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ties as a structural optimization method based on the level set method incorporating
perimeter control functions. The advantage of the method is the simplicity of computation,
since extra operations such as re-initialization of functions are not required. Structural
shapes are represented by the phase field function defined in the design domain, and opti-
mization of this function is performed by solving a time-dependent reaction diffusion
equation. The artificial double well potential function used in the equation is derived from
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Phase field method sensitivity analysis. The proposed method is applied to two-dimensional linear elastic and
Sensitivity analysis vibration optimization problems such as the minimum compliance problem, a compliant
Level set method mechanism design problem and the eigenfrequency maximization problem. The numerical

examples provided illustrate the convergence of the various objective functions and the
effect that perimeter control has on the optimal configurations.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The search for optimal structural shapes under various specified conditions is a very important, challenging and attractive
subject for researchers. The field of structural optimization has a history spanning more than a century, and began with re-
search on optimal truss layouts carried out by Michell [1]. Details of the history and methodologies of various proposed
methods can be found in comprehensive reviews and textbooks [2-13]. We focus on shape optimization using boundary var-
iation and topology optimizations. The key idea of shape optimization [7,10,11,13] is to update the shape of the boundary
based on the shape sensitivity. Although this is a standard approach for structural optimization and enables many types
of problems to be handled, it has the following fundamental drawbacks. The first shortcoming is the high computational cost
of remeshing. Since the outline of the target structure is usually represented using a finite element mesh and the objective
function and its sensitivity are numerically calculated using the finite element method, the mesh must be updated as the
shape changes to maintain the accuracy of the analysis. The second drawback is the inability to provide for topological
changes such as the nucleation or elimination of holes, which increases the likelihood of local optima.

Topology optimization [2,5,6,14], in contrast, does not have these drawbacks, since optimization is performed numeri-
cally using a fixed mesh and topological changes of the target structure are allowed. The basic idea is the replacement of
the shape optimization problem by a two-phase material distribution problem consisting of an original material and an
ersatz material mimicking voids. Unfortunately, these two-phase optimization problems do not have an optimal solution
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unless smoothness or topological constraints are taken into account. To overcome this difficulty, a homogenization method
is applied and the original problem is represented as a composite material optimization problem, namely, an optimization
problem of a volume fraction of these materials. As a result, the optimal configurations obtained in topology optimization
methods are represented as the distribution of a material density function. This representation raises the further problem
of how to obtain clear shapes from the optimal density distribution without the use of filtering methods [15].

Recently, the level set method for structural optimization [16-19] have been proposed to avoid the drawbacks described
above. In these methods, the target configuration is represented as a zero contour of the level set function and the function is
updated based on the Hamilton-Jacobi equation. Level set methods allow topological changes (limited to the elimination of
holes), significantly improving structural performance. Moreover, this method is free from remeshing, since the level set
function is defined in an Eulerian coordinate system. The level set method was originally proposed by Osher and Sethian
[20] as a numerical method for tracking free boundaries according to the mean curvature motion, and the mathematical
background was subsequently clarified by several researchers [21-23]. It has been applied in many research fields, such
as fluid mechanics and image processing, as a general free boundary tracking method. To achieve appropriate numerical
accuracy, the level set method requires that the level set function be re-initialized during the update operation to maintain
the signed distance characteristic of the function. The re-initialization operation is not an easy task, and although several
approaches have been proposed (see [24-26] or Chapter 7 in [27]), this is a topic of ongoing research. In this paper, we focus
on utilizing another free boundary tracking method, the phase field method, to avoid the need for re-initialization.

As with the level set method, the phase field method is capable of handling the motion caused by domain states such as
temperature and the motion caused by the domain shape, such as the mean curvature motion, and so can also be applied to
structural optimization. The phase field method was developed as a way to represent the surface dynamics of phase transi-
tion phenomena such as solid-liquid transitions. Research concerning such physical modeling can be traced back to Cahn and
Hilliard [28] and Allen and Cahn [29]. The mathematical fundamentals for these physical models were constructed by several
researchers [30-32]. In the early stage of this research, contributions concerning the computation of the actual phase tran-
sition phenomena were provided by Kobayashi [33] and Wang et al. [34]. The phase field method has been used in many
surface dynamic simulations such as multi-phase flow [35] and crack-propagation [36] in addition to simulations of phase
transition phenomena [37,38], and research where it is used as a general interface tracking method has also been reported
recently [39]. Outlines of the above history and methodologies can be found in several comprehensive reviews [40-42].

The idea of applying the phase field method to structural optimization was first proposed by Bourdin and Chambolle
[43,44], having initially been used to implement perimeter constraints [45,46]. The perimeter control effect of the phase field
method makes it possible to obtain clear shapes free of gray scales or domain discontinuities, and a number of researchers
have developed useful structural optimization methods that incorporate the phase field method [47-50]. It introduces an
additional term into conventional topology optimization schemes, and the structural optimization is, for the most part,
achieved using conventional topology optimization methodologies. Therefore, the nucleation of holes in the target structure
can be achieved with these methods, whereas the phase field method itself does not allow the number of holes in the domain
to be increased since it is a surface tracking method.

In contrast with the above methods, however, we develop a new intuitive phase field method for structural optimization.
That is, the phase field method is used to represent the motion of optimized shape boundaries, much as the level set function
does in the level set method for structural optimization. The structural shape is represented by the phase field function de-
fined on the design domain containing the optimal configuration. The numerical computation is performed over the whole
domain using a so-called ersatz material approach, as in conventional topology optimization. Optimization of the phase field
function is achieved using a time-dependent reaction diffusion equation called the Allen-Cahn equation. An artificial double
well potential used in the equation is derived from sensitivity analysis. That is, the difference between two minima of the
potential is set based on the sensitivity analysis. The proposed optimization method is applied to the minimum compliance
problem, a compliant mechanism design problem and the eigenfrequency maximization problem. The numerical examples
provided illustrate the convergence of the objective function and optimal configurations, and the perimeter control effect is
also discussed during the explanations. Our results indicate that the proposed method is as functional as the level set method
for structural optimization, with simpler computation since it requires no re-initialization operation.

2. Phase field method
2.1. Phase field function and its evolutional equation

In this section, the phase field method is explained briefly. A phase field function ¢(x) is defined over an entire analysis
domain to represent the phase of the local points therein, as shown in Fig. 1. From a physical point of view, the phase field
function provides the average phase of the local points. Consider a closed system composed of two phases, one of which cor-
responds to the value o of the phase field function while the other corresponds to the value 8 (o« < ). The boundary of each
phase is represented as a smooth function that interpolates the different values ¢, and is termed the “diffuse interface”. The
Van der Waals free energy of the system is given by

F9) = [ (51V0F +¢ 'f(9))ax. 1)
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Fig. 1. Examples of the phase field function.

where ¢ > 0 is a coefficient determining the effect of each term. The first term represents the interaction energy term of the
field in mean field theory, and the second term represents a double well potential with the value f'(«) = f'(f) = 0 as shown in
Fig. 2. The double well potential indicates that there exist lower free energy values with minima corresponding to each
phase.

Next, we introduce the time-dependent evolutional equation of the phase field function ¢. The change of the phase field
function with respect to time is assumed to be linearly dependent upon the direction in which the free energy function is
minimized:

99 _ oF(¢)

o= Mg 2)
Substituting Eq. (1) into Eq. (2), the following equation can now be obtained:

2 M@)o — a1 (9)) 3)

Eq. (3) is known as the Allen-Cahn equation [29]. Below, several characteristics of the phase field method critical to our pro-
posed method are explained.

2.2. Motion of the diffuse interface

The time-dependent motion of the diffuse interface in a domain represented by the phase field function ¢(x) is governed
by Eq. (3). The front moves in its normal direction at a speed determined by the difference between each minimum of the
double well potential f(¢) and the curvature of the diffuse interface as follows:

1 1
v:s+?H+O<t—2>, t>1, 4)

where s is the speed due to the difference between each minimum of the double well potential f(¢) and H is the mean cur-
vature of the diffuse interface. If the potential has equal minima, the motion is only governed by the mean curvature. Math-
ematical details and proofs of this are discussed in [51-53]. Here, we use the theory of the front motion governed by Eq. (3)
for shape optimization. That is, the difference between each minimum of the double well potential f(¢) is determined by
sensitivity analysis and the front of the optimized domain moves in a direction which reduces the value of the objective
function, as discussed in the next section.

fﬂ f“

(a) An example of a double well po- (b) The double well potential after
tential affine translation

Fig. 2. Examples of a double well potential.
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2.3. Perimeter minimization

Another important characteristic of the phase field method is the following problem of minimizing the total free energy
represented by Eq. (1). The total volume of the phase field function is constrained to the value V, and the double well func-
tion f(¢) has identical minima, that is, f(x) = f(B). The optimization problem is formulated as

inf /Q (51V0F +&'£(9))dx (5)

Sy p)dx=Vsy

the solution to which can be represented as

dist(x,S)
3 )

¢s(x) ~ ¢o(./f(x) + ¢interface< (6)
The phase field function ¢, , takes the values o« or  with a minimum boundary S in the domain (x € Q|$(X) = «), and ¢ irerface
is a function that tends to zero at infinity, giving a diffuse interface domain between these phases. That is,
limy .. hincerface (X) = 0, representing diffuse interfaces. Also, dist(x, S) is the distance function from the boundary S. The results
can be explained as the interaction between the first term of Eq. (5), penalizing unnecessary diffuse interfaces, and the sec-
ond term that approaches the value of « or 8. Thus, when ¢ — 0, Eq. (5) can be approximated as a minimal perimeter problem
as follows:

irq;f Per((x € Q| (x) = a)), (7
fg HE)AX=V

where Per(A) denotes the perimeter of domain A. Note that the above formulation can be applied to general double well
functions that have non-identical minima by applying an affine translation as shown in Fig. 2. In this case, the function con-
verges to an optima under the driving force caused by the difference between the minima and perimeter minimization.
Mathematical details and proofs can be found in [54,55].

Note that some methods have been proposed which apply the theory of perimeter minimization characteristic of the
phase field method to perimeter control of topology optimization methods. Bourdin and Chambolle [43,44] first proposed
a phase field method-based topology optimization problem for a structure with design-dependent loading. They proposed
the following new objective function, using Eq. (5) to penalize the original objective function F under the assumption that
¢ —0:

inf  F(p) +7P:(p). (8)
[, PRV,
where
Pip) = [ (51908 + 5 'f(p))d. )

where p is the function representing the local density in topology optimization and 7 is a Lagrange multiplier for the perim-
eter term P,. As mentioned above, when ¢ — 0, P, forces the function p to converge to {0,1} and the resulting domain
(x € Q|p(x) = 1) to have minimal perimeter. Thus, the method is useful for approximating the original topology optimiza-
tion, which is two-phase material distribution optimization problem [47]. Similar types of topology optimization methods
were also developed by Wang and Zhou [48-50] and Burger [47]. The Cahn-Hilliard equation [28], a time-dependent evo-
lutional equation representing the volume of the conserved field, is used to update the phase field function in [49,50]. This
facilitates the handling of volume constraints, in contrast to other time-dependent PDE-based structural optimization
methods.

We remark that the primary difference between these methods and our method is in their origin. Since the methods
above came from topology optimization, which updates the density function based on sensitivity analysis, the nucleation
of holes in the target structure is possible. On the other hand, our method aims for the same outcome using the level set
method for shape optimization, whose roots are in classical shape optimization based on boundary variation. Thus, there
are no hole nucleation mechanisms in our method. Despite the common name “phase field method”, the two approaches
have different backgrounds and functions. Of course, their effectiveness depends on the application.

3. Formulation
3.1. Setting of original problem
As the first step towards constructing a shape optimization method based on the phase field method, we define a partic-

ular shape optimization problem. Let Q be the domain that varies during the optimization process, with the state of Q rep-
resented by some partial differential equations. The boundary 92 of Q is divided into two boundaries, a boundary 9Qp with
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Dirichlet boundary conditions and a boundary Qy with Neumann boundary conditions. The state variable u is calculated
based on the state equations that have these boundary conditions. We introduce the extended design domain D that contains
Q. Here, a set of admissible shapes with fixed volume V, in D can be represented as follows:

Uu = {2 CDIQ € R, |Q] = Vo}. (10)
Thus, the shape optimization problem for Q is defined as
g}er}lﬁdj(g)’ (11)

where J(Q) is a functional with respect to state variable u whose value depends on the shape of Q. This is a typical shape
optimization problem, and a new numerical method for its solution is explained in this paper. We call this “shape and topol-
ogy optimization”, since the optimization is performed by varying boundaries as well as through typical shape optimization
methods [11,13], and changes in topology are allowed as in topology optimizations [5,14]. The proposed method, in some
sense, functions in a way that resembles the level set method for structural optimization [16,19].

3.2. Domain representation by the phase field function

We represent the shapes of optimized domains using a phase field function as shown in Fig. 3. The phase field function
¢(x) (0 < ¢ < 1)is defined in the domain D. We consider a setting where the domain Q; (x € D|¢(x) = 1) corresponds to the
optimized shape Q and the domain Q, (x € D|¢(x) = 0) corresponds to D \ Q. However, this setting is insufficient because a
diffuse interface region exists when the phase field method is used, as explained in Section 2. Let ¢ represent the diffuse
interface region. The domain representation of D is then formulated as

p=1=xcQ,
O<¢p<l=xcy (12)
¢=0<=x¢cQ,

where
(QuUE>D>Q and (QUEDD\Q (13)

That is, the original domain Q is represented as a subset of the union of ©; and ¢. In the above setting, the position of the
boundary 9Q is unclear except that it lies in £&. However, as explained in Section 2, the diffuse interface region becomes very
thin when ¢ is very small, in which case ¢ can be regarded as approximately representing 9Q. Actually, numerical examples
show that almost clear shapes with very thin boundaries can be obtained by our method. A clear shape can be easily picked
out in a plot by choosing an arbitrary contour value such as ¢ = 0.5 in the diffuse interface.

3.3. Problem details

Consider the linear elastic problem in the above domain represented by the phase field function. The elasticity equations
for state u are defined over the entire domain D using the ersatz material approach. In this approach, Q; is filled with a mate-
rial whose elasticity tensor is A and €, is assumed to be filled with a material that mimics a void to avoid singularities in the
stiffness matrix. In addition, the material in the diffuse interface ¢ must be defined, but the state of this domain is unclear
except that it is in transition from the conditions of 2y and Q. We set a virtual physical property A" of the entire domain
using an interpolation function k(¢) defined in the range kmin < k(¢) < 1:

§0<g<1)

(a) An original domain (b) The domain represented by

the phase field function

Fig. 3. The domain representation by the phase field function.
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A if xe Q,
A'(¢) = S k(P)A (kmin < k(¢) < 1) ifxe, (14)
KninA if x € Qo,
where
Ajjia = 20ij010 + M(Sikdj + ddji), (15)
=t Mt 16

The term Ay, denotes the components of the elasticity tensor A, § denotes the Kronecker delta, 2 and u are Lamé moduli, E is
the Young modulus and v is the Poisson ratio of the material. Note that this formulation is somewhat similar to that of the
SIMP method [56], a well-known interpolation scheme used in topology optimization methods, in that the virtual material
property is defined for intermediate values of the function representing the material state. However, the physical meanings
are quite different. While the density function of the SIMP method can be the regarded as the weak convergence limit of a
characteristic function based on homogenization theory, the phase field function ¢ in our method is just a numerical inter-
polation. Homogenization theory cannot be applied to problems that penalize properties of the boundary such as gradient
and diffusion [57].

Let the boundary oD of the extended design domain D be composed of the following three parts: Dp with Dirichlet
boundary conditions, 9Dy with non-homogeneous Neumann boundary conditions having surface loads g # 0, and 9Dyo with
traction-free Neumann boundary conditions. These boundary conditions correspond to the boundary conditions of the ori-
ginal domain Q as follows:

0Qp C ODp, 0Qn = 0Dy U 8QN0, (17)

where 9Qyp is the boundary of the original domain and the domain with traction-free Neumann boundary conditions. Sur-
face loads are applied on the fixed boundary 9Qy during the optimization process, and the other boundaries are regarded as
traction-free. We let g be the surface load vector and assume that volume forces are ignored. The following weak form state
equation is then formulated for state variable u:

/A*(gb)e(u) ce(v)dx = g-vds, forueV, VveV, (18)
D dDN

V={veH (@Q"v=0 on Iy}, (19)
e(u) =%(Vu + (Vu)h, (20)

where v is the test function, e is the strain tensor and H' is a Sobolev space.
For the above linear elastic problem, the compliance minimization problem, which is the most basic structural optimiza-
tion problem, is considered first. The compliance, equal to the work done by the load, is

Ji(¢)= [ g-uds. (21)

oDy

The least square error compared with the target displacement is also considered, represented as

J(#) = ( | cton - ud“dx)m, (22)

where c(x) is a coefficient function denoting the location of the target displacement and uj is the target displacement vector.
This objective function is in design optimizations of compliant mechanisms [58,59].

We also consider a vibration optimization problem for a linear elastic domain, which requires us to define the mass den-
sity function p* in D. As for the case where an elasticity tensor is used, ©; is filled with a material with mass density p and Qo
is assumed to be filled with a very light material. The mass density function in the domain ¢ is defined as the product of the
original mass density with an interpolation function m(¢) in the range mmi, < m(¢) < 1:

p if x € Qy,
P (@) = q m(@)p (Mmin <M($) <1) ifxecg, (23)
Mpin P if xe Q.

The vibration frequencies and the modes are computed using the following eigenvalue problem, which is represented in
weak form:

/A*(qb)e(uk) ce(v)dx = a)ﬁ / o (P)uy - vdx, foru, eV, VoeV, (24)
D D
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where wy is the kth eigenfrequency and wu is the kth eigenmode vector. The objective function is the weighted summation of
the squares of the eigenfrequencies:

() = =) W} = = Wi, (25)
k=1 k=1

where /; is the kth eigenvalue obtained by

W =/ = min max A (#)em) ::!(u)dx.
Uy ... €V uespanfuy ...,y fD p*(¢)|u| dx

(26)
The volume constraint is imposed using a Lagrange multiplier method, and the objective function is reformulated as
minJ(¢) = min (1,(6).J2(9) orJs(¢) + ¢ [ dex). 27)
where ( is the positive Lagrange multiplier.
3.4. Evolution of the phase field function

The phase field function evolves with a virtual time t in the interval t; < t < t,, corresponding to a descent step of the
function in the optimization problem. The evolutional equation is formulated as

{ W=KkV2p—f(p) (th<t<ty),

(28)
¢ ‘
% =0 onaD,

where x is a positive coefficient of the diffusion term and f(¢) is a double well potential. As explained in Section 2, when the
phase field function follows Eq. (28), the diffuse interface of the domain represented by the phase field function moves in a
normal direction. The velocity is determined by the difference between the minima of the double well potential and the
mean curvature of the diffuse interface. The difference between the minima of the double well potential gives the velocity
from the larger minimum to the smaller minimum. To move the diffuse interface in the direction in which the objective func-
tion decreases, we set the double well potential f(¢) to satisfy the following conditions:

fO) =0, f()=h'(¢,). f0)=f(1)=0 (h>0), (29)

where J'(¢) is the sensitivity of the objective function with respect to ¢, ¢, is the value of ¢ at time t; and h is its positive
coefficient. That is, we determine the difference between potential minima based on sensitivity analysis. A sketch of the dou-
ble well potential is shown in Fig. 4. Since the function evolves in the direction of the smaller minimum of the double well
potential, the phase field function at time t, for x € ¢ is approximately represented as

b, (X) = ¢y, (%) — a(t)] (dr,)s (30)

where a(t) is positive and represents the rate of change of ¢. Eq. (30) can also be regarded as the evolution of the design
variable ¢ based on the steepest descent method with descent step a(t;). That is, the minimization of the objective function
can be achieved in the same way as for conventional steepest descent methods.

3.5. Perimeter constraints

We return now to the derivation of Eq. (28). The equation is derived under the assumption that the total free energy, given
by

/D (5196 + (4 )dx, 31)

Fig. 4. Sketches of the double well potential.



2704 A. Takezawa et al./Journal of Computational Physics 229 (2010) 2697-2718

decreases linearly as explained in Section 2. When « is very small and the total volume of the phase field function is con-
strained, the minimization problem of the free energy can be also regarded as a perimeter minimization problem on
©, (x € D|¢p(x) =1). We regard ¢ to be a non-conservative function and update it using an Allen-Cahn equation. Since
the volume constraint is included in the objective function as shown in Eq. (27), the total volume of the phase field function
is constrained to a fixed value in a converged optimal solution, although the total volume cannot be completely preserved
during optimization. Thus, the perimeter minimization effect included in the minimization problem of free energy in Eq. (31)
must also be considered. Numerical examples provided later show the effect of perimeter control upon the optimal shape for
different values of k.

3.6. Sensitivity analysis

The double well potential f(¢) requires sensitivity analysis of the objective function with respect to ¢. Since the function
is defined on D and the optimization problem is a domain state variation problem, its sensitivity analysis closely resembles
the topology optimization method and the derivations are well known. Thus, only the results are shown here and the de-
tailed derivation is explained in Appendix A.

The sensitivity of the compliance in Eq. (21) is given by

Ji(¢) = -A"(p)e(u) : e(u). (32)
The sensitivity of the least square error compared with the target displacement from Eq. (22) is
L(¢) =A"(¢)e(u) : e(p), 33)
where p is an adjoint state vector which satisfies following equation:
/ A'(d)e(p) : e(q)dx + Coc(X)[u — o *(u —t)q =0, forpeV, VgeV, (34)
D
where
1/a-1
Co = </ cx)lu fu0|“dx) . (35)
D
The sensitivity of the weighted summation of eigenvalues in Eq. (25) is
n
J3(¢) = = wii(9), (36)
k=1
where
K($) = A7 (d)e(w) : e(u) — ip” (¢) |l (37)

4. Numerical implementation
4.1. Setting of evolutional equation

Since the double well potential must satisfy Eq. (29), we set it to be
f(d) = WE)w(¢) + G(x)g(4), (38)

where

w(p) = ¢*(1-¢%), &(¢) =’ (6¢° — 15¢ + 10), (39)

0 ‘1'¢ 0

v

1 ¢

(a) Function w (b) Function g

Fig. 5. Sketches of function w and g.



A. Takezawa et al./Journal of Computational Physics 229 (2010) 2697-2718 2705

which are the same as those used in [38]. w(¢) is a function such that w(0) = w(1) = w/(0) = w/(1) = 0, and g(¢) is a function
such that g(0) =0, g(1) =1 and g’(0) = g’(1) = 0. Sketches of these functions are shown in Fig. 5. W(x) and G(x) are coef-
ficients of these functions. The advantage of these choices for w(¢) and g(¢) is that the double well characteristic of f(¢)
in Eq. (29) can be kept for any W(x) and G(x). W(x) determines the height of the wall of the double well potential, which
affects the thickness of the diffuse interface. W(x) is set to be ] here. In the phase transition simulation, the coefficient is
usually decided in relation to the latent heat of the material. Since the phase field method is used here as a free surface track-
ing method without any physical background, the value chosen is simple. (As a result, the coefficient of the highest order
term ¢> of W(x)w'(¢) is 1.) The value of G(x) is chosen to be G(x) = hJ'(¢.,), which is composed of the sensitivity J'(¢)
and the coefficient h used in Eq. (29). Since the order of J'(¢) depends on the optimization problem, the appropriate value
of h must be adjusted in each case. To avoid such complicated parameter settings, we first normalize the sensitivity by divid-
ing by its L*-norm, and the new coefficient 7 is set as follows:

T ()

G(x) = . 40
®) =T “0)
Substituting Eqgs. (38)-(40) into Eq. (28), we obtain
o o, D o, 1 J (@)
i KV — %(W(X)W(aﬁ) +G(X)g($)) =KV g — <4W(¢) +1 |Ul(¢t1)”g (d>))
KT+ (1 - ¢){¢ —3 - 3o ¢>¢} th<t<t. (@)

4.2. Setting of physical property

The material property functions k(¢) and m(¢) with respect to the elasticity tensor and mass in the diffuse interface do-
mains are

k(¢) = min(¢”, kmin), M(¢) = Min(e, Mmin), (42)

where p is a positive constant. We employ the interpolation function used in the SIMP method for the topology optimization
[5,56]. The optimization was run using a variety of settings, and since those above yielded the best performance, we will use
them in all of our numerical examples.

4.3. Algorithm
Based on the above formulation, the optimization algorithm is constructed as follows:

. Set the initial value of phase field function ¢ expressing the initial shape of domain Q.
. Iterate the following procedure until convergence:
(a) Calculate the state variable u and adjoint state p with respect to ¢, at nth iteration by solving the state equation
shown in Eq. (18) or Eq. (24) using the finite element method.
(b) Calculate the objective function in Eq. (27).
(c) Calculate the sensitivity of the objective function in Egs. (32), (33) or Eq. (36) and prepare the evolutional equation for
¢ in Eq. (41).
(d) Calculate the updated value of ¢ by solving Eq. (41).
3. Obtain the optimal shape of Q expressed as the optimal distribution of ¢. (For example, the 0.5 level set of ¢ can be used
as a criterion.)

N —

4.4. Numerical method for the evolutional equation

The finite difference method is used to solve Eq. (41) numerically. Let us consider the case that the equation is solved by
an explicit scheme. Because of the diffusion term, the time step At is restricted by the following CFL condition for stable con-
vergence in the 2D case:

At At 1
K<—2+—2><§7 (43)
(Ax)" (Ay)
where At > 0 is the time step and Ax and Ay are space steps in the x and y directions, respectively. In general phase field
methods, including our method, the coefficients of the diffusion terms are set to very small values over Ax. Thus, a relatively
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large value can be chosen for At even if an explicit scheme is used. However, even if the CFL condition is satisfied, the time
step can take only very small values due to the reaction term. This term makes the function ¢ diverge once its value is out-
side the interval 0 < ¢ < 1. To avoid this problem, the reaction term is discretized by a so-called semi-implicit scheme [38] in
which forward time terms are partly included. In the 2D case, let ¢}; be the value of ¢ at the nth iteration at the point x;;. The
scheme then leads to the following discretization:

g (dﬁ‘_u 20+ gy Hli 200+ ¢>?J+1> X (1= ap)r(en) forr(ef) <o, "
At (Ax)? (Ay)? o (1 - ”“)r(dﬂj) for r(d){fj) >0,
where
r((i)?j) = ¢?_j - % —30n ‘d Ed)tl;H ¢ij (1 - d’?j)' (45)

As detailed in Appendix B, the above discretization guarantees that ¢ remains in the interval 0 < ¢ < 1 even when the time
step is large. Although the forward time term ¢"! is included in the right-hand side of the above equation, ¢"*! can obvi-
ously be calculated easily without solving a linear system, and the computational cost is almost equal to that for the ordinal
explicit scheme.

The time step can be regarded as a descent step in the steepest descent method. Thus, for fast convergence, the value of
the time step should be large enough to maintain decreasing values of the objective function. Since the time step is limited
by the CFL condition in Eq. (43), we perform several calculations to update ¢ in Eq. (44) for each FEM. In numerical examples,
the number of updates is automatically adjusted to keep the objective function decreasing.

All but one of the numerical examples explained later are calculated using the above finite difference method on struc-
tured quadrangular meshes. The other example is performed on an unstructured triangular mesh to check the mesh depen-
dency of our method. In that case, the finite volume method [60] with semi-implicit discretization is used to solve Eq. (41).

4.5. Treatment of volume constraints

To limit the total volume of an optimal configuration, a total volume of the phase field function is added to the objective
function as shown in Eq. (27). However, in this formulation, the relationship between the value of the Lagrange multiplier {
and a converged total volume of a optimal configuration is unclear and depends on J(¢). Thus, to fix the volume of the opti-
mal configuration to a specified value, we update the Lagrange multiplier {" at the nth iteration using the following equation,
as in [61]:

s 05( ffj¢d >+s;</D¢”d><—Vo>, (46)

where [, j(¢)dx = J;(¢), J,(¢) or J3(¢), Vo is a specified volume and &; > 0 is a positive parameter.

5. Numerical example

The following numerical examples are provided to confirm the utility of the proposed method. In all examples, a virtual
material with the normalized Young modulus E of 1.0 and Poisson ratio v of 0.3 is assumed. The values kp,;, and mp, in Egs.
(14) and (23) are set to 10~ and 1073, respectively. The penalization parameter p in Eq. (42) is set to 3. The coefficient of
normalized sensitivity # in Eq. (41) is set to 20. Except for in specified cases, a quadrangular mesh is used for discretizations
of both the phase field function and the displacement. At each iteration, we perform a finite element analysis of the state
equation and 20 updates of the evolutional equation for the phase field function by solving the finite difference equation
of the semi-implicit scheme. The number of updates is automatically decreased if the objective function does not decrease.
The time step At of the process is set to be half the Courant number. In the finite element analysis, isoparametric elements
are used. All optimal configurations are plotted as the distribution of the phase field function of the optimal results.

5.1. 2D cantilever example

As a benchmark problem for the proposed method, stiffness maximization of a cantilever is performed, as illustrated in
Fig. 6(a). The design domain is a 2 x 1 rectangle with a fixed boundary condition on the left side and a unit vertical point load
at the center of the right side. The minimized objective function is formulated as the combination of the compliance repre-
sented in Eq. (21) and the total volume of the structure. The domain is discretized with a 200 x 100 rectangular mesh and the
value of the Lagrange multiplier ¢ is fixed at 80 during the optimization process. We set x = 1 x 10~ in Eq. (41).

Given the initial shape as shown in Fig. 6(b), Fig. 7 shows a configuration obtained after only 10 iterations and the optimal
configuration obtained after 40 iterations. These figures show that the proposed method can affect topological changes only
in the form of decreasing the number of holes, but lacks a hole nucleation mechanism. Approximately 40 iterations were
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Fixed Vertical load
1
2

(a) A design domain (b) An initial shape

i

Fig. 6. A design domain and an initial shape for the cantilever example.

XX

E_]
(a) Iteration 10 (b) Iteration 40

Fig. 7. Optimal configurations of the cantilever example on a 200 x 100 mesh at iterations 10 and 40.

required for convergence, and the objective function history is shown in Fig. 8. The resulting optimal configuration and re-
quired number of iterations are reasonable compared with other structural optimization methods such as [5,16]. The station-
ary values of the objective function during the first and second iteration are peculiar characteristics. Since there are no
diffuse interfaces in the initial shape, the optimization at the first iteration is dominated by pure diffusion, without any effect
from updating using sensitivities. From the second iteration, the diffuse interfaces that have been generated move in their
normal directions according to the sensitivity analysis.

Next, the same problem is solved using a differently sized mesh to confirm the robustness of the proposed method with
respect to mesh discretization. Fig. 9 shows a configuration obtained after only five iterations, and the optimal configuration
obtained after 20 iterations, using 100 x 50 quadratic elements. The initial shape and parameters are the same as before

280

L L B I B L A

L
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260
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180

Objective function

160

140

o b b b b b b by a1
5 10 15 20 25 30 35 40
Iterations

120

S T T T

Fig. 8. The convergence history of the objective function of the cantilever example.

D 20

(a) Iteration 5 (b) Iteration 20

Fig. 9. Optimal configurations of the cantilever example on a coarser 100 x 50 mesh at iterations 5 and 20.
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(a) On a finer mesh (b) On a coarser mesh

Fig. 10. Optimal configurations of the cantilever example on triangle meshes.

except that k =5 x 107> in Eq. (41), since this parameter affects the thickness of the diffuse interface and an appropriate
value depends on the mesh size. As a result, optimal configurations that are almost identical with those shown in Fig. 7
are obtained.

Discretization using triangular mesh is also performed. In this special case, the finite volume method [60] is used since it
can handle unstructured meshes, although all other examples are performed using the finite difference method. Fig. 10
shows the optimal configurations obtained with two patterns of mesh discretization, using 41,421 and 10,325 triangular
meshes. The value of k is set to 1 x 107> for the finer mesh and 5 x 10~° for the coarser mesh, which is same as for the rect-
angular mesh cases. Mesh dependency can be avoided by setting x appropriately depending on the mesh size, since nearly
identical optimal configurations are obtained in all cases. Another effect of varying « is discussed in a later example.

To observe the dependence of an optimal solution on the initial shape, we use the two initial shapes shown in Fig. 11(a)
and (c). The optimal configurations obtained with these initial shapes are shown in Fig. 11(b) and (d). The domain discret-
ization and parameters are set to the same values as for the first example. These results show that the initial shape influences
the optimal configuration, since our method is based on boundary movement and has no hole nucleation mechanisms.

5.2. Coupling to the topological derivative

To resolve the above initial-dependency problem, the bubble method or topological derivative [62-65] can be introduced
to our method in the same way as the level set method [66,67]. In the 2D case, the topological derivative of the compliance is
derived as follows [65]:

i+ 2p)
20U+ )

We introduce holes into the domain Q; where the topological derivative is negative as in [66]. One hole nucleation operation
is performed every five FEM iterations. The total volume of the holes made at each operation is limited to 1% of the total
volume. The parameters of our method are set to be the same as in the first example. Fig. 12 shows a configuration obtained
after only 25 iterations and the optimal configuration obtained after 50 iterations with no initial holes. This confirms that the
appropriate optimal configuration can be obtained by introducing the topological derivative even if the initial shape has no
holes. However, this method is dependent on the above parameter settings.

X0 I

Di (%) = {4pAe(u) : e(u) + (2 — wtr(Ae(u))tr(e(u)) }(%). (47)

) Initial shape with 9 holes (b) Optimal configuration with initial
shape (a)

) Initial shape with 39 holes d) Optimal configuration with initial
shape (c)

Fig. 11. Another initial shape and optimal configurations for cantilever optimization example.
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(a) Iteration 25 (b) Iteration 50
Fig. 12. Optimal configurations of the cantilever example with topological derivative at iterations 25 and 50.

5.3. 3D cantilever example

Finally, an optimization of a simple 3D cantilever shown in Fig. 13(a) is performed. The domain is discretized with a
60 x 24 x 30 cubic mesh and the value of the Lagrange multiplier { is updated to adjust the total volume of the optimal con-
figuration to 0.55 (20% of total volume) during the optimization process. Only half of the domain is computed due to sym-
metry. We set k = 1.5 x 10~* in Eq. (41). The first 40 iterations are performed with this setting, and the last 10 iterations are
performed with the value x decreased to 5 x 107° to obtain a thin interface domain. Fig. 14 shows the ¢ = 0.1, 0.5 and 0.9
isosurfaces after the 50 iterations with the initial shape shown in Fig. 13(b). Although the thickness of the interface domain is
not negligible, almost the same shape and topology can be picked out from any of the isosurfaces.

0.96

Fixed

(a) A design domain (b) An initial shape

Fig. 13. A design domain and an initial shape for the 3D cantilever example.

(b) ¢ = 0.1 isosurface (c) ¢ = 0.9 isosurface

Fig. 14. Optimal configurations of the 3D cantilever example.
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5.4. Perimeter control

As discussed in Section 2, when the total volume of the phase field function is fixed in a closed domain composed of two
phases, the total free energy minimization problem of the domain represented by Eq. (5) can be regarded as a perimeter min-
imization problem for each phase. That is, the evolutional equation derived from the free energy minimization problem can
contain the perimeter control effect if the total volume of the phase field function is fixed. This can be applied to our method
since the total volume of phase field function is constrained, and numerical examples show that perimeter control can be
achieved by our method. A simple bridge optimization example shown in Fig. 15 is used here. The design domain is a
2 x 1 rectangle with fixed boundary conditions on the left and right lower edges and a vertical unit point load on the center
of the bottom. The domain is discretized with a 200 x 100 rectangular mesh, and the objective function is formulated as the
combination of the compliance and total volume of the structure. The coefficient k of the diffusion term in Eq. (41) is set to
be either x = 7.5 x 107® or ¥ = 1 x 107>, while the Lagrange multiplier is updated to adjust the total volume of the optimal
configuration to 0.6 during the optimization process.

Fig. 16 shows the optimal configurations obtained after 100 iterations for each choice of k. The compliances of these opti-
mal configurations are 22.4 and 23.3, respectively. We can see that the higher value of k yields an optimal configuration with
fewer holes, that is, lower perimeter, even though they have the same initial shape.

5.5. Application to a compliant mechanism design problem and an eigenfrequency maximization problem

To confirm the versatility of our method, we now apply it to two other optimization problems, a compliant mechanism
design problem [58,59] and an eigenfrequency maximization problem [68,69].

The examples of compliant mechanism optimization are typical benchmark problems, a force inverter and a gripper de-
sign problem given in [5]. The design domain of the force inverter problem is shown in Fig. 17. The design domainisa 2 x 1

Vertical load

(a) A design domain (b) An initial shape

Fig. 15. A design domain and an initial shape for the bridge example.

JA\VzaWaN "%

(a) kK =T7.5x 1076 (b) kK =1x 10"

Fig. 16. Optimal configurations of the bridge example with the different values of the coefficient of the diffusion term.

Fixed 0.1

Output point 2 Input load

Fixed §¢ ol

Fig. 17. A design domain for the inverter problem.
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rectangle, with an input point and an output point on the center right and the center left of the domain, respectively. A hor-
izontal unit point load is applied to the input point and the displacement of the output point is evaluated. The objective func-
tion is formulated as the combination of the least square error in Eq. (22) with o = 2 and total volume of the structure. The
coefficient function c(x) is set to 1 at the output point and 0 elsewhere in the domain. The target displacement u; is set to
(100,0) at the output point. The characteristic of the objective function differs from that in the compliance problem in that
the adjoint equation must be solved to calculate the derivative. The domain is discretized with a 200 x 100 rectangular
mesh. The Lagrange multiplier is updated to adjust the total volume of the optimal configuration to 0.6 during the optimi-
zation process.We set x =1 x 107> in Eq. (41). Fig. 18 shows the optimal configuration and the deformed shape obtained
after 100 iterations.

The design domain of the gripper problem is shown in Fig. 19. The black area is set as a non-design domain. A horizontal
unit force is applied to the input point and the displacement of the output point is evaluated. In the objective function, c(x) is
set to 1 at the output point and O elsewhere. The target displacement is set to (0,—100) at the output point. The domain is
discretized with a 200 x 100 rectangular mesh, All parameters are set to the same as in the inverter example. Fig. 20 shows
the optimal configuration after 100 iterations and the deformed shape.

The convergence history for both of these examples is shown in Fig. 21. The optimal configurations and convergence his-
tory show that our method is effective for compliant mechanism problems. Moreover, an additional advantage of our meth-
od is that there are no hinges in our optimal configuration, because the mean curvature motion of the diffuse interface is
contained in the phase field method and a discontinuous structure is penalized implicitly.

We also perform the optimization of a 3D gripper mechanism. As with the 2D case, a load is applied to the center of the
right side of the domain, and the upper and lower sides are fixed as shown in Fig. 22(a). The domain is discretized with a
60 x 24 x 60 cubic mesh and the value of the Lagrange multiplier ¢ is updated to adjust the total volume of the optimal con-
figuration to 0.55 (10% of total volume) during the optimization process. Only one quarter of the domain is computed due to
symmetry. We set the initial shape as shown in Fig. 22(b), and x = 1.5 x 10~* in Eq. (41). The ¢ = 0.5 isosurface of the opti-
mal configuration obtained after 50 iterations is shown in Fig. 23. This example shows that our method works well in 3D
mechanism examples.

(a) An optimal configuration (b) The deformed shape

Fig. 18. An optimal result and the deformed shape of the inverter problem.

2
Fixed 0-1
0.6
0.4
| v
- 04 ) Input load
Output points =

Non-design domain

Fixed §t 0.1

Fig. 19. A design domain for the gripper problem.
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Finally, we come to the eigenfrequency maximization problems. We set the cantilever-like design domain with a point
mass of 100 in the center of the right side as shown in Fig. 24. To avoid the localized mode of the ersatz material domain,
the interpolation functions for material properties in Eq. (42) are set as follows, based on [69]:

k(¢)={¢3 for0.1< ¢ <1

i -3
min($/100,10%) for0< ¢ <01’ M@= min(@.107. (48)

(a) An optimal configuration (b) The deformed shape

Fig. 20. An optimal result and the deformed shape of the gripper problem.
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Fig. 21. The convergence history of the objective function of the mechanism example.

Input
load

0.96 24

0.48

Output )

points + Fixed

© 048
(a) A design domain (b) An initial shape

Fig. 22. A design domain and an initial shape for the 3D gripper example.
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Fig. 23. An optimal result of the 3D gripper problem.

The objective function is formulated as the sum of the eigenvalues in Eq. (25) and the total volume of the structure. The do-
main is discretized with a 200 x 100 rectangular mesh, and the Lagrange multiplier is updated to adjust the total volume of
the optimal configuration to 0.8, while we use xk =1 x 107> in Eq. (41).

Fig. 25 shows the optimal configuration and the first eigenmode shape in the case that the first eigenvalue is maximized.
Since the first mode is the vertical movement of the concentrated mass, the optimal configuration has a similar shape to the
previous cantilever stiffness maximization problem.

Fig. 26 shows the optimal configuration and the second mode shape in the case that the first and the second eigenvalues
are maximized simultaneously. The weight coefficients of both eigenvalues in Eq. (25) are set to 0.5. Due to the effect of the
second eigenmode with horizontal displacement, the optimal configuration is quite different from the previous case. Fig. 27
shows the convergence history of eigenfrequencies in each case, from which the maximization of the target eigenfrequency
can be observed.

Concentrated mass
_____________ _..._. 1

Fig. 24. A design domain for the eigenfrequency maximization problem.

(a) An optimal configuration (b) The deformed shape of the lowest
mode

Fig. 25. An optimal configuration and the deformed mode shape of the eigenfrequency maximization problem.
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(a) An optimal configuration (b) The deformed shape of the second
lowest mode

Fig. 26. An optimal configuration and the deformed mode shape of the eigenfrequency maximization problem.
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Fig. 27. The convergence history of the eigenfrequencies (Case 1: only the lowest eigenfrequency is maximized; Case 2: the two lowest eigenfrequencies
are maximized).

6. Conclusion

We have proposed a new method for structural shape and topology optimization based on the phase field method.
Although our method achieves the same functional capabilities with perimeter control as the level set method, our method
has an advantage in terms of simplicity, since we do not require extra re-initializing operations of the domain representing
function. Our method is especially effective in the case of perimeter constrained problems. Since the perimeter control effect
is included implicitly as a characteristic of the phase field method, our method requires no additional calculations such as the
calculation of curvatures. However, the perimeter control effect (the mean curvature motion of the diffuse interface) cannot
be canceled completely although its effect can be controlled by varying . Alternatively, the mean curvature motion cancel-
lation method can be applied here [35,39].

Another drawback is the dependence on the initial shape, which as discussed in [16], is typical of structural optimization
methods based on boundary variation. To resolve this fundamental problem, the bubble method or topological derivative
[62,63] can be introduced to our method as in the numerical examples. Another option is to generate an initial shape by
topology optimization. In that case, our method has an advantage in terms of implementation, since our domain represen-

tation is quite similar to the density function used topology optimization, even though their physical meanings are com-
pletely different.
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Appendix A. Sensitivity analysis

The derivatives of the objective functions with respect to the phase field function are based on [3]. We use the word
“derivative” in the sense of the Fréchet derivative. First, the general objective function is defined as
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- / jydx + / I(u)ds. (49)
D aDy
The derivative of this function in the direction 0 is then
/] 0)dx + / I'u)'(¢),0)ds = /j’(u)vdx + / I'(w)vds, (50)
9Dy D oDy
where v = (u'(¢), 0). Using the state equation of the linear elasticity problem from Eq. (18), the Lagrangian is
Lguwp) = [jwder [ twds+ [ A'(p)ew)sepiax— | g-ps (51)
Jp Joby D oDy

where u is the displacement and p is the adjoint state. Using this, the derivative can be expressed as
q oL !
0.0 = (g 6.u.0.0) + (5o (6,09 W(0).0)). (52)
Consider the case where the second term is zero. Replacing (#'(¢), 0) with v, the second term is
< (¢, u,p), > /] vdx+/ I(u vds+/A (v) : e(p)dx = 0. (53)
Dy

In the case that the adjoint state p satisfies the above adjoint equation, the second term of Eq. (52) can be ignored. On the
other hand, the derivative of Eq. (18) with respect to ¢ in the direction 0 is

[ @) 0ew) epiaxr [ A e (6).0)): epidx = [ A"(@Jetw) : eprox+ [ A(gle(v): elpiix=0. (54
If we compare this with Eqs. (53) and (54), the following can be obtained:
/j’(u) vdx +/ u)vds = /A*’ e(p)0dx. (55)
D oDy
Substituting Eq. (55) into Eq. (50), the derivative of the objective function is
J(¢)=A"($)e(u) : e(p). (56)

We now apply the above equation to Egs. (21) and (22). In the case of the compliance in Eq. (21), Eq. (53) becomes equal
to the state equation by replacing p with —u. That is, this problem is self-adjoint and the derivative of the objective function
in Eq. (32) can be calculated directly from Eq. (56). In the case of the least square error compared with the target displace-
ment, the adjoint equation in Eq. (34) is obtained by substituting the objective function from Eq. (22) into Eq. (53).

We also consider the vibration problem whose objective function is kth eigenvalue. That is,

J() = A (57)

Using the state equation from Eq. (24), the Lagrangian is
Ligawp) = hi-+ [ (el elpyix— 7 [ p(o)us-pax. (58)

where u; is the normalized kth eigenmode vector. That is [, p*( $)|w[*dx = 1. Using the Lagrangian, the derivative of this
function may be given as

J(9),0) = < o (Gup) e> T <§—,fk<¢7uk,p>7 (W), 6>>. (59)
The second term of Eq. (59) is

(55 @) v) = G, 00 (1= [ pr(ome- i) — ([ A @reto) - etmidx—ix [ p@ywepax), (60

where v, = (4 (¢), 0). In the case that u, = #,, the right-hand side of the above equation becomes zero. Thus this problem is
also self-adjoint. Moreover, replacing the arbitrary test function p by u, the first term can be eliminated. The derivative of
Eq. (24) with respect to ¢ in the direction 0 is

[ @ @) 0w s e+ [ A @le(vy) - eyix

= (24(9),0) / P (S - pdx + 7 / (0"(4). Ot - pex + i / P () - pex, (61)

where vy = (u,(¢), 0). Replacing both », and p by uy, the equation becomes:
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G@).0 = [

D

(A”(), 0)e(uy) : e(P)deA:</D<p*’(¢)79>|uk|2d><= /D(A*'(</>)e(uk) : e(uy) — 2xp” (¢)|ug*)0dx. (62)
Thus, the sensitivity of the kth eigenvalue is

Z(9) = A7 (d)e(y) - eu) — 2xp” () . (63)

Appendix B. Discretization of the reaction term

We now discuss the effect of the reaction term on the convergence of the phase field function in the Allen-Cahn equation
(41). If the equation is discretized by an explicit scheme, the time step At is restricted by requiring stable convergence of the
reaction term, in addition to the CFL condition for the diffusion term. To confirm this, we perform some simple numerical
tests. Let us consider the following ordinary differential equation:

% =—f'(u)=- (%W(u) + dg'(u)) =u(l- u){u - % —30d(1 - u)u}. (64)
The above equation is simplified from Eq. (41) by ignoring the diffusion term, replacing the function ¢ by a variable u, and
simplifying the sensitivity coefficient n% to a coefficient d. The equation is discretized by an explicit scheme as
follows:

un+1 + u” n n n 1 n n

Tfu(l—u){u —§—30d(1—u)u } (65)

We start the numerical tests by solving the above equation with the initial value u® = 0.5 for the At = 0.01, 0.1 and 1, and
d=0.1,1,10,-0.1, -1 and —10. If d is positive, the analytical result is u = 0; if not, then u = 1. Table 1 shows the value of u
attimest =0, 2,4, 6, 8, and 10. We can clearly see that u diverges in Eq. (65) if d and At are large. A large value of At allows u
to exceed its theoretical bound of 0 < ¢ < 1. Moreover, a large value of d causes the function g(u) to dominate f(u), which
rapidly decreases with u if u < 0. The same can be said if u > 1, since the derivative of f(u) is also steep when u < 0, and so
the case u > 1 tends to the case u < 0. To obtain ideal results from Eq. (64) with u = 0 or u = 1, it is important to bound the
variable u in the interval 0 < u < 1. The easiest way to do this is to force the variable u™! into 0 < u < 1 at each iteration.
However, in our research, the more sophisticated semi-implicit scheme [38] is used. In this method, the equation is discret-
ized as follows:

U 4y {u"“(] —u"r(u) forr(u") <0,
- T = (66)
At ut(1 —u™Hr(u) for r(u") >0,
where
n n l n n
r(u") = u" — 5 = 30d(1 —u"u". (67)
Table 1
Results of a test problem solved by an explicit scheme.
t d=0.1 d=1 d=10
At =0.01 At=0.1 At=1 At =0.01 At=0.1 At=1 At =0.01 At=0.1 At=1
0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
2 0.1668 0.1640 0.1337 0.0114 0.0092 —315.18 0.0010 - ~3.7 %107
4 0.0504 0.0480 0.0223 0.0030 0.0024 24 %107 0.0003 = _3.0x10'3
6 0.0170 0.0158 0.0051 0.0010 0.0008 - 0.0001 - -
8 0.0061 0.0055 0.0012 0.0003 0.0003 - 0.0000 - -
10 0.0022 0.0020 0.0003 0.0001 0.0001 - 0.0000 - -
=-0.1 ==1 ==10
0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
2 0.8332 0.8360 0.8663 0.9886 0.9908 316.18 0.9990 - ~37 %107
4 0.9496 0.9520 0.9777 0.9970 0.9976 2.4 % 104 0.9997 - _3.0x 1033
6 0.9830 0.9842 0.9949 0.9990 0.9992 = 0.9999 = =
8 0.9939 0.9945 0.9988 0.9997 0.9997 - 1.0000 - -
10 0.9978 0.9980 0.9997 0.9999 0.9999 - 1.0000 - -

- indicates overflow.
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Table 2
Results of the test problem solved by a semi-implicit scheme.
t d=0.1 d=1 d=10
At = 0.01 At =0.1 At=1 At = 0.01 At =0.1 At =1 At = 0.01 At=0.1 At =1
0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
2 0.1679 0.1753 0.2379 0.0118 0.0128 0.0271 0.0010 0.0011 0.0025
4 0.0511 0.0546 0.0909 0.0031 0.0033 0.0066 0.0003 0.0003 0.0006
6 0.0173 0.0189 0.0362 0.0010 0.0011 0.0024 0.0001 0.0001 0.0002
8 0.0062 0.0069 0.0153 0.0004 0.0004 0.0010 0.0000 0.0000 0.0001
10 0.0023 0.0026 0.0066 0.0001 0.0002 0.0004 0.0000 0.0000 0.0000
d=-0.1 d=-1 d=-10
0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
2 0.8321 0.8247 0.7621 0.9882 0.9872 0.9729 0.9990 0.9989 0.9975
4 0.9489 0.9454 0.9091 0.9969 0.9967 0.9934 0.9997 0.9997 0.9994
6 0.9827 0.9811 0.9638 0.9990 0.9989 0.9976 0.9999 0.9999 0.9998
8 0.9938 0.9931 0.9847 0.9996 0.9996 0.9990 1.0000 1.0000 0.9999
10 0.9977 0.9974 0.9934 0.9999 0.9998 0.9996 1.0000 1.0000 1.0000

Finally the update value u™! is obtained by:

]—At(]gu")r(u") for r(uﬂ) < 07 68
u" (14+Atru" ( )

) n
1+Atu"r(um) for T(U ) > 0.

un+1 —

We can see that u™! is non-negative in both cases if 0 < u" < 1. Whether u"*! satisfies the bound u < 1 is also easily checked
by calculating 1 — u™! from Eq. (68):

1-u"—At(1-u™)r(u™)
|y | e forrw) <0, (69)
= -
TTAG T for r(u™) > 0.

u™1 is again clearly non-negative in both cases. Thus, the discretization given in Eq. (66) is bounded by 0 < u < 1 indepen-
dent of the time step At. Table 2 shows the results of the same test solved by the semi-implicit scheme, which confirms sta-
ble convergence for any At and d.
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