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Abstract

Pollutant transport by shallow water flows on non-flat topography is presented and numerically solved using a finite
volume scheme. The method uses unstructured meshes, incorporates upwinded numerical fluxes and slope limiters to pro-
vide sharp resolution of steep bathymetric gradients that may form in the approximate solution. The scheme is non-oscil-
latory and possesses conservation property that conserves the pollutant mass during the transport process. Numerical
results are presented for three test examples which demonstrate the accuracy and robustness of the scheme and its appli-
cability in predicting pollutant transport by shallow water flows. In this paper, we also apply the developed scheme for a
pollutant transport event in the Strait of Gibraltar. The scheme is efficient, robust and may be used for practical pollutant
transport phenomena.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

During the last years the increase of pollution in rivers, lagoons and coastal regions has attracted much
interest in numerical methods for the prediction of its transport and dispersion. In many situations, this
pollution problem has detriment impact on the ecology and environment and may cause potential risk on
the human health and local economy. Efficient and reliable estimates of damages on the water quality due
to pollution could play essential role in establishing control strategy for environmental protection. Introduc-
tion and utilization of such measures are impossible without knowledge of various processes such as formation
of water flows and transport of pollutants. The mathematical models and computer softwares could be very
helpful to understand the dynamics of both, water flow and pollutant transport. In this respect mathematical
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modeling of water flows and the processes of transport-diffusion of pollutants could play a major role in estab-
lishing scientifically justified and practically reasonable programs for long-term measures for a rational use of
water resources, reduction of pollutant discharge from particular sources, estimation of the impact in the envi-
ronment of possible technological improvements, development of methods and monitoring facilities, predic-
tion and quality management of the environment, etc. The success of the mathematical and computer
methods in solving practical problems depends on the convenience of the models and the quality of the soft-
ware used for the simulation of real processes.

Clearly, the process of pollutant transport is determined by the characteristics of the fluid flow and the
properties of the pollutant. Thus, dynamics of the fluid and dynamics of the pollutant must be studied using
a mathematical model made of two different but dependent model variables: (i) an hydrodynamic variable
defining the dynamics of the flow, and (ii) a concentration variable defining the transport of the pollutant.
In the current work, the hydrodynamic model is based on a two-dimensional shallow water equations while,
an advection–diffusion equation is used for the pollutant transport. For environmental flows, the shallow
water system is a suitable model for adequately describing significant hydraulic processes. The different char-
acteristics of pollutants require an appropriate model to describe their dynamics, nevertheless for a wide class
of dispersed substances the standard advection–diffusion equation can be used. The interaction between the
two processes gives rise to an hyperbolic system of conservation laws with source terms.

The accurate solution of shallow water flows is of major importance in most of pollutant transport predic-
tions. In many practical applications, the shallow water equations have to be solved on non-flat and rough
beds, and also on topographic structures covering different spatial scales. Thus, the treatment of topography
and friction source terms is of major importance in these applications. It is well known that shallow water
equations on non-flat topography have steady-state solutions in which the flux gradients are non-zero but
exactly balanced by the source terms. This well-balanced concept is also known by exact conservation pro-
perty (C-property), compare [13,11,38]. Computational techniques using finite difference, finite element and
finite volume methods have been extensively reported in the literature. Although widely applied to shallow
water equations, the finite difference technique has the major drawback that it does not guarantee strict con-
servation of mass and momentum. Furthermore, the necessity of including process across a range of spatial
scales means that techniques capable of operating on unstructured meshes will be more appropriate than those
such as the finite difference methods which rely on structured and often regular meshes. The finite element
method has been used with irregular meshes of triangular or quadrilateral elements to model shallow water
flows [17,15]. However, the finite element method can experience difficulty when both subcritical and super-
critical flows are encountered [3], and may produce solutions with local mass conservation errors in some
implementations [19]. The finite volume method is therefore adopted in the present work. For a comprehen-
sive review of recent developments in finite volume methods for shallow water equations we refer to [37].

Various numerical methods developed for general systems of hyperbolic conservation laws have been
applied to the shallow water equations. For instance, most shock-capturing finite volume schemes for shal-
low water equations are based on approximate Riemann solvers which have been originally designed for
hyperbolic systems without accounting for source terms such as bed slopes and friction losses. Therefore,
most of these schemes suffer from numerical instability and may produce nonphysical oscillations mainly
because dicretizations of the flux and source terms are not well-balanced in their reconstruction. The
well-established Roe’s scheme [33] has been modified by Bermúdez and Vázquez [11] to treat source terms.
This method has been improved by Vázquez [38] for general one-dimensional channel flows. However, for
practical applications, this method may become computationally demanding due to its treatment of the
source terms. Alcrudo and Garcia-Navarro [5] have presented a Godunov-type scheme for numerical
solution of shallow water equations. Alcrudo and Benkhaldoun [4] have developed exact solutions for the
Riemann problem at the interface with a sudden variation in the topography. The main idea in their
approach was to define the bottom level such that a sudden variation in the topography occurs at the inter-
face of two cells. LeVeque [24] proposed a Riemann solver inside a cell for balancing the source terms and
the flux gradients. However, the extension of this scheme for unstructured meshes is not trivial. Numerical
methods based on surface gradient techniques have also been applied to shallow water equations by Zhou
et al. [42]. The TVD-MacCormak scheme has been used by Ming-Heng [28] to solve water flows in variable
bed topography. A different approach based on local hydrostatic reconstructions have been studied by
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Audusse et al. [7] for open channel flows with topography. The performance of discontinuous Galerkin
methods has been examined by Xing and Shu [41] for some test examples on shallow water flows. However,
most of these methods present results with an order of accuracy smaller than the expected in the solutions
for unstructured grids. Besides this fact, it is well known that TVD schemes have their order of accuracy
reduced to first order in the presence of shocks due to the effects of limiters. A central-upwind scheme using
the surface elevation instead of the water depth has been used by Kurganov and Levy [22]. Vukovic and
Sopta [40] extended the ENO and WENO schemes to one-dimensional shallow water equations. Unfortu-
nately, most ENO and WENO schemes that solves real flows correctly are still very computationally expen-
sive. On the other hand, numerical methods based on kinetic reconstructions have been studied by Perthame
and Simeoni in [32] for one-dimensional problems. In the framework of kinetic schemes, Seaı̈d [36] proposed
a class of relaxation methods for solving shallow water equations. The principal drawback of kinetic meth-
ods is that they are very difficult to implement on unstructured grids.

In this paper, we describe the development of a finite volume non-homogeneous Riemann solver (SRNH)
for pollutant transport by shallow water equations. The original SRNH scheme has been recently proposed by
Benkhaldoun and Quivy in [9] and analyzed by Sahmim and Benkhaldoun in [35]. Here, the acronym SRNH
stands for ‘‘Solveur de Riemann Non Homogène’’. The SRNH scheme has also been numerically examined by
Sahmim et al. [34] for the one-dimensional shallow water equations. Typically, in the above mentioned refer-
ences, the scheme has been implemented for structured meshes. However, unstructured meshes can be highly
advantageous based on their ability to provide local mesh refinement near important bathymetric features and
structures. As a consequence, the ability to provide local mesh refinement where it needed leads to improve
accuracy for a given computational cost as compared to methods that use structured meshes. Therefore,
our objective in the current study, is to extend the SRNH scheme for the numerical simulation of two-dimen-
sional pollutant transport problems on unstructured meshes. The main advantages of the proposed SRNH
method are (i) the implementation on unstructured meshes allowing for local mesh refinement during the sim-
ulation process, (ii) the simultaneous advection in time of the water flow and the pollutant concentration, solv-
ing both problems at the same time and with the same accuracy (iii) the ability to handle calculations of slowly
varying flows or concentrations as well as rapidly varying flows containing also shocks or discontinuities, and
(iv) the capability to satisfy the exact C-property and to guarantee positive values of both, water level and
pollutant concentration in the transient simulations. In the computations presented in this paper we have used
the concentration of pollutants as a monitoring function for mesh refinements. Results presented in this paper
demonstrate high resolution of the proposed method and confirm its capability to provide accurate and effi-
cient simulations for pollutant transport by shallow water flows including complex topography and friction
forces on unstructured grids.

This paper is organized as follows. In Section 2, we present the mathematical equations used to model
pollutant transport problems. Formulation of the SRNH scheme is discussed in Section 3. Computational
results are illustrated in Section 4 for two hypothetical examples in smooth rectangular domains. We finally
present an application of the SRNH scheme to a pollutant transport event in the Strait of Gibraltar. Section 5
summarizes the paper with some concluding remarks.
2. Two-dimensional pollutant transport equations

Shallow water equations have been widely used to model free surface flows of a fluid under the influence of
gravity. This class of equations uses the assumption that the vertical scale is much smaller than any typical
horizontal scale and can be derived from the depth-averaged incompressible Navier–Stokes equations. For
two-dimensional flow problems, these equations are
othþ oxðhuÞ þ oyðhvÞ ¼ 0;

otðhuÞ þ ox hu2 þ 1

2
gh2

� �
þ oyðhuvÞ ¼ �ghðS0x � SfxÞ;

otðhvÞ þ oxðhuvÞ þ oy hv2 þ 1

2
gh2

� �
¼ �ghðS0y � SfyÞ;

ð2:1Þ
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where g is the gravitational acceleration, hðt; x; yÞ is the water depth, uðt; x; yÞ and vðt; x; yÞ are the depth-aver-
aged velocities in the x- and y-direction, respectively. The source terms in (2.1) account for various physical
and geometric effects. Here, S0x and S0y are the bed slopes given by
S0x ¼ oxZ; S0y ¼ oyZ; ð2:2Þ

with Zðx; yÞ denotes the bottom topography, while Sfx and Sfy are the friction losses along the x- and y-direc-
tion, and are defined by
Sfx ¼ �g2 u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

h4=3
; Sfy ¼ �g2 v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

h4=3
; ð2:3Þ
where g is the Manning roughness coefficient. It well known that the system (2.1) is strictly hyperbolic with
real and distinct eigenvalues given by
k1 ¼ u�
ffiffiffiffiffi
gh

p
; k2 ¼ u; k3 ¼ uþ

ffiffiffiffiffi
gh

p
;

l1 ¼ v�
ffiffiffiffiffi
gh

p
; l2 ¼ v; l3 ¼ vþ

ffiffiffiffiffi
gh

p
:

ð2:4Þ
The transport of a pollutant is modelled by the standard advection–diffusion equation
otðhCÞ þ oxðhuCÞ þ oyðhvCÞ ¼ r � ðhDrCÞ þ hQ; ð2:5Þ

where Cðt; x; yÞ is the depth-averaged pollution concentration, Q is the depth-averaged pollutant source or
sink, and D is an empirical 2 · 2 diffusion matrix. In practical situations the diffusion coefficients depend
on water depth, flow velocity, bottom roughness, wind and vertical turbulence, compare [25] for more details.
For the purpose of the present work, the problem of the evaluation of diffusion coefficients is not considered.
Here, we assume that the pollutants are passive and do not interact with the water flow. However, other inter-
action phenomena such as erosion, sedimentation or chemical reactions can also be incorporated in the above
equations. For more discussions on the particular choice of friction forces in the shallow water equations and
diffusion terms in the pollutant transport we refer the reader to [26,31].

For simplicity in presentation we rewrite the Eqs. (2.1) and (2.5) in a conservative form as
otWþ oxðFðWÞ � eFðWÞÞ þ oyðGðWÞ � eGðWÞÞ ¼ QðWÞ; ð2:6Þ

where W and Q are the vectors of conserved variables and source terms, F and G are the convection tensor
fluxes, eF and eG are the diffusion tensor fluxes
W ¼

h

hu

hv

hC

0BBBB@
1CCCCA; QðWÞ ¼

0

�ghðS0x � SfxÞ
�ghðS0y � SfyÞ

hQ

0BBBB@
1CCCCA;

FðWÞ ¼

hu

hu2 þ 1
2
gh2

huv

huC

0BBBB@
1CCCCA; GðWÞ ¼

hv

huv

hv2 þ 1
2
gh2

hvC

0BBBB@
1CCCCA;

eFðWÞ ¼
0

0

0

hDxxoxC þ hDxyoyC

0BBBB@
1CCCCA; eGðWÞ ¼

0

0

0

hDyxoxC þ hDyyoyC

0BBBB@
1CCCCA;
where Dxx, Dxy, Dyx and Dyy are entries of the diffusion matrix D assumed to be nonnegative. Remark that we
have considered only a single pollutant with concentration C transported by the shallow water flow, however
the techniques presented in this paper can straightforwardly be extended to multiple pollutants. Eq. (2.6) has
to be solved in a bounded spatial domain X with smooth boundary C, equipped with given boundary and
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initial conditions. In practice, these conditions are problem dependent and their discussion is postponed for
Section 4 where numerical examples are discussed.

The integral form of Eq. (2.6) over a fixed volume V is given by
ot

Z
V

WdV þ
Z

V
ðoxðFðWÞ � eFðWÞÞ þ oyðGðWÞ � eGðWÞÞÞdV ¼

Z
V

QðWÞdV ;
that, using divergence theorem for the second integral leads to
ot

Z
V

WdV þ
Z

oV
FðW; nÞdr�

Z
oV

fFðW; nÞdr ¼
Z

V
QðWÞdV ; ð2:7Þ
where
FðW; nÞ ¼ FðWÞnx þGðWÞny ; fFðW; nÞ ¼ eFðWÞnx þ eGðWÞny ;
and oV is the surface surrounding the volume V. In (2.7), n ¼ ðnx; nyÞT denotes the unit outward normal to the
surface oV.

3. Finite volume non-homogeneous Riemann solver

In this section, we formulate the SRNH method used to solve Eq. (2.7). The method uses a grid of trian-
gular cells to facilitate grid generation and localized refinement when modeling pollutant transport in realistic
waterways. A predictor–corrector stepping is used for time integration. In the predictor step, a non-conserva-
tive approach is used to determine the intermediate values whereas in the corrector step, a fully conservative
solution is achieved by solving a series of local Riemann problems based on data from the predictor step.

3.1. Formulation of the SRNH scheme

The spatial domain X ¼ X [ C is discretized by conforming triangular elements Ti as X ¼ [Ne
i¼1Ti, with Ne

is the total number of elements. Each triangle represents a control volume and the variables are located at the
geometric centres of the cells. In the current work, a cell-centred finite volume method is formulated where all
the dependent variables of the system are represented as piecewise constant in the cell as
Wi ¼
1

jTij

Z
Ti

WdV ;
where jTij denotes the area of the element Ti. Let us divide the time domain in sub-intervals ½tn; tnþ1� with time
stepsize Dt. Using the finite volume approach on unstructured grid (see Fig. 3.1), Eq. (2.7) is discretized as
Wnþ1
i ¼Wn

i �
Dt
jTij

X
j2NðiÞ

Z
Cij

FðWn; nÞdrþ Dt
jTij

X
j2NðiÞ

Z
Cij

fFðWn; nÞdrþ Dt
jTij

Z
Ti

QðWnÞdV ; ð3:1Þ
i j
Γij

W

W

x x
coVij

diji

j

Fig. 3.1. Generic triangular elements and notations.
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where N(i) is the set of neighboring triangles of the cell Ti, and Wn
i is the average value of W in the cell Ti at

time tn. Note that the spatial discretization of (2.7) is complete when numerical reconstructions of convection
and diffusion fluxes in (3.1) are selected.

Applied to the convection part in (3.1), the SRNH reconstruction yields
Z
Cij

FðW; nÞdr ¼ UðWi;Wj; Sij; nijÞjCijj; ð3:2Þ
with jCijj is the Lebesgue’s measure of the interface Cij between cells Ti and Tj as shown in Fig. 3.1, nij is the
outward normal to Cij, U is the numerical flux, Wi and Wj are respectively, the left and right values of W at
cells Ti and Tj, compare Fig. 3.1. Remark that the numerical SRNH flux U depends also on the Rusanov
speed Sij which has to be approximated. The SRNH scheme results in
Wn
ij ¼

1

2
ðWn

i þWn
j Þ �

an
ij

2Sn
ij

ðFðWn
j ; nijÞ �FðWn

i ; nijÞÞ þ
an

ij

2Sn
ij

Qn
ij;

Wnþ1
i ¼Wn

i �
Dt
jTij

X
j2NðiÞ

UðWi;Wj; Sij; nijÞjCijj þ DtQn
i ;

ð3:3Þ
where an
ij is a positive control parameter to be chosen according to certain stability conditions analyzed in

[34,10,9,35]. The numerical flux is defined as
UðWi;Wj; Sij; nijÞ ¼FðWn
ij; nijÞ;
with Sn
ij is the Rusanov speed defined as
Sn
ij ¼ max

p
ðjkn

p;ij; jk
n
p;jjÞ;
where kn
p;i denotes the pth eigenvalue in (2.4) evaluated at the state Wn

i . The analysis reported in [10,34,9] re-
veals that the parameter an

ij in (3.3) can be interpreted as a diffusion coefficient in the SRNH scheme such that
more numerical dissipation is added for larger values of an

ij. In the present work, the diffusion coefficient is
approximated in a matrix form such that a local maximum principle for the intermediate state Wn

ij is ensured,
compare [35,34] for more details. Hence,
an
ij ¼ Sn

ijjrFðWn
ij; nijÞ�1j; ð3:4Þ
where rFðWn
ij; nijÞ is the Jacobian matrix with respect to W, and Wn

ij is approximated either by Roe’s average
state or simply by the mean state
Wn
ij ¼

1

2
ðWn

i þWn
j Þ: ð3:5Þ
Using (3.4) in (3.3), the intermediate state can be reformulated as
Wn
ij ¼

1

2
ðWn

i þWn
j Þ �

1

2
sgnðrFðWn

ij; nijÞÞðWn
j �Wn

i Þ þ
1

2
jrFðWn

ij; nijÞ�1jQn
ij: ð3:6Þ
Note that an SRNH scheme with constant an
ij has been used by Benkhaldoun and Quivy [9] for hyperbolic

systems with source terms. Note also that, for homogeneous systems (Q ¼ 0), the reconstruction (3.3) using
(3.5) reduces to the VFRoe scheme early studied by Masella et al. [27].

It should be pointed out that the selection (3.4) leads to a first-order SRNH scheme. In order to develop a
second-order SRNH scheme, we use a MUSCL method incorporating slope limiters in the spatial approxima-
tion and a two step Runge–Kutta method for time integration. The MUSCL projection uses an approxima-
tion of the state W by linear interpolation at each cell interface Cij
Wij ¼Wi þ
1

2
rWi � XiXj

!
;

Wji ¼Wj �
1

2
rWj � XiXj

!
;

ð3:7Þ
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where Xi ¼ ðxi; yiÞ
T and Xj ¼ ðxj; yjÞ

T with ðxi; yiÞ and ðxj; yjÞ are the barycentre coordinates of cells Ti and
Tj, respectively. Thus, the cell gradients are evaluated by minimizing the quadratic functional
WðX ; Y Þ ¼
X

j2mðiÞ
jWi þ ðxj � xiÞX þ ðyj � yiÞY �Wjj2; ð3:8Þ
where m(i) is the set of indices of neighborhood cells that have a common edge or vertex with the control
volume Ti. To preserve the TVD property of the SRNH scheme we use techniques based on slope limiters.
It is preferable to apply simple slope limiters in which the degrees of freedom Wi for a given cell Ti are com-
pared to the average of the approximate solution over Ti and the average of the neighboring cells of the given
edge. The well-established MinMod limiter can be an example of these limiter functions. The MindMod lim-
iter is very easy to implement, but it can cause numerical smoothing of the solution. More sophisticated lim-
iters that are less dissipative are also applicable. For instance, in the computational results presented in Section
4, we have also applied the VanAlbada limiter [39].

To discretize the diffusion fluxes in (2.7) we adapt a Green–Gauss diamond reconstruction, see for exam-
ple [12] and further references are therein. This method has been selected because it is second-order accurate,
it can be applied on general unstructured adaptive grids, it does not require serious restrictions on the angles
of triangles, and it can be easily incorporated in our SRNH scheme. Hence, a co-volume, coV ij, is first con-
structed by connecting the barycentres of the elements that share the edge Cij and its endpoints as shown in
Fig. 3.1. Then, in the x-direction, diffusion fluxes in the transport equation are evaluated at an inner edge Cij

as
 Z
Cij

DhoxðCÞnx dr ¼
DhjCij

jcoV ijj
X

�2ocoV ij

CN1
þ CN2

2

Z
�

nx� dr; ð3:9Þ
where N1 and N2 are the nodes of the edge � on the surface ocoV ij, CN1
and CN2

are the values of the concen-
tration C in the node N1 and N2, respectively. The discretization in y-direction of diffusion fluxes is carried out
in an analogous manner. Note that, in (3.9) we have assumed constant diffusion coefficient. In the case of
space dependent diffusion, the coefficient D in (3.9) should be replaced by
DN1
þ DN2

þ DN3
þ DN4

4
;

with DNk , k ¼ 1; . . . ; 4, are values of the diffusion coefficient D at the co-volume nodes Nk approximated by
linear interpolation from the values on the cells sharing the same vertex Nk.

3.2. Features of the SRNH scheme

3.2.1. Discretization of the convective terms

In the predictor step of the SRNH reconstruction (3.3), the source terms are treated using the ideas devel-
oped in [1,29]. First, we project the shallow water equations on the local cell outward normal g and tangential
s ¼ g? as follows:
othþ ogðhugÞ ¼ 0;

otðhugÞ þ og hu2
g þ

1

2
gh2

� �
¼ �ghogZ;

otðhusÞ þ ogðhugusÞ ¼ 0;

otðhCÞ þ ogðhCugÞ ¼ 0;

ð3:10Þ
where ug ¼ ðu; vÞ � g and us ¼ ðu; vÞ � s are the normal and tangential velocity, respectively. In this case, the
predictor step becomes
Un
ij ¼

1

2
ðUn

i þUn
j Þ �

1

2
sgn½rFgðUÞ�ðUn

j �Un
i Þ þ

1

2
jrFgðUÞ�1jQn

ij; ð3:11Þ
with sgn[A] stands for the sign matrix of A and
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U ¼

h

hug

hus

hC

0BBB@
1CCCA; FgðUÞ ¼

hug

hu2
g þ 1

2
gh2

hugus

hCug

0BBB@
1CCCA; Qn

ij ¼ �g
hi þ hj

2
ðZj � ZiÞ

0

1

0

0

0BBB@
1CCCA:
In (3.11), U is the Roe’s average state given by
U ¼ 1

2
ðhi þ hjÞ

1
ui
ffiffiffi
hi
p
þuj

ffiffiffi
hj

pffiffiffi
hi
p
þ
ffiffiffi
hj

p gx þ
vi
ffiffiffi
hi
p
þvj

ffiffiffi
hj

pffiffiffi
hi
p
þ
ffiffiffi
hj

p gy

� ui
ffiffiffi
hi
p
þuj

ffiffiffi
hj

pffiffiffi
hi
p
þ
ffiffiffi
hj

p gy þ
vi
ffiffiffi
hi
p
þvj

ffiffiffi
hj

pffiffiffi
hi
p
þ
ffiffiffi
hj

p gx

Ci
ffiffiffi
hi
p
þCj

ffiffiffi
hj

pffiffiffi
hi
p
þ
ffiffiffi
hj

p

0BBBBBBBB@

1CCCCCCCCA
: ð3:12Þ
The sign and inverse matrices of the Jacobian are defined as
sgn½rFgðUÞ� ¼ RðUÞsgn½KðUÞ�R�1ðUÞ; jrFgðUÞ�1j ¼ RðUÞjðKðUÞÞ�1jR�1ðUÞ;

where RðUÞ and KðUÞ are respectively, the right eigenvector and the diagonal matrices reconstructed as
R ¼

1 0 0 1

�ug � �c 0 0 �ug þ �c

�us 1 0 �us

C 0 1 C

0BBB@
1CCCA; K ¼

�ug � �c 0 0 0

0 �ug 0 0

0 0 �us 0

0 0 0 �ug þ �c

0BBB@
1CCCA;

R�1 ¼

�ugþ�c
2�c � 1

2�c 0 0

��us 0 1 0

�C 0 0 1

� �ug��c
2�c

1
2�c 0 0

0BBBB@
1CCCCA;
where �c ¼
ffiffiffiffiffi
g�h

p
is the wave speed calculated at the interface of control volume. It is easy to verify that the sign

and inverse matrices in (3.11) are
sgn½rFgðUÞ� ¼

sgnð�k1Þ�k3�sgnð�k3Þ�k1

2�c
sgnð�k3Þ�sgnð�k1Þ

2�c 0 0

j�k1j�k3�j�k3j�k1

2�c
j�k3j�j�k1j

2�c 0 0

�us
sgnð�k1Þ�k3�sgnð�k3Þ�k1

2�c � sgnð�ugÞ
� �

�us
sgnð�k3Þ�sgnð�k1Þ

2�c sgnð�ugÞ 0

C sgnð�k1Þ�k3�sgnð�k3Þ�k1

2�c � sgnð�ugÞ
� �

C sgnð�k3Þ�sgnð�k1Þ
2�c 0 sgnð�ugÞ

0BBBBBBB@

1CCCCCCCA;

jrFgðUÞ�1j ¼

�k3
j�k1 j
�

�k1
j�k3 j

2�c

1
j�k3 j
� 1
j�k1 j

2�c 0 0

sgnð�k1Þ�k3�sgnð�k3Þ�k1

2�c
sgnð�k3Þ�sgnð�k1Þ

2�c 0 0

�us

�k3
j�k1 j
�

�k1
j�k3 j

2�c � 1
�ug

 !
�us

1
j�k3 j
� 1
j�k1 j

2�c

� �
1
j�ugj 0

C
�k3
j�k1 j
�

�k1
j�k3 j

2�c � 1
�ug

 !
C

1
j�k3 j
� 1
j�k1 j

2�c

� �
0 1

j�ugj

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
;

where �k1 ¼ �ug � �c and �k3 ¼ �ug þ �c. Using the above matrices, the solution state Un
ij can be easily obtained from

the predictor stage (3.11). Once the state Un
ij is computed, the state Wn

ij is recovered by using the transforma-
tions v ¼ ðus; ugÞ � g and u ¼ ðus; ugÞ � s.
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3.2.2. Discretization of the source terms

The source term approximation Qn
i in the corrector step is reconstructed in such a way to satisfy the C-

property, see [10,34]. Following the definition by [11], a numerical scheme is said to satisfy the C-property
for Eq. (2.6) if
hn þ Zn ¼ constant; un ¼ vn ¼ 0; ð3:13Þ

hold for stationary flows at rest. Hence, for stationary flow regime, the system (2.6) reduces to
ot

h

0

0

hC

0BBB@
1CCCAþ ox

0
1
2
gh2

0

0

0BBB@
1CCCAþ oy

0

0
1
2
gh2

0

0BBB@
1CCCA ¼

0

�ghoxZ

�ghoyZ

hQ

0BBB@
1CCCA: ð3:14Þ
Applied to the system (3.14), the predictor stage (3.11) in the SRNH scheme gives
hn
ij

0

0

ðhCÞnij

0BBB@
1CCCA ¼

hn
i þhn

j

2

0

0
hn

i Cn
i þhn

i Cn
i

2

0BBBB@
1CCCCA;
which leads (since u ¼ v ¼ 0) to Wn
ij ¼ Un

ij. Therefore, the numerical flux in the SRNH scheme becomes
FðWn
ij; nijÞ ¼

0
1
2
gðhn

ijÞ
2

0

0

0BBB@
1CCCAnxij þ

0

0
1
2
gðhn

ijÞ
2

0

0BBB@
1CCCAnyij:
For stationary flows, the corrector stage gives
X
j

0
1
2
gðhn

ijÞ
2nxij

1
2
gðhn

ijÞ
2nyij

0

0BBBB@
1CCCCAjCijj ¼

0

�g
R
Ti

hoxZ

�g
R
Ti

hoyZ

0

0BBB@
1CCCAjTij: ð3:15Þ
In the SRNH scheme, the right source terms are approximated as
Z
Ti

hoxZ ¼ �hn
xi

Z
oTi

Znx dr ¼ �hn
xi

X
j2NðiÞ

ZijnxijjCijj; ð3:16Þ
with a similar equation for the second term in (3.15). In (3.16), the approximation �hn
xi has to be determined

such that the C-property is verified. This is achieved if the condition
1

2

X
j2NðiÞ
ðhn

ijÞ
2nxijjCijj ¼ �jTij�hn

xi

X
j2NðiÞ

ZijnxijjCijj;
is satisfied in the corrector stage. Since hn
i þ Zi ¼ hn

j þ Zj, then
X
j2NðiÞ

ZijnxijjCijj ¼
X

j2NðiÞ

Zi þ Zj

2
nxijjCijj ¼ �

X
j2NðiÞ

hn
i þ hn

j

2
nxijjCijj:
Hence,
�hn
xi ¼

1

2jTij

P
j2NðiÞðh

n
ijÞ

2nxijjCijjP
j2NðiÞh

n
ijnxijjCijj

: ð3:17Þ
For the other source term in y-direction, a similar approach applied for �hn
yj .
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3.2.3. Adaptivity procedure

The mesh generation is based on the Delaunay triangulation [18], which uses a curvature-dependent gen-
eration strategy designed to produce smaller elements in regions of high curvature in the spatial domain. In
order to improve the efficiency of the SRNH scheme, we have performed a mesh adaptation to construct a
nearly optimal mesh able to capture the small hydraulic and pollutant features without relying on extremely
fine grid in smooth regions far from concentration or hydraulic jumps. In the present work, this goal is
achieved by using an error indicator for the concentration of pollutant. This indicator requires only informa-
tion from solution values within a single element at a time and it is easily calculated. Other adaptation tech-
niques based on the estimation of gradients such as those studied by Babuska et al. [8] can also be applied.
However, these error estimations can be computationally very demanding since a global solution step is
needed to project the gradients on a linear basis.

The adaptive procedure used here is based on multilevel refinement and unrefinement, it is aimed at con-
structing an adaptive mesh which dynamically follows the unsteady solution of the physical problem. This
procedure has been used recently by Elmahi et al. [12] for adaptive finite volume solution of a combustion
system. The algorithm begin by selecting some criterion (here based on the concentration of pollutant), which
permit to make the refinement and unrefinement decisions. A list S of elements to be refined, their degree of
refinement, and those to be unrefined is then established. This is accomplished by filling an integer array
denoted for example by IADIV for all triangles of the coarse mesh. At time t ¼ tn and for a macro-element
Ti, IADIV ðTiÞ ¼ m means that the element Ti has to be divided into 4m triangles. Thus, starting from a mesh
level l, made of N(l) cells, the next mesh level contains N ðlþ1Þ ¼ 4� N ðlÞ cells. Clearly, this process can be
repeated as long as l < mmax with mmax being the number of refinement levels. In order to obtain a mesh which
is not too distorted, the algorithm decides to divide into two equal parts some additional edges. An illustration
of the procedure is shown in Fig. 3.2.

In our simulations, the adaption criterion is based on the normalized concentration of the pollutant, and is
evaluated as
CritnðTiÞ ¼
CðTiÞ

maxTj CðTjÞ
; ð3:18Þ
where CðTiÞ is the pollutant concentration on cell Ti. The advantage of this normalization is that the crite-
rion (3.18) is known to take its values in the interval [0,1]. Hence, an adaptation procedure can be performed
as follows:

Given a sequence of three real numbers {rm} such that 0 ¼ r0 < r1 < r2 < r3 < r4 ¼ 1. If a macro-element
Ti satisfies the condition
rm 6 CritnðTiÞ 6 rmþ1; m ¼ 0; . . . ; 3:
then Ti is divided into 4m triangles. Note that the values of fr1; r2; r3g can be interpreted as tolerances to be set
by the user resulting into a three-level refining.
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Fig. 3.2. Example of a two-level refining for triangular elements.
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3.2.4. Boundary conditions

The treatment of boundary conditions in the SRNH scheme is performed using similar techniques as those
described in [30]. For the computational examples considered in this paper, boundary conditions are enforced
on the corrector solution by computing fluxes at boundaries. On the predictor solution and the slopes of
dependent variables, boundary conditions are enforced in boundary cells by setting the required variables
to the corresponding values of the adjacent inner cells. When slopes are based on vertex values, the solution
at boundary vertices is computed by interpolation from two neighboring centroids. When slopes are based on
centroid values, the three points used to estimate the slopes are the centroid and the two neighboring centroids
inside the computational domain. For further details on the implementation of boundary conditions for the
SRNH scheme we refer to [30,34].

4. Numerical results and applications

Three test examples are selected to check the accuracy and performance of the proposed SRNH scheme.
The first example is used to assess different features of our scheme such as accuracy in smooth regions and
discontinuous resolution in a dam-break problem on non-flat topography. The second example solves a pol-
lutant transport in a squared cavity with smooth bottom. As a third example we apply our adaptive SRNH
scheme for a pollutant transport in the Strait of Gibraltar. All the results presented in this section are com-
puted with variable time stepsizes Dt adjusted at each step according to
Dt ¼ Cr �minðDtconv;DtdiffÞ;

where
Dtconv ¼ min
Cij

jTij þ jTjj
2jCijjmax

p
jðkpÞijj

0@ 1A; Dtdiff ¼ min
Cij

jTij
2 maxðDxx;Dyx;Dxy ;DyyÞ

� �

with Cij is the edge between two cells Ti and Tj, and Cr is the Courant number set to 0.8 for all test cases to
ensure stability. Three-level refining is used and the gravitational acceleration is fixed to g = 9.81 m/s2 for all
examples presented here.

4.1. Shallow water flow over a forward facing step

We consider a two-dimensional dam-break problem over a forward facing step. The computational domain
is a rectangular channel with dimensions L · K and the length before the step is l as depicted in Fig. 4.1. The
bottom bed is assumed to be frictionless (Sfx ¼ Sfy ¼ 0) and the bed elevation is specified as
L

h

h

z r

r

l

l
z

l

K

Fig. 4.1. Geometrical description of shallow water flow past a forward facing step.
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Zðx; yÞ ¼
zl; if x 6 l;

zr; if x > l:

�

Initial conditions are given by
hð0; x; yÞ ¼
hl; if x 6 l;

hr; if x > l;

�
uð0; x; yÞ ¼

ul; if x 6 l;

ur; if x > l;

�
vð0; x; yÞ ¼ 0:
This test example is very interesting since it includes most of flow structures such as shocks, rarefaction waves
and contact discontinuities. Recall that in the framework of shallow water equations applied to dam-break
problems, an important dimensionless parameter is the Froude number Fr, defined as the ratio between the
water velocity and the celerity c ¼

ffiffiffiffiffi
gh
p

. The Froude number characterizes the subcritical (Fr < 1) or supercrit-
ical ðFr > 1) regime of the water flow. Both flow regimes are examined for this test example.

First we run the SRNH scheme for the subcritical case. This test aims to compare the performance of the
SRNH scheme to the Vázquez scheme [38] widely known in the literature. We used L = 12 m, K = 1 m, l =
6 m, zl = 0 m, zr = 1 m, hl = 5 m, hr = 1 m, and ul = ur = 0 m/s. An unstructured grid with 14471 elements
and 7657 nodes is used for both schemes. The water free surface and the water discharge are illustrated in
Fig. 4.2 at time t = 0.5 s. In Fig. 4.3, we show cross-sections at the channel mid-length (y = K/2) for the
obtained results. We present the water head hþ Z þ u2

2g, the water free surface h + Z, the water discharge
hu, and the Froude number Fr. Along with the results shown in Fig. 4.3 we have included the exact solution
calculated using the procedure from [4].

As can be seen in Fig. 4.3, both schemes exhibit a slight peak between the dam and the shock just on region
where the bottom step is localized, compare the zooming plots in Fig. 4.3 for the water discharge. However,
the amplitude of the peak is most pronounced in the Vázquez scheme. In this test case, the original Vázquez
scheme shows a high level of oscillations due to the irregular bottom which cannot be handled because the
imbalance between the source and flux terms, while a considerable improvement is observed with our SRNH
scheme. It should be stressed that these errors in the discharge are expected since the correct capturing of the
water discharge is more difficult than the water height in this class of test cases. The results shown here com-
pare favorably with those published in the literature for the dam-break problem over a non-smooth bottom,
see for example [38,24,11].

In the second run, we examine the accuracy between the first-order SRNH and the second-order SRNH
schemes for the transcritical case. The following set of parameters is chosen L = 20 m, K = 1 m, l = 10 m,
zl = 0 m, zr = 1 m, hl = 5 m, hr = 1 m, ul = �4 m/s, and ur = 9 m/s. The MinMod limiter is used and results
Fig. 4.2. Water free surface and water discharge for the subcritical test case at t = 0.5 s.



Fig. 4.3. Subcritical flow past a forward facing step at time t = 0.5 s.
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are presented at time t = 0.7 s using an unstructured fixed grid with 17152 elements and 8793 nodes. The
obtained results are displayed in Figs. 4.4 and 4.5. As in the previous run we present cross-sections at the chan-
nel mid-length (y = K/2) for the water free surface, water head, water discharge and Froude number. How-
ever, for a better comparison, we present in Fig. 4.5 results obtained on a coarser mesh with 2173 elements
and 1243 nodes. Analytical solutions obtained using the method from [4] are also included in this figure. It
is known that roll waves or discontinuous periodic traveling waves occur in open channel flow problems when
Fig. 4.4. Water free surface and water discharge for the transcritical test case at t = 0.7 s.



Fig. 4.5. Transcritical flow past a forward facing step at time t = 0.7 s.
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the Froude number becomes larger than two. For such flow conditions, the water flow can break to series of
waves or bores that are separated by smooth flow in staircase pattern. In our results these features are clearly
observed and accurately resolved by the SRNH scheme.

As can be seen in Fig. 4.5, the water free surface is poorly simulated by the first-order SRNH scheme. This
is not the case for the second-order SRNH scheme which produces accurate results. As expected, the first-
order SRNH scheme introduces a stronger numerical diffusion and large phase error than the second-order
SRNH scheme. In summary, the SRNH scheme performs well for this dam-break problem in subcritical
and transcritical flow regimes.

4.2. Pollutant transport in a squared cavity

Our next example is a pure advection (D ” 0) of a pollutant transport in a squared cavity with smooth
topography as described in [21,2]. The flow domain is a 9000 m · 9000 m squared channel with bottom slopes
S0x ¼ S0y ¼ �0:001:
The Manning resistance coefficient is set to g ¼ 0:025 s=m1=3. As in [21], we impose uniform flow velocities
u = v = 0.5 m/s and the uniform flow water depth as initial condition. The initial condition for the pollutant
concentration is given by the superposition of two Gaussian pulses centered respectively, in (x1 = 1400 m,
y1 = 1400 m) and (x2 = 2400 m, y2 = 2400 m),
Cð0; x; yÞ ¼ C1 exp �ðx� x1Þ2 þ ðy � y1Þ
2

r2
1

 !
þ C2 exp �ðx� x2Þ2 þ ðy � y2Þ

2

r2
2

 !
;



Fig. 4.6. Adapted meshes (left) and contours of pollutant concentration (right) at three simulation times: From top to bottom t = 1628 s,
5235 s and 9600 s.
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where C1 = 10, C2 = 6.5 and r1 = r2 = 264. As boundary conditions we use transparent flow conditions at all
cavity boundaries. It is easy to check that the pollutant concentration is a wave that moves along the diagonal
cross-section x = y preserving its shape with the constant speed u = v = 0.5 m/s.

This problem has an interesting structure and will be used to verify our adaptive SRNH scheme namely, (i)
verify if the adaptation methodology is able to compute the right speed of the concentration waves, and (ii)
verify that adaptive refinement is computationally cheaper than fixed mesh for a given level of solution reso-
lution. Fig. 4.6 shows the adapted meshes and plots of the pollutant concentration C at times t = 1628, 5235
and 9600 s. A simple inspection of these results shows that the pollutant shape is accurately preserved along its
advection direction. Another important result is that positions of the concentration waves are not deteriorated
by the multiple mesh adaptations. Our adaptive SRNH scheme accurately approximates the solution to this
pollutant transport problem. In addition, the comparison with similar numerical results available in the liter-
ature [21,2] on the same test case is also satisfactory. It should be stressed that, due to grid adaptation the final
mesh at t = 9600 s consists of 14716 cells only compared to a SRNH scheme on fixed mesh. This results in a
significant reduction of computational costs, see Table 4.1.

In order to get a closer comparison between the computed concentration by SRNH schemes and the ana-
lytical solution, we present in Fig. 4.7 cross-sections of the pollutant concentration at the main diagonal
(x = y) for the considered simulation times. In this figure, we have included results obtained by the SRNH
scheme using MinMod and VanAlbada as limiter functions. It is evident that solutions computed using the
SRNH scheme with MinMod limiter seem to be deteriorated by excessive numerical diffusion. This effect is
more visible as the simulation time increases. In contrast, the SRNH scheme with VanAlbada limiter tends
to move numerical diffusion from the solutions at the local extrema. There is a good agreement between
the analytical solutions and those obtained using SRNH scheme with VanAlbada limiter. No local under-
shoots or overshoots have been detected in the pollutant concentration in presence of steep gradients during
the simulation process.

Our next concern is to ascertain the behavior of adaptation procedure in the SRNH scheme. To this end we
summarize in Table 4.1 some comparative results obtained for this test example at time t = 9600 s using fixed
and adaptive meshes. All tests have the same effective discretization with respect to the smallest grid size in
computational meshes. In this table we list the mesh statistics, minimum and maximum values of the pollutant
concentration, residuals in the pollutant concentration, and the CPU times on a Pentium 800 MHz with 256
MB RAM personal computer. The clear indication from Table 4.1 is that the SRNH scheme with VanAlbada
limiter overcomes the SRNH scheme with MinMod limiter on both, fixed and adaptive meshes. It is also clear
that the residual in the pollutant concentration noticeably decays for the SRNH scheme with VanAlbada lim-
iter resulting in a significant reduction of cells in associated meshes.

An examination of the CPU times in Table 4.1 reveals that, SRNH scheme on fixed meshes requires more
computational work than its adaptive counterpart. For all the results presented, the computational effort
needed for the SRNH scheme with MinMod limiter is almost twice the one needed for the SRNH scheme with
VanAlbada limiter. This is attributed to the high accuracy achieved in results obtained by SRNH scheme with
VanAlbada limiter which affects the number of cells in the adaptive procedure. In terms of minimum and max-
imum values of the pollutant concentration, the results obtained by SRNH scheme with VanAlbada limiter
Table 4.1
Performance of SRNH schemes using fixed and adaptive meshes for the pollutant transport in a squared cavity at t = 9600 s

Exact SRNH with MinMod limiter SRNH with VanAlbada limiter

Fixed mesh Adaptive mesh Fixed mesh Adaptive mesh

# of elements – 21376 16154 21376 14716
# of nodes – 10849 8158 10849 7439
Minimum of C 0.0 0.0 0.0 �0.2 �0.00057
Maximum of C 10.0 2.18 6.72 6.8 9.85
Residual in C – 1.387 0.244 0.309 0.026
CPU time – 4837 2457 3223 1771

The CPU times are given in seconds.
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Fig. 4.7. Cross-sections of the pollutant concentration at the main diagonal (x = y).
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are more accurately computed than those obtained by other schemes. In all our computations, we have found
that the SRNH scheme on fixed meshes with MinMod and VanAlbada limiter lost respectively, about 78%
and 32% of the maximum value of concentration, whereas the adaptive SRNH scheme with VanAlbada lim-
iter conserves roughly the maximum concentration value (it lost less than 2%). Apparently, the overall pollu-
tant transport is conserved with no nonphysical oscillations appearing in the results by SRNH scheme with
VanAlbada limiter that would alter the pollutant concentration.

As a final remark, we want to comment on the performance of the SRNH scheme with VanAlbada limiter
on fixed uniform meshes. Here, we consider a coarse mesh (Mesh A) with uniform grid spacing Dx =
D y = 225 m, and a fine mesh (Mesh B) with Dx = Dy = 56.25 m, see Fig. 4.8. In Fig. 4.9, we present the
cross-sections of the pollutant concentration at times t = 1628, 5235 and 9600 s. The residual, maximum
and minimum values in the pollutant concentration are listed in Table 4.2. For computations on Mesh A,
we observe undershoots in the vicinity of steep gradients of concentration. These undershoots are moved from
the results obtained on Mesh B, but these results are still far from the analytical solutions. It is clear that
SRNH scheme on the considered fixed uniform meshes yields much larger numerical diffusion than the SRNH
scheme on adaptive meshes. In fact, the residuals in the pollutant concentration obtained using the SRNH
scheme on Mesh A and Mesh B are respectively, 31 and 3 times larger than the residual obtained by adaptive
SRNH scheme with VanAlbada limiter. By analyzing the cross-section plots in Figs. 4.9 and 4.7 along with the
results presented in Tables 4.2 and 4.1 we confirm that the adaptive SRNH scheme with VanAlbada limiter
performs very well for this pollutant transport problem.

Taking all factors into account, we conclude that the adaptive SRNH scheme with VanAlbada limiter dem-
onstrates higher monotone and non-oscillatory properties than other SRNH schemes. More importantly, a
balance between efficiency and accuracy in SRNH schemes benefits the adaptive SRNH scheme with VanAlb-
ada limiter, since the additional cost required for the adaptation procedure is minimal while the results
obtained by adaptive SRNH schemes are more accurate than those obtained by SRNH schemes on fixed
meshes.

4.3. Pollutant transport in the Strait of Gibraltar

The Strait of Gibraltar (see left plot in Fig. 4.10) is bounded to the north and south by the Iberian and
African continental forelands, and to the west and east by the Atlantic Ocean and the Mediterranean sea,
respectively. The basic circulation in the Strait of Gibraltar consists of an upper layer of cold fresh surface
Atlantic water and an opposite deep current of warmer salty Mediterranean outflowing water, compare
[23,6,16]. The system is about 60 km long between its west Barbate-Tangier section and its east Gibraltar-
Sebta section. Its width varies from a minimum of about 14 Km at Tarifa-Punta Cires section and a maximum
Fig. 4.8. Coarse and fine fixed meshes. Mesh A (left) and Mesh B (right).
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Fig. 4.9. Cross-sections of the pollutant concentration at the main diagonal (x = y).
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Table 4.2
Performance of SRNH schemes with VanAlbada limiter using fixed uniform meshes for the pollutant transport in a squared cavity at
t = 9600 s

Exact Mesh A Mesh B

# of elements – 5344 85504
# of nodes – 2753 43073
Minimum of C 0.0 �0.28 �0.0054
Maximum of C 10.0 3.59 9.12
Residual in C – 0.814 0.083
CPU time – 207 12144

The CPU times are given in seconds.

Fig. 4.10. Definition of the Strait of Gibraltar (left) and its bathymetry (right).
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of 44 km at Barbate-Tangier section. The Strait is heavily used by shipping and oil transport, being one of the
most chronically polluted regions [14]. Notice that this example is only schematic, since the flow conditions
and capacities of pollution sources in the Strait partially correspond to the real situation. Our main objective
in this numerical example is to test the capability of the adaptive SRNH scheme with VanAlbada limiter to
handle complex geometry and irregular topography.

Our problem statement consists of solving Eq. (2.6) in the spatial domain shown in Fig. 4.10 subject to a
pollution release at the inlet of the Strait exactly in the mid-axis Barbate-Tangier. We assume a constant dif-
fusion coefficient Dxx ¼ Dyy ¼ 0:001 m2=s and Dxy ¼ Dyx ¼ 0 m2=s for the pollutant transport. The assumption
of constant diffusion coefficients is used since no turbulence effects have been accounted for in the model. We
also assume that the concentration vanishes at solid boundaries and we apply zero pollutant flux at the other
boundaries. The bathymerty of the Strait is very irregular with different spatial scales which needs careful
treatment and may causes sever numerical difficulties. In our computations, we used the bathymetry shown
in the right plot of Fig. 4.10. Similar bathymetry has been used for many numerical studies on mean flow
in the Strait of Gibraltar, see [23,6,16] among others. According to González et al. [16], the bottom friction
Manning coefficient is set to 0:001 s=m1=3 and the problem is forced with the main semidiurnal M2 tide with
a 25 cm amplitude which produces a maximum current of approximately 1 m/s through the Strait inlet and
also corresponds to the annual mean of the Atlantic input flux [6]. Hence, the model is equipped at the open
boundaries with boundary conditions that simulate the main tidal component M2. It should be pointed out
that values of the topography were calibrated to cover all the unstructured meshes used at each level of refine-
ment. Certainly, this will add some computational effort to the adaptive SRNH algorithm. In addition, bound-
ary conditions are imposed using the concept of fictitious cells.

In Fig. 4.11, we present the computed results for the adaptive SRNH scheme with VanAlbada limiter at
four different times t = 1, 2, 3 and 4.5 h corresponding to the time required by the pollutant to exit the Strait
if no wind effects are taken into account. In this figure we show the adapted meshes, velocity fields and



Fig. 4.11. Adapted meshes (first row), velocity vectors (second row) and pollutant concentration (third row) at different simulation times.
From left to right t = 1,2,3 and 4.5 h.
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contours of the normalized concentration, C=Cmax, where Cmax denotes the maximal value of the initial
released concentration. Notice that no adaption to the bathymetry has been performed in this test case. It
is clear that the adaptive mesh procedure was able to capture the complex features of the flow with a high level
of accuracy. The results also show that the adaptive SRNH scheme with VanAlbada limiter was able to pre-
dict complex wave interactions with accuracy and to capture pollutant concentration with sharp resolution. By
using an adaptive grid, high resolution is automatically obtained in those regions where the pollutant concen-
tration gradients are steep such as the moving fronts. For the conditions considered, the adaptive SRNH
scheme with VanAlbada limiter gives a shock-capturing method with very little numerical dissipation, even
after long time simulations are carried out.

Since physical diffusion is incorporated into the pollutant transport equation, the maximum concentra-
tion was reduced to about 14% and 50% after 3 h and 4.5 h, respectively. However, for the SRNH scheme
with MinMod limiter the maximum concentration was reduced to about 6% and 21% after 3 h and 4.5 h,
respectively. In addition, as in the pure advection tests, the SRNH scheme on fixed meshes exhibits
negative concentrations in the vicinity of steep gradients which highly increases as the time progresses dur-
ing the transport of pollutant. For the case of nonconservative pollutants, the accumulation of these neg-
ative concentrations would deteriorate the accuracy of numerical models which may produce physically
unrealistic solutions. The SRNH scheme with VanAlbada limiter however, solves such pollution situations
accurately.

The CPU times are 5514, 9231 and 11325 s for the simulation times t = 2,3 and 4.5 h, respectively, on the
same Pentium PC as in the previous test example. It should be noted that the final adaptive grid at t = 4.5 h
consists of 9944 elements and 5279 nodes. Therefore by using adaptive meshes, the SRNH scheme with
VanAlbada limiter efficiently achieves high resolution in cases where there are locally high gradients. On
the other hand, this example shows that large scale shallow water models with irregular topography can be
efficiently solved using personal computers without relying on complicated supercomputing resources. It is
noteworthy that the computational time necessary to run the tests shown with the SRNH method on fixed
meshes was about 7 times the computational time needed to carry out the same tests with SRNH method that
used adaptive meshes.

5. Conclusions

A simple finite volume non-homogeneous Riemann solver for two-dimensional pollutant transport by
shallow water flows has been developed and tested for three examples. The method uses unstructured
meshes offering a full adaptation of the grid to the complex geometry by monotiring the pollutant concen-
tration in the computational domain. The method exhibits many desirable properties in the numerical
solution of shallow water flows and it is attractive for general purpose flow modelling for several reasons
including:

� Accurate prediction of both, the free surface and the scalar transport with correct conservation properties.
� Good convergence behaviors with respect to computational refinement and high efficiency compared with

computations on fixed meshes.
� Accurate representation of free surface response to the topography such that all shallow water flow regimes

(subcritical, supercritical, etc.) are accurately resolved.
� Implementation on triangular grids that can be easily generated for pollutant transport in complex

geometries.
� Ability to handle arbitrary topography in shallow water equations and pure advection in pollutant

transport.

The results indicate that this simple approach can be very effective in modeling pollutant transport in rivers
and coastal regions. Obviously, it is important to perform mesh adaptation with respect to all flow variables.
For example, using the water depth or water surface as monitoring function the resolution in the water flows
may be improved. Therefore, our ongoing research focuses on the development of error indicators for both
pollutant concentration and hydraulic variables.
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