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Compositional simulation is challenging, because of highly nonlinear couplings between 
multi-component flow in porous media with thermodynamic phase behavior. The coupled 
nonlinear system is commonly solved by the fully-implicit scheme. Various compositional 
formulations have been proposed. However, severe convergence issues of Newton solvers 
can arise under the conventional formulations. Crossing phase boundaries produces kinks 
in discretized equations, and subsequently causing oscillations or even divergence of 
Newton iterations.
The objective of this work is to develop a smooth formulation that removes all the 
property switches and discontinuities associated with phase changes. We show that it 
can be very difficult and costly to smooth the conservation equations directly. Therefore, 
we first reformulate the coupled system, so that the discontinuities are transferred to 
the phase equilibrium model. In this way a single and concise non-smooth equation is 
achieved and then a smoothing approximation can be made. The new formulation with a 
smoothing parameter provides smooth transitions of variables across all the phase regimes. 
In addition, we employ a continuation method where the solution progressively evolves 
toward the target system.
We evaluate the efficiency of the new smooth formulation and the continuation method 
using several complex problems. Compared to the standard natural formulation, the 
developed formulation and method exhibit superior nonlinear convergence behaviors. The 
continuation method leads to smooth and stable iterative performance, with a negligible 
impact on solution accuracy. Moreover, it works robustly for a wide range of flow 
conditions without parameter tuning.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Gas injection processes play an important role in enhanced oil recovery (EOR). Gas injection into oil reservoir involves a 
number of physical mechanisms that help in mobilizing and extracting oil. Depending on pressure, temperature, and fluid 
compositions, immiscible or miscible displacements could occur. The physical model required to describe the mass transfer 
between phases is the isothermal compositional model [7]. An Equation of State (EoS) model is usually used to determine 
the component partitioning across phases [26,27].
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Compositional simulation continues to be a challenging problem. Complexities are mainly due to nonlinear couplings 
between multi-phase multi-component flow in porous media with thermodynamic phase behavior [4,33]. Several temporal 
discretization schemes are available to solve the compositional model [1]. Explicit schemes pose severe restrictions on the 
timestep size and are impractical for large-scale detailed reservoir models, in which the Courant-Friedrichs-Lewy (CFL) 
numbers can vary by several orders of magnitude throughout the domain [16]. Therefore, the fully-implicit method (FIM) is 
preferred in practice, with the nonlinear system solved by a Newton method.

Various nonlinear formulations for the compositional model have been proposed [35]. Two popular formulations employ 
two different variable sets: (1) natural variables [7] and (2) molar variables [2]. The primary unknowns for the natural-
variables set include pressure, saturations, and component molar fractions. The conservation equations and thermodynamic 
constraints are assembled for cells with two phases. If one of the phases disappears during a nonlinear iteration, the 
corresponding saturation variable is removed, and the nonlinear system is reduced to the conservation equations. This 
process is referred to as ‘variable substitution’ and is an essential ingredient of the natural-variables formulation [35,10]. 
Under the molar formulation, one variable-set choice is the overall composition of each component. This approach has the 
advantage of avoiding the need for variable substitution, since the equations and unknowns are the same for any phase state. 
Numerical behaviors of nonlinear formulations were investigated and compared in some recent studies [32,5]. Note that 
Alpak and Vink [5] devised a flexible variable-switching formulation for general thermal-compositional flow problems. They 
demonstrated that the adaptive formulation effectively improved field-scale simulations of complex processes.

For large timestep size, or poor initial guess, the standard Newton method suffers from serious convergence difficulties. 
Obtaining a suitable initial guess for the Newton method is referred to as globalization [20]. Damping, or safeguarding 
Newton updates are a class of globalization techniques [11]. One simple heuristic strategy is to apply a local damping of 
variable to ensure that the value change is limited to a pre-defined range [12]. Physics-based trust-region solvers were also 
introduced to greatly improve the nonlinear convergence of discrete transport problems [16,36]. Voskov and Tchelepi [31]
developed a nonlinear solver specifically for molar-variables formulations. Trust regions are constructed based on the flux 
functions along key tie-lines in compositional space. The Newton updates are controlled from crossing inflection points and 
phase boundaries. Although locating trust-region boundaries are straightforward in two-phase problems with simple flow 
physics, it can be quite difficult for general compositional models with gravity and phase changes. Moreover, computations 
become expensive when the flux functions vary significantly during the iterations.

Recent studies revealed that the non-differentiability (kink) resulted from switching criteria in the numerical flux may 
cause frequent oscillations or divergence of Newton iterations [36,24,25,15,17]. Likewise, severe convergence problems of 
Newton solvers can also arise under the conventional compositional formulations. This is due to the kinks produced when 
crossing phase boundaries. Phase change leads to the corresponding switches in fluid properties and discretized equations.

Several formulations were proposed, attempting to improve the nonlinear performance of compositional simulations 
[3,23,33,14]. Unified system of equations is achieved and thus the variable-substitution process is avoided. Saturations (or 
phase fractions) can change continuously across phase boundaries under these formulations. However, the switches of fluid 
properties still occur, in one form or another. The kinks in discretized equations as the essential mechanism that causes con-
vergence difficulties are not resolved by the previous works. Consequently, their results reported insignificant improvement 
in nonlinear performance compared with the standard natural formulation.

Previous studies demonstrated that a smooth numerical flux can improve Newton behaviors [36,24,15,17]. The objec-
tive of this work is to develop a smooth formulation that removes all the property switches and discontinuities associated 
with phase changes. But as we will show, it can be very difficult and costly to make smoothing approximations directly 
for the conservation equations under the standard formulations. Therefore, we first reformulate the coupled system, so that 
the discontinuities are transferred to the phase equilibrium model. In this way a single and concise non-smooth equation 
is achieved and then a smoothing approximation can be made. The reformulation is based on a mixed complementarity 
problem (MCP) proposed for the phase equilibrium in the field of chemical process simulation [6,13,29]. The MCP model 
contains complementarity conditions that represent phase changes. The subsequently developed formulation with a smooth-
ing parameter can lead to smooth transitions of variables across all the phase regimes.

For a smoothing parameter with sufficient values, the smooth coupled system exhibits superior global convergence be-
havior. However, solution accuracy may be degraded, with a fixed smoothing parameter. Its value needs to be adaptively 
determined to achieve an optimal balance between accuracy and nonlinear performance. For more robust and general ap-
plications, we employ a continuation method with the smooth system as a homotopy mapping. The smoothing parameter 
is progressively reduced after each Newton iteration, and the solution evolves toward the target system. In this work, the 
continuation method acts as a globalization stage to obtain better initial guesses for the Newton process [18]. As will be 
shown, the new smooth formulation is very effective for globalizing the compositional flow problem. It is worth noting that 
the smooth formulation and the continuation method can be used for different applications depending on specific accuracy 
and implementation considerations.

We evaluate the efficiency of the new approaches using several complex examples. We focus on the nonlinear behavior 
of the coupled conservation and phase equilibrium system. The smooth formulation produces valid and unique solutions in 
all the three phase regimes. For most of the cases, the standard natural formulation suffers from multiple timestep cuts and 
subsequent wasted Newton iterations. In contrast, the smooth formulation and the smoothing based continuation method 
(SBC) exhibit superior global convergence, requiring no timestep cut. Moreover, the SBC method can largely resolve the 
convergence issues due to phase changes, with a negligible impact on solution accuracy. We find that applying SBC for a 
2
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few iterations in the globalization stage is sufficient. In addition, the developed method works robustly for a wide range of 
flow conditions without parameter tuning.

2. Isothermal compositional model

We consider compressible gas-oil flow in porous media without capillarity. We ignore water that does not exchange 
mass with the hydrocarbon phases.

The conservation equations for the isothermal compositional problem containing nc components are written as,

∂

∂t

[
φ

(
xcρoso + ycρg sg

)] + ∇ · (xcρouo + ycρgug
) − qc = 0, (1)

where c ∈ {1, ...,nc}. xc and yc are molar fractions of component c in the oil and gas phases, respectively. φ is rock porosity 
and t is time. ρl is phase molar density. sl is phase saturation. qc is well flow rate.

Phase velocity ul is expressed as a function of phase potential gradient ∇�l using the extended Darcy’s law,

ul = −kλl∇�l = −kλl (∇p − ρl g∇h) , (2)

where k is rock permeability. p is pressure. Capillarity is assumed to be negligible. g is gravitational acceleration and h is 
height. Phase mobility is given as λl = krl/μl . krl and μl are relative permeability and viscosity, respectively.

Phase velocity can also be expressed under the fractional-flow formulation,

ul = λl

λT
uT + kg∇h

∑
m

λmλl

λT
(ρl − ρm) , (3)

which involves the total velocity,

uT =
∑

l

ul = −kλT ∇p + k
∑

l

λlρl g∇h, (4)

where the total mobility λT = ∑
l λl . In this work, Eq. (2) is used for fully-implicit compositional simulations.

To close the nonlinear system, additional equations are needed. These include the thermodynamic equilibrium con-
straints,

fc,o(p,x) − fc,g(p,y) = 0, (5)

where p, T , and zc denote pressure, temperature, and overall molar fraction, respectively. fc,l is the fugacity of component 
c in phase l.

We now write the phase constraints,

nc∑
c=1

xc − 1 = 0,

nc∑
c=1

yc − 1 = 0, (6)

and the saturation constraint as,

so + sg − 1 = 0. (7)

The above system of equations provides a complete mathematical statement for two-phase multi-component flow. The 
local equilibrium constraints are enforced only when both phases are present.

3. Natural-variables formulation

An important aspect of any compositional formulation is the choice of dividing the equations and unknowns into primary 
and secondary sets. Two widely used formulations are (1) natural variables [7] and (2) overall-composition variables [8,32].

The primary unknowns include pressure, saturations, and molar fractions:
(1) p − pressure [1],
(2) sl − phase saturations [2],
(3) xc , yc − phase compositions of each component [2nc ].

The size of each variable is given in square bracket.
The various coefficients can be obtained as functions of the base variables. For a two-phase cell, the molar phase fraction 

is related to saturation as follows,

νl = ρl sl∑
ρ s

(8)

m m m
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and overall molar fraction of component c is written as,

zc = xcνo + ycνg (9)

Note that for single-phase (l) mixture, νl = sl = 1, and xc,l ≡ zc .

3.1. Variable substitution

An essential ingredient of the natural-variables formulation is the ‘variable substitution’ process [35,10,32]. A common 
strategy for variable-switching between Newton iterations during a time step is:

1. For any cell whose status in the previous iteration is single-phase, run the phase stability test [26] to check if the mix-
ture becomes two-phase. For the mixture that splits into two phases, perform the flash to compute the phase compositions 
[27].

2. If a cell is already in the two-phase state, the thermodynamic constraints are included in the nonlinear system as part 
of the global Jacobian.

3. If a phase saturation, or phase fraction, becomes negative between two successive iterations, the phase disappears, 
and appropriate variable-switching is performed.

The system of conservation equations is solved for single-phase regimes, and the combination of conservation equations 
and thermodynamic constraints is solved for the two-phase regime.

3.2. Phase behavior

Phase behavior computation is usually a stand-alone procedure for detecting phase changes. For a mixture of nc compo-
nents and two phases, the mathematical model describing the thermodynamic equilibrium is [32],

fc,o(p,x) − fc,g(p,y) = 0, (10)

zc − νoxc − (1 − νo) yc = 0, (11)
nc∑

c=1

(xc − yc) = 0, (12)

where νl is molar fraction of phase l. We assume that p, T , and zc are known. The objective is to find all the xc , yc and νl .
Phase behavior is often described using an Equation of State (EoS) model. EoS-based computations are expensive and may 

consume a large portion of total simulation time. But their cost can be largely reduced through some advanced approaches 
[30,41,39].

In this work, we mainly focus on the K -value based method to perform phase behavior computations. Our motivation 
is to isolate the nonlinear difficulties (discontinuities) specifically caused by phase boundaries. We intend to pinpoint and 
analyze the associated mechanisms, without the complication from the nonlinearities of EoS models. The K -value method 
assumes that components partition across phases with fixed ratios (K -values). Then the fugacity constraint (10) can be 
rewritten as,

fc,o − fc,g = 0 ⇒ yc − Kcxc = 0 (13)

where Kc is the equilibrium ratio, which depends on pressure and temperature.

3.3. Discontinuous issues crossing phase boundaries

Recent studies have revealed that the non-differentiability (kink) in the numerical flux due to switching criteria can be 
a major cause of nonlinear convergence difficulties [36,24,15,17]. The curvature of residual function changes abruptly at the 
kink, leading to oscillations between Newton iterations (flip-flopping) or convergence failure.

Likewise, crossing phase boundaries produce kinks in compositional models. Frequent phase changes and oscillations 
around phase boundaries can cause severe convergence problems [3,23,31,33].

In a single-phase regime, the component compositions are no longer controlled by the thermodynamic equilibrium. Then 
Eqs. (12) and (13) cannot be satisfied at the same time. The compositions of the existing phase can only be obtained from 
Eq. (11), where νl is set to 1 (or 0). For the missing phase, the compositions become undefined.

Phase change leads to the corresponding switches in fluid properties and discretized equations. To demonstrate this, we 
present the accumulation term in (1) for the different phase states as,{

xcρo(x)so + ycρg(y)sg , two-phase,

zcρl(z) , one-phase,
(14)
4
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Fig. 1. Overall fractional flow of component C1.

where ρo(x) indicates the density computed at a composition x, and ρl(z) is the density computed in the single-phase 
regime at a composition z.

In the absence of gravity, the overall fractional flow function of component c derived from (1) becomes,

uc =
{

xcρo
λo
λT

+ ycρg
λg
λT

, two-phase,

zcρl , one-phase.
(15)

By assigning unit values to ρl and μl , Eq. (15) for component 1 can be further simplified as,

u1 =
{

x1
kro

kro+krg
+ y1

krg
kro+krg

, two-phase,

z1 , one-phase.
(16)

We consider a two-component system {K1 = 3.5, K2 = 0.3} and quadratic relative permeabilities with unit end points. 
Fig. 1 shows the plot of u1 as a function of z1. Clearly, we observe two non-differentiable points associated with the phase 
changes. Within the two-phase regime, the flow curve has the typical S-shape. The flow curve becomes a straight line for 
the single-phase states. The discontinuous derivatives in the flow function can largely degrade the convergence performance 
of Newton solvers.

Several nonlinear formulations were previously proposed for compositional simulations [3,23,33,14]. Through reformula-
tion or certain consistence conditions, unified system of equations is achieved so that the variable-substitution process is 
avoided. Although saturations (or phase fractions) can change continuously across phase boundaries under these formula-
tions, the switches of fluid properties still occur, in one form or another. The kinks in discretized equations as the essential 
mechanism that causes nonlinear convergence difficulties are not resolved by the previous works. Consequently, the results 
reported insignificant improvement in nonlinear performance compared with the conventional natural formulation.

4. Smooth formulation

From the previous studies [36,24,25,15,17], it is expected that a smooth system can provide much improved Newton 
behaviors. According to Eqs. (14) and (15) the nonlinearities (discontinuities) associated with phase changes are due to the 
switches of properties from the accumulation and flux terms. We can see that it is hard to develop smoothing approxima-
tions directly for those terms in the conservation equations.

Therefore, we seek to first reformulate the coupled system, transferring the discontinuities to the phase equilibrium 
model. In this way a single and concise non-smooth equation is achieved and then a smoothing approximation can be 
derived.

4.1. Non-smooth reformulation

In the field of chemical process simulation, a mixed complementarity problem (MCP) was proposed for the phase equi-
librium system [6,13,29].

The MCP model containing complementarity conditions that represent phase changes can be equivalently written in a 
non-smooth form as,
5
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Rc = yc − βKcxc , (17)

Rc+nc = zc − νoxc − (1 − νo) yc , (18)

R2nc+1 =
nc∑

c=1

(xc − yc) , (19)

R2nc+2 = mid
{

(1 − νo) , (β − 1) , (−νo)
}

, (20)

where c ∈ {1, ...,nc}. The system R = 0 is simultaneously solved for the given zc and Kc using a Newton method. A flash 
procedure that combines the Successive Substitution Iteration (SSI) and Newton method can be employed to solve the above 
system [27]. The mid function picks the median of its three arguments,

mid {a,b, c} =
⎧⎨
⎩

a if c ≤ a ≤ b,

b if c ≤ b ≤ a,

c if b ≤ c ≤ a.

(21)

for any (a,b, c) ∈ R3.
A non-physical variable β is introduced to relax the equilibrium equation. Then the conditions for the three phase states 

are given as,⎧⎪⎨
⎪⎩

β ≤ 1 , νo = 0

β ≥ 1 , νo = 1

β = 1 , 0 < νo < 1

(22)

The solutions obtained from the non-smooth system (17)–(20) are valid and unique in all the three phase regimes. We 
can see that the phase fractions (thus saturations) are bounded between 0 and 1. The variables for the non-existent phase 
can be viewed as pseudo molar fractions that also sum to one. For the two-phase state, the non-smooth system provides 
the same results as the conventional phase equilibrium model.

The proposed non-smooth formulation can be readily applied to general EoS-based systems, by replacing Eq. (17) with 
the fugacity constraint (10). fc,l will be governed by a nonlinear EoS model in such cases.

4.2. Smoothing approximation

To present the smooth formulation for the MCP model, we first write the mid function as a mixed complementarity 
function,

	(a,b, c) = (a + c) −
√

(a − b)2 +
√

(b − c)2 (23)

Then we construct a smoothing function for Eq. (23) as follows [9,19,22]

	ε (ε,a,b, c) = (a + c) −
√

(a − b)2 + ε +
√

(b − c)2 + ε (24)

where ε ≥ 0 is a smoothing parameter, and 	ε (ε,a,b, c) is continuously differentiable with ε > 0. We can easily see that,

	ε (0,a,b, c) = 	(a,b, c) = 2 mid {a,b, c} (25)

whenever a > c.
There are several other ways to make smoothing approximations for the mid function. We choose Eq. (24) because the 

function is computationally simple and is well-behaved in terms of nonlinearity. The phase equilibrium model with (24)
provides smooth transitions of the variables across all the phase regimes.

Again we consider the two-component system from the last section. We compare the solutions between the standard 
flash and smooth formulations. Fig. 2 shows the compositions y1 and x1 as a function of z1. Fig. 3 compares the results of 
νg and u1.

Note that the negative flash concept [34] is applied for allowing phase fractions (saturations) to exceed the bounds of 
0 and 1 in the standard flash. Even though the compositions are constant along the tie-line, the discontinuities across the 
phase boundaries will still appear in the accumulation and flux terms. In contrast, we can see that the smooth formulation 
with a fixed ε provides continuously differentiable functions of all the variables.

We also study a ternary system with {K1 = 3.5, K2 = 1.5, K3 = 0.2} and quadratic relative permeability. The composition 
z2 = 0.3 has constant value. Fig. 4 shows the compositions y1 and x1 as a function of z1. We do not further plot overall 
fractional flow here because of its similar form as the two-component case.

In addition, we study a two-component fluid {C1(60%),C4(40%)} at a temperature of 250 K. The K -values for the two 
components are computed from Wilson’s equation,
6
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Fig. 2. Compositions of the two-component fluid under the different flash formulations.

Kc = pc

p
exp

(
5.37(1 + ωc)

(
1 − T c

T

))
(26)

where pc and T c are critical pressure and temperature, respectively. We plot the compositions y1 and x1 as a function of p
in Fig. 5. The gas phase fraction versus pressure is shown in Fig. 6. Compared to the standard flash, the smooth formulation 
can achieve smooth transitions with respect to pressure. This is very beneficial for the compositional scenario driven by 
pressure.

Lauser et al. [23] proposed a compositional formulation that is also based on complementarity conditions for handling 
phase changes. Compared to the smooth formulation proposed in this work, their approach has several limitations:

1. For a nonexistent phase in single-phase regimes, the sum of the molar fractions becomes less than one. This can 
produce additional discontinuities in evaluating fluid properties. Moreover, there is no guarantee that the values of molar 
fractions remain positive under all conditions, especially if smoothing approximations are applied.

2. Phase equilibrium and compositional systems are non-smooth in nature. Therefore a Newton solver will still suffer 
from the discontinuous issues due to phase changes.

3. The simulation studies demonstrated only insignificant improvement in nonlinear convergence, compared with the 
conventional natural formulation [23,14]. We give detailed descriptions and discussions on the approach of Lauser et al. [23]
in Appendix A.

4.3. Smooth formulation for coupled system

For the smooth compositional formulation, the primary unknowns include:
(1) p − pressure [1],
(2) sl − phase saturations [2],
7
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Fig. 3. νg and u1 of the two-component fluid under the different flash formulations.

(3) β − non-physical variable [1],
(4) xc , yc − phase compositions of each component [2nc ].

The coupled system contains: the [nc ] conservation equations (1), the phase (6) and saturation (7) constraints, and the 
[nc] relaxed equilibrium equations,

yc − βKcxc = 0, (27)

and the smoothing equation derived from (24),

	ε

(
ε, (1 − so) , (β − 1) , (−so)

)
= 0. (28)

The smoothing parameter ε can be kept constant during simulation. It is expected that a suitable value of ε will be chosen 
for a target class of problems. Compared to the natural-variables set, an obvious advantage of the new smooth formulation 
is that the equations and unknowns are the same for any phase state. The complex variable-substitution process is thus 
avoided.

For general multi-component models, phase boundaries are quite complex, which makes it difficult and costly to apply 
damping (safeguarding) based solution strategies. One particular type of discontinuity is the transition between two tie-lines 
[28].

As previously demonstrated, the saturations are bounded to [0, 1] in the smooth system, so that the physical limiting is 
not necessary for the conservation equations. As a result, all the discontinuities associated with the phase changes transfer to 
8
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Fig. 4. Compositions of the three-component fluid under the different flash formulations.

the single and concise equation (28), and get removed through the smoothing approximation. The coupled system becomes 
smooth across the entire phase boundaries, bringing enormous benefits for Newton solvers.

Here we mainly focus on the K -value method to describe the phase equilibrium. Our first application target is on black-
oil models (with dissolved-gas and vaporized-oil data). The developed smooth formulation can be readily applied to general 
EoS-based problems. Some discussions and preliminary test results are given in Appendix C.

5. Nonlinear solver

The spatial and temporal discretization schemes used for the compositional flow model are summarized in Appendix B.

5.1. Newton method

At each timestep of a FIM simulation, given the unknown vector Un and a fixed timestep size �t , we intend to obtain 
the new state Un+1.

The nonlinear system is cast in residual form and solved by the Newton method,

R(Un+1) = 0. (29)

The Newton method comprises a sequence of iterations, each involving the construction of a Jacobian matrix and solution 
of the resulting linear system,

J (Uη)�Uη+1 = −R(Uη), (30)

where
9



J. Jiang and X.-H. Wen Journal of Computational Physics 425 (2021) 109897
Fig. 5. Compositions versus pressure under the different flash formulations.

Fig. 6. Gas fraction versus pressure under the different flash formulations.
10
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Table 1
Specification of the 1D base model.

Parameter Value Unit

NB 500
DX / DY / DZ 10 / 10 / 10 m
Permeability 1000 md
Porosity 0.2
Rock compressibility 1e-5 1/bar
Max timestep size 50 day
Total simulation time 500 day
Max number of nonlinear iterations 20

�Uη+1 = Uη+1 − Uη, (31)

and J (Uη) = ∂R
∂U

∣∣∣
Uη

denotes the Jacobian matrix of R with respect to Uη . The iterative process is performed until the 
nonlinear system is converged.

The formulation and method developed in this work are integrated into the Automatic Differentiation General Purpose 
Research Simulator (AD-GPRS) [37,40,32]. The nonlinear framework of AD-GPRS is built on top of Automatic Differentiation 
with Expression Templates Library (ADETL). The Jacobian is automatically assembled and analytically derived through ADETL.

5.2. Homotopy continuation method

The Newton process may often converge slowly, or even diverge, due to poor initial guess and large timestep size [38]. 
The smooth formulation has nice global convergence property. However, solution accuracy may be degraded, with a fixed 
smoothing parameter ε . The value of ε needs to be adaptively determined for an optimal balance between accuracy and 
nonlinear performance.

The coupled system with the smoothing equation (28) can be viewed as a homotopy mapping H. The objective is to 
solve the original system R(U ) = 0 containing the non-smooth mid function. We can see that H(U , 0) = R(U ) with the 
modified residual H(U , ε) and the smoothing (continuation) parameter ε ≥ 0. Consider that H(U , ε0) = 0 is much easier 
to solve than the target problem H(U , 0) = 0. The continuation method can be developed by discretizing in ε to form a 
sequence of nonlinear systems H(U , εη) = 0. The target solution is reached by progressively decreasing ε from ε0 towards 
0 to globalize the flow equations. As a result, the algorithm will not have an impact on the accuracy of the final solutions.

The continuation method only acts as a globalization stage to obtain better initial guesses for the Newton process [18]. In 
our experience, applying the continuation for a few iterations in the globalization stage is already highly effective. A simple 
strategy is used to evolve ε during each timestep,

εη =
{

max
(
γ εη−1 , εmin

)
, η ≤ ηmax

εmin , η > ηmax
(32)

with ε0 as the initial value of a timestep. After each Newton iteration, ε is multiplied by a constant γ . ηmax is the number of 
iterations taken for globalization. The parameter values used for all the following cases are: ε0 = 0.1, ηmax = 4 and γ = 0.5. 
εmin is specified to ensure that the system is smooth enough at the convergence limit. From the simulations we find that a 
value around εmin = 1.0e-4 can produce the solutions with satisfactory accuracy and nonlinear convergence.

We note that the smooth formulation and the continuation method involve different complexities and efforts for imple-
mentation. Subsequently, their applications depend on specific accuracy and implementation considerations.

6. Results: 1D model

Nonlinear convergence is based on the following criterion: maxi,c
∣∣Ri,c

∣∣ < 10−4, where Ri,c is the residual of c-th equation 
in i-th cell (for conservation equations, we normalize by the total mass of c-th component).

A simple time-stepping strategy is employed: if the Newton method converges for the current timestep, the next timestep 
will be doubled; if the nonlinear solver fails to converge, the timestep is reduced by half and solved again. The solution 
from previous timestep n is taken to be the initial guess for a new timestep. During the iterative process, all fractions in the 
variable-set are kept within the physical interval [0, 1]. Also the damping strategy is employed to stabilize Newton updates: 
the local chopping (maximum allowable change) values of 0.2 are used for saturations and 0.1 for molar fractions.

We evaluate the efficiency of the new approaches using several complex problems. Five different fluids, and two different 
reservoir models are considered. The models include: (a) homogeneous 1D model; (b) heterogeneous 2D model taken from 
the bottom layer of the SPE 10 problem. In the following cases, simple relative permeabilities given by quadratic function 
are used, unless otherwise indicated. Note that both phase density and viscosity depend on pressure and compositions. 
Phase molar density ρl is evaluated based on the compressibility (Z) factor from the Peng-Robinson EoS. Phase viscosity μl
is computed by the correlation of Lohrenz et al. [21]. The specification of the 1D base model is provided in Table 1.
11
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Table 2
Fluid and compositions of the two-component case.

Comp K Zi Zinj

C1 3.5 0.001 0.99
C3 0.5 0.999 0.01

Table 3
Computational performance of Case 1 with the two-component fluid.

Total iterations (Wasted) Timesteps (Wasted)

Standard 
Natural

188 (0) 12 (0)

SBC
εmin = 1.0e-4

115 (0) 12 (0)

SBC
εmin = 1.0e-2

107 (0) 12 (0)

Table 4
Computational performance of the two-component case with gravity.

Total iterations (Wasted) Timesteps (Wasted)

Standard 
Natural

430 (140) 28 (7)

SBC 
εmin = 1.0e-4

201 (0) 18 (0)

SBC 
εmin = 1.0e-2

176 (0) 18 (0)

6.1. Two-component fluid

We test a comprehensive suite of 1D problems. The first problem is the displacement of propane C3 by methane C1 in 
a horizontal domain. Cell size of 1m is used. The fluid and compositions are given in Table 2. Zi and Zinj are initial and 
injection compositions, respectively. Pressure is kept constant as 65 bars at the production end. A constant volumetric rate 
5 m3/day is specified at the injection end. Initial pressure is 70 bars and temperature is 311 K.

6.1.1. Case 1
The nonlinear performance of the two-component case is summarized in Table 3. We report the total number of Newton 

iterations and timesteps. In parentheses, we also give the number of wasted iterations that correspond to the iterations 
spent on unconverged timesteps. ‘SBC’ denotes the smoothing based continuation method, and εmin is specified for Eq. (32). 
For each simulation, the maximum CFL number, averaged over the timesteps taken, is reported. The corresponding maxCFL 
of the case is 16.

As we can see from the results, there is no timestep cut during the simulations. Even for this simple scenario, the SBC 
method requires much fewer iterations to converge.

Gas saturation and overall composition profiles are plotted in Fig. 7. The profiles show two shocks formed in the two-
phase region. The solutions from SBC with εmin = 1.0e-4 fully match the standard natural formulation. For εmin = 1.0e-2, 
some differences around the shocks are observed.

6.1.2. Case 2
We also test a case with gravity. Temperature is set to 380 K. The maximum time step size reduces to 30 days, due to 

severe degradation of nonlinear convergence encountered by the standard natural formulation. The total simulation time 
becomes 400 days. The other parameters from the previous case remain unchanged.

The nonlinear performance of the case with gravity is summarized in Table 4. The maxCFL is 20. As can be seen, the 
standard formulation suffers from multiple timestep cuts and subsequent wasted iterations. In contrast, the SBC method 
does not require any timestep cut, resulting in much smaller number of iterations.

6.1.3. Case 3
We further study a case with variable K -values computed from Eq. (26). Production pressure changes to 70 bars. Initial 

pressure is 80 bars at a temperature of 370 K. The maximum timestep size becomes 50 days, with a total simulation time 
of 400 days.

Here we simply apply the smooth formulation without the continuation method. The case is to demonstrate the ap-
plicability of the smooth formulation using a fixed smoothing parameter ε . The value level of ε = 1.0e-2 is sufficient to 
provide much improved convergence performance. Solution profiles are not shown because the differences between the two 
formulations are small.
12
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Fig. 7. Gas saturation and overall composition profiles of Case 1 with the two-component fluid.

Table 5
Computational performance of Case 3 with the two-component fluid.

Total iterations (Wasted) Timesteps (Wasted)

Standard 
Natural

516 (260) 33 (13)

Smooth 110 (0) 13 (0)

Table 6
Fluid and compositions of the three-component case.

Comp K Zi Zinj

C1 2.5 0.01 0.97
C4 0.6 0.5 0.02
C10 0.2 0.49 0.01

The nonlinear performance of Case 3 is summarized in Table 5. The maxCFL is 21. As can be seen, the pressure-dependent 
K -values make it very challenging for the standard formulation. By comparison, the smooth formulation is continuously 
differentiable with respect to pressure, leading to significant convergence speedup.

6.2. Three-component fluid

We test cases with three-component fluid systems. Cubic relative permeabilities are used. Initial pressure is 70 bars and 
temperature is 320 K. Pressure is kept constant at the both injection and production ends. Production pressure is 60 bars, 
with injection pressure as 130 bars. The maximum timestep size is 50 days, with a total simulation time of 400 days.

6.2.1. Case 1
The fluid and compositions for Case 1 are given in Table 6.
The nonlinear performance of Case 1 is summarized in Table 7. The maxCFL is 6. In this case, the SBC method does not 

require any timestep cuts.
13
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Table 7
Computational performance of Case 1 with the three-component fluid.

Total iterations (Wasted) Timesteps (Wasted)

Standard 
Natural

320 (100) 27 (5)

SBC
εmin = 1.0e-4

175 (0) 21 (0)

SBC 
εmin = 1.0e-2

164 (0) 21 (0)

Fig. 8. Gas saturation and overall composition profiles of Case 1 with the three-component fluid.

Table 8
Computational performance of Case 2 with the three-component fluid.

Total iterations (Wasted) Timesteps (Wasted)

Standard
Natural

605 (320) 45 (16)

SBC
εmin = 1.0e-4

167 (0) 20 (0)

SBC
εmin = 1.0e-2

144 (0) 20 (0)

The gas saturation and overall composition profiles are plotted in Fig. 8. Here the timestep size is reduced to 10 days, to 
ensure that the solutions from the different methods are compared under the same time-stepping schedule. As we can see, 
SBC produces solutions that are very close to the standard formulation.

6.2.2. Case 2
We also study a three-component system with {K1 = 2.5, K4 = 1.5, K10 = 0.3}, and the other parameters remain un-

changed.
The nonlinear performance of Case 2 is summarized in Table 8. The maxCFL is 6. The standard formulation suffers from 

a large number of timestep cuts and wasted iterations, despite a small CFL number for this case. The SBC method effectively 
stabilizes the iterative process, leading to superior convergence performance.
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Table 9
Fluid and compositions of the gas-condensate system with three-
component fluid.

Comp K Zi Zinj

C1 2.5 0.5 0.98
C2 1.5 0.4 0.01
C5 0.05 0.1 0.01

Table 10
Computational performance of the gas-condensate system with three-
component fluid.

Total iterations (Wasted) Timesteps (Wasted)

Standard
Natural

413 (200) 35 (10)

SBC
εmin = 1.0e-4

150 (0) 20 (0)

SBC
εmin = 1.0e-2

143 (0) 20 (0)

Fig. 9. Gas saturation and overall composition profiles of Case 3 with the three-component fluid.

6.3. Case 3

We consider a gas-condensate mixture with the fluid and compositions given in Table 9. Quadratic relative permeabilities 
are used. Initial, production, injection pressures are 85, 80, 120 bars, respectively. Temperature is 325 K.

The nonlinear performance of the gas-condensate case is summarized in Table 10. The maxCFL is 54. The gas saturation 
and overall composition profiles are plotted in Fig. 9. The gas-condensate mixture forms a sharp front in the domain. 
For εmin = 1.0e-2, small errors are produced around the shock. Note that the solution difference near the production end 
between SBC and the standard formulation is due to different time-stepping schedules.
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Table 11
Computational performance of Case 4 with the three-component fluid.

Total iterations (Wasted) Timesteps (Wasted)

Standard
Natural

644 (340) 47 (17)

Smooth 150 (0) 20 (0)

Table 12
Fluid and compositions of the four-component fluid.

Comp K Zi Zinj

C1 2.5 0.2 0.028
C O 2 1.5 0.01 0.97
C4 0.5 0.29 0.001
C10 0.05 0.5 0.001

Table 13
Computational performance of Case 1 with the four-component fluid.

Total iterations (Wasted) Timesteps (Wasted)

Standard
Natural

160 (0) 20 (0)

Smooth
ε = 1.0e-4

160 (0) 20 (0)

Smooth
ε = 1.0e-2

110 (0) 20 (0)

Table 14
Computational performance of Case 2 with the four-component fluid.

Total iterations (Wasted) Timesteps (Wasted)

Standard 
Natural

248 (40) 18 (2)

Smooth 90 (0) 15 (0)

6.3.1. Case 4
We further consider a case with variable K -values. Initial pressure is 100 bars, at a temperature of 340 K. Production 

and injection pressures are 95 and 140 bars, respectively. Initial compositions are {C1(1%), C2(50%), C3(49%)}, and injection 
mixture is {C1(97%), C2(2%), C3(1%)}.

The value of ε = 1.0e-2 is used for the smoothing parameter. The nonlinear performance of Case 4 is summarized in 
Table 11. The maxCFL is 24. The standard formulation shows a poor nonlinear performance, while the iteration number is 
largely reduced under the smooth formulation.

6.4. Four-component fluid

We use a four-component fluid system, comprised of {C1, C O 2, C4, C10} throughout our calculation examples.

6.4.1. Case 1
The fluid and compositions are given in Table 12. Initial pressure is 75 bars, at a temperature of 410 K. Production 

pressure is 70 bars, with injection pressure as 140 bars. The total simulation time is 400 days.
The nonlinear performance of Case 1 is summarized in Table 13. The maxCFL is 17. The case is to validate the applicability 

of the smooth formulation without the continuation method. We can see that the value of ε = 1.0e-2 brings a reduction in 
the iteration number, though both the formulations perform well for this case.

The gas saturation and overall composition profiles are plotted in Fig. 10. Note that the two formulations present the 
same solution profiles.

6.4.2. Case 2
We test a gas-condensate system with initial compositions as {80%,1%,14%,5%} at an initial pressure of 100 bars 

and at a temperature 344 K. Production pressure is 95 bars. Injection pressure is 140 bars, and injection gas mixture is 
{1%,97%,1%,1%}. The total simulation time is 500 days.

The nonlinear performance of Case 2 is summarized in Table 14. The maxCFL is 60. A significant reduction in the iteration 
number is achieved by the smooth formulation.
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Fig. 10. Gas saturation and overall composition profiles for the four-component fluid.

7. Results: SPE 10 model

Permeability field of the bottom layer of the SPE 10 model is shown in Fig. 11. A uniform cell size 10 m is specified, and 
the porosity is 0.1. Positions of the producer and injector are (60, 1) and (1, 220), respectively. The relative permeabilities 
are quadratic for both phases.

7.1. Case 1

The fluid and compositions are the same as summarized in Table 6. Initial pressure is 70 bars, at a temperature of 320 K. 
Production and injection pressures are 65 and 100 bars, respectively. The total simulation time is 400 days.

The nonlinear performance of Case 1 is summarized in Table 15. The maxCFL of the case is 88. The heterogeneous model 
is very challenging because of a large variation in the CFL numbers across the domain. Also frequent phase changes make 
the fluid displacement process highly nonlinear. As can be seen, the standard formulation suffers from many timestep cuts 
and wasted iterations. By comparison, the SBC method shows a smooth behavior, resulting in much improved nonlinear 
convergence.
17
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Fig. 11. Permeability (md) field of the SPE 10 model. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Table 15
Computational performance of Case 1 with the SPE 10 model.

Total iterations (Wasted) Timesteps (Wasted)

Standard 
Natural

560 (300) 44 (15)

SBC 
εmin = 1.0e-4

193 (0) 20 (0)

SBC 
εmin = 1.0e-2

171 (0) 20 (0)

Fig. 12. Gas saturation profiles for Case 1.

The gas saturation and overall composition profiles are plotted in Fig. 12 and Fig. 13. The solutions from SBC closely 
matches the standard formulation, even for the level of εmin = 1.0e-2.

7.2. Case 2

We also study a three-component system with {K1 = 2.5, K4 = 1.5, K10 = 0.3}, and the other parameters remain un-
changed.

The nonlinear performance of Case 2 is summarized in Table 16. The maxCFL is 87. The iteration performance of the 
standard formulation becomes worse for the different K -values. Crossing phase boundaries along a single tie-line causes 
oscillations in the Newton solver. For multi-component systems, additional discontinuities can arise with the switches be-
18



J. Jiang and X.-H. Wen Journal of Computational Physics 425 (2021) 109897
Fig. 13. Overall composition profiles of C1 for Case 1.

Table 16
Computational performance of Case 2 with the SPE 10 model.

Total iterations (Wasted) Timesteps (Wasted)

Standard 
Natural

707 (360) 50 (18)

SBC 
εmin = 1.0e-4

196 (0) 20 (0)

SBC 
εmin = 1.0e-2

173 (0) 20 (0)

Table 17
Computational performance of Case 3 with the SPE 10 model.

Total iterations (Wasted) Timesteps (Wasted)

Standard 
Natural

356 (140) 24 (7)

SBC 
εmin = 1.0e-4

110 (0) 13 (0)

SBC 
εmin = 1.0e-2

96 (0) 13 (0)

tween key tie-lines. The SBC method provides smooth transitions across the entire phase boundaries, leading to superior 
global convergence performance.

7.3. Case 3

We study the same fluid and K -values presented in Table 12. Initial compositions are {80%,0.1%,14.9%,5%}, at an initial 
pressure of 100 bars and at a temperature of 344 K. Production pressure is 95 bars. Injection pressure is 130 bars, and 
injection gas mixture is {0.98%,99%,0.01%,0.01%}.

The nonlinear performance of Case 3 is summarized in Table 17. The maxCFL is 520. The SBC method exhibits favorable 
nonlinear convergence for this challenging case.

The overall composition profiles are plotted in Fig. 14. Here the timestep size is reduced to 10 days, ensuring that the 
solutions from the different methods are compared with the same time-stepping schedule.
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Fig. 14. Overall composition profiles of C O 2 for Case 3.

8. Summary

Frequent phase changes and oscillations around phase boundaries can cause severe convergence problems during com-
positional simulations. The objective of this work is to develop a smooth formulation that removes all the property switches 
and discontinuities associated with phase changes. Here we first reformulate the coupled system, so that the discontinuities 
are transferred to the phase equilibrium model. A single and concise non-smooth equation is achieved and then a smooth-
ing approximation can be made. The reformulation is based on a mixed complementarity problem (MCP) proposed for the 
phase equilibrium. The developed formulation with a smoothing parameter provides smooth transitions of variables across 
all the phase regimes. We also employ a continuation method with the smooth system as a homotopy mapping.

We evaluate the efficiency of the new formulation and the continuation method using several complex problems. For 
most of the cases, the standard natural formulation suffers from multiple timestep cuts and subsequent wasted Newton 
iterations. In contrast, the developed formulation and method exhibit superior global convergence, requiring no timestep cut. 
The SBC method shows a negligible impact on solution accuracy, while providing smooth and stable iterative performance. 
Moreover, SBC works robustly for a wide range of flow conditions without parameter tuning.

In this work, we mainly focus on K -values to evaluate the phase equilibrium. Preliminary tests are conducted for an EoS-
based compositional problem. The smooth formulation can be readily applied to the black-oil fluid model (with dissolved 
gas and vaporized oil). Our first application target is on real-field black-oil models.
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Appendix A. Formulation with complementarity conditions

Lauser et al. [23] proposed a formulation based on complementarity conditions for handling phase changes. For each 
phase, the sum of the molar fractions is bounded from above by one, with equality holding if the phase is present,

nc∑
c=1

xc,l � 1 ,

nc∑
c=1

xc,l = 1 if phase l is present. (33)

The corresponding complementarity conditions are given as,

1 −
nc∑

c=1

xc,l � 0 , νl � 0 , νl

(
1 −

nc∑
c=1

xc,l

)
= 0 (34)

The complementarity conditions with the inequalities, can be reformulated equivalently as non-smooth equations, so 
that the phase equilibrium system becomes,

yc − Kcxc = 0, (35)

zc − νoxc − (1 − νo) yc = 0, (36)

min

{
νl,

(
1 −

nc∑
c=1

xc,l

)}
= 0. (37)

The minimum function represents the nonlinear complementarity function.
The above formulation may produce the solutions with negative molar fractions, especially if smoothing approximations 

are applied. This limitation can cause severe numerical issues for compositional problems of practical interest.
In Lauser et al. [23], a semismooth Newton method with locally superlinear convergence is employed to solve the non-

smooth system. However, the semismooth method may exhibit poor global convergence: the iterations may diverge, when 
the starting point is not close enough to a solution.

Appendix B. Discretization methods

A standard finite-volume scheme is applied as the spatial discretization for the mass conservation equations. A two-
point flux approximation (TFPA) is used to approximate the flux across a cell interface. The method of choice for the time 
discretization is the fully-implicit scheme. The discrete form of conservation equation is given as,

V

�t

[
(φρT zc)

n+1 − (φρT zc)
n] −

∑
i j

(
xcρo Fo + ycρg F g

)n+1 − Q n+1
c = 0, (38)

where superscripts denote timesteps, and �t is the timestep size. V is the cell volume. All indexes related to the cell 
numeration are neglected. The accumulation term involves the total density,

ρT zc = xcρoso + ycρg sg (39)

and

ρT =
{

soρo(x) + sgρg(y), two phase,

ρl(z), one phase,
(40)

where ρo(x) indicates the density computed at a composition x, and ρl(z) is the density computed in the single-phase 
regime at a composition z.

The discrete phase flux across the interface (i j) between two cells is written as,

Fl,i j = ϒi jλl,i j��l,i j (41)

where subscript (i j) denotes quantities defined at the cell interface. ϒi j is the interface transmissibility. ��l,i j = �pij − gl,i j
is the phase potential difference with the discrete weights gl,i j = ρl,i j g�hij . The phase and compositional coefficients 
associated with the flux terms are evaluated using the Phase-Potential Upwinding (PPU) scheme.
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Fig. 15. Gas saturation and overall composition profiles of the EoS-based 1D model.

Appendix C. Simulation results on EoS-based problems

We provide preliminary test results that demonstrate the applicability of the smooth compositional formulation to EoS-
based problems. The Peng-Robinson EoS model is used. The reservoir models include: (a) homogeneous 1D model; (b) SPE 
10 model.

We note that although the new formulation can be directly applied, additional challenges could arise within super-critical 
regions of compositional space. In practice, improvements for the stability analysis and flash procedures may be necessary 
to ensure robustness. Modeling of complex miscible displacements is subject to future research.

C.1. Results: 1D model

We first validate the efficiency of the new nonlinear solver on the 1D model specified in Table 1. The four-component 
fluid system {C1,CO2,C4,C10} is used. The initial compositions are {20%,1%,29%,50%}, at an initial pressure of 80 bars and 
at a temperature 373 K. The injection pressure is 190 bars, and the injection gas mixture is {28%,70%,1%,1%}. The gas 
saturation and overall composition profiles are plotted in Fig. 15. Comparison of the nonlinear results between the standard 
and smoothing-based continuation methods is summarized in Table 18.
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Table 18
Computational performance of the EoS-based 1D model.

Total iterations (Wasted) Timesteps (Wasted)

Standard 
Natural

842 (435) 29 (22)

SBC 
εmin = 1.0e-4

192 (0) 16 (0)

Fig. 16. Gas saturation and overall composition profiles of the EoS-based SPE 10 model.

Table 19
Computational performance of the EoS-based SPE 10 model.

Total iterations (Wasted) Timesteps (Wasted)

Standard
Natural

386 (180) 17 (9)

SBC
εmin = 1.0e-4

138 (0) 12 (0)

C.2. Results: SPE 10 model

We run a test on the SPE 10 model with the four-component fluid. The initial compositions are {C1(80%), CO2(0%), 
C4(15%), C10(5%)}, at an initial pressure of 101 bars and at a temperature 344 K. The injection pressure is 130 bars, and the 
injection fluid is a two-component mixture {C1(1%),CO2(99%)}.

The gas saturation and overall composition profiles are plotted in Fig. 16. The nonlinear results are summarized in 
Table 19. We can see that the standard formulation suffers from a large number of timestep cuts and wasted iterations. In 
contrast, the SBC method significantly improves the nonlinear convergence performance.
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