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of iteration methods for finding solitary waves

T.I. Lakoba *, J. Yang 1

Department of Mathematics and Statistics, 16 Colchester Ave., University of Vermont, Burlington, VT 05401, USA

Received 5 November 2006; received in revised form 24 May 2007; accepted 6 June 2007
Available online 27 June 2007
Abstract

We extend the key idea behind the generalized Petviashvili method of [T.I. Lakoba, J. Yang, A generalized Petviashvili
iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity, J. Comput. Phys., this
issue, doi:10.1016/j.jcp.2007.06.009] by proposing a novel technique based on a similar idea. This technique systematically
eliminates from the iteratively obtained solution a mode that is ‘‘responsible’’ either for the divergence or the slow conver-
gence of the iterations. We demonstrate, theoretically and with examples, that this mode elimination technique can be used
both to obtain some nonfundamental solitary waves and to considerably accelerate convergence of various iteration meth-
ods. As a collateral result, we compare the linearized iteration operators for the generalized Petviashvili method and the
well-known imaginary-time evolution method and explain how their different structures account for the differences in the
convergence rates of these two methods.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In the companion paper [1], we proposed a generalization of the Petviashvili iteration method for finding
stationary solitary waves uðxÞ of scalar and vector Hamiltonian equations with an arbitrary form of
nonlinearity:
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where M is a self-adjoint differential operator and, in the vector case, the nonlinear term must satisfy a con-
dition oF i=ouj ¼ oF j=oui. (Recall that the original Petviashvili method [2] was proposed for scalar equations
with power-law nonlinearity F ðx; uÞ ¼ up.) A common form of operator M (in the scalar case) is
M ¼ l�r2; ð1:2Þ

where l is the propagation constant of the solitary wave. Thus, the generalized Petviashvili method, that ob-
tains solutions with a specified propagation constant, can be applied to the same class of equations as the well-
known imaginary-time evolution method (ITEM) (see e.g. [3–6]) that is used to find solitary waves with a spec-
ified power.

In the present work, we extend the results of [1] as follows. In Section 2, we establish a mathematical rela-
tion between the generalized Petviashvili method and the ITEM. This discussion will also set the stage for the
main result of this work, presented in Section 3. There, we develop the ideas behind the original and general-
ized Petviashvili methods [7,1] and propose a new technique that we refer to as the mode elimination. This
technique can be used to obtain nonfundamental (see below) solitary waves, which the methods of [1–6] can-
not obtain (the iterations would diverge). However, since alternative methods of obtaining nonfundamental
solitary waves exist [3,8], we see the main use of the mode elimination in that it can considerably accelerate
convergence of various iteration methods. The corresponding examples are presented in Section 4, and the
summary of our results is given in Section 5.
2. Convergence rates of the Petviashvili and the imaginary-time evolution methods

In this section, we will compare the convergence properties of the generalized Petviashvili method [1] with
those of the accelerated ITEM proposed in Ref. [6]. This discussion will highlight a feature of the generalized
Petviashvili iteration scheme that will be important when we present our main result – the mode elimination
technique – in the next section. Of the two versions of the ITEM (with power and amplitude normalizations)
considered in [6], we will focus on the one with power normalization, because its linearized operator can be
readily compared with that of the generalized Petviashvili method. In order not to obscure the main ideas
by technical details, we restrict our presentation to the case of a single real-valued equation (1.1) with M given
by Eq. (1.2), i.e., to:
r2uþ F ðx; uÞ ¼ lu: ð2:1Þ

It is well known that the convergence of an iteration method is determined by the properties of the linearized

iteration equation. Namely, let un be the solution obtained at the nth iteration, and let the ‘‘error’’ ~un be de-
fined as
~un ¼ un � u; j~unj � juj: ð2:2Þ

As will be shown below, it satisfies a linearized iteration equation of the form
~unþ1 ¼ ð1þ DsLÞ~un; Ds > 0; ð2:3Þ

where L is the linear operator that results when the iteration method is linearized on the background of the
solitary wave u, and Ds is an auxiliary scaling parameter. From a conceptual point of view, the presence of Ds
emphasizes the analogy of iteration methods with numerical methods of solving time-dependent differential
equations (see e.g. [9]); from a practical point of view, it can be used to ensure (in certain cases) or optimize
the convergence of the method, as we will discuss later on.

Let us begin with general remarks regarding the convergence rate of the linearized iteration equation (2.3).
Suppose that the eigenfunctions of L form a complete set in an appropriate functional space, so that ~un can be
expanded over them. Let the minimum and maximum eigenvalues of L be Kmin and Kmax. Then the conver-
gence rate of the iteration method can be defined as logð1=RÞ, where the convergence factor R is the maximum
(in magnitude) eigenvalue of the operator on the r.h.s. of (2.3):
R ¼ maxfj1þ KmaxDsj; j1þ KminDsjg: ð2:4Þ

Clearly, R < 1 needs to hold in order for the iterations to converge, which implies
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Kmax 6 0 and 1þ KminDs > �1: ð2:5Þ

Moreover, if Kmax ¼ 0, then the corresponding eigenfunction of L needs to be a translational eigenmode (if it
exists) of the linearized Eq. (2.1), which only shifts the solution in space and hence does not affect the conver-
gence of the method. The smaller the convergence factor R, the faster the convergence. It can be readily shown
[6] that the minimum value of R occurs at
Ds� ¼
�2

Kmin þ Kmax

ð2:6Þ
(recall that Kmin < Kmax < 0) and equals
R� ¼
1� ðKmax=KminÞ
1þ ðKmax=KminÞ

: ð2:7Þ
Therefore, the closer the ratio ðKmax=KminÞ to 1, the faster the convergence of the iteration method. Below
we will compare the possible values of this ratio for the generalized Petviashvili method and the acceler-
ated ITEM. To that end, we first need to cast the linearizations of these methods into the form of Eq.
(2.3).

Let L0 denote the nonlinear operator of Eq. (2.1) (or, more generally, of the stationary wave equation
whose solution we are looking for), so that that equation is rewritten as
L0u ¼ 0: ð2:8Þ

Let L be the corresponding linearized operator, so that
L0ðuþ ~uÞ � L0uþ L~u ¼ L~u for any j~uj � juj: ð2:9Þ

Note that for Hamiltonian wave equations, L is always self-adjoint. With these notations, the generalized Pet-
viashvili method is [1]:
unþ1 � un ¼ N�1ðL0uÞn � c
hun; ðL0uÞni
hun;Nuni

un

� �
Ds; ð2:10Þ
where
c ¼ 1þ 1

aDs
: ð2:11Þ
Here and below, the inner product between two real-valued functions is defined in a standard way:
hf ; gi ¼
Z 1

�1
f ðxÞgðxÞ dx:
For the positive definite and self-adjoint operator N in (2.10), we take the simplest form used in [1]:
N ¼ c�r2; ð2:12Þ
where the constant c is given by Eq. (3.11) of [1]. The constant a in Eq. (2.11) above is such that
Lu � aNu ð2:13Þ
in a certain least-square sense; a formula for computing this constant at each iteration can be found in either of
Eqs. (3.12) or (3.15) of [1], but will not be needed here. Following the steps of a calculation found at the begin-
ning of Section 2 of [1], it is straightforward to show that the linearized form of the generalized Petviashvili
method is:
~unþ1 � ~un ¼ N�1L~un � c
hu; L~uni
hu;Nui u

� �
Ds: ð2:14Þ
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Next, the accelerated ITEM of Ref. [6] is:
Fig. 1.
of disc
(c) sho
text af
unþ1 ¼
P

hûnþ1; ûnþ1i

� �1
2

ûnþ1; ð2:15Þ

ûnþ1 � un ¼ K�1ðr2un þ F ðx; unÞ � lnunÞDs; ð2:16Þ

ln ¼
hr2un þ F ðx; unÞ;K�1uni

hun;K�1uni
; ð2:17Þ
where P ¼
R1
�1 u2 dx is the specified power of the solitary wave. The positive definite and self-adjoint operator

K is referred to as the acceleration operator for the ITEM [3,6]. For simplicity, we take K to have the same
form (2.12) as the operator N in the generalized Petviashvili method, with the c being now an arbitrary positive
constant. The linearized form of ITEM (2.15)–(2.17) is [6]:
~unþ1 � ~un ¼ K�1L~un �
hu;K�1L~uni
hu;K�1ui

K�1u
� �

Ds: ð2:18Þ
Thus, the ‘‘primordial’’ operator in the linearized equations of both the generalized Petviashvili method and
the accelerated ITEM has the form:
L̂ ¼ ðc�r2Þ�1L: ð2:19Þ

With L being the linearized operator of (2.1), the continuous spectrum of L̂ is an interval (or, when F ðx; uÞ is a
periodic function of x, a union of intervals), one of the end points of which is k ¼ �1 (see e.g. [6] and refer-
ences therein). This eigenvalue of L̂ corresponds to the eigenvalue k ¼ �1 of L. Then a possible spectrum of L̂
is shown in Fig. 1a.

Even though the first terms on the r.h.s.’s of (2.14) and (2.18) have the same form (2.19), the eigenvalues of
the corresponding operators L are different for two reasons. First, the values of c in operators N and K are, in
general, different, which makes different the eigenvalues of the corresponding L̂’s. Second, the nonlocal terms
(involving inner products) in (2.14) and (2.18) modify the eigenvalues of L̂ in different ways. We now consider
this latter issue in more detail.

In regards to the operator of the linearized Petviashvili method (2.14), we recall a fact [1] that is important

for our discussion both here and in the next section. Namely, the role of the nonlocal term in that operator is to
(nearly) eliminate from ~unþ1 the eigenfunction of L̂ ¼ N�1L whose profile is close to that of the solitary wave u,
while leaving the other eigenfunctions and their eigenvalues (nearly) unchanged. This is ensured by taking the
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Schematics of the spectra of the operators found on the r.h.s.’s of (2.19) (a), (2.14) (b), and (2.18) (c). The circles show the location
rete eigenvalues. The cross on the right of (b) indicates the disappearance of the eigenvalue compared to (a). The thick dashed line in
ws a sample function of Eq. (2.21). The left edge of the continuous spectrum is located at K ¼ �1. It is assumed that hu; w3i ¼ 0; see
ter (2.21).
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constant c and the operator N to satisfy (2.11) and (2.12), respectively. The adverb ‘‘nearly’’ is used above to
account for the fact that relation (2.13) for Eq. (2.1) with a general nonlinear function F ðx; uÞ holds only
approximately. It is exact only for wave equations with power-law nonlinearity [7], for which the original Pet-
viashvili method was proposed [2]. However, the special choice of the constant c in (2.12), as noted after that
equation, makes the approximation in (2.13) sufficiently accurate at least near the ‘‘core’’ of the solitary wave.

Continuing with the discussion about the effect of the nonlocal term in (2.14) on the eigenvalues of the cor-
responding operator L, let us suppose that u is a fundamental solution of the nonlinear wave equation. (E.g., in
the case of Eq. (2.1), the fundamental solution, unlike nonfundamental ones, has no nodes.2 For a more gen-
eral Eq. (1.1) where the operator M is different from $2, fundamental solutions may have nodes (as, e.g., the
lump solution of the Kadomtsev–Petviashvili equation [10]); in that case, their distinguishing feature is that
they have one ‘‘main’’ hump, while the nonfundamental solutions usually have several ‘‘main’’ humps.) Then
the ‘‘u-like’’ eigenfunction of operator N�1L mentioned in the previous paragraph (see also (2.13)) corresponds
to the largest eigenvalue, k1, of that operator; see Fig. 1a. Since this eigenfunction is eliminated by the nonlocal
term at each iteration, then the resulting spectrum of the operator on the r.h.s. of (2.14) is as shown in Fig. 1b.
Thus, for this operator, Kmax � k2 and Kmin � kmin; the reason for using ‘‘�’’ instead of ‘‘=’’ is that relation
(2.13) holds approximately, as we noted above. Now, if k2 < 0 and the step size Ds satisfies a condition
2 By
1þ kminDs > �1; ð2:20Þ

then according to (2.5), the generalized Petviashvili method converges to u. As a sidenote, we mention that for
equations with power-law nonlinearity, L is known [11] to have only one positive eigenvalue, and hence the
Sylvester inertia law (see, e.g., Theorem 7.6.3 in [12]) guarantees that k1 is the only positive eigenvalue of
L̂ ¼ N�1L.

Now let us consider the linearized operator L in (2.18) for the ITEM (2.15)–(2.17). In [6], we showed that
the set of discrete eigenvalues of this L is the union of two sets: (i) the roots of a function
QðKÞ ¼
X

j

jhu;wjij
2

kj � K
þ
Z

continuum

jhu;wðkÞij2 dk
k� K

; ð2:21Þ
where wj is the eigenfunction of L̂ corresponding to the eigenvalue kj, and also (ii) the set of those kj for which
hu;wji ¼ 0. This is shown schematically in Fig. 1c, with w3 there satisfying hu;w3i ¼ 0. (Note that QðKÞ does
not need to be defined for the continuum eigenvalues K.) Thus, for the operator L in (2.18), Kmin P kmin and
Kmax > k2.

The consideration of the two preceding paragraphs shows that even when the acceleration operators N and
K in (2.14) and (2.18) are the same (i.e., have the same c), one cannot, in general, make a definite statement on
whether the ratio ðKmax=KminÞ, and hence the convergence rate, is greater for the generalized Petviashvili
method or for the accelerated ITEM. Moreover, the fact that the values of c in N and K are generally different,
and hence so are the eigenvalues kj of the corresponding two L̂’s, further obstructs the comparison of the con-
vergence rates of the two methods. The only two statements that can be made here are the following. (i) For
Eqs. (2.1) with an arbitrary nonlinearity, if the ITEM converges to a fundamental solution, then we expect
that in most cases (see below), so does the generalized Petviashvili method. (ii) For Eqs. (2.1) with power-
law nonlinearity F ðx; uÞ ¼ up, the Petviashvili method with the optimal choice of Ds converges to the funda-
mental solution faster than does the optimally accelerated ITEM (2.15)–(2.17).

To justify statement (i), first recall that for fundamental solitary waves,
ðKmaxÞPetviashvili � k2 < ðKmaxÞITEM; ð2:22Þ

as long as the value c in the operator (2.19) is taken to be the same for both methods. Next, if the ITEM con-
verges, then according to (2.5), ðKmaxÞITEM < 0, thereby implying that k2 < 0. However, by the Sylvester inertia
law, the sign of k2 does not depend on the actual value of c (as long as c > 0). Therefore, with a possible excep-
tion of those cases where k2 is close to zero, the left part of (2.22) yields ðKmaxÞPetviashvili < 0, which means that
the generalized Petviashvili method converges. To prove statement (ii), first note that operator L in this case
nodes in D > 1 spatial dimensions, we mean sets of points of dimension less than D where uðxÞ ¼ 0.
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satisfies the conditions of Theorem 4 of Ref. [6], so that c ¼ l is the optimal value for K and
ðKminÞITEM ¼ kminð¼ �1Þ. Next, in the Petviashvili method for the equation with F ðx; uÞ ¼ up, N ¼ M [2,1]
and hence c ¼ l as well, whence ðKminÞPetviashvili ¼ kmin. Thus, in this case,
Fig. 2.
condit
ðKminÞPetviashvili ¼ ðKminÞITEM: ð2:23Þ

Combining Eq. (2.23) and inequality (2.22), where now the sign ‘‘�’’ must be replaced with ‘‘=’’, one con-
cludes that ðKmax=KminÞ should be greater for the Petviashvili method; hence statement (ii) follows.

A simple example illustrating statement (ii) is the stationary nonlinear Schrödinger equation in one
dimension:
uxx þ u3 ¼ u; juj ! 0 as jxj ! 1; ð2:24Þ

for which the ITEM with the parameters c ¼ lð¼ 1Þ and Ds ¼ 1:5, corresponding to the optimal acceleration,
converges to the accuracy of 10�10 in 33 iterations. The Petviashvili method (2.10) with Ds ¼ 1:5, a = 2 (as in
the original Petviashvili method; see [1]), and c given by (2.11), converges to the same accuracy in 19 iterations.
Here both methods start with the initial condition u0 ¼ e�x2

. In our numerical experiments of finding the fun-
damental solutions of non-power-law equations (not covered by the above statement (ii)), we also observed
that the generalized Petviashvili method is faster than the optimally accelerated ITEM (2.15)–(2.17); see,
e.g., Example 3.1 in [1]. (The ITEM with amplitude normalization [6] can still be faster than the generalized
Petviashvili method.)

However, in a situation where both methods converge to a nonfundamental solitary wave, the optimally
accelerated ITEM can be faster than the generalized Petviashvili method. As an example, let us revisit the
equation with a double-well potential:
uxx þ V ðxÞu� u3 ¼ lu; V ðxÞ ¼ 6ðsech2ðx� 1Þ þ sech2ðxþ 1ÞÞ; ð2:25Þ

considered in Example 3.2 of [1]. We will focus on its anti-symmetric solution (see Fig. 2a) with the propaga-
tion constant l ¼ 1:43 and the corresponding power P �

R1
�1 u2 dx ¼ 10. This solution is nonfundamental

since it has a node; the fundamental solution in this case is a two-humped pulse with its maxima located near
the maxima of the potential. The solid and dashed lines in Fig. 2b show the evolutions of the error norm, de-
fined as
En ¼
hun � un�1; un � un�1i

hun; uni

� �1=2

; ð2:26Þ
for the generalized Petviashvili method and the optimally accelerated ITEM, respectively. In both cases, the
parameter Ds was emprically optimized (see (2.6)) to yield the maximum convergence rates; the respective val-
ues are Ds�;Petviashvili ¼ 1:6 and Ds�;ITEM ¼ 0:7. Also, in the case of the generalized Petviashvili method, the value
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c = 5.04 was algorithmically computed [1], while for the ITEM, c = 1.5 was empirically found to yield the
optimal convergence rate. As the initial condition for both these methods, we took u0 ¼ 2xe�x2

. As seen from
Fig. 2b, the optimally accelerated ITEM is about one and a half times faster than the generalized Petviashvili
method. The reason behind this can be understood by looking at the spectra of the corresponding operators L̂
in (2.19) with the above values c = 1.5 for the accelerated ITEM (Fig. 3b) and c = 5.04 for the generalized
Petviashvili method (Fig. 3c). Namely, when one starts with an anti-symmetric initial condition (as we did
above), the symmetric eigenmodes corresponding to k2kþ1; k ¼ 0; 1; . . . do not contribute to the error ~un. Then
from (2.7) and Figs. 3b and c,
RITEM <
1� ðk2;c¼1:5=kmin;c¼1:5Þ
1� ðk2;c¼1:5=kmin;c¼1:5Þ

¼ 1� 0:41

1þ 0:41
¼ 0:42;

RPetviashvili �
1� ðkmax continuum;c¼5=kmin;c¼5Þ
1þ ðkmax continuum;c¼5=kmin;c¼5Þ

¼ 1� 0:28

1þ 0:28
¼ 0:56;
and hence the corresponding numbers of iterations to reach the accuracy of 10�10 can be estimated as:
nmax;ITEM �
�10 ln 10

ln RITEM

¼ 26; nmax;Petviashvili �
�10 ln 10

ln RPetviashvili

¼ 40:
These estimates are in very good agreement with the numbers of iterations (25 and 37, respectively) reported in
Fig. 2b. Note also that the empirically found optimal values of Ds� reported above agree with Eq. (2.6) and the
spectra shown in Figs. 3b and c.

3. Mode elimination technique for improving convergence of iteration methods

Here we develop the ideas of Ref. [1] and extend the generalized Petviashvili method so that it could be
employed for two additional purposes: (i) obtaining certain nonfundamental solutions of stationary nonlinear
wave equations; and (ii) accelerating convergence of iterations methods. We emphasize that the technique we
propose can be applied to any iteration method and to single and coupled equations as well. For simplicity of
the presentation, below we illustrate it for single equations of the form (2.1).

We begin with the observation that in most cases (with Eq. (2.25) being a notable exception), the general-
ized Petviashvili method would not converge to a nonfundamental solution of a given wave equation. The rea-
son for that can be understood from the following simple example. Consider an equation
uxx þ ð6sech2xþ u2Þu ¼ lu: ð3:1Þ
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When the amplitude of u is small, (3.1) has two solutions: the fundamental, fuð1Þ � �sech2x; lð1Þ � 4g, and the
nonfundamental, fuð2Þ � �sechx tanh x; lð2Þ � 1g, where �� 1. Then the operator obtained by the lineariza-
tion of Eq. (3.1) on the background of the nonfundamental solution,
L � o2
x þ 6sech2x� lð2Þ; ð3:2Þ
has two largest eigenvalues: k1 � lð1Þ � lð2Þ � 3 > 0 and k2 � lð2Þ � lð2Þ ¼ 0, with the corresponding eigen-
functions being approximately uð1Þ and uð2Þ. As we noted in Section 2, the nonlocal term in the linearized iter-
ation equation (2.14) nearly eliminates the eigenfunction of operator L̂ ¼ N�1L which is ‘‘similar’’ to the
background solution uð2Þ. However, the eigenfunction of L̂ corresponding to the eigenvalue k1 > 0 of L̂ is
not eliminated, and hence, according to the discussion found before Eq. (2.20), the generalized Petviashvili
method will not converge to solution uð2Þ.

The above example suggests a simple way in which the generalized Petviashvili method (2.10) can be mod-
ified so that it would converge to a nonfundamental solution u (given, of course, an initial condition close to
u). In the general form, this modified method is
unþ1 � un ¼ N�1ðL0uÞn � c
hun; ðL0uÞni
hun;Nuni

un �
XJunst

j¼1

cðjÞunst

h/ðjÞunst; ðL0uÞni
h/ðjÞunst;N/ðjÞunsti

/ðjÞunst

" #
Ds; ð3:3Þ
where c and N are defined as in (2.11) and (2.12), /ðjÞunst are the functions that approximate the eigenmodes of
operator ðN�1LÞ with positive eigenvalues (excluding the background solution u), J unst is the number of such
eigenmodes, and
cðjÞunst ¼ 1þ 1

aðjÞunstDs
; aðjÞunst ¼

h/ðjÞunst; L/ðjÞunsti
h/ðjÞunst;N/ðjÞunsti

: ð3:4Þ
Here aðjÞunst, defined analogously to (2.13):
L/ðjÞunst � aðjÞunstN/ðjÞunst; ð3:5Þ

is computed according to Eq. (3.12) of [1]. In the context of the example in the previous paragraph, J unst ¼ 1
and /ð1Þunst ¼ uð1Þ.

Following the lines of the analysis of Section 2 in Ref. [1], it is straightforward to show that in method (3.3),
(3.4), the components of the error ~un ‘‘aligned along’’ the modes /ðjÞunst, j ¼ 1; . . . ; J unst, are nearly eliminated at
every iteration; this is guaranteed by the form of the coefficients cðjÞunst. Therefore, in what follows, we refer to
method (3.3) as the mode elimination method. In Section 4, we will present the results of applying this method
to a two-dimensional equation of the form (3.1) to obtain its nonfundamental solutions.

Remark. It is clear that the success of the mode elimination method hinges upon the knowledge of the
‘‘unstable’’ eigenmodes /ðjÞunst. However, in many cases, an approximate knowledge of /ðjÞunst may suffice.

We now show how the mode elimination technique can be used to accelerate convergence of iteration meth-
ods. The reason that a given method converges slowly is, according to (2.7), that the ratio Kmax=Kmin is small.
Since for an appropriately chosen operator N, jKminj ¼ Oð1Þ (see, e.g., Figs. 3b and c), then for a slowly con-
vergent method, the eigenvalue jKmaxj must be small. Then if one can eliminate the corresponding eigenmode,
similarly to how it is done in (3.3), one essentially replaces ðKmaxÞold with ðKmaxÞnew < ðKmaxÞoldð< 0Þ. Then the
ratio Kmax=Kmin increases and so does the convergence rate of the iteration method. The practical issue here is
how to find the mode, /slow, which slows down the convergence. Fortunately, this is rather easy to do using the
following observation. For Ds < Ds�, where Ds� is defined in (2.6), the factor ð1þ KslowDsÞ � ð1þ KmaxDsÞ,
which governs the decay of /slow, is the largest among such factors for all the eigenmodes of ðN�1LÞ. Then
after some iterations, the content of the error ~un � un � u becomes dominated by the eigenmode /slow, and
hence
/slow / ðun � un�1Þ: ð3:6Þ

The elimination of the function ðun � un�1Þ is carried out in exactly the same way as in (3.3), yielding the

method:
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unþ1 � un ¼ N�1ðL0uÞn � c
hun; ðL0uÞni
hun;Nuni

un � cslow;n

h/slow;n; ðL0uÞni
h/slow;n;N/slow;ni

/slow;n

� �
Ds; ð3:7Þ
where
/slow;n ¼ un � un�1; cslow;n ¼ 1þ s
aslow;nDs

; aslow;n ¼
h/slow;n; L/slow;ni
h/slow;n;N/slow;ni

: ð3:8Þ
Note the coefficient s in (3.8), which we will comment on in the next paragraph. We will also provide examples
that demonstrate the efficiency of the accelerated Petviashvili method (3.7), (3.8) and its extensions to other
iteration methods, in the next section.

Similarly to the analysis of Ref. [1], one can show that the role of coefficient s in (3.8) is to control how
much of the mode /slow;n is subtracted at each iteration. We found empirically that in most cases, it is beneficial
for the convergence rate to subtract not the entire /slow;n-component from un but only part of it, usually some-
where between 40% and 80% (i.e., use s � 0.4–0.8). (However, even using the value s = 1 leads to a significant
increase in convergence rate compared to the corresponding non-accelerated method when the latter is slow.)
The justification of using 0 < s < 1 (or, alternatively, 1 < s < 2) rather than s = 1 is based on the same con-
siderations, found before Eq. (3.6), which led us to propose the accelerated method (3.7). Namely, to uphold
those considerations, /slow;n is to remain the most slowly decaying eigenmode of ðN�1LÞ at every iteration. In
the case where the entire amount of it is subtracted at the ðnþ 1Þst iteration, it is not obvious (and probably
not true) that the error ~unþ2 at the next iteration would consist mainly of the mode /slow;nþ1 � unþ1 � un, which
will be subtracted at the ðnþ 2Þnd iteration. However, if only s Æ 100% of mode /slow;n is subtracted, this mode
can still remain the most slowly decaying as long as
jð1� sÞ � ð1þ KslowDsÞj > j1þ KnextDsj; ð3:9Þ

where Kslow is the eigenvalue corresponding to /slow;n, and Knext is the eigenvalue corresponding to the next
most slowly decaying mode. Yet, for s not too small, the l.h.s. of (3.9) is still considerably less than
j1þ KslowDsj, and hence the convergence rate of the original iteration method is increased.

To conclude this section, we compare our mode elimination technique for convergence acceleration with
the Steffensen’s method (see e.g. [13]), which is based on applying the Aitken’s acceleration algorithm every
given number of iterations. The idea of the Steffensen’s method is the following. Suppose one has three con-
secutive iterative solutions un, unþ1, unþ2 about which one knows that they satisfy
~unþ2ðxÞ
~unþ1ðxÞ

� ~unþ1ðxÞ
~unðxÞ

for all x; ð3:10Þ
where ~un is the error defined in (2.2). Using these solutions, one applies the Aitken’s algorithm:
unþ3 � uA
n ¼ un �

ðunþ1 � unÞ2

unþ2 � 2unþ1 þ un
; ð3:11Þ
and then proceeds to computing the next few iterations unþ4; . . . ; unþnaccelþ2 with the original iteration method,
where naccel P 3. Then one uses unþnaccel

, unþnaccelþ1, unþnaccelþ2 to compute uA
nþnaccel

by (3.11) with n! nþ naccel, and
so on. In [14], this method was successfully used to accelerate the convergence of the original Petviashvili
method for the nonlinear Schrödinger equation in three spatial dimensions.

Aitken’s algorithm (3.11) systematically reduces the error ðuA
n � uÞ only when (3.10) holds sufficiently well,

which occurs under the same condition (3.6) that must hold in order for the mode elimination method to
work. However, the sense in which (3.6) is to hold is drastically different for these two acceleration techniques.
For the mode elimination, it suffices if (3.6) holds approximately near the ‘‘core’’ of the solitary wave, since
/slow enters Eqs. (3.7) and (3.8) via the inner products with functions that are essentially nonzero only in that
spatial region. On the contrary, for the Steffensen’s method, (3.10) has to hold pointwise and, in particular, far
away from the ‘‘core’’ of uðxÞ. In the latter spatial region, the denominator of (3.11) is nearly zero, and hence
even a small ripple in un, unþ1, or unþ2 can result in a large distortion of uA

n . This was indeed observed in our
numerical experiments, except in the cases where jKmaxj � jKnextj, where jKnextj is defined after (3.9). Thus, we
expect our mode elimination technique and the Steffensen’s method to be competitive in those latter cases, but
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expect the mode elimination technique to have superior performance over that of the Steffensen’s method
when there are more than one eigenmodes with K � Kmax. This expectation is borne out by Examples 4.2
and 4.3.

4. Examples of the mode elimination technique

Below we illustrate the application of the mode elimination technique to obtaining nonfundamental solitary
waves and to accelerating convergence of iteration methods for Eq. (2.1). In Ref. [8], we already showed by
extensive simulations that this technique can greatly accelerate convergence of a class of universally-conver-
gent iteration methods for both single and coupled equations. (Method (4.4) presented below is a particular
member of that class.) Therefore, here we will focus on clarifying the role of parameter s in Eq. (3.8) for opti-
mizing the convergence rate and also on demonstrating the applicability of the mode elimination technique to
various classes of iteration methods.

Example 4.1. Here we will demonstrate that method (3.3), (3.4) can be used to obtain nonfundamental
solitary waves when approximate information about the unstable eigenmodes of ðN�1LÞ is available. We will
also compare the performance of this method with that of a universally-convergent method proposed in [8].
The following equation
r2uþ V 0ðsechxsechyÞ2uþ u3 ¼ lu; V 0 ¼ 20 ð4:1Þ

is a two-dimensional counterpart of Eq. (3.1). Since the potential well in (4.1) is sufficiently deep (V 0 	 1), this
equation admits several nonfundamental solutions. Below we report the details of finding the first of them
which corresponds to l = 8 and is shown in Fig. 4. For this solution, we expect the generalized Petviashvili
method to have one unstable eigenmode (in addition to the mode approximated by u that may possibly also
be unstable), and approximate this eigenmode by
/unst ¼ e�
1
2ðr=W Þ2 ; r2 ¼ x2 þ y2: ð4:2Þ
The width W in (4.2) is found iteratively from the formula
W 2
n ¼

2

3

hun; x2uni
hun; uni

; ð4:3Þ
in deriving which we assumed that u / x/unst. Starting with the initial condition u0 ¼ 2xe�ðx
2þy2Þ, method (3.3),

(3.4) with a nearly optimal Ds ¼ 0:7 took about 50 iterations to reach the accuracy of 10�10. Thus, the general-
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Fig. 4. The first nonfundamental solution of Eq. (4.1) with l = 8.
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ized Petviashvili method with mode elimination (3.3), (3.4) converges to this nonfundamental solution, while
the generalized Petviashvili method (2.10) without the mode elimination diverges.

We also obtained the same solution by a method based on the ‘‘squared’’ operator ðN�1LÞ:
unþ1 � un ¼ � ðN�1LN�1L0uÞn � Cn
hun; ðLN�1L0uÞni
hun;Nuni

un

� �
Ds: ð4:4Þ
(The name ‘‘squared’’ comes from the fact that ðN�1LÞ2 appears in the linearized version of (4.4).) In [8], we
showed that this method belongs to a family of universally-convergent methods (i.e., methods which can con-
verge to any nonfundamental solution of a given equation provided that the initial condition is sufficiently
close to that solution) for either of the following choices of Cn: Cn ¼ 0 or
Cn ¼ 1� 1

ðhun; ðLN�1LuÞni=hun;NuniÞDs
: ð4:5Þ
Note that this Cn is defined similarly to cn in the generalized Petviashvili method (see Eqs. (2.11) and (3.4)).
Since we are looking for a nonfundamental solution of (4.1), then using the value for Cn given by (4.5) as op-
posed to Cn ¼ 0 will not eliminate the mode with the maximum eigenvalue (see the discussion after Eq. (3.2)),
and hence will not speed up the convergence of the iterations. Therefore, in the remainder of this example we
report the results for method (4.4) with Cn ¼ 0. Starting with the same initial condition as above, this method
with the operator N computed as in [1] and with a nearly optimal Ds ¼ 0:5 took about 190 iterations to con-
verge to the accuracy of 10�10. Thus, the mode elimination method (3.3), (3.4) is several times faster than the
squared-operator method (4.4) for finding the first nonfundamental solution of (4.1). (We also observed that
method (3.3), (3.4) is less sensitive to the choice of initial conditions than method (4.4).) However, when we
additionally included the step of eliminating the slow mode, as in Eqs. (3.6)–(3.8), into both methods, the dif-
ference in their convergence rates was significantly reduced. Namely, the convergence of method (3.3), (3.4),
which has already been quite rapid, was not improved by this additional step (and the number of iterations
remained around 50), while the squared-operator method now took about 70 iterations to converge.

We also applied both methods to finding the second nonfundamental solution of (4.1), which has the shape
similar to Að1� Br2Þe�ðr=CÞ2 with r2 ¼ x2 þ y2 and A;B;C ¼ const (see Fig. 7). For this solution we found,
through experimentation, that one needs to include five unstable modes into (3.3). For the respective optimal
Ds’s, the generalized Petviashvili method with mode elimination (3.3), (3.4) was found to be about 50% faster
than the squared-operator method (4.4). However, this advantage in the convergence rate is offset by the
increased complexity arising from the need to guess the number and profiles of unstable modes and then to
estimate their parameters (namely, the widths). Therefore, we conclude that the mode elimination method may
be more efficient than the squared-operator method for finding the lowest-order nonfundamental solitary
waves, as long as some reasonable guess about the unstable modes can be made. However, for finding second-
and higher-order nonfundamental solutions, method (4.4) appears to be easier to implement and hence more
practical.

Example 4.2. In this and the next two examples, we demonstrate the efficiency of the convergence acceleration
technique based on the mode elimination, as in (3.7) and (3.8), for three different iteration methods. In this
example, we apply this technique to the generalized Petviashvili method.

We look for the fundamental solitary wave of an equation arising in the theory of nonlinear photonic
lattices:
r2uþ V 0ðcos2 xþ cos2 yÞuþ u3 ¼ lu ð4:6Þ
for three choices of the potential amplitude and the propagation constant:
ðaÞ : V 0 ¼ 4; l ¼ 4:95; ðbÞ : V 0 ¼ 4; l ¼ 6:5; ðcÞ : V 0 ¼ 0; l ¼ 1:
In case (a), the propagation constant is close to the edge of the continuous spectrum band, and the solitary
wave occipies many ‘‘sites’’ of the potential, while in case (b), the propagation constant is sufficiently far away
from the band edge, and the solitary wave is well localized. (The profiles of the corresponding solutions are
similar to those of the top and bottom solutions shown in Fig. 3 of [1].) Case (c) is that of the nonlinear
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Schrödinger equation in two spatial dimensions. In all cases, we apply three methods: the generalized Petvi-
ashvili method (2.10) without any acceleration, the same method with the Aitken’s acceleration (3.11) per-
formed after every third iteration ðnaccel ¼ 3Þ, and the mode elimination method (3.7), (3.8) with various
values of s (see the paragraph including Eq. (3.9)). The initial condition in all cases is u0 ¼ 1:5e�ðx

2þy2Þ, and
the step size Ds ¼ 1.

In case (a), the generalized Petviashvili method (2.10) takes about 950 iterations to converge to the accuracy
of 10�10. When the mode elimination technique is applied, starting at the moment when the error becomes less
or equal to some small value (we chose 10�2), the convergence occurs in about 180 iterations, i.e. more than
five times as fast. The evolution of the error is shown in Fig. 5 by the thick solid line for the choice s = 1; for
smaller values of s up to 0:4 which we tried, the error evolution is similar (and the convergence is slightly
faster). The characteristic feature of this error evolution is that it is nonmonotonic and rather irregular. This
irregularity is somewhat abated for s < 1, in agreement with our discussion in Section 3. Now, when we
attempted to apply the Aitken’s acceleration to the generalized Petviashvili method, we observed quick
divergence of the so ‘‘accelerated’’ method. We actually tried various values of naccel and Ds but were unable to
make the iterations converge. The reason for this is explained at the end of Section 3. In fact, by monitoring
the error ~un at every iteration, we observed that it contains many nonlocalized modes, so that the condition
(3.10) of applicability of the Aitken’s acceleration is clearly violated in this case.

The corresponding results for case (b) are also shown in Fig. 5. There, the mode elimination technique
accelerates the convergence of the generalized Petviashvili method by about a factor of four. The error
evolution is much smoother than in case (a). This appears to be correlated with the fact, which follows from
our monitoring of the error, that the latter is dominated by a single eigenmode. Consequently, condition (3.10)
is now satisfied, and the Steffensen’s method (i.e., the generalized Petviashvili method with Aitken’s
acceleration) also converges; see the dotted line in Fig. 5. Let us note that the irregular behavior of the error of
the Steffensen’s method at low values of the error leads to a rather high sensitivity of the total number of
iterations to the initial condition. For example, we verified that if the acceleration is started when the error
reaches 10�3 instead of 10�2, then the Steffensen’s method converges to the accuracy of 10�10 in about 30
iterations.

The error evolutions for case (c) are shown in Fig. 6. The convergence acceleration in this case (as, actually,
also in case (b)) is not of practical importance because the convergence of the non-accelerated generalized
Petviashvili method (2.10) is quite fast (see the thin solid line in Fig. 6). Therefore, below we discuss the results
for this method accelerated by the mode elimination technique for the sole purpose of highlighting this
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Fig. 5. The evolution of the error in cases (a) and (b) of Example 4.2. Thin solid: non-accelerated method (2.10) for case (a); thick solid:
method (3.7), (3.8) with s = 1 for case (a); thin dashed: non-accelerated method (2.10) for case (b); thick dashed: method (3.7), (3.8) with
s = 1 for case (b); dotted line: Steffensen’s method for case (b).
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Fig. 6. The evolution of the error in case (c) of Example 4.2. Thin solid: non-accelerated method (2.10); thick solid: method (3.7), (3.8)
with s = 1; medium solid: method (3.7), (3.8) with s = 0.7; dotted line: Steffensen’s method.
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technique’s dependence on the parameter s. The error evolution of method (3.7), (3.8) with s = 1, where the
acceleration is started when the error becomes less or equal to 10�3, is very irregular (see the thick solid line in
Fig. 6), and as a result, the accelerated method takes more iterations to converge than the non-accelerated one.
Moreover, the evolution of the error also strongly depends on the initial condition and on when the
acceleration is started. For example, when we began the acceleration at the moment of the error reaching 10�2

or 10�4, rather than 10�3, the convergence occurred in about 190 or 100 iterations, respectively. In both cases,
the error evolution curves were irregular, with several ‘‘ups and downs’’. However, when we used values
0:4 < s < 0:8 instead of s = 1, the behavior of the accelerated iterations greatly improved. The optimal case of
s ¼ 0:7 is shown in Fig. 6 by the medium solid line. Both the sensitivity to the ‘‘starting moment’’ of the
acceleration and the irregularity of the error evolution are suppressed for s < 1, in agreement with the
discussion in Section 3. We also applied the Steffensen’s method to this case and found it to converge in about
the same number of iterations as the mode elimination method with the optimal s; see the dotted line in Fig. 6.

Example 4.3. In this and the following examples, we show that the mode elimination technique can be used to
accelerate convergence of other iterative methods. In this example, we apply this technique to the squared-
operator method (4.4), which can converge [8] to any given nonfundamental solitary wave of the underlying
stationary wave equation. It should be noted that in [8], the efficiency of the so accelerated squared-operator
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Fig. 7. The second nonfundamental solution of Eq. (4.1) with l = 3.
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methods (referred to there as modified squared-operator methods) was amply demonstrated for a number of
single and coupled stationary wave equations, both Hamiltonian and dissipative. In all simulations reported in
[8], the value of the parameter s in (3.8) was taken to equal 1. Therefore, below we will focus on the depen-
dence of the error evolution on the parameter s.

We apply the squared-operator methods with and without mode elimination to find the second
nonfundamental solution of Eq. (4.1). This solution for l = 3 is shown in Fig. 7. In all cases considered below,
we used the initial condition u0 ¼ ð1� 2r2Þe�r2

, r2 ¼ x2 þ y2 and the step size Ds ¼ 0:3 (nearly optimal). As the
method without mode elimination, we used (4.4). The method with mode elimination is then a straightforward
modification of methods (3.7), (3.8) and (4.4):
Fig. 8.
reache
s = 0.7
unþ1 � un ¼ � ðN�1LN�1L0uÞn � Cn
hun; ðLN�1L0uÞni
hun;Nuni

un � Cslow;n
h/slow;n; ðLN�1L0uÞni
h/slow;n;N/slow;ni

/slow;n

� �
Ds; ð4:7Þ
where, similarly to (3.8):
/slow;n ¼ un � un�1; Cslow;n ¼ 1� s
Aslow;nDs

; Aslow;n ¼
h/slow;n; LN�1L/slow;ni
h/slow;n;N/slow;ni

: ð4:8Þ
In both cases, with and without mode elimination, we found empirically that the methods with Cn given by
(4.5) require the initial condition to be closer to the exact solution than do the corresponding methods with
Cn ¼ 0. On the other hand, the former methods were significantly faster than those with Cn ¼ 0. Therefore,
we initially used methods (4.4) or (4.7) with Cn ¼ 0, and when the error reached a small value (we chose
5
 10�3), switched Cn to the expression (4.5). The corresponding error evolutions for the accelerated method
(4.7) with s = 1 and s ¼ 0:7 (optimal) are shown in Fig. 8 by the thick and medium lines, while for the non-
accelerated method (4.4) without mode elimination, the error evolution is shown by the thin line. Note that the
behavior of the accelerated method with s < 1 compared to that behavior with s = 1 follows the same trends as
observed in Example 4.2. Namely, the error evolution for the schemes with s < 1 is smoother and much less
sensitive to the moment when the acceleration starts. Overall, the mode elimination is found to accelerate the
convergence by a factor between three and four, depending on the choice of the parameter s. Finally, we note
that the Steffensen’s method in this case does not converge.
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.
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Example 4.4. In this last example, we show that the convergence acceleration technique based on mode elim-
ination can also be applied to the ITEM. Here we chose to present the results for the version of this method
(2.15)–(2.17) with power normalization, but the technique can be used as well for the ITEM with amplitude
normalization [6].

For the stationary wave equation (2.1) written in an equivalent form:
Fig. 9.
ITEM
s = 0.7
L0u � L00u� lu ¼ 0; ð4:9Þ

the ITEM (2.15)–(2.17) with mode elimination can be written as follows:
unþ1 ¼
P

hûnþ1; ûnþ1i

� �1
2

ûnþ1; ð4:10Þ

ûnþ1 � un ¼ K�1ðL0uÞn � cslow;n

h/slow;n; ðL0uÞni
h/slow;n;K/slow;ni

/slow;n

� �
Ds: ð4:11Þ
Here K is a positive definite self-adjoint operator with constant coefficients (as, e.g., in (2.12)).
ðL0uÞn ¼ L00un � lnun; ln ¼
hL00un;K�1uni
hun;K�1uni

; ð4:12Þ
and
/slow;n ¼ un � un�1; cslow;n ¼ 1þ s
aslow;nDs

; aslow;n ¼
h/slow;n; L/slow;ni
h/slow;n;K/slow;ni

: ð4:13Þ
We apply the methods without and with mode elimination – (2.15)–(2.17), (4.10)–(4.13), respectively – to Eq.
(4.6) with V 0 ¼ 4 and P ¼ 1:94, whose solution looks similar to the top solution in Fig. 3 of [1]. The corre-
sponding propagation constant l ¼ 5:01 is close to the bandgap edge, and the ITEM without mode elimina-
tion converges slowly; see the thin line in Fig. 9. In all simulations, we took Ds ¼ 1 and the operator K of the
form (2.12) with c = 1, which yielded the (nearly) optimal convergence rate of the ITEM (2.15)–(2.17). The
error evolutions for the ITEM (4.10)–(4.13) with mode elimination are shown in Fig. 9 by the thick and med-
ium lines. As in Examples 4.2 and 4.3, the scheme with mode elimination provides a severalfold improvement
to the convergence rate of the ITEM. Also as in those examples, the error evolution with s < 1 is more regular
than that with s = 1.
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The evolution of the error in Example 4.4. Thin line: optimally accelerated (with respect to parameter c in operator K, see text)
(2.15)–(2.17) without mode elimination. Thick and medium lines: ITEM (4.10)–(4.13) with mode elimination with s = 1 (thick) and
(medium). The application of mode elimination begins at the first iteration.



1708 T.I. Lakoba, J. Yang / Journal of Computational Physics 226 (2007) 1693–1709
Thus, from the last three examples, we conclude that in those cases when the iterations converge slowly and
their acceleration is highly desirable, the mode elimination method provides a considerable improvement of
the convergence rate (by a factor of several times). Taking s < 1, so that only part of the mode ðun � un�1Þ
would be eliminated, usually results in smoother convergence; however, the choice s = 1 still yields a consid-
erable improvement of the convergence rate in comparison with that of the non-accelerated iteration method.
For these slowly convergent cases, the Steffensen’s method, based on the Aitken’s acceleration, often diverges.

Remark. In those cases when the step size Ds is nearly optimal, the error is expected to be dominated by two
eigenmodes, corresponding to Kmax and Kmin, since
ð1þ KmaxDsÞ � �ð1þ KminDsÞ ð4:14Þ

for this Ds (see (2.4) and (2.6)). Then it seems logical that one would need to eliminate both of these eigen-
modes, which are proportional to ðun � un�2Þ and ðun � 2un�1 þ un�2Þ, respectively. We found, however, that
although this does result in a smoother error evolution than the elimination of just the single mode
ðun � un�1Þ, it does not yield any consistent improvement of the convergence rate compared to the latter case.
5. Summary

In this work, we obtained the following results.
In Section 2, we compared the linearized operators of the generalized Petviashvili method and the ITEM

with power normalization. In particular, we showed that while the ‘‘primordial’’ part of those operators has
the same form (2.19), their nonlocal parts involving the inner products are different, leading to the eigenvalues
of the corresponding operators being different. In our simulations we observed that the generalized Petviash-
vili method converges to fundamental solitary waves faster than does the ITEM (although we could prove this
rigorously only for equations with power-law nonlinearity). On the other hand, in those (rare) cases when both
methods converge to a nonfundamental solitary wave, we produced an explicit example where the ITEM is
faster.

In Section 3, we proposed a new technique, which we referred to as the mode elimination. One application
of this technique is that it can obtain nonfundamental solitary waves, for which the generalized Petviashvili
method would otherwise diverge. The corresponding iteration scheme is given by Eqs. (3.3) and (3.4). In
Example 4.1 in Section 4, we demonstrated that this technique can be superior to an alternative, squared-oper-
ator, technique [8] when applied to finding lowest-order nonfundamental solutions. However, for finding
higher-order solutions, the technique of Ref. [8] appears to be more practical.

As a more important application for the mode elimination technique, we showed that it can accelerate the
convergence of various iteration methods. This acceleration is most significant (by a factor of several times) in
those cases when it is most needed, i.e., when the convergence of the non-accelerated method is slow. The iter-
ation schemes implementing this technique are: Eqs. (3.7), (3.8) for the generalized Petviashvili method; Eqs.
(4.7), (4.8) for a squared-operator method (see also Ref. [8]); and Eqs. (4.10)–(4.13) for the ITEM with power
normalization.
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