
Journal of Computational Physics 405 (2020) 109130
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A stable high-order FC-based methodology for hemodynamic 

wave propagation

Faisal Amlani a,∗, Niema M. Pahlevan a,b

a Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, USA
b School of Medicine, University of Southern California, Los Angeles, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 July 2019
Received in revised form 7 November 2019
Accepted 9 November 2019
Available online 20 November 2019

Keywords:
Fourier continuation
Hemodynamic wave simulation
Mathematical physiology
High-order methods

A high-order numerical algorithm is proposed for the solution of one-dimensional arterial 
pulse wave propagation problems based on use of an accelerated “Fourier continuation” 
(FC) methodology for accurate Fourier expansion of non-periodic functions. The solver 
provides high-order accuracy, mild Courant-Friedrichs-Lewy (CFL) constraints on the time 
discretization and, importantly, results that are essentially free of spatial dispersion 
errors—enabling fast and accurate resolution of clinically-relevant problems requiring 
simulation of many cardiac cycles or vascular segments. The left ventricle-arterial model 
that is employed presents a particularly challenging case of ordinary differential equation 
(ODE)-governed boundary conditions that include a hybrid ODE-Dirichlet model for the left 
ventricle and an ODE-based Windkessel model for truncated vasculature. Results from FC-
based simulations are shown to capture the important physiological features of pressure 
and flow waveforms in the systemic circulation. The robustness of the proposed solver is 
demonstrated through a number of numerical examples that include performance studies 
and a physiologically-accurate case study of the coupled left ventricle-arterial system. The 
results of this paper imply that the FC-based methodology is straightforwardly applicable 
to other biological and physical phenomena that are governed by similar hyperbolic partial 
differential equations (PDEs) and ODE-based time-dependent boundaries.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Fourier continuation (FC) methods [1–6] broaden the applicability of Fourier-based partial differential equation (PDE) 
solvers by resolving the well-known Gibbs “ringing” phenomenon to enable high-order convergence of Fourier series ap-
proximations of non-periodic functions. This is accomplished by constructing an interpolating Fourier series representation 
via a discrete periodic extension that approximates a given function to high-order and renders it periodic on a slightly larger 
domain. FC-based PDE solvers have already been introduced for a number of problems including the classical wave and dif-
fusion equations with constant and variable coefficients [1,2,4,7]; the nonlinear Burgers system [8]; the Euler equations [9,
10]; the 2D compressible Navier-Stokes equations [3,11,6]; and the 3D elasticity equations with variable coefficients [5]. 
These solvers maintain the well-established qualities of other spectral solvers for time-domain equations including accuracy 
by means of coarse discretizations and a faithful preservation of dispersion characteristics of the underlying continuous 
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problems. Additionally, although classical spectral solvers can include restrictive Courant-Friedrichs-Lewy (CFL) conditions 
on time discretizations as well as restrictions to periodic geometries, explicit FC-based solvers—like the one presented in 
this paper—rely on equispaced Cartesian grids (which can be extended to curvilinear formulations [3,5]) that lead to mild, 
linear CFL constraints on the timestep while treating physically-realistic non-periodic domains.

The objective of this work is to introduce a new stable high-order algorithm for the numerical solution of one-
dimensional (1D) arterial pulse wave problems based on this Fast Fourier Transform (FFT)-speed FC methodology. In 
particular, the physical model employed represents the most complicated case found in wave propagation models of the 
cardiovascular system: an arterial segment governed by a hyperbolic PDE whose left boundary is governed by a complex 
hybrid ordinary differential equation (ODE)-Dirichlet condition for the left ventricle (LV) and whose right boundary is gov-
erned by a Windkessel ODE. The former boundary condition, in particular, is “non-stationary” in the sense that the time at 
which the ODE-governed condition transitions to a Dirichlet condition is itself determined by the solution of the PDE. This 
complex nonlinear system is representative of the myriad formulations of governing equations that have been constructed 
to reasonably capture the complete physics of pressure and flow propagation in the cardiovascular system; hence the nu-
merical methodology herein can be easily extended to other cases including those utilizing simpler boundary conditions 
(e.g., a given inflow function, junction-matching conditions or one-sided lumped terminal models). The method described 
in this paper enables fast, accurate and essentially dispersionless resolution of arterial wave propagation systems, ultimately 
yielding errors within a prescribed tolerance using a fixed number of points per wavelength for increasingly large problems 
and yielding stable simulation for metrics that require information over a large number of cardiac cycles. Such a fast and 
dispersionless method may also be suitable for feedback regulatory models necessitating long-time simulations as well as 
for iteratively solving inverse problems related to arterial wave reflections.

One-dimensional arterial models are noted for their relatively inexpensive computational complexity when compared 
to 3D models. Several numerical methodologies have been constructed for the various formulations (e.g., area-velocity, 
area-flow, pressure-flow). These include characteristic methods [12] as well as finite element (FE) [13–17], finite volume 
(FV) [18] and finite difference (FD) [19–23] methods. A number of these tools have been successfully utilized for blood 
flow analysis and are well-established. Some of these methods, however, can have restrictive spectral radii resulting in very 
fine timesteps relative to spatial mesh sizes. Additionally, FE/FV/FD-based methods have been well-known for a long time 
to suffer from high numerical dispersion [24]: phase errors of a solution can accumulate over subsequent periods of a 
propagating wavetrain, requiring an ever-increasing numbers of points per wavelength to resolve larger problems within a 
given accuracy. For excellent reviews of the derivations and implementation of both analytical and numerical models used 
in 1D arterial propagation, the reader is referred to [25–27].

For hemodynamics applications, fast and accurate 1D solvers are necessary to explore all possible dynamics that result 
from changes brought about by diseases. Stable and high-order resolution can extend the applicability of reduced-order 
systems towards more sophisticated models (e.g., that of this paper) and towards multi-dimensional coupling (e.g., 1D-3D 
coupling) in an ultimate effort to improve physiological relevancy and utility. Robust methods are also essential for main-
taining cost reductions promised by 1D formulations; large numbers of simulations may be required to study, for example, 
alterations in geometric and elastic properties of the arterial tree, or PDE-constrained optimization problems [28]. To this 
end, the FC-based methodology proposed in what follows is a competitive approach for forward problems. In Section 2, the 
full governing equations are presented for the LV-arterial system. Section 3 describes the full solver including a detailed 
presentation of the construction of Fourier continuations as well as a full summary of the overall algorithm and imple-
mentation of the complex boundary ODEs. Section 4 provides a variety of illustrative numerical experiments attesting to 
high-order convergence, limited numerical dispersion and long-time stability. Section 5 presents a case study that simulates 
waveforms from physiologically-accurate data by an LV-arterial system model; comparisons with a finite difference solver 
are also provided. Concluding remarks are ultimately discussed in Section 6.

2. The theoretical model

One-dimensional arterial pulse wave models have been demonstrated to capture important features of pressure, flow and 
area wave propagation in large arteries, and have been demonstrated to illustrate many features of circulation under both 
normal and diseased conditions. The problem of propagation of pressure and flow waves in an arterial system is often mod-
eled by decomposing the domain into segments of elastic tubes of given lengths whose properties can be described by single 
axial coordinates [29,19,21,30,31]. A number of equivalent formulations exist [25–27]: those in terms of cross-sectional area 
of the aorta A(x, t), pressure P (x, t) and axial velocities U (x, t) (the so-called AU formulations); those in terms of the area 
and the flow rate Q (x, t) = AU (the so-called A Q formulations); as well as formulations in terms of pressure and flow rates 
(the so-called P Q formulations). All of these versions are constructed to account for the fluid-structure interaction of the 
problem and can be solved with similar numerical strategies. This paper is concerned with a coupled P Q formulation for 
purposes of modeling the LV-arterial system illustrated by Fig. 1. This system represents a most complicated configuration 
found in modeling segments in an arterial system (a hyperbolic PDE coupled to a complex hybrid ODE-Dirichlet bound-
ary condition for the left ventricle and a Windkessel ODE for truncated vasculature). This simplified LV-arterial model has 
been shown to capture physiologically-relevant characteristics of the systemic circulation [19]. The numerical methodology 
subsequently described in Section 3 can be also applied to other formulations.
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Fig. 1. The coupled LV-arterial model consisting of a linear transmission tube of length � (aorta); the input boundary condition (left ventricle) modeled 
as a time-varying compliance; and the outflow boundary modeled as a terminal load impedance represented by a three-element Windkessel [19]. The 
parameters Z0, Cc and Rc define the characteristic impedance, the compliance and the resistance of the eliminated vascular network, respectively.

2.1. Governing equations

In the P Q formulation [29,19,31,32], the pressure P (x, t) and flow Q (x, t) in a single uniform elastic tube of a given 
length � (e.g., the aorta in Fig. 1) can be governed by⎛

⎝ ∂ P
∂t (x, t)
∂ Q
∂t (x, t)

⎞
⎠ = −

⎛
⎝ 1

C
∂ Q
∂x (x, t)

1
L

∂ P
∂x (x, t) + R

L Q (x, t)

⎞
⎠ , 0 ≤ x ≤ �, t ≥ 0, (1)

with initial conditions P (x, t = 0) and Q (x, t = 0) prescribed at some initial time t = 0 (and evolved for a given number of 
cardiac cycles of period Tper). The system (1) derives from the assumptions that 1) blood fluid is Newtonian (described by 
linearized Navier-Stokes equations); 2) that velocity fields are axisymmetric; and 3) that the tube walls displace elastically. 
Material parameters are specified by the fluid inductance L ∈ R+ , the hydraulic resistance R ∈ R+ and the vessel compli-
ance C ∈ R+ . The pulse wave velocity (needed for the CFL condition of the explicit solver presented in Section 3) can be 
approximated as

cPW = 1√
LC

. (2)

2.2. Inlet boundary conditions

The inlet (left) boundary condition at x = 0 represents the dynamics of the left ventricle in Fig. 1 and can be accurately 
modeled as a time varying compliance Cv(t) [19,33,34] defining a relationship between the pressure Pv(t) inside the left 
ventricle and the corresponding LV-volume V v ∈R+ as

V v(t) − V dead = Cv(t)Pv(t). (3)

The constant V dead, known as the dead volume, defines the limit for pressure generation: a ventricle whose volume falls 
below this value can no longer generate any pressure [35]. Recalling that the flow into the aorta is defined in terms of 
this volume as Q (x = 0, t) = −∂V v/∂t , differentiating equation (3) with respect to t yields the corresponding differential 
equation for the pressure in the ventricle as

∂ Pv

∂t
(t) = − 1

Cv(t)

[
∂Cv

∂t
(t)Pv(t) + Q (x = 0, t)

]
, t ≥ 0. (4)

Hence once the pressure Pv(t) in the ventricle is greater than that of the tube boundary P (x = 0, t), the valve opens and 
P (x = 0, t) = Pv(t) with the corresponding flow condition given naturally by the governing arterial wave equation (1). Once 
the inflow reaches zero (or, numerically, the time at which Q (x = 0, t) ≤ 0 or Pv(t) ≤ P (x = 0, t)), the valve closes and the 
left boundary condition remains Q (x = 0, t) = 0 (a Dirichlet-type condition). Generally, Cv(t) is given by clinical parameters 
either through a closed-form approximation to data or a look-up table [19,33,34].

2.3. Outlet boundary conditions

At the “terminal boundary” x = � (right boundary in Fig. 1), the physical structure approximates the effect of the elimi-
nated peripheral vessels. This effect can be reasonably modeled using a zero-dimensional lumped parameter model, known 
as a Windkessel, that couples to the vessel governed by equation (1) through a matched impedance that is related to the 
vessel parameters by [19]

Z0 =
√

L
, (5)
C
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Table 1
A summary of the physical parameters for the LV-arterial model that includes 
the left ventricle and the terminal compliance chamber. The end diastolic vol-
ume LV E D V and period of the cardiac cycle Tper are additional physiological 
input parameters that are used to fully describe the physical model.

Name Variable Units

Tube (domain) length � cm
Tube (domain) compliance C ml/(mmHg cm)
Tube (domain) inductance L mmHg s2/cm4

Tube (domain) resistance R mmHg s/cm4

Terminal load compliance Cc ml/mmHg
Terminal load resistance Rc mmHg s/ml

LV end diastolic volume (preload) LV E D V ml
LV dead volume V dead ml
LV compliance Cv(t) ml/mmHg
Period of a cardiac cycle Tper s

for fluid inductance L and vessel compliance C . This circuit-like Windkessel model relates the pressure and the flow at the 
outflow boundary. The pressure Pc in the terminal compliance chamber is related to the aortic pressure P (x = �, t) at the 
outlet of the vessel via the ODE given by

∂ Pc

∂t
(t) = 1

Cc Z0
P (x = �, t) − Rc + Z0

Cc Rc Z0
Pc(t) (6)

for effective compliance Cc ∈ R+ , characteristic impedance Z0 ∈ R+ (approximated by equation (5)) and a total peripheral 
resistance Rc ∈R+—all chosen so that the load is matched to the domain (tube) at high frequencies [19]. The corresponding 
outflow Q (x = �, t) at the terminal boundary is given by

Q (x = �, t) = 1

Z0
(P (x = �, t) − Pc(t)) . (7)

The solver implementation of this complex boundary condition—and that of the inlet dictated by equation (4)—is described 
in detail in Section 3.5.

2.4. A summary of the physical parameters

The physical parameters (often given by clinical data) that are necessary for the complete model—including the boundary 
ODEs—are summarized in Table 1.

3. The numerical model

This section describes the proposed FC-based arterial pulse wave solver, including the construction of continuations and 
their subsequent spatial differentiation; a corresponding explicit treatment for temporal derivatives; and a spectral filter 
design that eleminates growth of high-frequency errors without unduly deteriorating accuracy. The general principles of 
Fourier continuation are presented in Section 3.1 and a relatively detailed summary for constructing (accelerated) Fourier 
continuations is presented in Section 3.2. The implementation of the complex boundary conditions for the inlet and outlet 
is also presented (Section 3.5) along with a pseudo-code of the full algorithm (Section 3.6).

3.1. The Fourier continuation approach

Considering a uniform discretization xi = i�x, i = 0, . . . , N − 1, �x = 1/(N − 1) and corresponding point values f (xi) of 
a given smooth function f (x) : [0, 1] →R, the FC method constructs a rapidly-convergent interpolating Fourier series repre-
sentation fcont : [0, b] →R on a region [0, b] that is slightly larger than the given physical domain [0, 1]. This representation 
is given by

fcont =
M∑

k=−M

ake
2π ikx

b s.t. fcont(xi) = f (xi), i = 0, ..., N − 1, (8)

where M = (N + Ncont)/2 is the bandwidth for an Ncont (defined as the number of points added to the original domain such 
that b = (N + Ncont)�x). The Fourier continuation function fcont approximately renders the original function f periodic, i.e., 
fcont approximates f to high-order in the original domain [0, 1] and is periodic on the slightly larger domain [0, b], b > 1. 
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Spatial derivatives in the governing equations of (1) can then be produced by exact termwise differentiation of the series (8)
as

∂ fcont

∂x
(x) =

M∑
k=−M

(
2π ik

b

)
ake

2π ikx
b . (9)

This ultimately provides the numerical derivatives of f to high-order by restricting the domain of ∂ fcont/∂x to the original 
unit interval. Hence the approximation rests in the construction of (8) from which the computation of the derivative (9) can 
be facilitated by the Fast Fourier Transform (FFT). Note here that f has been defined on [0, 1] without loss of generality: it 
is easily extended to any interval by affine transformations [1].

3.2. Accelerated Fourier continuation: FC(Gram)

The coefficients ak of (8) are found in the simplest treatment [36,37] through solving the least squares system

min
ak

N−1∑
i=0

| fcont(xi) − f (xi)|2 (10)

by the Singular Value Decomposition (SVD). This can become rather costly for time-dependent solutions of complex 
boundary-valued PDEs such as equation (1) (each timestep requires application of the corresponding SVDs). In order to 
reduce this computational expense, accelerated techniques have been introduced [1–3]. Known as FC(Gram), they rely on 
use of small vectors of only a handful of function values near the left and right endpoints at x = 0 and x = 1 which are 
projected onto a Gram polynomial basis whose continuations are precomputed through solving the corresponding least 
squares problem (10) by means of a high-precision SVD. More precisely, the accelerated FC(Gram) method uses a subset of 
the given function values on small numbers d� and dr of matching points {x0, .., xd�−1} and {xN−dr , ..., xN−1} contained in 
small subintervals on the left and right ends of the interval [0, 1] to produce a discrete periodic extension of size Ncont. 
This is accomplished by projecting these end values onto a Gram basis up to degree d� − 1 (resp. dr − 1) of polynomials 
(producing a polynomial interpolant) whose FC extensions are precomputed and whose orthogonality is enforced by the 
natural discrete scalar product defined by the discretization points. This effectively forms a “basis” of continuation functions 
with which to rapidly extend the given function f and provide a smooth transition from f (x = 0) to f (x = 1) over the 
interval [0, b].

In particular, this work employs a “blend-to-zero” version of FC(Gram) [3,5] in order to obtain the additional Ncont values. 
The strategy takes the function values defined at the matching points on the left (resp. the right) and provides a smooth 
transition to the left (resp. the right) that terminates in zero values at the discrete points {x−Ncont−dr , ..., x−Ncont−1} (resp. 
{xN+Ncont , ..., xN+Ncont+d�−1}). The sum of the leftward and rightward extensions (to zero) provides the needed complete 
Fourier continuation. Each blend-to-zero transition is precomputed on a Gram polynomial basis (to interpolate the left d�

and right dr values of f ) by solving the corresponding minimization problems via SVD. This basis can be constructed for 
the left matching problem, for example, by orthogonalizing the Vandermonde matrix

M =

⎛
⎜⎜⎜⎝

1 x0 (x0)
2 ... (x0)

d�−1

1 x1 (x1)
2 ... (x1)

d�−1

...
...

...
...

...

1 xd−1 (xd−1)
2 ... (xd�−1)

d�−1

⎞
⎟⎟⎟⎠ (11)

of point values at the discrete points {x0, ..., xd�−1} of the monomials {x0, x1, .., xd�−1} (the right-matching problem uses 
a substitution of 1 − x). Orthogonalization is performed via a stabilized Gram-Schmidt orthogonalization (M = Q R) in 
high-precision arithmetic and with the monomial basis oversampled (see [3,5] for details). This ultimately produces the 
left and right projection operators Q � and Q r to determine the coefficients in the polynomial basis used in interpolating 
the left and right matching values of the function f . Each basis has its corresponding blend-to-zero continuation precom-
puted.

Defining the vector of matching points for the left and right as

f� = (
f (x0), f (x1), ..., f (xd�−1)

)T
, fr = (

f (xN−dr ), f (xN−dr+1), ..., f (xN−1)
)T

, (12)

the continuation operation can hence be expressed in a block matrix form as

fcont =
[

f
A� Q T

� f� + Ar Q T
r fr

]
, (13)

where f = ( f (x0), . . . , f (xN−1))
T is a column vector containing the discrete point values of f ; fcont is a vector of the 

N + Ncont continued function values; I is the N × N identity matrix; and A�, Ar contain the corresponding Ncont values that 
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Fig. 2. An example Fourier continuation of a non-periodic function. The original function on [0, 1] is translated by a distance of length Ncont�x whose 
values are filled-in by the sum of the blend-to-zero continuations (dashed lines) in order to render the function periodic. Green triangles and circles 
represent the discrete d�, dr = 5 matching points, and the blue squares represent the discrete Ncont = 25 continuation points that comprise the extension. 
(For interpretation of the colours in the figures, the reader is referred to the web version of this article.)

blend the left and the right bases to zero. Again, the columns of Q � , Q r contain the d�, dr point values of each element of 
the corresponding Gram polynomial basis and, for d� = dr , differ only by column-ordering (and A�, Ar by row-ordering). As 
in other FC-based solvers, a number of d�, dr = 5 matching points are used for all simulations in this paper with a periodic 
extension comprised of Ncont = 25 points. The matrices A�, Ar, Q � and Q r need to be computed only once and stored in file 
for use each time the Fourier continuation of a given function is constructed. Further technical details on the construction 
of the blend-to-zero continuations employed in this paper can be found in [1,3,5].

In summary, the FC(Gram) algorithm appends Ncont values to a given discretized function in order to form a periodic 
extension in [1, b] that transitions smoothly from f (xN−1) back to f (x0). Fig. 2 illustrates an example Fourier continuation of 
a non-periodic function: the original discretized function on [0, 1] is translated by a distance Ncont�x with the subsequent 
interval filled-in by the sum of leftward and rightward blend-to-zero continuations that ultimately renders the function 
periodic. Hence the resulting continued vector fcont can be seen as a set of discrete values of a smooth and periodic function 
that can be approximated to high-order via FFT on an interval of size (N + Ncont)�x.

Remark 3.1. Since the computations of derivatives for continued functions are spectrally accurate, the error of a Fourier 
continuation-based solver is dominated by the polynomial approximation used to project the end function values onto 
the blend-to-zero basis. Hence for the choices of d�, dr = 5 matching points that are used throughout this paper, 
the corresponding fourth-order interpolating Gram polynomial basis results in essentially fifth-order convergence in 
space.

3.3. Explicit integration in time

For marching forward-in-time, the explicit Adams-Bashforth scheme of order four (AB4) is employed similarly to other 
FC-based solvers [3,5]. Other explicit timesteppers can be used, including the fourth-order Runge-Kutta (RK4) method. Both 
methods provide adequate regions of absolute stability [38,39], but each timestep for RK4 entails four evaluations of the 
right-hand-side. For 1D problems, this is not particularly burdensome; however, enforcement of boundary conditions at 
intermediate RK steps may be problematic, especially for time-dependent boundary conditions [40,41] which are often 
utilized for hemodynamics models.

The system defined by the governing PDE in equation (1) and the governing boundary ODEs of equations (4) and (6) can 
be written as

∂

∂t

⎛
⎜⎜⎜⎜⎜⎝

Pv(t)

P (x, t)

Q (x, t)

Pc(t)

⎞
⎟⎟⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎜⎜⎜⎝

1
Cv(t)

[
∂Cv
∂t (t)Pv(t) + Q (x = 0, t)

]
1
C

∂ Q
∂x (x, t)

1
L

∂ P
∂x (x, t) + R

L Q (x, t)

− 1
Cc Z0

P (x = �, t) + Rc+Z0
Cc Rc Z0

Pc(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

F1(Pv, Q , t)

F2(P , Q , x, t)

F3(P , Q , x, t)

F4(Pc, P , t)

⎞
⎟⎟⎟⎟⎟⎠

. (14)

Integration in time is performed on the basis of the explicit AB4 discretization with uniform timestep �t > 0. The resulting 
discrete equations for a time t + �t are given by
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⎛
⎜⎜⎜⎜⎝

Pv(t + �t)

P (x, t + �t)

Q (x, t + �t)

Pc(t + �t)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

Pv(t)

P (x, t)

Q (x, t)

Pc(t)

⎞
⎟⎟⎟⎟⎠ + �t

24

⎡
⎢⎢⎢⎢⎣55

⎛
⎜⎜⎜⎜⎝

F1(t)

F2(t)

F3(t)

F4(t)

⎞
⎟⎟⎟⎟⎠ − 59

⎛
⎜⎜⎜⎜⎝

F1(t − �t)

F2(t − �t)

F3(t − �t)

F4(t − �t)

⎞
⎟⎟⎟⎟⎠ + 37

⎛
⎜⎜⎜⎜⎝

F1(t − 2�t)

F2(t − 2�t)

F3(t − 2�t)

F4(t − 2�t)

⎞
⎟⎟⎟⎟⎠ − 9

⎛
⎜⎜⎜⎜⎝

F1(t − 3�t)

F2(t − 3�t)

F3(t − 3�t)

F4(t − 3�t)

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ , (15)

with the notational license F1(Pv, Q , t) = F1(t), etc., for clarity. The boundary conditions calculated on the basis of the 
ODEs for Pv, Pc are then injected after each timestep t → t + �t; the resulting boundary values at time t + �t are then 
used to produce the FC approximations needed to evaluate the right hand sides at the next iteration for time t + �t . For all 
simulations in this paper, a timestep of

�t ≤
√

2

2

1

cPW
�x (16)

has provided absolute stability in all cases, including runs of hundreds of thousands of timesteps.

3.4. Filtering in frequency-space

Similarly to other spectral solvers, a spatial filter [3,5] is employed to control the growth of the error in unresolved 
modes. This is applied in Fourier space on a function f (x) with Fourier coefficients f̂k by

N
2∑

k=− N
2

f̂k exp(ikx) −→
N
2∑

k=− N
2

exp
(−α (2k/N)p)

f̂k exp(ikx), (17)

where p is a positive integer that determines the rate of decay of the coefficients, and where the real valued α > 0 deter-
mines the level of suppression such that highest-frequency modes are multiplied by e−α . For all numerical examples that 
follow, a mild choice of parameters inspired by [5,7] is used and is given by

(p,α) = (8,−DcPW�t/�x ln(10−2)), (18)

where cPW = 1/(
√

LC) is the approximate pulse wave velocity and where �x is the spatial step size used in the computa-
tional domain. In general, a choice of D ≈ 1 provides absolute stability, including for those boundary conditions employed 
in Section 5 that result in possibly discontinuous-in-time solutions. Larger (stronger) values of α in equation (18) have been 
demonstrated to still maintain the convergence and dispersion characteristics promised by FC-based solvers (e.g., the choice 
of α = 16 log(10) in [3] eliminates the highest modes completely). However, the milder, CFL-based value chosen in (18)
ensures that the highest frequency terms aren’t entirely eliminated and that the filter approaches unity as �t → 0 for a 
fixed �x (see [5,7] for comparisons and more detailed discussions).

3.5. Implementation of the complex boundary conditions

The complex boundary conditions described in Sections 2.2 and 2.3 are governed by an ODE for the left ventricle (and 
at times a Dirichlet condition) and an ODE for the eliminated vasculature, respectively. At the inlet in particular, the ODE 
solution is only used when the valve is open, i.e., the pressure inside the ventricle is larger than the pressure at the 
inlet of the aorta. When the valve is closed, the boundary condition is simply given as a null inflow Q (x = 0, t) = 0. The 
corresponding valve condition must be tracked by a binary variable indicating whether the valve is open or closed. A 
summary of the implementation for the boundary updates governed by the inlet and outlet ODEs is given by the diagram 
of Fig. 3.

3.6. Solver summary

The complete solver for the LV-arterial system is summarized in the pseudo-code of Algorithm 1.

4. Numerical performance: convergence, accuracy, dispersion and stability

4.1. Convergence and accuracy

Similarly to other verification procedures that have been used in literature (e.g., [42,43] for hemodynamics and [5,44–46]
for higher-dimensional PDE systems), the method of manufactured solutions (MMS) can be employed to verify the imple-
mentation and numerical accuracy of the proposed FC-based methodology. In MMS, one postulates a smooth solution and 
algebraically derives the corresponding right-hand forcing terms and boundary conditions to render the proposed function 
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Fig. 3. A summary of the implementation for the complex boundary updates governed by the hybrid ODE-Dirichlet condition at the inlet and the Windkessel 
ODE at the outlet.

Algorithm 1 Summary of the FC-based solver for the LV-arterial system model.

Input aorta parameters L, C, R, �
Input left boundary parameters Cv(t), LV E D V , V dead
Input right boundary parameters Cc, Rc

Input size of discretization N
Input number of cardiac cycles to simulate ( =⇒ final time t f )

1: Initialize the pressure P (x, 0) and flow Q (x, 0) // initial time t = 0
2: while t < t f do
3: Construct the continuations Pcont(x, t), Q cont(x, t) // via eq. (13)
4: Compute Discrete Fourier Transforms of Pcont, Q cont

5: Apply the filter and compute termwise spatial derivatives // via eq. (9)
6: Invert the transforms to obtain ∂ Pcont

∂x (x, t), ∂ Q cont
∂x (x, t)

7: Restrict the functions to the original interval // ∂ P
∂x := ∂ Pcont

∂x

∣∣∣{xi }
, etc.

8: Advance the solution including the boundary to t + �t // via eqs. (15)
9: Advance the boundary ODEs/PDEs (if they exist) to t + �t

10: Update the boundary values on P (x, t), Q (x, t) to t + �t
11: end while

Output the numerical solutions of P (x, t), Q (x, t) on 0 ≤ t ≤ t f , x = 0 ≤ x ≤ �
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Fig. 4. The numerical values at the indicated snapshot in time of the solutions P (x, t) and Q (x, t) produced by the right hand side derived from solu-
tion (19).

Fig. 5. The maximum (L∞) errors over all time and space after 50 000 timesteps for both P (x, t) and Q (x, t). Errors are calculated by comparison with the 
exact solution (equation (19)) and with the timestep fixed finely so that the errors are dominated by spatial convergence. The overlaid slopes illustrate the 
fifth-order convergence expected from employing d�, dr = 5 matching points to construct Fourier continuations.

an exact solution of the PDE. For the following experiment, solutions to the pressure P (x, t) and flow Q (x, t) are postulated 
as (

P
Q

)
=

(
P0 sin(k1x − ω1t) cos(k2x − ω2t)
Q 0 sin(k2x − ω2t) cos(k1x − ω1t)

)
, (19)

for P0 = 1/2, Q 0 = 3/2, k1 = 2.5, k2 = 6.5 and temporal frequencies ω1 = 420 Hz and ω2 = −ω1. The domain considered 
is an elastic tube of length � = 21 cm with fluid parameters C = 0.0221 ml/(mmHg cm), L = 0.000256 mmHg s2/cm4 and 
R = 0.000024 mmHg s/cm2. Fig. 4 presents a snapshot of the solutions for both pressure P (x, t) and flow Q (x, t) at an 
arbitrarily chosen time. Using discretizations sizes that are integer multiples of the coarsest one used (N = 128 points), 
the simulation is advanced for 50 000 timesteps in all cases at a fine timestep size of �t = 2 · 10−4 s so that errors are 
dominated by the spatial discretization. The maximum absolute errors over all space and for all timesteps are displayed 
in Fig. 5 for both P and Q . The overlaid slopes in the plots illustrate the expected fifth-order accuracy of the Fourier 
continuation parameters employed in this paper (see Remark 3.1).

4.2. Dispersion and stability

Dispersion and stability characteristics of the proposed method can be studied by considering test problems for which 
waves propagate over long distances or long times. This is accomplished by considering a domain of size � = 1 cm and a 
number Nλ of wavelengths across the plate for the MMS wave solution of period 1s given by
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Fig. 6. The numerical values at the indicated snapshop in time of the solution (20) for Nλ = 5 (left) and Nλ = 25 (right) wavelengths.

Fig. 7. The maximum numerical errors (FC and second-order FD) over all space and over one full temporal cycle (defined as the time required for one peak 
to travel the length � of the aorta) for a plane wave solution with increasing number of wavelengths Nλ .

(
P
Q

)
=

(
sin(2π Nλ(x − ct))
sin(2π Nλ(x − ct))

)
. (20)

The parameter c = 1/
√

LC is taken to be the pulse wave velocity and the physical domain is defined by C =
0.0221 ml/(mmHg cm), L = 0.000256 mmHg s2/cm4 and R = 0.000024 mmHg s/cm2. Even though the given solution 
in equation (20) is periodic, the FC solver still extends the domain and creates a new periodic extension. Examples of the 
corresponding solutions for Nλ = 5 and Nλ = 25 are presented in Fig. 6.

Simulation of propagation over long distances can be achieved by increasing the number Nλ of wavelengths across the 
complete domain. With a timestep chosen small enough so that numerical errors are dominated by those arising from 
the spatial discretization, Fig. 7 presents maximum numerical errors in the FC-based simulations of P and Q (labeled 
“FC”) over all time and space as functions of the number Nλ of wavelengths. Each wavelength is discretized by a fixed 
density of dλ = 10 and dλ = 15 points per wavelength. Overlaid in the figures are the corresponding maximum errors from 
the same solutions computed by a stable finite-difference solver (second-order central differences in space, explicit AB4 
integration in time) using fixed densities dλ = 75 and dλ = 200 (labeled “FD”). Clearly, a (linear) degradation in accuracy 
of the FD solution is seen as Nλ grows: even for low numbers Nλ of wavelengths, larger and larger densities dλ would 
be necessary in order to produce reasonable experimentally-relevant accuracies. By contrast, the accuracy resulting from 
the FC algorithms remains essentially constant as Nλ grows: the errors are effectively independent of frequency when the 
density dλ of points per wavelength is kept constant in the spatial discretization (that is, virtually no numerical dispersion). 
Similar results have been presented for other FC-based solvers in [3,7,2,11,5] when compared to high-order Padé schemes, 
(up to eighth-order) FD schemes or various orders of finite-volume methods (including hybrids with Discontinuous Galerkin 
methods). The advantages of FC demonstrated in all these cases result from their mild CFL restrictions or their ability 
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Fig. 8. The numerical errors for FC solutions considered over many temporal cycles (where one cycle spans 5 300 timesteps) for a tube Nλ = 25 wavelengths 
in size, demonstrating long-time stability for both P (x, t) (left) and Q (x, t) (right).

Table 2
Input parameters for the simulations constructed by the LV-arterial system solver in Section 5.

Name Variable Value Units

Tube (domain) length � 21 cm
Tube (domain) compliance C 0.0221 ml/(mmHg cm)
Tube (domain) inductance L 0.000256 mmHg s2/cm4

Tube (domain) resistance R 0.000024 mmHg s/cm4

Terminal load compliance Cc 1.05 ml/mmHg
Terminal load resistance Rc 1.47 mmHg s/ml

LV end diastolic volume (preload) LV E D V 112 ml
LV dead volume V dead 4 ml
LV compliance Cv(t) Fig. 9 ml/mmHg
Period of a cardiac cycle Tper 0.8 s

to accurately approximate the dispersion characteristics of the underlying continuous operators at FFT speeds—a distinct 
advantage in modeling arterial pulse waves for hemodynamics research.

Stability can be studied by additionally considering solutions over several temporal cycles (long times), where the length 
of a cycle is the time required for any one crest to travel through the entire physical domain. Fig. 8 presents the maximum 
numerical errors over all time and space resulting from an Nλ = 25 wavelength solution of equation (20) with a cycle 
discretized by 5 300 timesteps (for a total of 80 000 timesteps in the simulation). As can be observed, the maximum error 
remains constant for arbitrarily long times and hence demonstrates long-term stability of the FC-based arterial wave solver.

5. FC-based simulations of the LV-arterial model and physiological relevancy

A number of factors influence the pumping ability of the left ventricle, including those related to the direct coupling be-
tween the left ventricle and the arterial system [19,31,32]. The complexity of the dynamics that result from the interactions 
between these two elements can affect blood pressure, blood flow and pumping load. The theoretical model addressed in 
this paper (Section 2) has been selected not only for its physiological relevancy, but for its particular ability to capture these 
non-stationary and nonlinear dynamics of the complex coupling (which manifests as, alternatingly, boundary conditions de-
termined by an ODE given by (4) during systole, and a zero-valued Dirichlet-type boundary condition during diastole when 
the aortic valve is closed). The resulting wave reflections within the coupled system play an important role in pressure and 
flow dynamics as well as certain diagnostic metrics.

For the simulations that follow, Table 2 presents the input values and corresponding physical dimensions for the LV-
arterial system governed by equations (1), (4) and (6). These parameters are determined for their physiological relevance. 
The empirically given time-varying compliance Cv(t) of the left ventricle (whose reciprocal is the corresponding elastance) 
is shown in Fig. 9, and it can be determined by an analytical approximation to clinical data [33,34]. Figs. 10 and 11 demon-
strate the physiological accuracy of the simulated results produced by the FC method applied to the LV-arterial model 
governed by the hyperbolic PDE in equation (1) and the boundary conditions defined by the ODEs in equations (4) and (6). 
These simulations are computed on a discretization composed of N = 64 points. The figures illustrate expected physiolog-
ical features including the equality between the aortic pressure P (x = 0, t) and the ventricular pressure P v(t) during the 
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Fig. 9. The time-varying left ventricular compliance Cv(t) employed in this section.

Fig. 10. Aortic input pressure P (x = 0, t) (blue circles) and left ventricular pressure P v (t) (yellow) produced by the FC-based method using N = 64 dis-
cretization points. As expected, for a non-diseased aortic valve, the aortic pressure is equal to the ventricular pressure during the systolic phase (the time 
between the opening and the closing of the aortic valve).

systolic phase in the absence of a diseased valve (Fig. 10). Additionally, the simulations capture the expected pulse pressure 
amplification as the pressure wave propagate downstream (Fig. 11(a)) and the expected decrease of the flow amplitude as 
the flow wave propagates downstream through the vessel (Fig. 11(b)).

Fig. 12 compares numerical values of pressure and flow at the aorta (inlet) for the FC-based arterial wave solver (labeled 
“FC”) with a second-order central difference scheme in space (“FD”) for N = 30 discretization points in the spatial domain. 
The numerical noise from the finite difference scheme is apparent in the provided inlet figures. This noise is particularly
evident in the spurious non-physical numerical reflections that begin from the indicated time t = Td of the “dichrotic notch”. 
The location of this notch represents the point of a small and brief increase in arterial pressure caused by the closing of the 
aortic valve. Accurate identification of the notch is important for advanced hemodynamics analysis such as those related to 
the Buckberg index [47] as well as the recently-introduced cardiovascular Intrinsic Frequency (IF) method [28,48].

The information contained in one cycle (of approximate length Tper) of the aortic pressure P (x = 0, t) and flow 
Q (x = 0, t) at the inlet (e.g., Fig. 12) is of particular interest in hemodynamics research and clinical practice since global 
cardiovascular indices such as the left ventricular pulsatile power and stroke work can be computed from these waveforms. 
Pulsatile power can be computed for a cardiac cycle of period Tper from the numerical data by the expression

pulsatile power := 1

Tper

∫
Tper

P (x = 0, t)Q (x = 0, t)dt − P (x = 0, t)Q (x = 0, t), (21)

where P and Q represent the mean pressure and flow in the cycle. The left ventricular stroke work is defined as

stroke work := −
V (Tper)∫
V (0)

Pv(t)dV v =
∫

T

Pv(t)Q (x = 0, t). (22)
per
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Fig. 11. (a) Pressure at the left and right boundaries (x = 0 and x = �, respectively) capturing the expected amplification as the waves propagate downstream 
through the vessel. (b) The corresponding flow at the left and right boundaries that demonstrate the expected decrease in amplitude as the flow wave 
propagates downstream.

Fig. 12. Numerical values of pressure (left) and flow (right) at the inlet from a simulation computed by Fourier continuation and a (central) finite difference 
scheme. The numerical noise from the finite difference scheme is evident in the inset.

Another clinically-important quantity related to global LV function is the ejection fraction (EF). EF is the ratio of the volume 
pumped out of the left ventricle during each cardiac cycle to the volume of LV at the end diastole. Although EF is a 
geometric ratio, it is a surrogate for the LV contractility and is the most common index used in measuring LV systolic 
function in clinical practice (e.g., a low value of EF that is < 0.4 is indicative of heart failure). The ejection fraction is 
defined as

ejection fraction := V v(t)

LV E D V
=

∫
Tper

Q (x = 0, t)dt, (23)

for time-varying ventricle volume V v(t) and preload LV end diastolic volume LV E D V .
Fig. 13 presents the numerical values of pulsatile power (left) and stroke work (right) comparing FC solutions (of sizes 

N = 48 and N = 64) with second-order (central) finite differences (of sizes N = 128 and N = 144). As is well-known, these 



14 F. Amlani, N.M. Pahlevan / Journal of Computational Physics 405 (2020) 109130
Fig. 13. The numerical values of the stroke work (left) and the pulsatile power (right) computed for each period of a thirty cycle simulation.

Fig. 14. The numerical values of the ejection fraction computed for each period of a thirty cycle simulation.

values must be derived from the steady-state oscillatory dynamics of the underlying PDE (reached after approximately ten 
cycles in these simulations). Fig. 13 additionally demonstrates that the measurements from finite differences are not reliable 
for many more preliminary cycles when compared to FC: the steady-state is numerically achieved several cycles after that 
of the FC-based solutions. This renders the FC method competitive for robustness of values for an arbitrary number of 
simulated cycles; these values stay relatively even for both N = 48 and N = 64 discretization points. In contrast, finite 
difference based solutions do not achieve reliable values (if at all) for many more cycles. This is important for feedback 
regulatory models requiring long-time simulations as well as for solutions to inverse problems related to arterial wave 
reflections. Fig. 14 additionally presents the ejection fractions computed during each cycle for FC and FD. As is the case 
with the stroke work and pulsatile power, the steady state in values is achieved far earlier and remains stable for both 
discretizations of the FC-based simulations. This indicates that after the 11th or 12th cycle, EF is robustly calculated. In 
contrast, the finite difference method oscillates around the mean, leading to uncertainty in the computed EF as a function 
of cycle.

6. Conclusions

This work introduces a new high-order Fourier continuation-based method for resolving 1D arterial wave propagation 
problems in hemodynamics applications. The methodology is based on the Fourier continuation approach for resolving the 
Gibbs phenomenon, providing fast and accurate solutions with mild linear CFL constraints for stability and with effectively 
no numerical dispersion. This enables robust and precise solutions for long-time or many wavelength simulations that are 
required in the study of pressure and flow waveforms in the mammalian circulatory system. These unique advantages are 
particularly important when considering feedback regulatory models that require long-time simulations and when consid-
ering inverse problems (by iterative techniques) that are related to arterial wave reflections. A variety of numerical tests, 
including a demonstration of the physiological accuracy of the LV-arterial model (with complex hybrid ODE-Dirichlet bound-
ary conditions), demonstrates the efficacy and versatility of the proposed solver.

The methodology described herein can be easily extended to other 1D hemodynamics formulations including those with 
variable coefficients (e.g., localized changes to arterial wall compliance) and those exhibiting the nonlinear phenomena 
inherent to flow dynamics in large arteries. These features can be captured in a manner similar to other FC-based meth-
ods that have treated them successfully, including previous work by co-authors of this paper on spatially-varying material 
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parameters for elastodynamic equations [5] as well as by others on nonlinear Burgers systems [8] and nonlinear Euler equa-
tions [9,10]. This manuscript also represents a first step towards future work entailing coupling with 3D and multiphysics 
PDEs (e.g., mass transport equations) as well as building towards the 1D hemodynamic modeling of the entire circula-
tion [25,49]. The corresponding challenges, which include treatment of multiple segments (branching) and the subsequent 
numerical representation of their boundary conditions, may be possibly addressed by the domain decomposition strategies 
that have been developed for FC-based solvers and that have been shown to have negligible artificial reflections at interfaces 
(e.g., junctions) [3,5,6]. Additionally, in certain diagnostic metrics, it has been suggested that proper consideration of the ge-
ometry of the vasculature may be very important [50]; future work also entails the extension of the proposed methodology 
to curved elastic tube domains with curvilinear formulations of FC-based PDE solvers that are similar to [3,5,6]. Further-
more, the results of this paper imply that the FC-based methodology is straightforwardly applicable to other biological and 
physical phenomena that are governed by hyperbolic PDEs with nonlinear, highly-complex time-dependent boundary ODEs.
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