mesh level such that

||E J ||A ≤ √
δ. (3.10)

By (3.10), we may obtain ||uh − uk||A ≤ δk||uh − u0||.

Remark 3.2. For the V-cycle multigrid method, the spectral radius of the iterative matrix ρ = ρ(I − B J A) ≤ δ. It is known 
that the condition number κ(B J A) ≤ 1+ρ

1−ρ ≤ 1+δ
1−δ

and B J A is self-adjoint and positive with respect to inner product (·,·)A . 
The δ’s independence of the mesh size implies that B J is a good preconditioner for A which can be used to design efficient 
preconditioned conjugate gradient methods.

Define K0 and K1 as two smallest positive constants satisfying the following conditions:
1. For any v ∈ V , there exists a decomposition v = ∑ J

i=1 vi for vi ∈ V i such that

J∑
i=1

(R−1
i vi, vi) ≤ K0(Av, v). (3.11)

2. For any S ⊂ {1, 2, . . . , J } × {1, 2, . . . , J } and vi, wi ∈ V for i = 1, 2, . . . , J ,

∑
(i, j)∈S

(Ti vi, T j w j)A ≤ K1

⎛⎝ J∑
i=1

(Ti vi, vi)A

⎞⎠
1
2
⎛⎝ J∑

j=1

(T j w j, w j)A

⎞⎠
1
2

. (3.12)

The estimate of the upper bound of ||E J ||A relies on the following lemma:
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Lemma 3.3. (See [2,44].) Let E J be defined by (3.9). We have

||E J ||A ≤ 1 − 2 − ω1

K0(1 + K1)2
,

where ω1 = max
k

ρ(Rk Ak), ρ(Rk Ak) denotes the spectral radius of Rk Ak.

The estimate of the parameter ω1 is straightforward. Since R1 = A−1
1 , ρ(R1 A1) = 1. From (3.7), for v ∈ Vk (k = 2, . . . , J )

C1

λk
(v, v) ≤ (Rk v, v) ≤ C2

λk
(v, v),

and furthermore

(Rk Ak v, v)A = (Rk Ak v, Ak v) ≤ C2

λk
(Ak v, Ak v) ≤ C2(v, Ak v) = (v, v)A, (3.13)

where the last inequality is obtained from that Ak is symmetric positive matrix and λk is the maximal eigenvalue of Ak . 
Combining (3.13) with the fact that Rk Ak is symmetric with respect to inner product (·,·)A , we have ρ(Rk Ak) ≤ C2. Taking 
Rk such that C2 is suitably small can guarantee the ω1 < 2.

Next, we shall estimate the parameters K1, K2. The following lemma is helpful for the analysis.

Lemma 3.4. (See [2,44].) Let ε = (εi j) ∈ R J× J be a nonnegative symmetric matrix, with components εi j being the smallest constant 
satisfying

(Ti v, T j w)A ≤ εi j(Ti v, v)
1
2
A (T j w, w)

1
2
A , ∀v, w ∈ V . (3.14)

Then we have

K1 ≤ ρ(ε),

where ρ(ε) denotes the spectral radius of matrix ε . Furthermore, if εi j � γ |i− j| for some γ ∈ (0, 1), then ρ(ε) � (1 − γ )−1 .

4. Convergence analysis

We here first introduce two interpolation norms and relevant Sobolev spaces (see e.g., [37]). Let � be a domain in R2. 
For integer m, denote by || · ||H̃m(�)

the Sobolev norm of integer order m, i.e.,

||v||H̃m(�) :=
⎛⎝ ∑

|l|≤m

||Dl v||2L2(�)

⎞⎠1/2

,

with l = (l1, l2), |l| = l1 + l2 and Dl = ( ∂
∂x )l1 ( ∂

∂ y )l2 . Let μ > 0 be a non-integer and 0 < s < 1, n is a non-negative integer such 
that n < μ < n + 1. We introduce the interpolation norms

||v||H̃μ(�) :=
⎛⎝ ∞∫

0

K̃ (v, t)t−2μ−1dt

⎞⎠1/2

, ||v||Ĥ s(�)
:=

⎛⎝ ∞∫
0

K̂ (v, t)t−2s−1dt

⎞⎠1/2

(4.1)

where

K̃ (v, t) := inf
w∈H̃n+1(�)

(
||v − w||2

H̃n(�)
+ t2||w||2

H̃n+1(�)

)
,

K̂ (v, t) := inf
w∈H̃1

0(�)

(
||v − w||2L2(�)

+ t2||w||2
H̃1(�)

)
.

Relevant Sobolev spaces are

H̃μ(�) := {v ∈ L2(�); ||v|| ˜ μ < ∞}, Ĥ s(�) := {v ∈ L2(�); ||v|| ˆ s < ∞}. (4.2)
H (�) H (�)
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Let �1, �2 be two domains in R2 with �1 ⊂ �2, and then⎛⎝ ∞∫
0

inf
w∈H̃n+1(�1)

(
||v − w||2

H̃n(�1)
+ t2||w||2

H̃n+1(�1)

)
t−2μ−1dt

⎞⎠1/2

≤
⎛⎝ ∞∫

0

inf
w∈H̃n+1(�2)

(
||(v − w)|�1 ||2H̃n(�1)

+ t2|| w|�1 ||2H̃n+1(�1)

)
t−2μ−1dt

⎞⎠1/2

≤
⎛⎝ ∞∫

0

inf
w∈H̃n+1(�2)

(
||v − w||2

H̃n(�2)
+ t2||w||2

H̃n+1(�2)

)
t−2μ−1dt

⎞⎠1/2

. (4.3)

So we have, for v ∈ H̃μ(�2),

||v||H̃μ(�1) ≤ ||v||H̃μ(�2). (4.4)

Remark 4.1. The following space relations can be found in literature: (1) μ > 0, H̃μ(R2) and H̃1
0(�) coincide with Hμ(R2)

and H1
0(�) respectively; (2) for 1/2 < μ < 1, H̃μ

0 (�) coincides with Ĥμ(�) (see [18,37]); for 1/2 < μ < 1, H̃μ
0 (�) coincides 

with Hμ
0 (�) (this can been shown by (1), (2) and the definitions of the interpolation spaces).

Combining with Remark 4.1 and the well known interpolation property (see e.g., Lemma 22.3 in [37]), we know, for 
1/2 < μ ≤ 1,

||(I − Q k)v|| � hμ
k ||v||Hμ(�), v ∈ Hμ

0 (�). (4.5)

Now, we develop some results for the finite element spaces Vk, k ≥ 1. Let �′ ⊂ R
2 be a suitable polygonal domain such 

that � ⊂ �′ and dist(∂�′, �) > C for a positive C . T ′
k , k ≥ 1, are the quasi-uniform triangulations obtained by extending Tk

from � to �′ , that is, T ′
k in � coincides with Tk . Furthermore we still make sure that T ′

k = {τ i
k} consists of simplexes τ i

k of 
size hk . Let V ′

k = {v ∈ C0(�̄′) : v|∂�′ = 0, v|τ ∈ Pl(τ ), ∀τ ∈ T ′
k }. In the following, for v ∈ Vk , v always denotes its extension

(on �′ and on R2), which is extended by zero outside �, and so we also have v ∈ V ′
k .

Lemma 4.2. Let μ > 0, v ∈ H̃μ(�′) with supp(v) ⊂ � (v also denotes its extension on R2 which is extended by zero outside �′). 
Then we have ||v||H̃μ(�′) ≈ ||v||Hμ(R2) .

Proof. For μ being an integer, the conclusion is direct. For the case that μ is not an integer, denote n as a non-negative 
integer such that n < μ < n + 1. From (4.3), ||v||H̃μ(�′) ≤ ||v||H̃μ(R2) ≈ ||v||Hμ(R2) . Now we prove the converse relation. Let 
� be a domain in R2 with Cn+1-smooth boundary such that � ⊂⊂ � ⊂ �′ . Then by (4.4), v ∈ H̃μ(�). Following the proof 
for the strong extension of Sobolev space (see e.g., Theorem 4.26 in [1]), we can show that there is a linear operator E
continuous from H̃ j(�) into H̃ j(R2) for integers 0 ≤ j ≤ n + 1, such that E(v|�) = v . Then we have

||v||H̃μ(R2)
=

⎛⎝ ∞∫
0

inf
w∈H̃n+1(R2)

(
||v − w||2

H̃n(R2)
+ t2||w||2

H̃n+1(R2)

)
t−2μ−1dt

⎞⎠1/2

≤
⎛⎝ ∞∫

0

inf
w∈H̃n+1(�)

(
||E(v|� − w)||2

H̃n(R2)
+ t2||E w||2

H̃n+1(R2)

)
t−2μ−1dt

⎞⎠1/2

�

⎛⎝ ∞∫
0

inf
w∈H̃n+1(�)

(
||v − w||2

H̃n(�)
+ t2||w||2

H̃n+1(�)

)
t−2μ−1dt

⎞⎠1/2

= ||v||H̃μ(�), (4.6)

where the last inequality is by the continuity of E . Combining with (4.4), we obtain ||v||Hμ(R2) ≈ ||v||H̃μ(R2) � ||v||H̃μ(�′) . �
Lemma 4.3. For 0 < μ < 3/2, v ∈ Vk, we have

||v||Hμ(R2) � h−μ
k ||v||, (4.7)

and then Vk ⊂ Hμ(R2).
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Proof. By v ∈ Vk , we known v ∈ V ′
k , ||v||H̃μ(�′) � h−μ

k ||v|| from [3,44,45] and further ||v||Hμ(R2) � h−μ
k ||v|| by Lem-

ma 4.2. �
Let β be a positive with α + β < 3/2 and α − β ≥ 0 in the rest of this paper. We have the following results:

Lemma 4.4. It holds that

(v, w)A � ||v||Hα+β(R2)||w||Hα−β (R2), v, w ∈ V .

Proof. Since v, w ∈ V , by Lemma 4.3, we know that v, w ∈ Hα+β(R2). Then

(v, w)A = (Av, w) = B(v, w)

= −
2π∫
0

(
Dα

θ v, Dα
θ+π w

)
M(θ)dθ + c(v, w)

= −
2π∫
0

(
Dα+β

θ v, Dα−β
θ+π w

)
M(θ)dθ + c(v, w)

≤
2π∫
0

||Dα+β
θ v||L2(�)||Dα−β

θ+π w||L2(�)M(θ)dθ + c||v||L2(�) ||w||L2(�)

� ||v||Hα+β (R2)||w||Hα−β (R2) + c||v||L2(�) ||w||L2(�)

� ||v||Hα+β (R2)||w||Hα−β (R2),

where the third equality is by Lemma 2.11, and the second inequality is by Lemma 2.10 and 
∫ 2π

0 M(θ)dθ � 1. �
Lemma 4.5. Let i ≤ j, then

(v, w)A � γ ( j−i)βh−α
i h−α

j ||v|| ||w||, v ∈ V i, w ∈ V j. (4.8)

Here we recall that γ ∈ (0, 1) is a constant such that hk = O (γ k).

Proof. For v ∈ V i , w ∈ V j , we know that

(v, w)A � ||v||Hα+β (R2)||w||Hα−β (R2) � h−(α+β)

i ||v||h−(α−β)

j ||w||
= (h j/hi)

βh−α
i h−α

j ||v|| ||w|| � γ ( j−i)βh−α
i h−α

j ||v|| ||w||,
where the first inequality is by Lemma 4.4, the second inequality is by Lemma 4.3, and the last inequality is by the relation 
hk ≈ O (γ k). �
Lemma 4.6. Let W i = (Q i − Q i−1)V , then

(v, w)A � γ | j−i|β ||v||A ||w||A, ∀u ∈ W i, v ∈ W j. (4.9)

Proof. By (4.5) and (3.3), we have

||v|| � hα
k ||v||A, ∀v ∈ Wk.

Combining the above inequality with Lemma 4.5 gives the lemma.

Lemma 4.7. It holds that

(Ti v, T j w)A � γ |i− j|β(Ti v, v)
1
2
A (T j w, w)

1
2
A , ∀v, w ∈ V . (4.10)

Proof. It suffices to prove (4.10) holds for i ≤ j. Assume that i ≤ j, and then for v, w ∈ V ,

(Ti v, T j w)A = (Ri Ai P i v, R j A j P j w)A

� γ ( j−i)βh−αh−α ||Ri Ai P i v|| ||R j A j P j w||, (4.11)
i j
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where the inequality is by Lemma 4.5.

||Ri Ai P i v||2 = (Ri Ai P i v, Ri Ai P i v) ≈ 1

λi
(Ri Ai P i v, Ai P i v) = 1

λi
(Ti v, v)A,

where the second equality is by (3.7) and the symmetry of Rk . Then we obtain

||Ri Ai P i v|| � λ
−1/2
i (Ti v, v)

1/2
A , (4.12)

and similarly

||R j A j P j w|| � λ
−1/2
j (T j w, w)

1/2
A . (4.13)

For v ∈ Vk , we have

(Av, v) = ||v||2A ≈ ||v||2Hα(�) � h−2α
k ||v||2, (4.14)

where the second equality is by (3.3) and the last inequality is by Lemma 4.3. For w ∈ V , v = (Q k − Q k−1)w ∈ Vk , by (4.5), 
we have

h−2α
k ||v||2 � ||v||2Hα(�) ≈ (Av, v). (4.15)

By (4.14) and (4.15), it is not hard to see that

λk ≈ h−2α
k , k = 1,2, . . . , J . (4.16)

Combining (4.11) with (4.12), (4.13) and (4.16) gives

(Ti v, T j w)A � γ ( j−i)β(Ti v, v)
1
2
A (T j w, w)

1
2
A , ∀v, w ∈ V .

The lemma is proved. �
Lemma 4.8. Let

||v||2M :=
J∑

k=1

||(Q k − Q k−1)v||2A, (4.17)

and then for v ∈ V , we have

||v||M ≈ ||v||A .

Proof. It is not hard to see that the space Hα
0 (�) coincides with H̃α(�) in [26]. Combining with Theorem 1 of [26], we 

know that ||w||2Hα(�)
≈ ∑∞

k=1 h−2α
k ||(Q k − Q k−1)w||2 holds for w ∈ Hα

0 (�). For v ∈ V , ||(Q k − Q k−1)v||2 ≈ h2α
k ||(Q k −

Q k−1)v||2Hα(�) by (4.14) and (4.15). Combining with (3.3) gives the lemma. �
Theorem 4.9. We have

K0 � 1, K1 � 1.

That is to say, our V-cycle multigrid method is optimal, which means that the convergence rate is independent of the mesh size and 
mesh level.

Proof. For v ∈ V , decompose v as v = ∑ J
i=1 vi with vi = (Q i − Q i−1)v . By (4.5) and (3.3) we have ||vi|| � hα

i ||vi ||A . 
Furthermore combining (3.7) with (4.16), we have (R−1

i vi, vi) � ||vi ||2A . Using Lemma 4.8 gives K0 � 1. Finally combining
Lemma 4.7 with Lemma 3.4 gives that K1 � 1. �
5. Implementation

Let φi
k , i = 1, . . . , Nk , be the nodal basis of the finite element space Vk . The implementation is a classical procedure in 

literature (see e.g., [2]), and we here only illustrate how to generate the stiff matrices of the finite element systems and 
how to choose Rk : Vk → Vk , k = 2, . . . , J , the approximations of Ak .
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Fig. 1. Illustration for computing Iθ .

5.1. The stiffness matrices and Rk

For Ak , denote its corresponding stiffness matrix by Ãk ∈ R
Nk×Nk with entries

( Ãk)i j = B(φi
k, φ

j
k ). (5.1)

Since M has the discrete form M(θ) = ∑L
l=1 plδ(θ − θl),

( Ãk)i j = −
L∑

l=1

pl(D2α−1
θl

φi
k, Dθl+πφ

j
k ) + c(φi

k, φ
j

k ).

We need only discuss how to numerically compute

Iθ = (D2α−1
θ φi

k, Dθ+πφ
j

k ) = (D−ν
θ Dθφ

i
k, Dθ+πφ

j
k )

=
∫

ssup(φ
j

k )

D−ν
θ Dθφ

i
k × Dθ+πφ

j
kdxdy (5.2)

for a fixed θ , where ν = (2 − 2α), and then the entries of the stiff matrices can be numerically computed. If α = 1, the 
computation of the stiffness matrices is easy, since the original problem is an integer order one. Now we focus on the case 
of 1/2 < α < 1. Define the index set Ki as

Ki = {l;τ l
k ∈ Tk, τ

l
k ⊂ supp(φi

k)}.
Then

Iθ =
∑
l∈K j

∫
τ l

k

D−ν
θ Dθφ

i
k × Dθ+πφ

j
kdxdy

=
∑
l∈K j

∑
l′∈Ki

∫
τ l

k

D−ν
θ (χ

τ l′
k

Dθφ
i
k) × Dθ+πφ

j
kdxdy,

where for a set S in R2,

χS(x, y) =
{

1, if (x, y) ∈ S;
0, otherwise.

Noting that Dθ (φ
i
k)|τ l′

k
, Dθ+π (φ

j
k )|τ l

k
are both constants, we numerically compute∫

τ l
k

D−ν
θ χ

τ l′
k
(x, y) × χτ l

k
(x, y)dxdy, (5.3)

and then Iθ can be computed. Next we illustrate how to compute the integral in (5.3) by an example. On the left of Fig. 1 is 
Cartesian coordinate systems xO y and x′ O y′ , and the angle between axes O x and O x′ is θ . On the right of Fig. 1, the two 
triangles are τ l′

k and τ l
k; D1, D2, D3 denote the corresponding vertices of the triangles; �I , �II denote the corresponding 

shadow areas respectively; lines D1 P1 and D3 P2 are both parallel to axis O y′; γ1, γ2, γ3, γ4, γ5, γ6 are correspondent 
angles. Denote the coordinates of D1, D2 and D3 under coordinate system x′ O y′ by (x′

11, y
′
12), (x′

21, y
′
22) and (x′

31, y
′
32)

respectively. Then we have
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∫
τ l

k

D−ν
θ χ

τ l′
k
(x, y) × χτ l

k
(x, y)dxdy

=
∫
�I

D−ν
θ χ

τ l′
k
(x, y)dxdy +

∫
�II

D−ν
θ χ

τ l′
k
(x, y)dxdy

=
∫
�I

−∞D−ν
x′ χ

τ l′
k
(x′, y′)dx′dy′ +

∫
�II

−∞D−ν
x′ χ

τ l′
k
(x′, y′)dx′dy′

=
∫
�I

1

	(ν + 1)

(
x′ − x′

1 + (y′
1 − y′) tanγ1

)ν
dx′dy′

−
∫
�I

1

	(ν + 1)

(
x′ − x′

1 − (y′
1 − y′) tanγ2

)ν
dx′dy′

∫
�II

1

	(ν + 1)

(
x′ − x′

2 + (y′ − y′
2) tanγ3

)ν
dx′dy′

−
∫
�II

1

	(ν + 1)

(
x′ − x′

2 + (y′ − y′
2) tanγ4

)ν
dx′dy′.

The last four integrals above can be computed directly. Finally we know that the entries of the stiffness matrices can be 
numerically computed.

We choose Rk as

Rk v = 1

λ̃k

Nk∑
i=1

(v, φi
k)φ

i
k, v ∈ Vk, (5.4)

with λ̃k ≈ λkh2
k . Define mass matrix Mk ∈ R

Nk×Nk with entries

(Mk)i j = (φi
k, φ

j
k ).

For v ∈ Vk , denote by ṽ ∈ R
Nk the vector of coefficients of v in the basis {φi

k}Nk
i=1. It is known that ṽ T Mk ṽ ≈ h2

k ṽ T ṽ and 
ṽ T M2

k ṽ ≈ h2
k ṽ T Mk ṽ . Hence we have

(Rk v, v) ≈ 1

λ̃k
ṽ T M2

k ṽ ≈ 1

λk
ṽ T Mk ṽ ≈ 1

λk
(v, v), (5.5)

which means (3.7) holds. In the numerical tests, we take λ̃k = 3
2 ( Ãk)ii , k = 2, . . . , J . It is not hard to verify that ( Ãk)ii ≈

h2−2α
k ≈ h2

kλk .

5.2. Computation complexity

For the numerical approximation of SFPDEs, one of the key issues is how to reduce the computation complexity. We 
confine ourself to the case that � is a square domain. Of course the technique here is also helpful for effectively designing 
schemes for the case that � is a general domain (for example, the domain decomposition method can be used with interior 
sub-domains being chosen as square domains (see [12])).

The triangulations Tk , k = 1, 2, . . . , J are those in Fig. 2, where dashed curve denotes the ellipsis, nk = n02k − 1, lk =
l02k − 1 with positive integers n0, l0, and pm

k , m = 1, . . . , nklk are the interior points. The finite element space Vk = {v ∈
H1

0(�) : v|τ ∈ P1(τ ), ∀τ ∈ Tk}. Let φm
k = φm

k (x, y), m = 1, . . . , nklk , be the nodal basis functions, i.e., φm
k is a piecewise linear 

polynomial whose values are 1 at pm
k and zeros at other nodes (including interior and exterior nodes).

Denote U = (U1, U2 . . . , Unk , . . . , U2nk,, . . . , Ulknk )
T . Next we discuss how to effectively conduct the multiplication of ma-

trix Ãk and vector U . Let ν = (ν1, ν2, . . . , ν(2nk−1)lk−nk+1)
T ∈ R

(2nk−1)lk−nk+1 with

ν(2nk−1) j+i = B(φ1
k , φ

jnk+i
k ), i = 1, . . . ,nk, j = 0, . . . , lk − 1,

ν(2n −1) j−i+2 = B(φi , φ
jnk+1

), i = 2, . . . ,nk, j = 1, . . . , lk − 1.
k k k
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Fig. 2. Uniform triangulation.

Define a symmetric Toeplitz matrix

˜̃A =

⎛⎜⎜⎜⎜⎜⎝
ν1 ν2 · · · ν(2nk−1)lk−nk ν(2nk−1)lk−nk+1
ν2 ν1 · · · ν(2nk−1)lk−nk−1 ν(2nk−1)lk−nk
...

...
. . .

...
...

ν(2nk−1)lk−nk ν(2nk−1)lk−nk−1 . . . ν1 ν2
ν(2nk−1)lk−nk+1 ν(2nk−1)lk−nk . . . ν2 ν1

⎞⎟⎟⎟⎟⎟⎠ .

Toeplitz matrix, also called diagonal-constant matrix, is a matrix in which each descending diagonal from left to right is a 
constant.

For any i, j with 1 ≤ i ≤ j ≤ nklk , let di, ri, d j, r j be nonnegative integers satisfying i = nkdi + ri , j = nkd j + r j ,
1 ≤ ri, r j ≤ nk . Let j′ = (d j − di), i′ = |r j − ri |, and then by the property of the operator B(·,·), it is easy to see that

B(φi
k, φ

j
k ) =

{
B(φ1

k , φ
j′nk+i′+1

k ) = ν j′(2nk−1)+i′+1, if r j ≥ ri;
B(φi′+1

k , φ
j′nk+1

k ) = ν j′(2nk−1)−i′+1, if r j < ri .

And thereby any component of matrix ˜̃A is also one of vector ν . Define sets

Im = {m(2nk − 1) + 1,m(2nk − 1) + 2, . . . ,m(2nk − 1) + nk}, m = 0,1, . . . , lk − 1

and I = ⋃
0≤m≤lk−1

Im . We have the relation

Ãk = ˜̃AI,I , (5.6)

where ˜̃AI,I denotes the sub-matrix of ˜̃A which consists of entries ˜̃Aij of ˜̃A indexed by i, j ∈ I . Denote U ′ ∈R
(2nk−1)lk−nk+1

as

U ′ = (U1, . . . , Unk ,

nk−1︷ ︸︸ ︷
0, . . . ,0, Unk+1, . . . , U2nk ,

nk−1︷ ︸︸ ︷
0, . . . ,0, U2nk+1, . . . , Ulknk ).

It is not hard to see that

ÃkU = (
˜̃AU ′)I ,

where for a given vector v , vI denotes the vector which consists of entries vi indexed by i ∈ I . So the multiplication of 
the matrix Ãk and any vector U ∈ Rnklk can be obtained by conducting the multiplication of the Toeplitz matrix ˜̃A and 
U ′ ∈ R(2nk−1)lk−nk+1. The multiplication of a Toeplitz matrix in Rn×n and a vector in Rn can be done with computation 
complexity O (n log n). Recall that N J = n J l J denotes the number of the unknowns in the finite element problem (3.2), and 
then by the above analysis, we conclude that for the V-cycle multigrid methods developed in Section 4, each iteration needs 
computation complexity O (N J log N J ).

5.3. Numerical results

In this section, we shall present some numerical results to confirm our theoretical findings. In our numerical test, we 
take n0 = l0 = 4, and take Nθ = 4(n J + 1) if M is a continuous function.

We shall check our V-cycle multigrid method and the preconditioned conjugate gradient algorithm (PCG) with B J as the 
preconditioner. Meanwhile, the numerical result for the conjugate gradient algorithm (CG) is also presented for comparison. 
Our tests are carried out using Matlab software. The stopping criterion of the algorithm is

||uk − uk−1||∞ ≤ 10−6.
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Table 1
Numerical results for Example 5.1.

Level 
J

DOFs V-cycle PCG CG

Iter Iter Iter

4 4096 11 7 49
5 16 384 11 7 73
6 65 536 11 7 118
7 262 144 11 7 197
8 1 048 576 11 7 313

Table 2
Numerical results for Example 5.2.

Level DOFs V-cycle PCG CG

Iter Iter Iter

4 4096 10 6 47
5 16 384 10 6 69
6 65 536 10 6 114
7 262 144 10 6 185
8 1 048 576 10 6 308

Table 3
Numerical results of the V-cycle method for Example 5.3.

Level DOFs M̃(θ) = M1 M̃(θ) = M2

Iter Iter

4 4096 19 11
5 16 384 18 11
6 65 536 17 11
7 262 144 15 11
8 1 048 576 14 11

We first present two examples: one is with the probability measure M̃ having a discrete form and the other with M̃
being a continuous function. Table 1 and Table 2 list the numerical results for Example 5.1 and Example 5.2 respectively, 
where “DOFs” denotes the degree of freedoms and “Iter” denotes the iterative steps on each level. It is seen that the numbers 
of iterations of our V-cycle multigrid and PCG per level are bounded independent of the mesh size and mesh level, which 
confirms our theoretical results.

Example 5.1. Let � = [0, 2] × [0, 2], the equation to be solved is

−1

4
(−∞D1.5

x + x D1.5∞ + −∞D1.5
y + y D1.5∞ )u = 1. (5.7)

Example 5.2. Let � = [0, 2] × [0, 2] and M̃(θ) = 1. The equation to be solved is

−D1.5
M̃

u = 1. (5.8)

We choose smooth f (x, y) in the examples such that the solutions have singularity near the boundaries. The computation 
complexity of our multigrid methods is shown in Fig. 3, where “Time” denotes the CPU time (in seconds) spent by one 
iteration. As can be seen from the Fig. 3, the CPU time of each iteration is almost linear with respect to the degree of 
freedoms. So the computation complexity of our multigrid method is also optimal.

Finally, we end this section with a numerical test for our V-cycle multigrid method solving the finite element discretiza-
tions of nonsymmetric SFPDEs. In the future, we will try to derive the relevant theoretical analysis for the nonsymmetric 
case.

Example 5.3. Let � = [0, 2] × [0, 2], and the equation to be solved is

−D1.5
M̃

u = 1. (5.9)

Here we test two cases: 1. M̃(θ) = M1 = 0.5δ(θ) +0.5δ(θ −π/2); 2. M̃(θ) = M2 = sin2(θ/2). The numerical results are listed 
in Table 3.
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Fig. 3. The CPU time per iteration.
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Appendix A

The Fourier analysis plays critical roles in this paper: for g ∈ L1(R2), the Fourier transform of g is the function F g
defined on (the dual of) R2 by

F g(ξ1, ξ2) =
∫
R2

e−2iπ(xξ1+yξ2)g(x, y)dxdy,

where i denotes the imaginary unit; for g ∈ L2(R2), the Fourier transform F g of g is defined in the following distribution 
sense (see [37]):

(F g, v) = (g,F v), ∀v ∈ C∞
0 (R2),

and more precisely, F is an isometry from L2(R2) into itself, which satisfies Parseval’s formula (see [32])

||F g|| = ||g||
and

(v, w) = (F v,Fw),

where z denotes the complex conjugate of the complex number z. The Fourier transform of the μth order fractional 
derivative consists of the complex in the form (iκ)μ with μ > 0, κ ∈ R (see [29]). So it may be a multi-valued func-
tion. To guarantee the Fourier transform to be univalent, we express complex variable z = |z| exp(iθ), −π ≤ θ < π , where 
exp(iθ) = cos θ + i sin θ , |z| and θ respectively denote the modulus and the argument of z. Then

(iκ)μ = (sign(κ)i|κ |)μ = (|κ |exp(isign(κ)π/2))μ = |κ |μ exp(iμsign(κ)π/2),

(−iκ)μ = |κ |μ exp(−iμsign(κ)π/2).

It is easy to see that, for μ > 0,

(−iκ)μ = (iκ)μ, ∀κ ∈R. (A.1)
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