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1. Introduction

The inverse scattering theory of acoustic waves and the corresponding reconstruction methods have been extensively
studied in recent years. Considerable developments have been achieved to the inverse scattering problem of determining the
location and shape of a scattering object from the knowledge of acoustic scattered waves corresponding to time-harmonic
incident waves. Those methods are usually referred to as the frequency-domain methods in the literature; see, e.g., [3,10,20]
and the references therein.

Among various frequency-domain methods for inverse scattering problems, we are particularly interested in the so-called
sampling-type methods. The core of a sampling-type method is a certain imaging/indicator functional, which is obtained
by using the measurement data and can be used to indicate whether a point (or a line, or a surface) in the space belongs
to the interior or exterior of the scatterer. In general, the imaging functionals are easily computed without iterations re-
quired, though the inverse scattering problems are known to be nonlinear and ill-conditioned. Moreover, the sampling-type
methods usually require very little a priori information of the unknown/inaccessible target scatterer. Due to their practical
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importance, the sampling-type methods have drawn a great deal of interest in the literature, and examples include the
linear sampling method [9], the factorization method [20], the point source and probe method [27], the enclosure method
[16], the MUSCI-type method [2,3] and the recent one-shot and orthogonality sampling methods [23,24,28], among others.
Generally, the frequency-domain sampling methods could work with the data corresponding to only a single frequency.

However, in diverse practical applications such as sonar detection, geophysical exploration, medical imaging and nonde-
structive testing, dynamic measurement data are usually easy to obtain. Therefore, imaging unknown/inaccessible scatterers
through the time-dependent acoustic waves is a topic of significant interest to these areas. There exist a number of recon-
struction algorithms in the time domain such as the time reversal techniques [11,13,14], the reversed time migration [4], the
boundary control method [5,26]. In a series of recent publications, such as [6,7,29,19] and references cited there, two glob-
ally convergent numerical methods for inverse scattering problem in the time domain were proposed. In this approach the
spatially distributed speed c (x), x € R® of the acoustic signal is unknown. Furthermore, the global convergence theory was
firmly confirmed on experimental data, see, e.g. [7,29] and references cited there. In particular the so-called Stolt migration
method was successfully applied in [29] to propagate the experimentally measured data closer to the unknown targets”.
For sampling type methods using dynamic measurements, we refer to the point source method [25], the probe method [8],
the linear sampling method [12], the enclosure method [17], the multiple signal classification (MUSIC) method [21] and the
total focusing method (TFM) arising from nondestructive evaluation [15]. Note that the TFM is sometimes described as the
“gold standard” in the classical beamforming, and it shares the same idea of the so-called Kirchhoff migration widely used
in geophysics. Both of them form the image with the superposition of the scattered signals incited by each transducer. They
are robust to measurement noise but sensitive to medium noise [1]. In a series of works [1,14], correlation-based imaging
schemes have been justified to recover the position of a point reflector in a noisy environment.

The goal of this paper is to show that the TFM and Kirchhoff migration can be used for imaging not only acoustic scatter-
ers with small inclusions but also the shape of regular-size/extended penetrable and impenetrable scatterers with multiple
components, including cracks. The proposed method can be regarded as a strengthened version of the total focusing method
or Kirchhoff migration in a stationary medium. To our best knowledge, they have been so far applied to the reconstructions
of point-like scatterers only. Using synthetic data, in this work we apply for the first time the newly developed strength-
ened versions of TFM to imaging crack-like and regular-size/extended scatterers with multiple components. In particular, the
newly proposed dynamic imaging/indicator functionals show analogous behavior of the time reversal inversion but without
having to solve time-dependent wave equations. The promising and salient features of our time-domain sampling method
can be summarized as follows. First, the imaging/indicator functionals are formulated directly from the time domain data.
No Fourier or Laplace transform is needed on the algorithm level. Second, the imaging schemes do not require the strong
a priori information of the physical properties of the scatterer, and apply to both penetrable medium and impenetrable ob-
stacle. There is no need to know the type of boundary conditions of an impenetrable obstacle. Third, the imaging schemes
are explicit because the imaging indicators do not rely on any matrix inversion or forward solution process. Hence, the
method is very robust with respect to measurement noise. Finally, the method is very easy to implement with computa-
tional efficiency. Only cheap integrations are involved in calculating the imaging/indicator functionals. In this work, we shall
present some mathematical analysis in justifying the indicator behavior of the proposed imaging functionals in the scenario
with point-like scatterers. Extensive numerical experiments in two and three dimensions are conducted to demonstrate the
feasibility and robustness of our methods. Using the correlation-based algorithms [1,14], we believe that our approach also
applies to extended scatterers in a random medium.

The rest of the paper is organized as follows. In the next section we give a brief description of the forward and inverse
scattering problems that we are concerned with. Single-source and multi-source indicator/imaging functionals are intro-
duced in Section 3. The behavior of the imaging indicators for point-like scatterers will also be analyzed in this section.
Section 4 is devoted to numerical experiments and the paper is concluded in Section 5.

2. Problem setting

Let D ¢ RN(N =2,3) be an open bounded domain with the Lipschitz boundary dD and connected exterior RN\D.
D represents a stationary scatterer for our study. It is assumed that the exterior RN\D is an isotropic and homogeneous
background medium with a constant phase velocity cg € R.. Let I'; C R¥\D be a closed Lipschitz surface on which point
sources emit incident waves for the probing of the scatterer. Throughout, we assume that the incident wave ug((x,t; y)
with x, y € RN, t > 0 is a monopole emitted at the source location y e I'; with a temporal pulse signal x : R — R such
that x(t) =0 for t < 0. That is, ui((~,-;y) is a causal solution to the following wave propagation problem in the free
space

Au(x,t) — cazattu(x, t)=—=8(x—y)orx(t) in RN x RT, (1)

u(-,0)=du(,0=0 inRN, (2)
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where § is the Dirac delta distribution. In particular, if x (t) is chosen as the Heaviside function H(t), then it is well known
that the unique solution to problem (1)-(2) is given by

H(t—cy'lx—y)

. N=2,
2
D(x, 1 y) = 277\/t2__150 X —yP?
dt—cq IxX—yD Ne3

ar|x —y|
which is called the fundamental solution to the wave equation.
Since the excitation signals of Gaussian type are commonly used in a number of practical applications, in this paper we
assume that x (t) is a causal Gaussian-modulated sinusoidal pulse of the form
sin(wt) exp(—o (t — 19)%), t>0,
x() = 3)
0, t <0,

where w > 0 is the center frequency, o > 0 is the frequency bandwidth parameter, and tp > 0 is the time-shift parameter
concerning the pulse peak time. In terms of the center frequency w, the center wavelength of x (t) is defined by 2w co/w.

Given an incident point source ui(-,-;y), y € I';, the direct/forward obstacle scattering problem is to find the scattered
field us(., -; y) satisfying the wave equation

AU —cy8eu® =0 in (RM\D) x RT, (4)
the initial conditions

us(-,0) = 3u’(,0)=0 inRN, (5)
and the boundary condition

B +u’)=0 ondD x R*.

The impenetrable obstacle D is referred to as sound-soft (resp. sound-hard) if the pressure (resp. the normal velocity) of
the total wave u = u' 4+ u® vanishes on the boundary dD. Another practical scenario is the one where the pressure and the
normal velocity of the total wave is proportional on the boundary, which leads to the impedance boundary condition. Thus
the differential operator B, depending on the physical property of an impenetrable scatterer, takes the form

UlgDxR+> if D is sound-soft,
Bu = | IU|ypxRr+> if D is sound-hard,
(pu — ,\cglatu)mxw, if D is of impedance-type,

where v is the unit outward normal vector to D and A € C(dD) is a nonnegative surface impedance function.
If the scatterer is penetrable, then the direct scattering problem can be modeled by the following medium scattering
problem: find the scattered field u’(-, -; y) satisfying the wave equation

3 AU —n(x)dpu’ = —(1 —n(x)deu’ inRY x RY, (6)

and the initial conditions (5). In (6), the space-variable function n(x) := C% /c2(x) is the so called refractive index, where the
sound speed c(x) > 0 is a piecewise continuous function such that c(x) — co has compact support. Then the geometry of the
scatterer D is characterized by the compact support of n(x) — 1. Without loss of generality, we assume that co =1 in the
rest of this paper.

In the present study, the scatterer D does not necessarily occupy a simply connected domain but can be practically
very general where D may consist of a finite number of disconnected components such that different components possess
different shapes, sizes and/or physical properties (penetrable or impenetrable). In what follows, the relative size of each
scatterer component is interpreted in terms of the center frequency of the incident pulse. Let L e N, and let ;, 1 <j <L,
be bounded simply connected C? domains in RN containing the origin. We assume that each reference domain j is of the
unit size, i.e.,

diam()~1, 1=<j<L.

For pj e R, 1< j <L, we define pjQ;:={pjx | x € Qj} and set

Dj=zj+p;jQj, zjeRN, 1<j<IL,
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where z; is the location of the j-th component D; for 1 < j < L. Thus the scatterer D is defined by the union of these
components

L
D:=|JDj. (7)
j=1

A component D; is referred to as a small or point-like scatterer component if its relative/characteristic size is much
smaller than the center wavelength of the incident pulse, i.e.,

wpj K27 (8)

A component D; is referred to as an extended scatterer component if its relative/characteristic size is comparable to the
center wavelength of the incident pulse, i.e.,

wpj~ 2.

Note that an extended scatterer component may be “partially small”, for example, D; is a rectangular box which has
a small width in proportion to the length or height. If the corresponding reference shape Q; of an extended scatterer
component D; has a large shape ratio (in terms of the width/length/height), then D; is referred to as a segment-like or
crack-like component, otherwise it is referred to as a regular-size component.

If the scatterer consists of multiple point-like and/or extended components, then these components are assumed to be
sparsely distributed, i.e.,

wdist(zj,zy)>2m, Vj#j, 1<j,j <L (9)

The assumption (9) implies that the distance between any two obstacles is much larger than the incident wavelength.
Hence, the multiple scattering effects between different scatterer components can be neglected in finite time. Nevertheless,
we would like to emphasize that the sparsity assumption would be only needed for the purpose of theoretical analysis.
Our numerical examples in Section 4 show that the proposed imaging schemes work for the more general case with dif-
ferent scatterer components being relatively closer to each other. In particular, as long as the distance between different
components is bigger than one center wavelength, the proposed imaging schemes would yield satisfactory reconstructions.

Let I" be the closed measurement surface (possible equal to I';) such that the scatterer is located inside the domain
enclosed by T'. Let Tp and T denote the lower and upper bound of the finite time window for collecting data, respectively.
The forward scattering problem can be stated as follows: Given the incident wave ul(-,-; y), y € I'; and the scatterer D, find
the corresponding scattered wave u’(x,t; y) for xeI" and To <t < T. For the well-posedness of the forward problem and
the numerical methods for solving time-dependent scattering problems, we refer to the classical book [22, Chapter 4] and
the lecture notes by Wilcox [30].

In this paper we will study the inverse problem of recovering the locations of the point-like scatterers and the shape of
the extended scatterers from knowledge of the incident wave ui(-,-; ¥) and the time-dependent scattered data

{Wx,t;y)|xel, yelj, To<t<T}

In general, the starting time To > 0 can be chosen as the time of the first arrival of the scattered field on I" and the
terminal time T can be chosen such that the scattered energy inside I" can be considered as negligible when ¢ > T. For ease
of exposition, we shall assume below that Tg = 0. We refer to [18] for an overview of the uniqueness and stability results in
inverse penetrable and impenetrable obstacle scattering. In particular, a lower bound of the terminal time T was estimated
in [18, Theorem 5.1] for ensuring uniqueness in determining a sound-soft or sound-hard stationary obstacle with a single
boundary measurement data.

3. Indicator and imaging functions

In what follows, given the scattered data, the corresponding time-reversed data is defined by

wx,T—-ty), 0<t<T,

tr
u (x,t; =
( ) 0, t<0,

(10)

for xeT and y e T;. Denote by G ¢ RN a bounded probe region containing the unknown scatterer D. For example, one
may assume that G is a sub-domain of the region enclosed by I'.

3.1. Single-source indicators

Let the source position be located at y € I';. In the present study, we propose the static indicator function with a single
point source wave as follows:
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T 2

I(z;y)::/ /u“(x,r—lz—x|;y)ds(x) dr, (11)

0 \I
where z € G denotes the sampling point. A dynamic indicator function I(z, t; y) is defined as
¢ 2

I(z,t; y) :=/ /u”(x, T—|z—x);y)dsx) | dt (12)

0 r

for ze G and t € (0, T). Obviously, I(z,t; y)|;=r coincides with the stationary indicator I(z; y) defined in (11). The above
single-source indicators can be used to image multiple point-like scatterers and cracks by plotting the function z — I(z; y)
or z— I(z,t; y). It is worthy mentioning that these indicators are in spirit similar to the Kirchhoff migration widely used
in geophysics and the total focusing imaging scheme arising from non-destructive testing (see e.g., [15]) but modified to
improve the resolution of the original TFM. Our inspirations are taken from the recent direct sampling methods [28,24] in
the frequency domain. The indicator function of TFM (or Kirchhoff migration) with a single point source takes the form (see
e.g. [15]):

Itz y) = /us (x,to + |y — 2| + X — 2I; y) ds(x) (13)
r

where tp > 0 is the peak time of the incident pulse (see (3)). The indicators (11) and (12) differ from (13) in the extra
integrations with respect to the parameter t over (0, T) or (0, t) and in the square of the integrand. Compared to the above
mentioned direct sampling methods in the frequency domain, our indicators involve no inner product and the sampling
point is coded in the time variable of the scattered signal. The behavior of the indicator functions (11) and (13) for point-like
scatterers is given in the following theorem.

Theorem 1. Let D C RN be a union of point-like scatterers defined by (7) and (8), and let zj, j=1,---, L, be the exact locations of the
scatterer components. Then there exists an open neighborhood of z;, neigh(zj), j =1, - -+, L, such that z; is a local maximizer of 1(z; y)
and Itpv(z; y) in neigh(z;). The point z; is also the local maximizer of the dynamic indicator 1(z, t; y) provided t > T —to — |zj — y|.

Proof. The proof depends on the travel time of the acoustic waves inside the probe region. We first suppose L =1, i.e,,
D consists of a single point-like scatterer located at z; € R? only. This suggests that the scattered signal can be regarded as
an impulsive source wave emitted from z;. Recall that the sound speed has been assumed to be cg =1 in the background
medium. The wave crest of the incident pulse generated by (3) arrives at the surface {x e RN | |x— y| =a} when t =a +tg
and will touch the scatterer at t = |z; — y| +to. Hence, the wave crest of the scattered signal arrives at {x e RN | |x—z{| = b}
when t =ty + |z1 — y| + b for some b > 0, and will touch the measurement point x € I" when t =tg + |y — z1| + |x — z1].
Consequently, we obtain for z € neigh(z;) that

W to+ly—zil+Ix—zisy) =uw (X, to+ |y —zl +Ix—z|; ¥)

uniformly in all x € I'. This proves the relation Itpv(z1;y) > Item(z; y) for all z € neigh(z;) when j=1. If D consists of
several components, the multiple scattering effect between the different point-like scatterers can be neglected due to the
assumption (9). Then, by arguing in the same manner one can prove that z; is the local maximizer of Itpm(z; ) in neigh(z;).

Due to the Gaussian pulse excitation (3) and the sparsity assumption (9), the scattered field corresponding to D in a
finite time can be regarded as the sum of the scattered data u; (j=1,2,---, L) emitted from the j-th scatterer component.
On the other hand, there exists € > 0 such that uj(x,t; y) =0 if |t — (to + |y — zj| + |x — zj|)| > € since the incident field
has a limited bandwidth. Therefore, the indicator function I(z; y) can be reformulated as

tj+e 2

L
Iz y) =Y 1@z y). 1jzy) = / /uﬁ-‘(x,r —lz—x);y)ds() | dr
j=1 ti—e \I'
for some € > 0 sufficiently small, with tj:=T — (to+|zj —y|) for j=1,---, L. Here u? denotes the time-reversed scattered

data emitted from the j-th scatterer component, which is defined analogously to (10). Observing that

Ij(zj;y) 2 1j(z;y) forzeneigh(zj); 1j(zm;y)=0 formz#j, (14)
we conclude that

I(zj;y) = 1(z; y) forall z € neigh(z;).
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Finally, the behavior of the dynamic indicator (12) follows from (14) and the expression

Izty= Y 1j@y.

O<tj<t

The proof is complete. O

Based on Theorem 1, we can readily formulate the scheme for imaging a collection of point-like scatterers.

Algorithm Locating a multiple point-like scatterers

Step 1 For a collection of unknown point-like scatterers D, select an appropriate source position y and start to send the incident
pulse of the form (3) at an initial time ¢t =0.

Step2  Collect the scattered data u(-, -; y) at the measurement points and recording time steps between t =0 and the (sufficiently
long) terminal time t =T.

Step3  Select a grid of sampling points in a region containing D. For each sampling point z, calculate the static indicator I(z; y)
defined in (11) (alternatively, in addition for each recording time t, calculate the dynamic indicator I(z, t; y) defined in (12)).

Step4  Locate all the significant local maximizers of I(z; y) at the sampling grid (alternatively, find the stages of t when the
significant local maximizers of I(z, t; y) at the sampling grid appear, then locate all the local maximizers at these stages),
which represent locations of the scatterer components of D.

We end up this section with the following remark.

Remark 1. Compared to the TFM, the integral with respect to T in (11) or (12) is necessary because of the Gaussian pulse
excitation (3) and the possible existence of multiple scatterer components. Combining this with the square of the integrand
in (11) and (12) may improve the imaging resolution of the original TFM. The dynamic indicator shows analogous behavior
of the time reversal inversion but without solving time-dependent wave equations. Moreover, it could be used to locate
point-like scatterers with weak scattering strength; see Section 4.1 for numerical examples.

3.2. Multi-source indicators

In this section we consider the superposition of single-source indicators for imaging the location and shape of general
extended scatterers by sending multiple impulsive point sources. Since the values of (11) at a fixed sampling point z may
vary significantly from source to source, a normalization should be taken into account in order to rescale their magnitudes
into the same order and thus balance their contributions to the superposition. Recall that I'; denotes the position of the
incident point sources. We define the normalized static and dynamic indicators as (cf. (11) or (12))

12 .
1(z) := &ds(y), z€eG, (15)
max I12(z; y)
r; z€G
and
~ 12 zZ,t;
izt= [ %5V 4oy zeG 0<t<T. (16)
J mag(lz(z, t;y)
i Ze

respectively, where I(z; y) and I(z,t; y) are the single-source indicators defined in Section 3.1. Meanwhile, we propose
another dynamic indicator as following

- A%(z,t

hew(@z b= — 2 &0 G 0<t<T, (17)
max A2(z, t)
zeG

with
t 2
Az, t) ::// /utr(x,t —lz=x|;y)ds(x) | ds(y)dr. (18)
0 T; r

Note that this new indicator Inew(z, t) differs from I(z, t) in the orders of normalization and the integration over I';. Our
numerics show that Ingw(z, t) yields more geometrical information of the unknown scatterer than I(z, t). To compare with
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Fig. 1. The incident pulse function. (a) Temporal pulse. (b) Fourier spectrum.

the TFM, we still need the indicator of the multi-source TFM, given by

ITFM(Z)Z/ITFM(Z§ »ds(y), zeG. (19)
T

Motivated by the imaging scheme for point-like scatterers, we can analogously formulate the scheme for imaging ex-
tended scatterers. Moreover, based on the proof of the Theorem 1, it is quite reasonable to expect that the values of above
multi-source indicators are relatively large when the sampling point z tends to the boundary of the scatterer, namely, the
multi-source indicators are capable of imaging general extended scatterers. This will be confirmed in our numerical tests in
Section 4.3 and 4.4. However, a theoretical justification of the behavior of these indicators is fraught with difficulties and
we shall further explore it in our future work.

4. Numerical examples

In this section we will give several two and three dimensional numerical examples to demonstrate the feasibility and
the effectiveness of the proposed methods. In the following examples, the pulse

X (t) := sin(6t) exp (—1.6(t — 3)?)

was injected at each source point as excitation. The incident pulse function x (t) and its wavenumber spectrum (via Fourier
transform) are depicted in Fig. 1. The center frequency and the center wavelength of y (t) are 6 and 7 /3, respectively.

The scattered data were generated using the finite element method and the unbounded exterior domain is truncated
by an absorbing boundary condition. The mesh of the forward solver is successively refined until the relatively error of
the successive measured scattered data is below 0.1%. To test the stability of the proposed reconstruction scheme, artificial
random noise was also added to the synthetic data. The noisy data is given according to the following formula:

ul =u’(1+er),

where € is the noise level and r are uniform random numbers ranging from —1 to 1. In all the examples in the sequel, the
scattered data computed by the finite element method was contaminated using € = 0.1 before the inversions, namely, the
measured data with 10% noise was used.

Now we specify the discretization in details. Suppose that we have N; e N distinct source points yjeTy, j=1,---,Nj.
Let's specify the discretization details of the indicator (11) for a source point y;. Suppose that we have N;, equidistantly
distributed receivers x;, € ', m=1,---, Ny and N; equidistant recording time steps t, € [0,T], n=1,---, N;. Then the

scattered data is a Ny x Ny array U® whose (m,n)-th entry is u®(xm,ty; yj). The time-reversed data array Ut is ob-
tained by rearranging U’ by the order of elements flipped left to right along the rows, namely, the (m,n) entry of U
is u®(Xm, tN,—n+1; ¥j). Afterwards an interpolation is performed at each row of U™ to find the values of time-reversed data
at the query time steps, i.e., the data u' (xp, ty — |z — Xm|; yj),m=1,..- Ny, n=1,---, Ne. The integrals in the indicator
function are approximated using the trapezoidal rule. Hence, the discretized version of indicator (11) can be written as
follows

2

N¢ Nm
T .
l(z;yj):=ﬁ§ (hXE u”(xm,tn—IZ—me;yj)> . j=1,---,Nj
n=1 m=1

where hy denotes the distance between two adjacent receivers. Obviously, once the discretized indicator for each single point
source is available, the indicator for multiple sources defined in (15) is obtained by direct summation of the normalized
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Fig. 2. Reconstruction of small scatterers. Top row: full aperture case. Bottom row: limited aperture case. Left column: geometry settings. The source point
is denoted by the small red circle, while the receivers are denoted by the small blue stars. The sound-soft, sound-hard obstacles and the inhomogeneous
medium are colored in black, blue and yellow, respectively. The black dashed line depicts the boundary of the sampling region. Middle column: images of
I(z; y)/ max.{I(z; y)}. Right column: images of Itpm(z; y)/ max; Item(z; ¥). We take y = (-3, 0). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

single-source indicators, i.e.,

o Pay)
1(2):=hy Y ——7 G, 20
@ yZmanF(z;YJ‘) i (20)
zZe

j=1

where h) denotes the distance between two adjacent point sources.
The discretized indicator function of the total focusing method can be obtained in the same manner, i.e. (cf. (19))

Ni Nm

biem(2) = hhy D0 " u G, to+ 1y — 21+ Ixm — 21 y))|, 2€G,
j=1m=1

where tp = argmax;.o|x (t)| ~ 2.88 is used in the following examples. The dynamic indicator functions (16) and (17) can
also be discretized similarly, so we omit the detailed expressions. Finally, we use a uniformly distributed 100 x 100 sampling
grid over G :=[—2.5,2.5]%, or 60 x 60 x 60 sampling grid over G :=[—3, 3]? to plot the discretized and normalized indicator
function as our reconstructed images. One can also choose a smaller probe region than G depending on the first arrival time
of each receiver.

In the following numerical examples, if not otherwise specified, we use stationary indicator functions that are scaled to
the range [0, 1] for the sake of comparison.

4.1. Reconstruction of point-like scatterers with a single source

In the first example, we aim to reconstruct a collection of point-like scatterers using a single point source. The single
source point is chosen as (—3,0). Synthetic scattered data were collected with terminal time T = 16 and 800 recording
time steps. The 48 equidistantly distributed measurement points were placed on the boundary of a square with side length
6 around the sampling region. The true scatterer consists of a sound-soft square with side length 0.1 located at (—1,2), a
sound-soft disk with radius 0.05 located at (0.5, —1.5), a sound-hard disk with radius 0.2 located at (1.5, 0) and a penetrable
medium square with side length 0.3 located at (—2, —1). The sound speed inside the medium square is 5.

Fig. 2 gives the settings of the forward scattering problems and the reconstructions using full and limited aperture
observations. We compare the numerical performance of the proposed indicator (11) and the total focusing method (13).
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Fig. 3. Reconstruction of small scatterers using the dynamic indicator I(z, t)/ max; I(z,t). Top row: full aperture case of Fig. 2 (a). Bottom row: limited
aperture case of Fig. 2 (d). These snapshots are captured at: (a) t =4.22. (b) t =6.86. (c) t =8.06. (d) t =6.86. (e) t =7.76. (f) t =9.02.

As can be seen from Fig. 2 (b) (c), with full aperture data acquisition, a local maximum can be clearly visualized at the
location of each scatterer component, which is in accordance with our theoretical analysis. Using partially measured data,
Fig. 2 (e) (f) show that the location of the small scatterers can be less precisely captured than using the full data; cf.
Fig. 2 (b) (c). In this case it is typical that the point spread functions are somehow elongated, due to the lack of information
in inversions. The bottom-left scatterer component can be more clearly imaged in Fig. 2 (e) (f), because its location is closer
to the receivers than others.

Fig. 3 illustrates the evolutionary behavior of the dynamic indicator function (12) by showing the snapshots of the
reconstructions at some special stages. As can be seen from Fig. 3, the dynamic indicator exhibits a selective focusing
property such that the global maximum point of the indicator flows from one scatterer position to another. An advantage
of this capability is that, in our view, the retrieval of relatively weak scatterer components (for instance the sound-hard
scatterer in this example) may be readily achieved compared to the stationary plots. For a comparison, we refer to Fig. 3 (b)
vs. Fig. 2 (b) (c), and Fig. 3 (d) (e) (f) vs. Fig. 2 (e). Note that the bottom-left scattering component does not appear in
Fig. 3 (a)-(f), because the terminal time t in our dynamic indicator is not taken sufficiently large (see Proposition 1 for the
indicator behavior).

4.2. Reconstruction of crack-like scatterers with at most two sources

In this section, the exact scatterer is chosen as a crack-like object which has a rectangular shape with height 0.1 and
width 2 such that it is “partially small”. The impedance boundary condition with A = 0.1 is imposed on the boundary of
the scatterer. Synthetic scattered data were collected with terminal recording time T = 12 and 600 recording time steps.
We aim to test the sensitivity of the reconstructions to the orientation of this slender rectangle using a single source and
the effect of normalization involved in (15) for two incident sources.

In the extreme case that the orientation of the crack coincides with the radical direction of the point source (see
Fig. 4 (a)), only the locations of the endpoints can be retrieved using the single source scheme (11), whereas the cen-
ter part is invisible; see Fig. 4 (b) (c). With such images one would probably argue that the exact scatterer consists of two
disconnected point-like objects only rather than a crack. From the physical perspective, this “misleading” result is due to
the weak scattering from the center part of the crack. If we fix the crack and change the point source location, or alter-
natively, fix the source location but adjust the crack orientation, then the center part of the crack could be recovered; see
Fig. 4 (e) (f) and Fig. 4 (h) (i). However, the true scatterer seems to be two adjacent and parallel straight cracks rather than
a single one, as can be seen from Fig. 4 (e) and Fig. 4 (h). From the physical point of view, a possible explanation to this
effect is that the close twins in the reconstruction are originated from the close opposite side of the crack. Evidently, the
proposed single-source indicator could be used for recovering a crack-like scatterer and gives better images than the TFM.
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Fig. 4. Reconstruction of cracks. Row 1-3: examples of the cracks with different orientations, respectively. The source point is denoted by the small red
circle and the receivers are denoted by the small blue stars. Left column: exact cracks. Middle column: images of I(z; y)/ max;{I(z; y)}. Right column:
images of Item(z; ¥)/ maxz{Item(z; y)}. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

We remark that the single-source indicators have been scaled to [0,1] in Fig. 4 (b) (h). It is shown in Fig. 5 (b) (d) that
the exact magnitudes of the indicators due to different source locations may vary significantly. Fig. 6 highlights the effect
of normalization in the case of two sources where single-source indicators are summarized. Without normalization, the
contribution of a certain source to the superposition might be overwhelmed by other sources (see Fig. 6 (b)).

4.3. Reconstruction of regular-size scatterers with multi-sources

In this example, the underlying scatterer consists of a disc component (c =5) and an L-shaped component (¢ = 3).
Because of the insufficient information obtained, measurements due to a few point source may expose the incapability of
imaging the full geometrical features of an extended scatterer. Hence, we employ multiple excitation points to illuminate
the unknown scatterer from different directions in order to capture more geometrical details of the target object.

In Fig. 7 we compare the reconstructions using the three multi-source indicators proposed in Section 4.3. For regular-
size scatterers, it seems that the indicator I(z) and the total focusing method Itpm(z) provide images with almost the same
resolution. However, the indicator INEw(Z t) for some sufficiently large t could yield better results than I(z) and ITFM(z)
especially in recovering the concave part of the L-shaped component which cannot be illuminated by some point source
waves and where multiple scattering occurs. However, all indicators show the incapability of precisely imaging the concave
part. Fig. 8 illustrates the snapshots of the dynamic indicator Ingw(z, t). It is concluded from Fig. 8 (a)-(d) that the bound-
aries of the underlying scatterer that are far-away from point sources can be earlier retrieved than other parts, which is in
agreement with the theoretical analysis performed in Theorem 1 for point-like scatterers.
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Fig. 5. Reconstruction of a crack using different sources. The geometry settings are shown in (a) and (c), respectively. The reconstructions are, respectively,
the images of I(z; y) with y =(—3,0) in (b) and y = (0, 3) in (d).
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Fig. 6. Reconstruction of cracks using two sources. (b) The image of I(z; y1) + I(z; y2) with y; = (=3,0), y2 = (0, 3). (c) The image of the normalized
indicator I(z; y1)/ max; I(z; y1) + I(z; y2)/ max; I(z; y2). The geometry setting is shown in (a).

*

xx o a@r o x ok

FOR K R K R R K R K K K ¥

1

1

-2

o
N oL T T

-3

4.4. Reconstruction of regular-size scatterers in three dimensions

The last example is devoted to the reconstruction of a three-dimensional regular-size scatterer. To our knowledge, this is
the first numerical realization of the proposed schemes and the TFM for imaging three-dimensional regular-size scatterers.

In this example, the exact scatterer consists of two penetrable disconnected cubes with sound speed ¢ =2 inside. We
use 56 sources to emit the incident pulse and 56 receivers to collect the scattered data. The recording time array has 300
time steps with terminal time t = 19. The true scatterer and the sources/receivers are illustrated in Fig. 9 (a) (b).

To view the reconstruction, we present both the slice plot and the iso-surface plot of the volumetric indicator functionals.
In the slice plots, the images are drawn with two slices through the center of the cubes along the xz- and xy-plane. In the
iso-surface plots, the images are drawn according to suitable iso-surface levels which are chosen by trial and error. See
Fig. 9 (c)-(f) for the reconstructions.

5. Conclusion
We propose several non-iterative reconstruction methods to solve inverse scattering problems for time-dependent acous-

tic waves. Some preliminary mathematical analysis for point-like scatterers is carried out and the effectiveness of the static
and dynamic indicators is illustrated via a variety of numerical examples in two and three dimensions. The proposed imag-



658 Y. Guo et al. / Journal of Computational Physics 314 (2016) 647-660

0.9

0.8

: S |

‘ 0.6

0 0.5

0.4

-1 0.3

e o 0.2

-2 0.1
2 1 0 1 2

(b)

N

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Fig. 7. Reconstruction of regular scatterers using different indicator functions with 64 sources. (a) Geometry settings. The source points are denoted by
Ehe small red cir~cles and the receivers are denoted by the small blue stars. (b) Image of I(z)/ max, I(z). (c) Image of Itpm(z)/ max; Item(2). (d) Image of
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article.)
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Fig. 8. Reconstruction of regular scatterer using the dynamic indicator Inew (2, t)/ max; INew (2, ). These snapshots are captured at: (a) t =3.78, (b) t =4.74,
(c) t=5.06 and (d) t =5.86.

ing schemes can be regarded as the strengthened total focusing method. For the first time we examine the performance of
such direct sampling schemes for recovering crack-like and regular-size scatterers. Our future work consists of the mathe-
matical justification of the indicator behaviors for imaging regular-size scatterer and the extension of the approach to the
more practical case of elastodynamic wave equations.
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Fig. 9. Reconstruction of two disconnected cubes. (a) Geometry setting. The small red balls denote the locations of sources and receivers. (b) Exact scat-
terer. (c) Slice plot of Itpm(z)/max,{Item(2)}. (d) Iso-surface plot of Itpm(z)/max {Item(z)} with iso-surface level 0.45. (e) Slice plot of I(z)/max,{I(z)}.
(f) Iso-surface plot of I(z)/max;{I(z)} with iso-surface level 0.7. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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