
Journal of Computational Physics 321 (2016) 303–320
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Accurate and efficient Nyström volume integral equation 

method for the Maxwell equations for multiple 3-D scatterers

Duan Chen a, Wei Cai a,∗, Brian Zinser a, Min Hyung Cho b

a Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
b Department of Mathematical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 October 2015
Received in revised form 21 March 2016
Accepted 20 May 2016
Available online 27 May 2016

Keywords:
Electromagnetic scattering
Volume integral equation
Cauchy principal value
Dyadic Green’s function
Nyström method

In this paper, we develop an accurate and efficient Nyström volume integral equation 
(VIE) method for the Maxwell equations for a large number of 3-D scatterers. The 
Cauchy Principal Values that arise from the VIE are computed accurately using a finite 
size exclusion volume together with explicit correction integrals consisting of removable 
singularities. Also, the hyper-singular integrals are computed using interpolated quadrature 
formulae with tensor-product quadrature nodes for cubes, spheres and cylinders, that 
are frequently encountered in the design of meta-materials. The resulting Nyström VIE 
method is shown to have high accuracy with a small number of collocation points and 
demonstrates p-convergence for computing the electromagnetic scattering of these objects. 
Numerical calculations of multiple scatterers of cubic, spherical, and cylindrical shapes 
validate the efficiency and accuracy of the proposed method.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Electromagnetic (EM) wave scattering of random microstructures occurs in a wide range of applications. For example, 
the interaction of light with surface plasmons on roughened metallic surfaces produces surface plasmon polaritons (SPP) 
[1,11], which has important applications in solar cells [2], meta-materials, and super-resolution imaging devices [10,5]. 
Also, surface enhanced Raman scattering (SERS) [12] is closely related to the excitation of surface plasmons on rough or 
nano-pattern surfaces by incident light and is a very useful tool in finger-printing the chemical components of a molecule, 
single molecule detection, DNA detection, and bio-sensing, etc. [6]. In all these applications, it is critical to have accurate 
and efficient numerical methods for computer simulations of the EM scattering of a large number of microscopic objects 
such as spheres, cubes, cylinder, etc.

In this paper, we will present an accurate and efficient Nyström volume integral equation (VIE) method for the time 
harmonic Maxwell equations using dyadic Green’s functions GE(r′, r). In most of the applications mentioned above, the 
scatterers are embedded into either a homogeneous or layered media. A Lippmann–Schwinger type of VIE can be derived 
for the regions occupied by the scatterers while the dyadic Green’s function GE(r′, r) will ensure that the scattering field, 
expressed in terms of equivalent current sources inside the scatterer, satisfies interface conditions along layer interfaces 
as well as the Sommerfeld radiation conditions at infinity. In the VIE formulation, computing the electric field inside the 
scatterer will involve the use of the Cauchy Principal Values (CPV or simply p.v.) associated with the dyadic Green’s function. 
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Therefore, one of the most difficult issues for VIE methods is how to compute accurately and efficiently the CPV for the dyadic 
Green’s function with an O  

(
1/R3

)
singularity. Previous work on how to handle singular integrals for VIE methods include 

mixed potential formulation [4], singularity subtraction [7], locally corrected Nyström scheme [9], direct integration of the 
singularity [15], etc.

It is the objective of this paper to find easily implementable schemes to accurately and efficiently computing the CPV for 
the Nyström VIE method. First, we will re-derive the VIE using vector and scalar potentials such that the Cauchy principal 
value can be computed with a finite exclusion volume, as well as some explicit correction terms of removable singulari-
ties. Second, in order to compute the integral over the domain minus the exclusion volume, we will use special quadrature 
weights over tensor-product quadrature nodes designed for a reference element � (a sphere, cube, or cylinder in this paper) 
through an interpolation approach. In this approach, first a brute-force computation of the integral, using Gauss quadrature 
in polar coordinate centered at the singularity, will be done to a given accuracy with large number of evaluations of the 
integrand. However, because the integrand in the VIE matrix entries, except for the singular denominators involving Rk , 
1 ≤ k ≤ 3, are smooth functions, which can be accurately interpolated using values only on a small number of the tensor-
product nodes inside the domain �. Therefore, the brute-force integration formula weights can be converted into new 
integration weights for the tensor-product nodes. Moreover, the new quadrature weights can be tabulated for integrating 
general functions. The Nyström collocation method based on the simple tensor-product nodes can then be used to solve the 
VIE for the scattering of large number of scatterers with a high accuracy and small number of unknowns.

The rest of the paper is organized as follows: Section 2 presents the formulation of a VIE where the CPV can be com-
puted with a finite exclusion volume V δ accurately. Then, numerical algorithms, including the Nyström collocation method, 
efficient quadrature formula, and numerical implementation are given in Section 3. Section 4 includes various numerical 
tests on the accuracy of Cauchy principal value computation, δ-independence of matrix entries, accuracy and efficiency of 
solving the VIE for spheres, cubes, and cylinders, and results of scattering in multiple scatterers. The paper ends with a 
conclusion in Section 5.

2. Volume integral equations for Maxwell equations

2.1. VIE and computing Cauchy principal values

In this section, we will follow [3] to show briefly how the VIE for the Maxwell equations can be derived using a vector 
form of the Green’s second identity for the following vector wave equations,

LE(r) − ω2ε(r)E(r) = −iωJinc(r), r ∈ R
3\(� ∪ ∂�), (1)

where ω is the frequency, μ is the permeability, and � consists of planar interfaces of the background medium in case of 
a layered material,

L = ∇ × 1

μ
∇×,

and Jinc(r) is the far-field source (assumed to be away from the layered structure). Jinc(r) produces the incident wave 
impinging on the layered structure from above, i.e.,

Einc(r) = −iωμ(r)
∫
R3

GE(r, r′) · Jinc(r′)dr′, (2)

and GE (r, r′) is the dyadic Green’s function for the layered media. A scatterer � is characterized by a different dielectric 
constant from that of the layered background dielectrics εL(r), i.e.,

ε(r) = εL(r) + �ε(r), (3)

where �ε(r) = 0, r /∈ �. Then, (1) can be rewritten as

LE(r) − ω2εL(r)E(r) = −iωJ(r), (4)

where

J(r) = Jinc(r) + Jeq(r), (5)

and the equivalent current source Jeq(r) is defined to characterize the presence of the scatterer �:

Jeq(r) = iω�ε(r)E(r). (6)

Let us consider any interior point in the scatterer, i.e., r′ ∈ � and a small volume V δ = V δ(r′) ⊂ � centered at r′ . The 
dyadic Green’s function GE (r, r′) is defined by
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LGE(r, r′) − ω2εL(r)GE(r, r′) = 1

μ(r)
Iδ(r − r′), r ∈R

3. (7)

In case of a homogeneous medium, we have

GE(r, r′) = GE(r′, r) =
(

I + 1

k2
∇∇
)

g(r, r′), (8)

where k2 = ω2εL(r)μ and

g(r, r′) = 1

4π

e−ikR

R
, R = |r − r′|. (9)

Next, on multiplying Eq. (4) by GE (r, r′), Eq. (7) by E(r), forming the difference, integrating over the domain R3\V δ , 
using the Faraday’s law ∇ × E = −iωμH, and performing some manipulation (for details, refer to Section 10.4 in [3]), we 
arrive at the following equation (after switching r and r′):

− iωμ(r)
∫

R3\V δ

dr′ GE(r, r′) · J(r′) − μ(r)
∫
Sδ

ds′ [iω GE(r, r′) · (n × H(r′)
)

− 1

μ(r′)
∇ × GE(r, r′) · (n × E(r′)

)]= 0, r ∈ �, (10)

where Sδ = ∂V δ(r) is the boundary of V δ(r), and n is the normal of Sδ pointing out of V δ(r).
As δ → 0, the first integral will approach to the Cauchy principal value of a singular integral, while the surface integrals 

depends on the geometric shape of the volume V δ .
In order to estimate the surface integrals, we have the following asymptotics for small kR 
 1:

GE(r, r′) = 1

4πk2 R3
(I − 3u ⊗ u) + O

(
1

R2

)
, (11)

∇′ × GE(r, r′) = 1

4π R2
u × I + O

(
1

R

)
, (12)

where u = (r′ − r)/R . The asymptotics imply that:

lim
δ→0

∫
Sδ

ds′ n × E(r′) · ∇ × GE(r′, r) = − [I − LV δ

] · E(r), (13)

lim
δ→0

∫
Sδ

ds′ n × H(r′) · GE(r′, r) = − 1

k2
LV δ · ∇ × H(r), (14)

and the L-dyadics for V δ of various geometric shapes are given in [18] and we have

LV δ = 1

3
I (15)

for a sphere, as used in this paper.
Substituting Eqs. (13) and (14) into Eq. (10), after some manipulations [3]; and then using the Ampère’s law ∇ × H =

iωεE + J(r), we have the VIE for the electric field for r ∈ �:

C · E(r) = Einc(r) − iωμ(r) p.v.
∫
�

dr′ iω�ε(r′)E(r′) · GE(r′, r), (16)

where the coefficient matrix is given by

C = I + LV δ · �ε(r). (17)

The Cauchy principal value p.v. in Eq. (16) is defined as

p.v.
∫
�

dr′ iω�ε(r′)E(r′) · GE(r′, r) = lim
δ→0

∫
�\V δ

dr′ iω�ε(r′)E(r′) · GE(r′, r), (18)

where a limiting process is taken by diminishing the radius δ of the exclusion volume V δ . In practical computation, a finite δ
will be taken; namely, a small, finite, and fixed δ > 0 for the exclusion V δ ⊂ � is selected. A simple and naive approximation 
could be performed as
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p.v.
∫
�

dr′ iω�ε(r′)E(r′) · GE(r′, r) ≈
∫

�\V δ

dr′ iω�ε(r′)E(r′) · GE(r′, r), (19)

which will give a truncation error, whose effect should be studied. This truncation error later will be identified with some 
correction terms, i.e.,

p.v.
∫
�

dr′ iω�ε(r′)E(r′) · GE(r′, r) =
∫

�\V δ

dr′ iω�ε(r′)E(r′) · GE(r′, r)

+ correction term. (20)

The existence of these correction terms and their magnitudes will limit the accuracy of the VIE solution if they are not 
explicitly included in the numerical solution process. The correction terms were derived by Fikioris [4] using a mixed 
potential formulation of the electric field. In this paper, we will re-derive the VIE similar to those in [4], however, in a more 
succinct manner, resulting in a form more suitable for numerical implementations.

2.2. Reformulation of the VIE and computing the CPV with a finite δ

In this section, we will re-derive the VIE for the electric field where the CPV in Eq. (16) can be computed with a finite 
exclusion volume V δ together with some correction terms. Based on the Helmholtz decomposition, the electric field E(r)
can be expressed as,

E = −iωA − ∇V ,

where A and V are vector and scalar potentials, respectively [3]. Using the Lorentz gauge condition [14],

∇ · A = −iωεμV , (21)

the electric field can be presented by

E = −iωA + 1

iωεμ
∇(∇ · A) = −iω

[
I + 1

k2
∇∇
]

A. (22)

Meanwhile, it can be shown that the potential A satisfies the Helmholtz equation component-wise [14],

∇2A + k2A = −μJ. (23)

Thus, the solution A of Eq. (23) can be written in an integral representation:

A = μ

∫
R3

dr′J(r′)g(r, r′)

= μ

∫
R3\�

Jinc(r′)g(r, r′)dr′ + μ

∫
�

Jeq(r′)g(r, r′)dr′

= μ

∫
R3\�

Jinc(r′)g(r, r′)dr′ + μ

∫
�

dr′iω�ε(r′)E(r′)g(r, r′), (24)

where the second equality on the right hand side of Eq. (24) is due to the assumption that supp(Jinc(r)) ∩ � = ∅.
The first integral in Eq. (24) is well-defined if r ∈ �; it yields the incident wave Einc(r) according to relation (2) after 

being plugged into Eq. (22). The second integral over � is split as

μ

∫
�

dr′iω�ε(r′)E(r′)g(r, r′) = μ

⎛
⎜⎝ ∫

�\V δ

+
∫
V δ

⎞
⎟⎠ iω�ε(r′)E(r′)g(r, r′),

and along with the first integral term in Eq. (24), it follows from Eq. (22) that

E = Einc(r) − iωμ

∫
�\V δ

iω�ε(r′)E(r′)
[

I + 1

k2
∇∇
]

g(r, r′)

− iωμ

[
I + 1

k2
∇∇
]∫

dr′iω�ε(r′)E(r′)g(r, r′)

V δ
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= Einc(r) − iωμ

∫
�\V δ

iω�ε(r′)GE(r, r′) · E(r′)

− iωμ

[
I + 1

k2
∇∇
]∫

V δ

dr′iω�ε(r′)E(r′)g(r, r′). (25)

Next, we separate the singular part in g(r, r′) as follows:

g(r, r′) = g0(r, r′) + g̃(r, r′), (26)

where

g0(r, r′) = 1

4π |r − r′| , g̃ = g − g0. (27)

Then, using the fact that [8,18]

∇∇
∫
V δ

dr′ 1

4π |r − r′| = −
∫

∂V δ

ds′
(
r − r′)un(r′)
4π |r − r′|3 = −LV δ , (28)

we can compute the following integral as

∇∇
∫
V δ

dr′�ε(r′)E(r′)g0(r, r′)

= ∇∇
∫
V δ

dr′ 1

4π |r − r′|�ε(r)E(r) +
∫
V δ

dr′∇∇g0(r, r′)
[
�ε(r′)E(r′) − �ε(r)E(r)

]

= −LV δ�ε(r)E(r) +
∫
V δ

dr′∇∇g0(r, r′)
[
�ε(r′)E(r′) − �ε(r)E(r)

]
. (29)

The second integral has a removable singularity O  
(

1
|r−r′ |2

)
through the use of spherical coordinates centered at r, provided 

the function �ε(r)E(r) is differentiable in the interior of V δ , which we assume it to be.
With Eq. (29) and the fact that g̃ = g − g0 is a smooth function, Eq. (25) becomes

C · E = Einc(r) − iωμ

∫
�\V δ

iω�ε(r′)GE(r, r′) · E(r′)

+ ω2μ

∫
V δ

dr′�ε(r′)E(r′)g(r, r′)

+ ω2

k2
μ

∫
V δ

dr′�ε(r′)∇∇ g̃(r, r′) · E(r′)

+ ω2

k2
μ

∫
V δ

dr′∇∇g0(r, r′)
[
�ε(r′)E(r′) − �ε(r)E(r)

]
, (30)

with same coefficient matrix C as in Eq. (17).
The VIE in Eq. (30) is similar to those obtained by Fikioris [4]; however, our derivation is based on a splitting of Green’s 

function in Eq. (26) and the identity for LV δ in Eq. (28). A comparison study between CPV formulation (16) and finite 
exclusion volume formulation (30) can be found in [17]. Now expression (30) holds for any finite δ > 0 as long as V δ ⊂ �, 
and all integrals involved on the right-hand side are well-defined provided that �ε(r)E(r) is Hölder continuous. We can 
see that the last three integrals can be understood as the correction terms for computing the Cauchy principal value with a 
finite-sized exclusion volume V δ . It should be noted that these integrals are all weakly singular integrals whose singularities 
can be removed by a spherical coordinate transform. In particular, we can estimate their magnitudes in terms of δ. Namely,∣∣∣∣∣∣∣

∫
V

dr′�ε(r′)E(r′)g(r, r′)

∣∣∣∣∣∣∣≤ C1||�εE||∞δ2, (31)
δ
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∣∣∣∣∣∣∣
∫
V δ

dr′�ε(r′)∇∇ g̃(r, r′) · E(r′)

∣∣∣∣∣∣∣≤ C2||�εE||∞δ2, (32)

and ∣∣∣∣∣∣∣
∫
V δ

dr′∇∇g0(r, r′)
[
�ε(r′)E(r′) − �ε(r)E(r)

]∣∣∣∣∣∣∣≤ C3||�εE||1,∞δ, (33)

where C1, C2, C3 are constants, and ‖ · ‖∞ and ‖ · ‖1,∞ represent the L∞ norms of a function and its first derivative, 
respectively.

Remark 1. Equations (31)–(33) explicitly show the accuracy of approximating the CPV (18) by the integral (19) with a finite 
δ > 0, i.e., the truncation error is of the order O (δ). Hence the numerical solution of the VIE will have this O (δ) truncation 
error in general regardless of the integration quadratures used if the terms (31)–(33) are not included.

Moreover, when V δ is a ball of radius δ centered at r, one can obtain a better estimate than Eq. (33) due to the 
anti-symmetry of the singular term ∇∇g0(r, r′) in spherical coordinates, i.e.∣∣∣∣∣∣∣

∫
V δ

dr′∇∇g0(r, r′)
[
�ε(r′)E(r′) − �ε(r)E(r)

]∣∣∣∣∣∣∣≤ C4||�εE||2,∞δ2, (34)

where C4 is constant.

3. Numerical methods

3.1. Nyström VIE method

We use Nyström methods to solve Eq. (30). First, we assume that the computational domain � is comprised of N non-
overlapping elements (cubes, cylinders, and balls) �i , i = 1, 2, ..., N . On each element �i , we assign M tensor-product 
quadrature nodes and define M basis functions φi j(r), 1 ≤ j ≤ M , as the interpolation functions with Kronecker delta prop-
erty for the quadrature nodes. Then, we can write the solution as

E(r) =
N∑

i=1

M∑
j=1

Ei jφi j(r), r ∈�i, (35)

where Ei j, 1 ≤ i j ≤ MN , are the MN unknown vectorial nodal values of the numerical solution E(r) at the j-th node ri j in 
element �i . Inserting Eq. (35) into Eq. (30), we obtain the following equations for Ei j :

C · Ei j = Einc
i j + ω2μ

N∑
n=1

M∑
m=1

⎡
⎢⎢⎣
∫

�n\V δi j

dr′�ε(r′)ḠE(ri j, r′)φnm(r′)

⎤
⎥⎥⎦ · Enm

+ ω2μ

M∑
m=1

⎡
⎢⎢⎣
∫

V δi j

dr′�ε(r′)g(ri j, r′)φim(r′)

⎤
⎥⎥⎦ · Eim

+ ω2μ

k2

M∑
m=1

⎡
⎢⎢⎣
∫

V δi j

dr′�ε(r′)∇∇ g̃(ri j, r′)φim(r′)

⎤
⎥⎥⎦ · Eim

+ ω2μ

k2

M∑
m=1

∫
V δi j

dr′∇2 g0(ri j, r′)
[
�ε(r′)φim(r′) − �εi jφim(ri j)

] · Eim, (36)

where V δi j is the small exclusion from the element �n at centered and centered at ri j . The first integral will be discretized 
using the M-quadrature formula in each element �i to give the Nyström VIE solution due to the choice of the Lagrange 
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interpolation function φnm(r), 1 ≤ m ≤ M in each element �n . The three correction integrals over the exclusion volume V δi j

will be evaluated using tensor-product Gauss quadratures in spherical coordinates where the Jacobian for the mapping from 
the Cartesian coordinates to the spherical coordinates will remove the singularity of the integrands.

When n �= i, we have ri j /∈ �n; then the first integral in Eq. (36)∫
�n

dr′�ε(r′)ḠE(ri j, r′)φnm(r′) (37)

is regular in the whole domain �n and hence it can be evaluated by regular Gauss quadratures, i.e.,∫
�n

dr′�ε(r′)ḠE(ri j, r′)φnm(r′) =
(an

2

)3 M∑
m=1

�εnmḠE(ri j, rnm)ωs
m, (38)

with ωs
m being the standard Gauss weights in 3-D, which are obtained from the tensor-product of the Gauss weights in 

[−1, 1] or uniform weights for the periodic direction in φ ∈ [0, 2π ] in the cases of spheres.
When n = i, although the singularity ri j is excluded from the domain �i , the calculation of the integral∫

�i\V δi j

dr′�ε(r′)ḠE(ri j, r′)φim(r′) (39)

is still challenging. Therefore, we present an efficient quadrature formula to evaluate this integral in the following subsection.

3.2. Interpolated weights on tensor-product nodes for integrals on �\V δ

For the sake of generality, we consider the following integral:

Is =
∫

�\V δ

f (r; r′)h(r; r′)
Rk

dr′, r ∈ V δ, (40)

where k = 0, 1, 2, 3 corresponds to regular-, weak-, strong-, and hyper singularity of the integral, respectively. The function 
f (r; r′) is assumed to be a generally smooth and well-defined function, while h(r; r′) is some fixed function resulting from 
the directional derivative in the definition of the dyadic Green’s function.

Because the function f (r; r′) is smooth over the whole domain �, it can be well approximated by the following simple 
interpolation:

f (r; r′) ≈
M∑

j=1

f (r; r j)φ j(r′), r j ∈ �, (41)

where {r j}M
j=1 are M nodes in � and φ j(r′) is the interpolant function which satisfies the Kronecker property

φ j(ri) = δi j . (42)

Then replacing f (r; r′) in Eq. (40) with Eq. (41), it yields∫
�\V δ

f (r; r′)h(r; r′)
Rk

dr′ ≈
M∑

j=1

f (r; r j)ω j . (43)

We call ω j the interpolated weights, defined through the integral

ω j =
∫

�\V δ

φ j(r′)h(r; r′)
|r − r′|k dr′. (44)

Note that the interpolated weights ω j depend on the location of the singularity r and rely on accurate calculations of 
Eq. (44). For each singular point r, a straight-forward, brute-force approach involving a large number Nb (Nb � M) of Gauss 
points is adopted in local spherical polar coordinates to calculate (44) to a prescribed accuracy, and the value of ω j is 
restored. Details about the choices of {r j}M

j=1 and φ j(r) upon various domains, as well as computations and resulting weight {
ω j
}

tables can be found in [19].
The computation of weights ω j only needs to be performed once and tabulated for the reference domain; they can be 

used for general cubic, spherical, or cylindrical domains. Due to the smoothness of the function f (r; r′), the number M is 
relatively small, especially if the element size is small for meta-material designs. Therefore, the computation of Eq. (39) is 
efficient once ω j are obtained.
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Remark 2. As the CPV is used in the VIE, the VIE depends on the specific shape of the exclusion volume. Thus, the interpo-
lated weights can only be used for the shape for which it was calculated, namely, a cube, a cylinder, or a sphere shape here. 
So, for a general element obtained by an affine mapping as in a finite element triangulation, we will need to isolate the 
singularity by a cube, a cylinder, or a sphere with the singularity at its center. Then the pre-calculated interpolated weights 
defined in Eq. (44) can be used. The integral over the rest of the region within the element of a more general shape can be 
computed with regular Gauss quadratures.

3.3. Computation of VIE matrix entries

In this section, we will show how to compute the matrix entries accurately for the VIE in the following steps.

• Step I: calculate interpolated weights 
{
ω j
}

on the reference (cubic, cylindrical, or spherical) domain.

For Eq. (44), we take V δ = B(r j, δ), where δ > 0 is a prescribed small quantity and r j , j = 1, 2, ...M , are the M tensor-
product nodes in the reference domain, and we let J = M in Eq. (41).
Next, we have the dyadic Green’s function for the free-space in the following form:

GE = gI + ∇∇g

k2
= e−ikR

4π R
(I − u ⊗ u)

− ie−ikR

4π R2k
(I − 3u ⊗ u) − e−ikR

4π R3k2
(I − 3u ⊗ u)

=
[

cos (kR)

4π R
− i

sin (kR)/R

4π

]
(I − u ⊗ u)

+
[
− sin (kR)/R

4π Rk
− i

cos (kR)

4π R2k

]
(I − 3u ⊗ u)

+
[
−cos (kR)

4π R3k2
+ i

sin (kR)/R

4π R2k2

]
(I − 3u ⊗ u). (45)

The reason we split the function e−ikR into sine and cosine functions is that functions cos (−kR) and sin (−kR)/R are 
smooth functions, suitable for interpolation according to (43). Since the value of function u ⊗u is multi-valued at R = 0, 
in Eq. (40) we will take

h(r; r′) = u ⊗ u, (46)

and hence Eq. (44) will produce a set of 9 interpolated weights. However, due to the symmetry of the matrix u ⊗u, only 
6 components need to be considered. For the identity matrix I term in Eq. (45), we need a set of scalar interpolation 
weights by assuming h(r; r′) = 1 in Eq. (44).
Additionally, for the scalar and matrix weights, we will consider k = 1, 2, and 3 for weak, strong, and hyper singular 
integrals, respectively. In summary, for each collocation point (also the singularity location) r j, j = 1, 2, ..., M in an ele-
ment, scalar weights ωr

j,m , ω j,m , ω̄ j,m and ω̃ j,m, m = 1, 2, ..., M are calculated for regular-, weak-, strong-, hyper-singular 
integrals, respectively. And the corresponding matrix weights containing h(r; r′) are denoted as �r

j,m , � j,m , �̄ j,m , and 
�̃ j,m . Here the first index j indicates the location of the singularity of the integrand while the second one m is the 
quadrature weight index. These weights only need to be calculated once and then stored for future use.

• Step II: We consider the computational domain consisting of a collection of fundamental elements with size ai , i =
1, 2, ..., N and assign M collocation points in each elements. For the j-th collocation point ri j in the i-th element, the 
Nyström method (36) can be written in the following matrix form:

−ω2μ

N∑
n=1

M∑
m=1

Anm · Enm −
M∑

m=1

Bim · cim +
(

1 + 1

3
�εi j

)
I3×3 · Ei j = Einc

i j . (47)

The matrix B corresponds to the last three terms in Eq. (36), which originate from the correction terms of the Cauchy 
principal value in Eq. (30), and using the Kronecker property Eq. (42), B takes the following form

Bim = ω2μ

∫
B(ri j ,aiδ)

dr′�ε(r′)g(ri j, r′)φim(r′)

+ ω2μ

k2

∫
B(r ,a δ)

dr′�ε(r′)∇∇ g̃(ri j, r′)φim(r′)

i j i
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+ ω2μ

k2

∫
B(ri j,aiδ)

dr′∇2 g0(ri j, r′)
[
�ε(r′)φim(r′) − �εi jφim(ri j))

]
, (48)

and it can be calculated by standard Gauss quadrature through spherical coordinates since the Jacobian will eliminate 
completely the singularity of the integrands or simply the interpolated quadrature formula for a sphere [19].
When n = i, we calculate the integral (39), with the help of the Kronecker property Eq. (42), as

Aim = 1

4π
J i

M∑
j=1

�εim

[(
f 0
mωr,i

j,m + f 1
mωi

j,m + f 2
mω̄i

j,m + f 3
mω̃i

j,m

)
I3×3

f 0
m�

r,i
j,m + f 1

m�i
j,m + f 2

m�̄i
j,m + f 3

m�̃i
j,m

]
, (49)

where

f 0
m = −i

sin (kRm)

Rm

f 1
m = cos (kRm) − sin (kRm)

kRm

f 2
m = −i

cos (kRm)

k
+ i

sin (kRm)

k2 Rm

f 3
m = −cos (kRm)

k2
(50)

and Rm = |ri j − rim| and J i is the Jacobian from the reference domain to the physical domain �i .
Note that the interpolated quadrature weights are rescaled from the reference domain. In the cube example, the ref-

erence domain is [−1, 1]3 and if the physical domain has length ai , then J i = ai

2
and recall the definition of the 

interpolated weights (44), we have

ωi
j,m =

(
2
ai

)
ω j,m, ω̄i

j,m =
(

2
ai

)2
ω̄ j,m, ω̃i

j,m =
(

2
ai

)3
ω̃ j,m,

�i
m =

(
2
ai

)
� j,m, �̄i

j,m =
(

2
ai

)2
�̄ j,m, �̃i

j,m =
(

2
ai

)3
�̃ j,m,

(51)

when n �= i, we have

Anm = Jn

M∑
j=1

�εnmḠE(ri j, rnm)ωs
j . (52)

• Step III: Equation (47) for all the N × M tensor-product nodes can be assembled as the following linear algebraic 
equation system

V · �E =
⎡
⎢⎣

Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz

⎤
⎥⎦ ·
⎡
⎢⎣

Ex

Ey

Ez

⎤
⎥⎦=

⎡
⎢⎣

Einc
x

Einc
y

Einc
z

⎤
⎥⎦ . (53)

Based on the properties of the Green’s function, the 3N M × 3N M matrix V is partitioned into nine blocks, each block 
is a N M × N M sub-matrix. The solution of the VIE contains three N M × 1 vectors, which represent the field in x, y, and z
directions. Then, the system is solved by a matrix solver. In this paper, we used the generalized minimal residual (GMRES) 
method [13].

4. Numerical results

In this section we test the accuracy of the interpolated weights on tensor-product nodes, the δ-independence of the 
solution of the VIE, and convergence of the p-refinement of the Nyström collocation method and the scattering of a large 
number of scatterers consisting of cubic, cylindrical, and spherical shapes.
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Table 1
Convergence of the integral when the singularity is at center. g11 = g22 = g33 and g12 = g13 = g23 = 0.

δ = 0.1 δ = 0.05 δ = 0.025 δ = 0.0125

g11 3.985701 4.017024 4.024872 4.026835
error −4.1784E–2 −1.0461E–2 −2.613E–3 −6.5E–4
order – 1.99 2.00 2.00

Table 2
Convergence of the integral when singularity is at a corner. Reference values g11 = g22 = g33 = 0.982526
and g12 = g13 = g23 = −0.998097.

δ = 0.1 δ = 0.05 δ = 0.025 δ = 0.0125

g11 0.940714 0.972063 0.979913 0.981876
error −2.80425E–1 −7.3424E–2 −1.8102E–2 −3.983E–3
order – 1.93 2.02 2.18

g12 −0.998084 −0.998094 −0.998097 −0.998097
error 1.3E–5 3.0E–6 0 0
order – 2.12 – –

Table 3
Convergence of the integral when singularity is at an edge. Reference values g11 = −1.515302, g22 =
g33 = 3.39234, g23 = −1.579086, and g12 = g13 = 0.

δ = 0.1 δ = 0.05 δ = 0.025 δ = 0.0125

g11 −1.559532 −1.526351 −1.518059 −1.515987
error −4.423E–2 1.1049E–2 2.757E–3 −6.85E–4
order − 2.00 2.00 2.00

g22 3.35175 3.38217 3.389798 3.391707
error −4.059E–2 −1.1017E–2 2.542E–3 −6.33E–4
order − 1.87 2.12 2.00

g23 −1.579072 −1.579082 −1.579085 −1.579085
error 1.4E–5 4.0E–6 1.0E–6 1.0E–6
order – 1.81 2.00 0

4.1. Accuracy of the interpolated weights on tensor-product nodes for computing matrix entries

In this subsection, the accuracy of the interpolated weights on tensor-product nodes in a cube is presented. The study 
on a sphere and a cylinder can be treated in a similar way.

In Eq. (47), the calculation of matrix B from the correction terms is straightforward; so we will focus on validating the 
interpolated weights in computing matrix A. For convenience, we consider the integral of a real-valued, tensor function

cos R

R
(I − u ⊗ u) + cos R

R2
(I − 3u ⊗ u) + cos R

R3
(I − 3u ⊗ u), (54)

which is similar to the Green’s function in Eq. (45) in the domain �\V δ . Without loss of generality, we take � = [−1, 1]3

and r j as one of the 27 points constructed from the tensor-product of the Gauss points of order 3 in [−1, 1]. Thus, we have 
j = m = 1, 2, ..., 27 as in Eq. (51) and the integral can be written as

G j ≈
27∑

m=1

cos(|rm − r j|)
[(

ω j,m + ω̄ j,m + ω̃ j,m
)

Ī − � j,m − 3�̄ j,m − 3�̃ j,m

]
, (55)

which is a 3 × 3 matrix depending on r j .
For each G j , we use the direct brute force method introduced in [19] to obtain the reference value of the matrix entries 

with a small δ = 10−3. Then we calculate the integral using the interpolated weights in Eq. (55) with different values of δ. 
According to the previous analysis, the error should decay on the order O (δ2).

We classify the 27 sets of weights into four categories, based on the position of the singularity r j , as being near the 
corner, edge, face, and center of the cube. The matrix G j is symmetric, so we only check the three diagonal entries (g11, 
g22, and g33) and the three upper triangular entries (g12, g13, and g23).

Table 1 presents the numerical results when the singularity r j is located in the center of the cube, in which case 
g11 = g22 = g33 and the off-diagonal entries are all zeros. The reference value is g11 = 4.027477 while g11 is computed 
with δ = 0.1, 0.05, 0.025, and 0.0125 are 3.985701, 4.017024, 4.024872, and 4.026835, respectively.

In a similar fashion, Tables 2–4 show the accuracy when the singularity is located near the corner, edge, and face of the 
cube, respectively. When compared to the reference values, the expected O (δ2) behavior is confirmed.
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Table 4
Convergence of the integral when singularity is at a face. Reference values g11 = 0.877428, g22 = 0, 
g33 = 6.494784, and g12 = g13 = g23 = 0.

δ = 0.1 δ = 0.05 δ = 0.025 δ = 0.0125

g11 0.83442 0.866672 0.874742 0.87676
error −4.3008E–2 −1.10756E–2 −2.686E–3 −6.68E–4
order – 1.96 2.04 2.01

g33 6.455419 6.484909 6.492315 6.49417
error −3.9365E–2 −9.875E–3 −2.469E–3 −6.14E–4
order – 1.99 1.99 2.01

Fig. 1. Differences of matrix entries with δ = 0.1 and δ = 0.001. (a) Without correction terms; (b) with correction terms.

Table 5
Comparison of solutions of the VIE without the correction terms.

δ = 0.1 δ = 0.05 δ = 0.025 δ = 0.0125

‖Ex − Eref
x ‖L∞ 3.360E–3 8.264E–4 2.044E–4 5.039E–5

‖E y − Eref
y ‖L∞ 1.476E–3 3.696E–4 9.258E–5 2.358E–5

‖Ez − Eref
z ‖L∞ 2.533E–3 6.387E–4 1.597E–4 3.969E–5

Table 6
Comparison of solutions of the VIE with the correction terms.

δ = 0.1 δ = 0.05 δ = 0.025 δ = 0.0125

‖Ex − Eref
x ‖L∞ 8.0E–12 1.0E–12 0 0

‖E y − Eref
y ‖L∞ 2.0E–12 1.0E–12 0 0

‖Ez − Eref
z ‖L∞ 1.0E–12 0 0 0

4.2. Exclusion volume δ-independence of the VIE solution

Equation (30) provides a formulation with which the solution of the VIE will be independent of the choice of the 
exclusion volume size δ. In the following tests, we take μ = 1, �ε = 4, ω = 1 and solve the VIE. The computational domain 
is taken as [−π/2, π/2]3, while the incident wave is

Einc
x = eik(−y+0.5z), Einc

y = Einc
z = 0.

We first check the δ-independence of the matrix entries in Eq. (53). Fig. 1 displays the differences of one row of entries 
in the matrix V between the choices of δ = 0.1 and δ = 0.001, in which the solid lines are for the entries from a diagonal 
block (V xx) and dashed lines are for the entries from an off-diagonal block (V xy ). The blue curves are for real parts while 
red curves are for imaginary parts. When the correction terms are not included, the differences between entries in the 
corresponding positions can be as large as 3.0 × 10−3, as shown in Fig. 1 (a). In contrast, the corresponding differences are 
reduced to below 2 × 10−11 when the correction terms are included. Hence, the matrix entries are δ-independent when the 
correction terms are included.

Next we check the δ-dependence of the overall solution of the VIE. The solution of the VIE with a small δ = 0.001 is 
chosen as the reference solution. Then, the numerical solutions are computed with δ = 0.1, 0.05, 0.025, and 0.0125 and 
compared with the reference solution. The differences are measured in the L∞ norm for the three components Ex , E y , Ez
and they are listed without and with the correction terms in Tables 5 and 6, respectively.
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From Table 5 it can be seen that without the correction terms, the solution of VIE has an obvious dependence on the 
choice of δ and the differences decreases on the order of O (δ2), while the solution is indeed δ-independent when the 
correction terms are included, as shown in Table 6.

4.3. Accuracy and efficiency of the computational algorithms

In this section we investigate the accuracy of the VIE solution and the efficiency of the computational algorithms. To do 
this, we check the error

Error = ‖Ep − Eref‖L2(�)

‖Eref‖L2(�)

(56)

against the number of collocation points used in computations, where Ep is the numerical solution of the VIE with p
collocation points in each direction and Eref is a reference solution. The L2 norm integral will be discretized with the 
quadrature formula used in the VIE. In the following tests, the domain � is taken as a sphere, a cube, or a cylinder, which 
are the most common fundamental element of meta-materials. Because the solution does not dependent on the choice of 
parameter δ, δ = 0.001 is taken for the rest of calculations.

• Case 1: Solution of the VIE for the MIE scattering of a sphere

We use this case to validate the accuracy and efficiency of the algorithms as the analytic solution given by the MIE 
series. For an incident wave

Einc = ixeikz, (57)

where ix is the unit vector along x-direction in the Cartesian coordinates, the exact solution of electromagnetic fields inside 
a sphere can be expressed as the following MIE series in unit vectors of spherical coordinates,

E(r, θ,φ) =
∞∑

n=1

in(2n + 1)

n(n + 1)

(
cnM(1)

o1n − idnN(1)
e1n

)
, (58)

where the coefficients are

cn = jn(ka)[kah(1)
n (ka)]′ − h(1)

n (ka)[kajn(ka)]′
jn(mka)[kah(1)

n (ka)]′ − h(1)
n (ka)[mkajn(mka)]′

,

dn = mjn(ka)[kah(1)
n (ka)]′ − mh(1)

n (ka)[kajn(ka)]′
m2 jn(mka)[kah(1)

n (ka)]′ − h(1)
n (x)[mkajn(mka)]′

.

(59)

The vector special harmonics are defined by

M(1)
o1n =

⎡
⎢⎣

0

cosφ · πn(cos θ) jn(mkr)

− sin φ · τn(cos θ) jn(mkr)

⎤
⎥⎦ , (60)

N(1)
e1n =

⎡
⎢⎢⎢⎢⎢⎣

n(n + 1) cosφ · sin θ · πn(cos θ)
jn(mkr)

mkr

cos φ · τn(cos θ)
[mkrjn(mkr)]′

mkr

− sin φ · πn(cos θ)
[mkrjn(mkr)]′

mkr

⎤
⎥⎥⎥⎥⎥⎦ . (61)

In the above formulas, m is the refractive index of the sphere relative to the ambient medium, a the radius of the sphere 
and k is the wave number of the ambient medium. The functions jn(z) and h(1)

n (z) are spherical Bessel functions of first 
and third kind, respectively, and their derivatives have the relations

[zjn(z)]′ = zjn−1(z) − njn(z); [zh(1)
n (z)]′ = zh(1)

n−1(z) − nh(1)
n (z), (62)

where πn(cos θ) and τcos θ have the relations

πn = 2n − 1
cos θ · πn−1 − n

πn−2;τn = n cos θ · πn − (n + 1)πn−1, (63)

n − 1 n − 1
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Table 7
Accuracy and efficiency of the computational algorithms.

p Error CPU time

Current method Brute force Current method Brute force

2 1.35E–2 1.34E–2 0.041 sec 137 sec
3 2.32E–3 1.52E–3 0.253 sec 1838 sec
4 1.67E–4 8.78E–5 1.158 sec 20899 sec
5 3.13E–5 1.11E–5 4.65 sec 62441 sec
6 2.04E–6 – – –

Fig. 2. Numerical solution of scattering of a sphere of radius 1. (a) Incident wave; (b) Ex; (c) E y ; (d) Ez .

with

π0 = 0;π1 = 1;π2 = 3 cos θ;τ0 = 0;τ1 = cos θ;τ2 = 3 cos 2θ. (64)

The MIE solution (58) is taken as the reference solution Eref in this case.
To find the interpolated quadrature weights in Eq. (44), Lagrange interpolation is used along the r-direction and mr

Gauss nodes are used while double Fourier interpolations are applied for the φ ∈ [0, 2π) and θ ∈ [0, π ]. In total mθ + 1 and 
2mφ grid points (namely, the collocation points in the Nyström method) are equally distributed for θ and φ, respectively. 
Therefore, the equivalent number of collocation points in each direction is calculated as p = 3

√
mr(2mφ(mθ − 1) + 2). The 

specific quadrature weights for these nodes can be found in [19].
Table 7 lists the error and CPU time of solving the VIE in a unit sphere using the interpolated weights compared to the 

results from the brute force method. With interpolated weights, accuracy and convergence comparable to the brute force 
method are obtained when the number collocation points is increased. Moreover, the developed algorithm is much more 
efficient; since the interpolated weights are pre-calculated and stored, most of the time is spent reading these weights from 
files to computer memory. The total CPU time, including reading weights, matrix filling and solving linear systems is less 
than ten seconds for p = 5. On the contrary, the brute force method is extremely time-consuming, even being parallelized 
by OpenMP with multiple (four) threads. Parallelization with more threads will reduce the computational time but we can 
still see the contrast to the time needed by the method with interpolated weights. Fig. 2 plots the numerical solution of 
the VIE in the sphere. These simulations were performed on a workstation of two octa-core Intel Xeon processors clocked 
at 3.1 GHz.

• Case 2: Solution of the VIE in a cube

In the second case, we examine the convergence of the solution of the VIE in a cube of size length two. Regular Lagrange 
interpolation is used with p Gauss nodes in each direction. As there is no exact solution available, the numerical solution 
with p = 7 collocation points in each direction is taken as the reference solution Eref , and differences between the solu-
tions Ep , p = 3, 4, 5, 6, and Eref are computed. Fig. 3 plots the log10 error against the number of collocation points along 
each direction. Numerical convergence is achieved, although there could be field singularities, clearly shown in Fig. 4, due 
to the geometric corners and edges of the cube [16]. Fig. 4 shows the 3D plot of the incident wave Einc = ixeik(2y+2z) and 
the resulting electric fields inside the cubic scatterer.

• Case 3: Solution of the VIE in a cylinder

In the third case, we check the convergence of the solution of VIE in a cylinder of height two and radius one. Regular 
Lagrange interpolation is used with mρ and mz Gauss nodes in ρ and z directions, respectively, while mθ equally distributed 
nodes are used in the θ direction and Fourier interpolation is applied. Then we count p = 3

√
mθ × mρ × mz and take mθ =

2mρ = 2mz . As there is no exact solution available, the numerical solution with p = 7 collocation points in each direction is 
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Fig. 3. log10 errors of solutions Ep in a cube against number of collocation points in one direction.

Fig. 4. Numerical solutions of VIE in a cube of length 2 with p = 7. (a) Incident wave; (b) Ex; (c) E y ; (d)Ez .

Fig. 5. log10 errors of solutions Ep in a cylinder against number of collocation points in one direction.

taken as the reference solution Eref, and differences between the solutions Ep , p = 3, 4, 5, 6, and Eref are taken. Fig. 5 plots 
the log10 error against the number of collocation points along each direction. The incident wave used is Einc = ixeik(0.5y+0.5z)

and the resulting electric fields inside the cylindrical scatterer are shown in Fig. 6. The computing efficiency of the two cases, 
comparing the Nyström method to the brute force method, is similar to those in Case 1.

4.4. Scattering of multiple scatterers

Microstructures made of random scatterers, such as the rough surface of solar cell panels or meta-atoms in meta-
materials, can be modeled as an array of single scatterers of fundamental shapes, such as cubes, spheres, and cylinders. 
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Fig. 6. Numerical solutions of VIE in a cylinder of radius 1 and height 2 with p = 7. (a) Incident wave; (b) Ex; (c) E y ; (d) Ez .

Fig. 7. Electric field (x-, y-, and z-components) in a 3 × 3 cube array.

Fig. 8. Electric field (x-, y-, and z-components) in a 3 × 3 sphere array.

In this subsection, we present the capability of our algorithm to handle multiple scatterers, either in regular or random 
distributions.

Fig. 7 displays the electric field Ex , E y , Ez in free-space where nine cubic scatterers are present. In these tests, the 
incident wave is set as

Einc
x = Einc

y = 0, Einc
z = eik(−2x+2y). (65)

Each cube has a length of 0.5 and they form a 3 × 3 array align in the x-y plane. The center of the first cube is 
(0.25, 0.25, 0.25), and the remaining cubes are placed 0.1 apart from each other. The parameters are taken as �ε = 4
and μ = 1. Here, 27 collocation points are used for each cube.

Fig. 8 displays the electric field Ex , E y , Ez in free-space where nine spherical scatterers are present. In these tests, the 
incident wave is set as

Einc
x = eikz, Einc

y = Einc
z = 0. (66)
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Fig. 9. Electric field (x-, y-, and z-components) in a 3 × 3 cylinder array.

Each sphere has a radius of 1 and they form a 3 × 3 array align in the x-y plane. The center of the first sphere is (0, 0, 0)

and the remaining spheres are placed 0.1 apart from each other. The parameters are taken as �ε = 1 and μ = 1. Here, 42 
collocation points are used for each sphere.

Fig. 9 displays the electric field Ex , E y , Ez in free-space where nine cylindrical scatterers are present. In these tests, the 
incident wave is set as

Einc
x = eik(0.5y+0.5z), Einc

y = Einc
z = 0. (67)

Each cylinder has a radius of 1 and a height of 2 and they form a 3 × 3 array align in the x-y plane. The center of the first 
cylinder is (0, 0, 0) and the remaining cylinders are placed 0.1 apart from each other. The parameters are taken as �ε = 1
and μ = 1. Here, 54 collocation points are used for each sphere.

Due to the small number of the special interpolated quadrature points needed in the Nyström VIE method, it can han-
dle hundreds of scatterers of the fundamental shapes. The left panel of Fig. 10 shows the electric field in 675 cubes of 
side length 0.5 under the incident field (65); these non-overlapping cubes are arranged in a 15 × 15 × 3 random ar-
ray. Here, only 27 collocation points are needed for each cube. In the middle panel, Fig. 10 shows the electric field in 
432 spheres of radius 1 with the same incident field. In each sphere there are 42 collocation points, and these non-
overlapping spheres are arranged in a 12 × 12 × 3 random array. On the right panel, Fig. 10 shows the electric field in 
a random array of 432 cylinders (height 2 and radius 1) with the incident field (67), with 54 collocation points in each 
cylinder.

In all these computations, due to the pre-calculated M-quadrature formula the matrix filling is fast and takes 
less than 5 minutes and can be done in parallel using OpenMP while the more timing consuming GMRES solution 
for the linear system takes about 30 minutes on the workstation of two octa-core Intel Xeon processors clocked at 
3.1 GHz.

5. Conclusion

In this paper, we have developed an accurate and efficient Nyström method to simulate EM scattering of multiple cubes, 
cylinders, and spheres, using the volume integral equation for the electric field with the Cauchy principal value of the 
singular dyadic Green’s function. The new formulation allows the computation of the CPV using a finite size exclusion 
volume V δ and avoiding the usual truncation errors by including missing corrections terms. As a result, the numerical 
solution of the VIE is δ-independent. In addition, an efficient quadrature formula is employed to accurately compute the 
1/R3 singular integration over the domain �\V δ . Together, an efficient, accurate, and δ-independent Nyström collocation 
method for the VIE is obtained.

In various numerical tests, we demonstrated the accuracy and efficiency of solving the VIE with increasing orders 
of basis functions (i.e. collocation points) inside a spherical, cubic, and cylindrical scatterer. Numerical results for the 
scattering of multiple scatterers of these shapes with a small number of collocation points in each scatterer are also pro-
vided.

One of the remaining issues is the treatment of possible field singularities due to the geometric corners/edges in 
cubes and cylinders [16] where specially designed interpolation algorithms may be needed and corresponding interpo-
lated quadratures will be produced. We will also study the VIE method for scattering of multiple objects (> 103) embedded 
in layered-media and a parallel fast solvers for the linear system from the Nyström method.
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Fig. 10. (Left) Ex, E y , Ez in a random 15 × 15 × 3 cube array with 27 collocation points for each cube of side length 0.5; (middle) Ex, E y , Ez in a random 
12 ×12 ×3 sphere array with 42 collocation points for each sphere of radius 1; (right) Ex, E y , Ez in a random 12 ×12 ×3 cylinder array with 54 collocation 
points for each cylinder of height 2 and radius 1.

References

[1] H. Atwater, The promise of plasmonics, Sci. Am. (2007) 56–62.
[2] H. Atwater, A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. (2010) 205–213.
[3] W. Cai, Computational Methods for Electromagnetic Phenomena: Electrostatics in Solvation, Scattering, and Electron Transport, Cambridge University 

Press, 2013.
[4] J.G. Fikioris, Electromagnetic field inside a current-carrying region, J. Math. Phys. (1965) 1617–1620.
[5] Y.Q. Fu, X. Zhou, Plasmonic lenses: a review, Plasmonics (2010) 287–310.
[6] K. Hering, D. Cialla, K. Ackermann, T. Dörefer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, J. Popp, Plasmonic lenses: a review. SERS: 

a versatile tool in chemical and biochemical diagnostics, Anal. Bioanal. Chem. 390 (1) (2008) 113–124.
[7] J.P. Kottmann, O.J.F. Martin, Accurate solution of the volume integral equation for high-permittivity scatters, IEEE Trans. Antennas Propag. (2000) 

1719–1726.
[8] S.W. Lee, J. Boersma, C.L. Law, G.A. Deschamps, Singularity in Green’s function and its numerical evaluation, IEEE Trans. Antennas Propag. (1980) 

311–317.
[9] G. Liu, S.D. Gedney, High-order Nyström solution of the volume-EFIE for TE-wave scattering, Electromagnetics (2001) 1–14.

[10] J.B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. (2000) 3966–3969.

http://refhub.elsevier.com/S0021-9991(16)30187-5/bib417477617465723A32303037s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib417477617465723A32303130s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib776361693A32303133s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib776361693A32303133s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib46696B3A31393635s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib46753A32303130s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib486572696E673A32303038s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib486572696E673A32303038s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib4B6F74746D616E6E3A32303030s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib4B6F74746D616E6E3A32303030s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib4C65653A31393830s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib4C65653A31393830s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib4C69753A32303031s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib50656E6472793A32303030s1


320 D. Chen et al. / Journal of Computational Physics 321 (2016) 303–320
[11] H. Raether, Surface plasmons on smooth and rough surfaces and gratings, Springer Tracts Mod. Phys. (1988).
[12] C.V. Raman, K.S. Krishnan, A new type of secondary radiation, Nature (1928) 501.
[13] Y. Saad, H.C. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. (1986) 

856–869.
[14] J.A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941.
[15] M.S. Tong, Z.G. Qian, W.C. Chew, Nyström method solution of volume integral equations for electromagnetic scattering by 3D penetrable objects, IEEE 

Trans. Antennas Propag. (2010) 1645–1652.
[16] J. Van Bladel, Singular Electromagnetic Fields and Sources, IEEE Publications, 1991.
[17] J.J.H. Wang, A unified and consistent view on the singularities of the electric dyadic Green’s function in the source region, IEEE Trans. Antennas Propag. 

(1982) 463–468.
[18] A.D. Yaghjian, Electric dyadic Green’s functions in the source region, in: Proceedings of the IEEE, 1980, pp. 248–263.
[19] B. Zinser, W. Cai, D. Chen, Quadrature weights on tensor-product nodes for accurate integration of hypersingular functions over some simple 3-D 

geometric shapes, Commun. Comput. Phys. (2016), accepted.

http://refhub.elsevier.com/S0021-9991(16)30187-5/bib526165746865723A31393838s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib52616D616E3A31393238s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib53616164s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib53616164s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib7374726174746F6E3A31393431s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib546F6E673A32303130s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib546F6E673A32303130s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib626C6164656C3A31393931s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib57616E673A31393832s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib57616E673A31393832s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib596167686A69616E3A31393830s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib5A696E7365723A32303136s1
http://refhub.elsevier.com/S0021-9991(16)30187-5/bib5A696E7365723A32303136s1

	Accurate and efﬁcient Nyström volume integral equation method for the Maxwell equations for multiple 3-D scatterers
	1 Introduction
	2 Volume integral equations for Maxwell equations
	2.1 VIE and computing Cauchy principal values
	2.2 Reformulation of the VIE and computing the CPV with a ﬁnite δ

	3 Numerical methods
	3.1 Nyström VIE method
	3.2 Interpolated weights on tensor-product nodes for integrals on Ω\Vδ
	3.3 Computation of VIE matrix entries

	4 Numerical results
	4.1 Accuracy of the interpolated weights on tensor-product nodes for computing matrix entries
	4.2 Exclusion volume δ-independence of the VIE solution
	4.3 Accuracy and efﬁciency of the computational algorithms
	4.4 Scattering of multiple scatterers

	5 Conclusion
	Acknowledgements
	References


