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Efficient analysis and simulation of multiscale stochastic systems of chemical kinetics is 
an ongoing area for research, and is the source of many theoretical and computational 
challenges. In this paper, we present a significant improvement to the constrained 
approach, which is a method for computing effective dynamics of slowly changing 
quantities in these systems, but which does not rely on the quasi-steady-state assumption 
(QSSA). The QSSA can cause errors in the estimation of effective dynamics for systems 
where the difference in timescales between the “fast” and “slow” variables is not so 
pronounced.
This new application of the constrained approach allows us to compute the effective 
generator of the slow variables, without the need for expensive stochastic simulations. 
This is achieved by finding the null space of the generator of the constrained system. 
For complex systems where this is not possible, or where the constrained subsystem is 
itself multiscale, the constrained approach can then be applied iteratively. This results in 
breaking the problem down into finding the solutions to many small eigenvalue problems, 
which can be efficiently solved using standard methods.
Since this methodology does not rely on the quasi steady-state assumption, the effective 
dynamics that are approximated are highly accurate, and in the case of systems with 
only monomolecular reactions, are exact. We will demonstrate this with some numerics, 
and also use the effective generators to sample paths of the slow variables which are 
conditioned on their endpoints, a task which would be computationally intractable for the 
generator of the full system.
© 2016 The Author. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Understanding of the biochemical reactions that govern cell function and regulation is key to a whole range of biomedical 
and biological applications and understanding mathematical modelling of gene regulatory networks has been an area of 
huge expansion over the last half century. Due to the low copy numbers of some chemical species within the cell, the 
random and sporadic nature of individual reactions can play a key part in the dynamics of the system, which cannot be well 
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approximated by ODEs [13]. Methods for the simulation of such a system, such as Gillespie’s stochastic simulation algorithm 
(SSA) [18], (or the similar Bortz–Kalos–Lebowitz algorithm [5] specifically for Ising spin systems), have been around for some 
decades. Versions which are more computationally efficient have also been developed in the intermediate years [7,17].

Unfortunately, their application to many systems can be very computationally expensive, since the algorithms simulate 
every single reaction individually. If the system is multiscale, i.e. there are some reactions (fast reactions) which are hap-
pening many times on a timescale for which others (slow reactions) are unlikely to happen at all, then in order for us to 
understand the occurrences of the slow reactions, an unfeasible number of fast reactions must be simulated. This is the 
motivation for numerical methods which allow us to approximate the dynamics of the slowly changing quantities in the 
system, without the need for simulating all of the fast reactions.

For systems which are assumed to be well-mixed, there are many different approaches and methods which have been 
developed. For example the τ -leap method [20] speeds up the simulation by timestepping by an increment within which 
several reactions may occur. This can lead to problems when the copy numbers of one or more of the species approach
zero, and a number of different methods for overcoming this have been presented [2,31].

Several other methods are based on the quasi steady-state assumption (QSSA). This is the assumption that the fast 
variables converge in distribution in a time which is negligible in comparison with the rate of change of the slow variable. 
Through this assumption, a simple analysis of the fast subsystem yields an approximation of the dynamics of the slow 
variables. This fast subsystem can be analysed in several ways, either through analysis and approximation [6], or through 
direct simulation of the fast subsystem [11].

Another approach is to approximate the system by a continuous state-space stochastic differential equation (SDE), 
through the chemical Langevin equation (CLE) [19]. This system can then be simulated using numerical methods for SDEs. 
An alternative approach is to approximate only the slow variables by an SDE. The SDE parameters can be found using bursts 
of stochastic simulation of the system, initialised at a particular point on the slow state space [15], the so-called “equation-
free” approach. This was further developed into the constrained multiscale algorithm (CMA) [9], which used a version of the 
SSA which also constrained the slow variables to a particular value. Using a similar approach to [6], the CMA can similarly 
be adapted so that approximations of the invariant distribution of this constrained system can be made without the need 
for expensive stochastic simulations [10]. However, depending on the system, as with the slow-scale SSA, these approxima-
tions may incur errors. Work on how to efficiently approximate the results of multiscale kinetic Monte Carlo problems is 
also being undertaken in many different applications such as Ising models and lattice gas models [24].

Analysis of mathematical models of gene regulatory networks (GRNs) is important for a number of reasons. It can give 
us further insight into how important biological processes within the cell, such as the circadian clock [33] or the cell 
cycle [23] work. In order for these models to be constructed, we need to observe how these systems work in the first place. 
Many of the observation techniques, such as the DNA microarray [27], are notoriously subject to a large amount of noise. 
Moreover, since the systems themselves are stochastic, the problem of identifying the structure of the network from this 
data is very difficult. As such, the inverse problem of characterising a GRN from observations is a big challenge facing our 
community [21].

One popular approach to dealing with inverse problems, is to use a Bayesian framework. The Bayesian approach allows us 
to combine prior knowledge about the system, complex models and the observations in a mathematically rigorous way [29]. 
In the context of GRNs, we only have noisy observations of the concentrations of species at a set of discrete times. As such, 
we have a lot of missing information. This missing data can be added to the state space of quantities that we wish to 
infer from the data that we do have. This complex probability distribution on both the true trajectories of the chemical 
concentrations, and on the network itself, can be sampled from using Markov chain Monte Carlo (MCMC) methods, in 
particular a Gibb’s sampler [16]. Within this Gibb’s sampler, we need a method for sampling a continuous path for the 
chemical concentrations given a guess at the reaction parameters, and our noisy measurements. Exact methods for sampling 
paths conditioned on their endpoints have been developed [16,25].

In other applications, methods for path analysis and path sampling have been developed, for example discrete path 
sampling databases for discrete time Markov chains [32], or where the probability of paths, rather than that of trajectories 
of discrete Markov processes can be used to analyse behaviour [30]. In [12], a method for transition path sampling is 
presented for protein folding, where the Markov chain has absorbing states. Other approaches for coarse-graining transition 
path sampling in protein folding also exist [3]. Other methods also exist for the simulation of rare events where we wish to 
sample paths transitioning from one stable region to another [4].

The problems become even more difficult when, as is often the case, the systems in question are also multiscale. This 
means that these inverse problems require a degree of knowledge from a large number of areas of mathematics. Even 
though many of the approaches that are being developed are currently out of reach in terms of our current computational 
capacity, this capacity is continually improving. In this paper we aim to progress this methodology in a couple of areas.

1.1. Conditioned path sampling methods

We will briefly review the method presented in [16] for the exact sampling of conditioned paths in stochastic chemical 
networks. Suppose that we have a Markov jump process, possibly constructed from such a network, with a generator G . The 
generator of such a process is the operator G such that the master equation of the system can be expressed as
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Table 1
A summary of the methodology presented in [16], for sampling paths of Markov-modulated Poisson processes, 
conditioned on their endpoints.

[1] Define a dominating process to have transition rates given by the matrix M = 1
ρ G + I .

[2] This process has uniformly distributed reaction events on the time interval [t0, t1]. The number r of such 
events is given by (1).

[3] Once r = r̂ has been sampled, the type of each event must be decided, by sampling from the distribution 
(2), starting with the first event. An event which corresponds to rate mi,i indicates that no reaction event 
has occurred at this event.

[4] Once all event types have been sampled, we have formed a sample from the conditioned path space.

dp

dt
= Gp,

where p is the (often infinite dimensional) vector of probabilities of being in a particular state in the system. We wish to 
sample a path, conditioned on X(t0) = x0 and X(t1) = x1. Such a path can be found by creating a dominating process (i.e. a 
process whose rate is greater than the fastest rate of any transitions of the original system) with a uniform rate.

We define the rate to be greater than the fastest rate of the process with generator G , so that

ρ > max
i

Gi,i .

Then we define the transition operator of the dominant process by:

M = 1

ρ
G + I.

We can then derive the number of reaction events NU of the dominating process in the time interval [t0, t1] by:

P(NU = r) = exp(−ρt)(ρt)r/r![Mr]x0,xt

[exp(Gt)]x0,xt

. (1)

Here the notation [·]a,b denotes the entry in the matrix with coordinates (a, b) ∈ N
2. A sample is taken from this distribution. 

The times {t∗
1, t∗

2, . . . t∗
r } of all of the r reaction events can then be sampled uniformly from the interval [t0, t1]. The only 

thing that then remains is to ascertain which reaction has occurred at each reaction event. This can be found by computing, 
starting with X(t0) = x0, the probability distribution defined by:

P(X(t∗
j )) = x|X(t∗

j−1) = x∗
j−1, X(t1) = x1) =

[M]x∗
j−1,x[Mr− j]x,x1

[Mr− j+1]x∗
j−1,x1

. (2)

This method, summarised in Table 1, exactly samples from the desired distribution, but depending on the size and sparsity 
of the operator G , it can also be very expensive. In the context of multiscale systems with a large number of possible states 
of the variables, the method quickly becomes computationally intractable.

1.2. Summary of paper

In Section 2, we introduce a version of the Constrained Multiscale Algorithm (CMA), which allows us to approximate the 
effective generator of the slow processes within a multiscale system. In particular, we explore how stochastic simulations are 
not required in order to compute a highly accurate effective generator. In Section 3, we consider the differences between the 
constrained approach, and the more commonly used quasi-steady state assumption (QSSA). In Section 4, we describe how 
the constrained approach can be extended in an iterative nested structure for systems for whose constrained subsystem is 
itself a large intractable multiscale system. By applying the methodology in turn to the constrained systems arising from the 
constrained approach, we can make the analysis of highly complex and high dimensional systems computationally tractable. 
In Section 5, we present some analytical and numerical results, aimed at presenting the advantages of the CMA over other 
approaches. This includes some examples of conditioned path sampling using effective generators approximated using the 
CMA. Finally, we will summarise our findings in Section 6.

2. The constrained multiscale algorithm

The Constrained Multiscale Algorithm was originally designed as a multiscale method which allowed us to compute the 
effective drift and diffusion parameters of a diffusion approximation of the slow variables in a multiscale stochastic chemical 
network. The idea was simply to constrain the original dynamics to a particular value of the slow variable. This can be done 
through a simple alteration of the original SSA by Gillespie [18]. First, a (not necessarily orthogonal) basis is found for the 
system in terms of “slow” and “fast” variables, [S = [S1, S2, . . .], F = [F1, F2, . . .]]. Slow variables are not affected by the 
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Table 2
The Constrained Stochastic Simulation Algorithm (CSSA) using the constrained stoichiometric projector given in 
Definition 2.2. Simulation starts with S = s where s is a given value of the slow variable.

[1] Define a basis of the state space in terms of slow and fast variables.
[2] Initialise the value of the state, X(t0) = x.
[3] Calculate propensity functions at the current state αi(X(t)).
[4] Sample the waiting time to the next reaction in the system

τ = − log (u)

α0(X(t))
, where α0(X(t)) =

M∑
k=1

αk(X(t)), u ∼ U ([0,1]).

[5] Choose one j ∈ {1, . . . , M}, with probability α j/α0, and perform reaction R j , with stoichiometry which has 
been projected using the constrained stoichiometric projector:

X(t + τ ) = X(t) +P(ν j).

[6] Repeat from step [3].

most frequently firing reactions in the system. Then, as shown in [9], the SSA is computed as normal, until one of the slow 
reactions (a reaction which alters the value of the slow variable(s)) occurs. After the reaction has occurred, the slow variable 
is then reset to its original value, in such a way that the fast variables are not affected. This is equivalent to projecting the 
state of the system, after each reaction, back to the desired value of the slow variable, whilst also preserving the value(s) 
of the fast variable(s). The constrained SSA is given in Table 2. Here the αi(X(t)) denote the propensity of the reaction Ri
when the system is in state X(t) = [X1(t), X2(t), . . .], where �tαi(X(t) is the probability that this reaction will fire in the 
infinitesimally small time interval (t, t + �t) with 1 � �t > 0. The stoichiometric vectors ν i denote the change in the state 
vector X(t) due to reaction Ri firing.

In order to describe the constrained approach, we first introduce some definitions that will be helpful.

Definition 2.1. Constrained Projector: Given a basis of the state space X = [X1, X2, . . . , XN ] with N f fast variables F =
[F1, F2, . . . , F N f ] and Ns slow variables S = [S1, S2, . . . , SNs ], the constrained projector PS : NN

0 → N
N
0 for a given value of S

preserves the values of the fast variables, whilst mapping the values of the slow variables to S:

PS([Ŝ, F̂]) = [S, F̂] ∀([Ŝ, F̂]) ∈ N
N
0 . (3)

Definition 2.2. Constrained Stoichiometric Projector: Given a basis of the state space X = [X1, X2, . . . , XN ] with N f
fast variables F = [F1, F2, . . . , F N f ] and Ns slow variables S = [S1, S2, . . . , SNs ], the constrained stoichiometric projector 
P : NN

0 → N
N
0 maps any non-zero elements of the slow coordinates to zero, whilst preserving the values of the fast coordi-

nates:

P([S,F]) = [0,F] ∀([S,F]) ∈N
N
0 . (4)

Definition 2.3. Constrained Subsystem: Given a system with NR reactions R1, R2, . . . , R NR with propensity functions αi(X)

and stoichiometric vectors ν i ∈ N
N
0 , the constrained subsystem is the system that arises from applying the constrained pro-

jector PS to the state vector after each reaction in the system. This is equivalent to applying the constrained stoichiometric 
projector P to each of the stoichiometric vectors in the system. This may leave some reactions with a null stoichiometric 
vector, and so these reactions can be removed from the system. This projection can lead to aphysical systems where one or 
more variables may become negative; in these cases we set the propensities of the offending reactions at states where a 
move to a negative rate is possible, to zero.

Let us illustrate this using an example which we shall be using later in the paper.

R1 : ∅ k1−→ X1,

R2 : X2
k2−→ ∅, (5)

R3 : X1
k3−→ X2,

R4 : X2
k4−→ X1.

In certain parameter regimes, this system is multiscale, with reactions R3 and R4 occurring many times on a time scale for 
which reactions R1 and R2 are unlikely to happen at all. The variable S = X1 + X2 is unaffected by these fast reactions, 
and as such is a good candidate for the slow variable which we wish to analyse. A discussion about how the fast and slow 
variables could be identified is given in Section 6. We have two choices for the fast variable, either F = X1 or F = X2, in 
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order to form a basis of the state space along with the slow variable S . As detailed in [9], it is preferable (although not 
essential) to pick fast variables that are not involved in zeroth order reactions. Therefore, in this case, we choose F = X2. 
Following the projection of the stoichiometric vectors using the constrained projector, the constrained system can be written 
in the following way:

C1 : X1 + X2 = S,

R2 : X2
k2−→ X1,

R3 : X1
k3−→ X2, (6)

R4 : X2
k4−→ X1.

Note that reaction R1 has disappeared completely, since only involves changes to the slow variable, and as such after 
projection, the stoichiometric vector is null, and the reaction can be removed. The stoichiometry of reaction R2 has been 
altered as it involves a change in the slow variables. If this reaction occurs, the slow variable is reduced by one. We are 
not permitted to change the fast variable X2 in order to reset the slow variable to its original value, and therefore we must 
increase X1 by one, giving us a new stoichiometry for this reaction.

In the original CMA, statistics were taken regarding the frequency of the slow reactions, at each point of the slow 
domain, and were used to construct the effective drift and diffusion parameters of an effective diffusion [8,9] process. 
However, this constrained approach can also be used to compute an effective generator for the discrete slow process, as we 
will now demonstrate. The CMA can be very costly, due to the large computational burden of the stochastic simulations of 
the constrained system. In this section, we will introduce a method for avoiding the need for these simulations, whilst also 
significantly improving accuracy.

The constrained systems can often have a very small state space (which we will denote �(s)), since they are constrained 
to a single value of the slow variables. For example, for the constrained system (6), there are only 

⌊ S
2

⌋
possible states. 

Such a system can easily be fully analysed. For example, the invariant distribution can be found by characterising the 
one-dimensional null space of the generator matrix of the constrained process. For small to medium-sized systems, this is 
far more efficient than exhaustive Monte Carlo simulations. For other systems with larger constrained state spaces, stochastic 
simulation may still be the best option, although in Section 4 we show how the constrained approach can be applied 
iteratively until the constrained subsystem is easily analysed.

Suppose that we have a constrained system with N f fast variables, F1, F2, . . . , F N f . The generator for the constrained 
system with S = s is given by GF (s). Since the system is ergodic, there is a one-dimensional null space for this generator. 
This can be found by using standard methods for identifying eigenvectors, by searching for the eigenvector corresponding to 
the eigenvalue equal to zero. Krylov subspace methods allow us to find these eigenvectors with very few iterations. Suppose 
we have found such a vector v = [v1, v2, . . .], such that

GF (s)v = 0.

Then our approximation to the invariant distribution of this system is given by the discrete probability distribution repre-
sented by the vector

p(s) = [p1(s), p2(s), . . .] = v∑
vi

.

Our aim is now to use this distribution to find the effective propensities of the slow reactions of the original system.
Suppose that we have Ns slow reactions in the original system. Each has an associated propensity function 

α1(S, F ), α2(S, F ), . . . , αNs (S, F ). We now simply want to find the expectation of each of these propensity functions with 
respect to the probability distribution p(s):

E(αi(S, ·)) =
∑

i

pi(s)αi(S, f ). (7)

Having computed this expectation for all of the slow propensities, over all required values of the slow variable, then an 
effective generator for the slow variable can be constructed.

3. Comparing the CMA and QSSA approaches

A very common approach to approximating the dynamics of slowly changing quantities in multiscale systems, is to invoke 
the quasi steady-state assumption (QSSA). The assumption is that the fast and slow variables are operating on sufficiently 
different time scales that it can be assumed that the fast subsystem enters equilibrium instantaneously following a change 
in the slow variables, and therefore is unaffected by the slow reactions. This assumption means that if the fast subsystem’s 
invariant distribution can be found (or approximated), then the effective propensities of the slow reactions can be computed. 
However, as demonstrated in [8], this assumption incurs an error, and for systems which do not have a large difference in 
time scales between the fast and slow variables, this error can be significant.
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Table 3
The CMA approach to approximating the effective generator G of the slow variables on the (possibly truncated) 
domain S ∈ �, without the need for stochastic simulations.

[1] For each value of the slow variable S = s ∈ �, compute the generator Gs of the constrained subsystem.
[2] Find the zero eigenvector v = [v1, v2, . . .] of Gs , and let p(s) = v∑

vi
.

[3] Approximate the effective propensities at each point s ∈ � using (7).
[4] Construct an effective generator G of the slow processes of the system using these effective propensities.

The CMA does not rely on the QSSA, and is able to take into account the effect that the slow reactions have on the 
invariant distribution of the fast variables, conditioned on a value of the slow variables. In a true fast-slow system, this 
will yield the same results as the QSSA, but for most systems of interest, the constrained approach will have a significant 
increase in accuracy. If we follow the approach outlined in Table 3, we don’t even need to conduct any stochastic simulations 
to approximate the effective dynamics.

The assumptions for the CMA are weaker than the QSSA, namely that we assume that the dynamics of the slow vari-
able(s) can be approximated by a Markov-modulated Poisson process, independently of the value of the fast variables. This 
means that we have made the assumption that the current value of the fast variables has no effect on the transition rates 
of the slow variables once a slow reaction has occurred. This is subtly weaker than the QSSA, and importantly the effect of 
the slow reactions on the invariant distribution of the fast variables is accounted for. Note that this may necessitate a slow 
variable which has more than one dimension, for example in oscillating systems for which the effective dynamics cannot 
be approximated by a one dimensional Markov process. Consideration of such systems is an area for future work.

4. The nested CMA

There will be many systems for which the constrained subsystem is itself a highly complex and multiscale system. In this 
event, it will not be feasible to find the null space of a sensibly truncated generator for the constrained subsystem. Therefore, 
we need to consider how we might go about approximating this. Fortunately, we already have the tools to do this, since 
we can iteratively apply the CMA methodology to this subsystem. This is analogous to the nested strategy proposed in the 
QSSA-based nested SSA [11].

This nested approach allows us to reduce much more complex systems in an accurate, computationally tractable way. 
The problem of finding the null space of the first constrained subsystem is divided into finding the null space of many small 
generators, through further constraining. An example of this nested approach will be demonstrated in Section 5.3.

5. Examples

In this section we will present some analytical and numerical results produced using the CMA approach for three differ-
ent examples. In order to give an indication of the computational cost of the algorithms, we include the runtime of certain 
operations. All numerics were performed using MATLAB on a mid-2014 MacBook Pro. Disclaimer: the implementations used 
are not highly optimised, and these runtimes are purely given as an indication of the true costs of a well implemented 
version.

5.1. A simple linear system

First we consider a simple linear system, in order to demonstrate that the CMA approximation of the effective generator 
of the slow variable is exact in the case of systems with only monomolecular reactions, which is in contrast to the approx-
imation found using a more standard QSSA-based approach. Let us illustrate this by returning to the example given by the 
linear system (5), first analysing it using the QSSA.

R1 : ∅ k1−→ X1,

R2 : X2
k2−→ ∅,

R3 : X1
k3−→ X2,

R4 : X2
k4−→ X1.

We will consider this system in the following parameter setting:

k1 V = 20, k2 = 1, k3 = 5, k4 = 5. (8)

Here V denotes the volume of the well-mixed thermally-equilibrated reactor.
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5.1.1. QSSA-based analysis
The QSSA tells us that the fast subsystem (made up of reactions R3 and R4) reaches probabilistic equilibrium on a 

timescale which is negligible in comparison with the timescale on which the slow reactions are occurring. Therefore we 
may treat this subsystem in isolation with fixed S:

X1

k3−→←−
k4

X2, S = X1 + X2.

This is a very simple autocatalytic reaction system, for which a great deal of analytical results are available. For instance, 
we can compute the invariant distribution for this system [22], which gives us that X2 is a binomial random variable

X2 ∼ B
(

·, S,
k3

k3 + k4

)
.

Therefore, we can compute the conditional expectation E(X2|S) = k3 S
k3+k4

in this fast subsystem, and use this to approximate 
the effective rate of reaction R2. Therefore, the effective slow system is given by the reactions:

∅ k̂1−→ S
k̂2−→ ∅, (9)

where

k̂1 = k1, k̂2 = k2E(X2)

S
= k2k3

k3 + k4
.

We can compute the invariant distribution for this effective system [22], which in this instance is a Poisson distribution:

S ∼ P
(

k1 V (k3 + k4)

k2k3

)
. (10)

We can quantify the error we have made in using the quasi-steady state assumption by, for example, comparing this distri-
bution with the true invariant distribution. Once again, using the results of [22], we can compute the invariant distribution 
of the system (5), which is a multivariate Poisson distribution:

[X1, X2] ∼ P(λ̄1, λ̄2),

where λ̄1 = k1 V (k2+k4)
k2k3

, and λ̄2 = k1 V
k2

. Trivially one can compute the marginal distribution on the slow variable S:

P(S = s) =
s∑

n=0

λ̄n
1

n!
λ̄s−n

2

(s − n)! exp(−(λ̄1 + λ̄2)),

= (λ̄1 + λ̄2)
s

s! exp(−(λ̄1 + λ̄2)).

Therefore S is also a Poisson variable with intensity λ = λ̄1 + λ̄2 = k1 V (k2+k3+k4)
k2k3

, which differs from the intensity approxi-

mated invariant density (10) by k1 V
k3

. Note that k3 is one of the fast rates, and k1 V is one of the slow rates, and therefore as 
the difference in timescales of the fast and slow reactions increases, this error decreases to zero, so that the QSSA gives us 
an asymptotically exact approximation of the slow dynamics. For systems with a finite timescale gap, the QSSA approxima-
tion will incur error over and above the error incurred in any approximation of the marginalised slow process by a Markov 
process.

5.1.2. CMA analysis
For comparison, let us compute approximations of the effective slow rates by using the CMA. The CMA for this system 

tells us that we need to analyse the constrained system (6).

C1 : X1 + X2 = S,

R2 : X2
k2−→ X1,

R3 : X1
k3−→ X2,

R4 : X2
k4−→ X1.

The constrained system in this example only contains monomolecular reactions, and as such can be analysed using the 
results of [22]. The invariant distribution for this system is a binomial, such that
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Fig. 1. Approximations of the invariant distribution of the slow variable S = X1 + X2 of system (5) with parameters (8) through marginalisation of the 
distribution of the full system (histogram), of the effective generator computed using the CMA (solid line) and computed using the QSSA (dashed line).

X2 ∼ B
(

·, S,
k3

k2 + k3 + k4

)
.

Using this, we can compute the effective propensity of reaction R2,

ᾱ2(S) = k2E(X2|S) = k2k3 S

k2 + k3 + k4
,

giving us the effective rate k̄2 = k2k3
k2+k3+k4

. The invariant distribution of (9) with this effective rate for k̄2 is once again a 
Poisson distribution with intensity

λ = k1 V (k2 + k3 + k4)

k2k3
,

which is identical to the intensity of the true distribution on the slow variables. In other words, for this example, the CMA 
produces an approximation of the effective dynamics of the slow variables for this system, whose invariant distribution is 
identical to the marginal invariant distribution of the slow variables in the full system. The constrained approach corrects 
for the effect of the slow reactions on the invariant distribution of the fast variables. In this and other examples of systems 
with monomolecular reactions, the constrained approach gives us a system whose invariant distribution is exactly equal to 
the marginal distribution on the slow variables for the full system. Another example is presented in Section 5.3, for which 
the constrained system is itself too large to easily compute expectations directly through its generator, and requires another 
iteration of the CMA to be applied.

For this example, we did not even need to compute the invariant distributions of the constrained systems numerically. 
In Section 5.2, we will come across a system for which it is necessary to numerically compute the invariant distribution of 
the constrained system.

5.1.3. Comparison of approximation of invariant densities
Fig. 1 shows the invariant distributions of the slow variables S = X1 + X2 in the parameter regime (8), computed by 

marginalising the invariant distribution of the full system, and from the CMA and QSSA as outlined above. The CMA exactly 
matches the true distribution, as both are Poisson distributions with rate λ = 44. The QSSA incorrectly approximates the 
effective rate of R4, and as such is a Poisson distribution with rate λ = 40. The relative error of the CMA for this problem is 
zero, and for the QSSA is 4.322 × 10−1.

5.1.4. Conditioned path sampling using effective generators
The approaches described in Section 1.1 hit problems when the system for which we are trying to generate a conditioned 

path is multiscale. In a multiscale system, the rate ρ of the dominating process will be very large, and as such the number 
of reaction events will be large, even if the path we are trying to sample is short. Therefore Mr is likely to be a full matrix, 
and the number of calculations of (2) will be large. Moreover, the size of M is also likely to be large, since for each value 
S = s of the slow variable, there are many states, one for each possible value of the fast variable. All of these factors make 
the problem of computing a conditioned path in such a scenario computationally intractable.

Considering once more the system (5), naturally we cannot store the actual generator of this system, since the system is 
open and as such the generator is an infinite dimensional operator. However, the state space can be truncated carefully in 
such a way that the vast majority of the states with non-negligible invariant density are included, but an infinite number 
of highly unlikely states are presumed to have probability zero. Note that this means that we are effectively sampling paths 
satisfying S(t0) = s1, S(t1) = s2 conditioned on S(t) ∈ � ∀t . However, even with careful truncation the number of states can 
be prohibitively large.
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Fig. 2. (a) 10 trajectories of the slow variable conditioned on S(0) = 44 = S(10), sampled using the CMA approximate effective generator. (b) Mean and 
standard deviation of 1000 trajectories of the slow variable conditioned on S(0) = 44 = S(10), sampled using the approximate effective generator from both 
the QSSA (blue plots) and CMA (red plots).

Suppose that we truncate the domain for this system to

� = {[X1, X2]|X1, X2 ∈ {0,1, . . . ,200} .

This truncated system has 2012 = 40401 different states, and therefore the generator G ∈ R
40401×40401. Although this matrix 

is sparse, the matrix exponential required in (1) is full, as is Mr for moderate r ∈ N. A full matrix of this size stored at 
double precision would require over 13 GB of memory. So even for this system, the most simple multiscale system that one 
could consider, the problem of sampling conditioned paths is computationally intractable.

In comparison, suppose that we use a multiscale method such as the CMA to approximate the effective rates of the slow 
reactions. Then, for the same �, we only have 401 possible states of the slow variable, a reduction of 99.25%. The effective 
generator G ∈ R

401×401 would then only require 1.29 MB to be stored as a full matrix in double precision. The dominating 
process for this system must now have rate ρ > 201.4, instead of ρ > 1220, which is over 6 times bigger. This means far 
fewer calculations of (2). What is more, as we saw in Section 5.1.2, for some systems the CMA exactly computes the effective 
dynamics of the slow variables, with no errors.

The system (5), in order to highlight more effectively the differences between the CMA and a QSSA-based approach, is 
in a parameter range (8), for which the difference in time scales between the “fast” and “slow” variables is relatively small, 
and of course for systems with larger timescale difference, the difference in ρ between the full and effective generators 
would be far larger.

Naturally, this approach only allows us to sample the paths of the slow variables. However, the fast variables, if required, 
can easily be sampled after the fact, using an adapted Gillespie approach which samples the fast variables given a trajectory 
of the slow variables.

As we have just demonstrated in the previous section, the CMA can be used to compute an effective generator for 
the slow variable S = X1 + X2 in the system (5), with parameters (8), whose invariant distribution is exactly that of the 
slow variable in the full system without the multiscale reduction. Moreover, this can be achieved with no Monte Carlo 
simulations, since the constrained subsystem contains only monomolecular reactions, and as such its invariant distribution 
can be exactly computed [22].

At this juncture, we simply need to apply the method of Fearnhead and Sherlock [16] to the computed effective generator 
in order to be able sample paths conditioned on their endpoints. Suppose we wish to sample paths conditioned on S(t0 =
0) = 44 = S(t1 = 10). The invariant distribution of this system, as shown previously in this paper, is a Poisson distribution 
with mean λ = k1 V (k2+k3+k4)

k2k3
= 44. Therefore, we are attempting to sample paths which start and finish at the mean of the 

invariant distribution, which in itself is not a particularly interesting thing to do, but it will allow us to highlight again the 
advantages of using the CMA over QSSA-based approaches.

Since the system is open, we are required to truncate the domain in order to be able to store and manipulate the 
effective generator. We truncate the domain to � = {[X1, X2]|S = X1 + X2 ≤ 400}. Therefore we aim to sample paths

{S(t), t ∈ [0,10] | S(0) = 44 = S(10), S(t) ∈ �∀t ∈ [0,10]}.
As the number of possible states of the slow variable is relatively small, it was possible to compute and store full matrices 

for Mr as required in (1) and (2) for r ∈ 1, 2, . . . , 2369. r has an upper bound of 2369 as the cumulative mass function for the 
probability distribution (1) is within machine precision of one at r = 2369. Storing all powers of the matrices is clearly not 
the most efficient way to implement this algorithm, but for this example was possible without any intensive computations, 
and with minimal numerical error. We will present a more efficient approach in the next section.

Fig. 2(a) shows 10 example trajectories sampled using the conditioned path sampling algorithm with the CMA approx-
imation of the effective generator of the slow variable. We also implemented exactly the same approach using the QSSA 
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approximation of the effective generator. The mean and standard deviation of 1000 paths sampled using both methods is 
plotted in Fig. 2(b). Since the paths are conditioned to start and finish at the mean of the system’s monomodal invariant 
distribution, we would expect the mean to converge to a constant S = 44 as we sample more paths.

This appears to be the case for the paths sampled using the CMA effective generator, which is what we would hope 
since this generator preserves the true mean of the slow variables, as demonstrated in the previous section.

The QSSA, as has also been demonstrated in Section 5.1.1, does not correctly preserve the invariant distribution of the 
slow variables, and underestimates the mean value of the invariant distribution. This can be seen in 2 (right), where the 
mean value of the path dips in the middle of the trajectory as it reverts to the mean of the invariant distribution of the 
QSSA approximation, before increasing towards the end of the trajectory in order to satisfy the condition S = 44.

This demonstrates that the accuracy of the approximation of the effective dynamics has a knock-on impact, as one 
would expect, to the accuracy of the conditioned path sampling. It would be preferable, naturally, if we could compare path 
statistics of the multiscale approaches to that of conditioned paths statistics of the full system. However, this is simply not 
feasible, due to the size of the matrices, even for the truncated domain �. Instead, this does succeed in demonstrating that 
these methods make conditional path sampling of the slow variables a possibility, where it was computationally intractable 
previously. Since the rates could be explicitly calculated for this simple example, the effective generators could be produced 
in the order of 10−3 seconds for the domain S ∈ {0, 1, . . . , 400}. The set up process for the path sampling, involving finding 
the probabilities in (1) and computing the required powers of M took around 90 seconds. After this, each path took a third 
of a second to sample.

5.2. A bistable example

Sampling of paths conditioned on their endpoints is an integral part of some approaches to Bayesian inversion of bio-
chemical data. A Gibb’s sampler can be used to alternately update the network structure and system parameters, and the 
missing data (i.e. the full trajectory), sampled for example using the method found in [16]. However, efficient methods to 
sample paths of multiscale systems may also be useful in other areas. For instance, it may allow us to sample paths which 
make rare excursions, or large deviations from mean behaviour. This forms part of the motivation for considering the next 
example.

Let us consider the following chemical system, which in certain parameter regimes exhibits bistable behaviour.

R1, R2 : X2

k1−→←−
k2

X1 + X2,

R3, R4 : ∅
k3−→←−
k4

X1, (11)

R5, R6 : X1 + X1

k5−→←−
k6

X2,

R7 : X2
k7−→ ∅.

In particular, we consider parameter regimes where the occurrence of reactions R5 and R6 are on a relatively faster 
timescale than the other reactions. The following is just such a parameter regime:

k1 = 142,
k2

V
= 1, k3 V = 880, (12)

k4 = 92.8,
k5

V
= 10, k6 = 500, k7 = 6.

As before, V denotes the volume of the well-mixed thermally-equilibrated reactor.
That said, this parameter regime is one in which the use of the QSSA will create significant errors, since the timescale gap 

is not very large in all parts of the domain as demonstrated in Fig. 3. Fig. 3(a) shows a highly accurate approximation of the 
invariant distribution of the full system, found by computing the null space of the full generator for the system truncated 
to the finite domain � = {(x1, x2) ∈ {0, 1, . . . , 800} × {0, 1, . . . , 1200}. The zero eigenvector of this truncated generator was 
found using standard eigenproblem solvers, then normalised. Since this system has 2nd order reactions, its invariant density 
cannot in general be written in closed form, and as such, we could use this approximation on the truncated domain in 
order to quantify the accuracy of the multiscale approaches. This plot demonstrates the bistable nature of this system, 
which can take a long time to switch between the two favourable regions. This example has been chosen in order that such 
an approximation can still be computed in order to check the accuracy of the approach.

Fig. 3(b) shows the proportion of the total propensity for each state which is attributed to the fast reactions, R5 and R6, 
given by:

P R5,R6(X1, X2) = α5(X1, X2) + α6(X1, X2)

α0(X1, X2)
= α5(X1, X2) + α6(X1, X2)∑M α (X , X )

. (13)

i=1 i 1 2
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Fig. 3. (a) A log plot of an approximation π� of the invariant distribution on the slow variable S = X1 + 2X2 of system (11) with parameters (12), 
demonstrating the bistable nature of the system. Approximation was computed by finding the null space of the full generator of the system on the 
truncated domain {0, 1, . . . , 800} × {0, 1, . . . , 1200}. (b) Proportion of total propensity P R5,R6 (X1, X2) attributed to the fast reactions R5 and R6, given 
by (13).

This proportion, which is a measure of the gap in timescales between the “fast” reactions R5 and R6, and the rest of 
the reactions, varies across the domain. We can approximate the expected proportion of propensity attributed to the fast 
reactions:

E(P R5,R6) =
∑

(X1,X2)∈�

P R5,R6(X1, X2)π�(X1, X2),

where π� is the approximate invariant density of the full generator on the truncated domain �. In this system with 
parameters (12), E(P R5,R6 ) = 0.6941, i.e. the expected proportion of all reactions which are either of type R5 or R6 is 
69.41%. As such, although reactions R5 and R6 are occurring more frequently than other reactions, there is not a stark 
difference in timescales, as we might expect in a system for which the QSSA yields a good approximation. The “fast” 
reactions in this example are reactions R5 and R6, and as such, S = X1 + 2X2 is a good choice of slow variable, since this 
quantity is invariant to these fast reactions.

5.2.1. The QSSA approach
By applying the QSSA to the system (11), we can approximate the effective rates of the slow variables by considering the 

fast reactions in isolation. The fast subsystem is given by the reactions R5 and R6:

C1 : X1 + 2X2 = S, (14)

R5, R6 : X1 + X1

k5−→←−
k6

X2.

Lines denoted by Ci in this and what follows denotes a constraint. It is important to keep a track of these constraints, since 
each one reduces the dimension of the state space by one.

For a fixed value of S = X1 + 2X2 ∈ {0, 1, . . . , Smax}, we wish to find the generator for the process X2 (or equivalently 
X1 = S − 2X2) within this fast subsystem. The generator can be found by considering the master equation for each state 
X2 = i:

dpi

dt
= −(α5(S − 2i, i) + α6(S − 2i, i))pi + α5(S − 2(i − 1), i − 1)pi−1

+ α6(S − 2(i + 1), i)pi+1,

where pi(t) is the probability of X2(t) = i. Putting this set of differential equations into vector form gives us:

dP

dt
= GP,

where G is the generator of the fast subsystem (14). Note that since we are restricted to states such that X1 + X2 = S for 

some value of S , there are only 
⌊ S

2

⌋
possible different states, and as such G ∈ R

⌊
S
2

⌋
×

⌊
S
2

⌋
. Even for moderately large values 

of S , the one-dimensional null space of such a sparse matrix is not computationally expensive to find, and when normalised 
gives us the invariant density of X2 (and therefore X1 if required). This invariant density can then be used to compute the 
expectation of the propensities of the slow reactions of the system for the state S as in (7), and in turn be entered into the 
(truncated) effective generator for the slow variable.
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Fig. 4. Approximations of the invariant distribution of the slow variable S = X1 + 2X2 of system (11) with parameters (12), through computing the null 
space of the truncated generator of the full system (histogram), of the effective generator computed using the CMA (solid line) and computed using the 
QSSA (dashed line).

5.2.2. The constrained approach
When using the CMA, the methodology is largely the same as was described for the QSSA-based approach in the last 

section. The only real difference lies in the subsystem which is analysed in order to compute the invariant distribution of 
the fast variables conditioned on the value of the slow variable. As we have done previously, we will consider each of the 
reactions in the system in turn, constraining the value of the slow variable to a particular value, whilst being sure not to 
change the value of the fast variables. There are two choices for the fast variable, in order to form a basis of the state space 
along with the slow variable S , but as explained in detail in [9], F = X2 is the best choice, since there is a zeroth order 
reaction involving X1, which can lead to an unphysical constrained subsystem, if this is chosen as the fast variable.

With this choice of fast variables, the first four reactions all disappear in the constrained subsystem. This is because none 
of these reactions alter the fast variable, and as such the constrained stoichiometric projector maps their stoichiometric 
vectors to zero, and therefore reactions R1, R2, R3, R4 have no net effect on the constrained subsystem.

Reaction R7 differs in that it causes a change in the fast variable X2. The projector in this case maps the stoichiometric 
vector to [−2, 1]T and therefore the net effect of reaction R7 is equivalent to X2

k7−→ X1 + X1. This leads to the following 
constrained system:

C1 : X1 + 2X2 = S,

R5, R6 : X1 + X1

k5−→←−
k6

X2,

R7 : X2
k7−→ X1 + X1.

Note that since reactions R6 and R7 have the same stoichiometry, this system can be simplified by removing R7 and adding 
its rate to R6:

C1 : X1 + 2X2 = S,

R5, R6 : X1 + X1

k5−→←−
k6+k7

X2. (15)

For every fixed value of S ∈ {0, 1, . . . , Smax}, the generator for (15) can be found following the same approach as in the pre-
vious section, the only difference being the altered rate for reaction R6. Following this methodology, an effective generator 
G can be computed.

5.2.3. Comparison of approximation of invariant densities
One approach to quantifying the accuracy of these two methods of approximating effective generators of the slow vari-

able, is to compare the invariant distributions of the two systems with that of the marginalised density of the slow variable 
in the full system. We consider the approximation π� of the invariant density of the full system, truncated to the region 
� = {(x1, x2) ∈ {0, 1, . . . , 800} × {0, 1, . . . , 1200}, as shown in Fig. 3(a). We can marginalise this density to find an approxi-
mation of the invariant density of the slow variable, as is shown by the histogram in Fig. 4.

The CMA approximation of the invariant density of the slow variable is indistinguishable by eye from the highly accu-
rate approximation computed in this manner, as shown in Fig. 4. The QSSA approximation, on the other hand, incorrectly 
approximates both the placement and balance of probability mass of the two peaks in the distribution. The difference 
in the quality of these approximations is stark. This example is an extreme one, as the parameters have been chosen to 
demonstrate how far apart these two approximations can be, but since the CMA has no additional costs associated with it, 
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Table 4
Differences in the accuracy of the QSSA and CMA approximations of the invariant density of S , 
with respect to the approximation π� .

QSSA CMA π�

Relative l2 difference 6.347 × 10−1 1.796 × 10−2 –
LH peak position 20 20 20
LH peak height 5.378 × 10−3 1.591 × 10−2 1.582 × 10−2

RH peak position 309 295 295
RH peak height 6.192 × 10−2 4.060 × 10−3 4.006 × 10−3

Fig. 5. (a) 8 trajectories of the slow variable S = X1 + 2X2 sampled conditioned on S(0) = 20, S(10) = 195, S(t) ∈ � = {0, 1, . . . , 500}∀t ∈ [0, 5] for the 
system (11) with parameters (12), using the CMA approximation of the effective generator. (b) The means and standard deviations of 100 paths sampled 
using the QSSA (blue plots) and CMA (red plots). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

the advantages of this approach are significant. The relative l2 errors of these two approaches, when compared with the 
approximate density π� , are given in Table 4, along with the position and heights of the two local maxima in the densities.

The CMA computed the generator on the domain S ∈ [0, 2000] in around 55 seconds, and the eigensolver took less than 
a tenth of a second to find the null space to approximate the invariant density. This is negligible in comparison with the 
cost of exhaustive stochastic simulation of the full system.

5.2.4. Conditioned path sampling using effective generators
Given an approximation of the effective generator of the slow variables, computed using the CMA or the QSSA, we 

can now employ the methodology of [16], as summarised in Section 1.1, to sample paths conditioned on their endpoints. 
This time, a full eigenvalue decomposition of the matrix M = 1

ρG + I was computed, so that matrices V and D could be 
found with V unitary and D diagonal, with M = V −1 D V . Then rows of Mr = V −1 Dr V can be efficiently and accurately 
computed, as required in (1) and (2).

Fig. 5 presents results using this approach. An effective generator for the system (11) was computed for the domain X1 +
2X2 = S ∈ � = {0, 1, . . . , 500}, using both the QSSA and CMA, and then fed into the conditioned path sampling algorithm. 
Fig. 5(a) shows 8 samples of conditioned paths approximated using the CMA. Notice that as the transition time between 
the two favourable regions is relatively short compared with the length of the simulation, the time of the transition varies 
greatly between the different trajectories. This indicates that we are producing trajectories with a fair reflection of what 
happens in a transition between these regions. Fig. 5(b) shows the means and standard deviations of 100 paths sampled 
for both methods of computing the effective generator. The QSSA, which overestimates the value of the second peak in 
the invariant density, has a higher mean than the CMA. This demonstrates again that errors in approximating the effective 
generator has a knock-on affect to applications such as conditioned path sampling.

The effective generator was computed on the domain S ∈ [0, 500] for the path sampling, which took the CMA close to 5 
seconds to approximate. The calculation of the probabilities in (1), and the full eigenvalue decomposition of the generator 
matrix on this domain, took around 50 seconds. After this, each path took around 350 seconds to sample.

5.3. An example of the nested CMA approach

In this section, we will illustrate how the nested approach outlined in Section 4 can be applied. We will consider an 
example for which we know the invariant distribution of the slow variables. This gives us a way of quantifying any errors 
that we incur by applying the nested CMA and QSSA approaches.
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Fig. 6. Relative occurrences of the reactions R1–R6, for the system (16) with parameters (17). The most frequent reactions are reactions R3 and R4, reactions 
R5 and R6 are the next most frequent, with reactions R1 and R2 being the least frequent.

R1 : ∅ k1−→ X1,

R2 : X3
k2−→ ∅,

R3 : X1
κ−→ X2, (16)

R4 : X2
κ−→ X1,

R5 : X2
γ−→ X3,

R6 : X3
γ−→ X2.

We will consider this system in the following parameter regime:

k1 V = 20, k2 = 1, κ = 100, γ = 10. (17)

As before, V denotes the volume of the well-mixed thermally-equilibrated reactor. In this regime, there are multiple dif-
ferent time scales on which the reactions are occurring. This is demonstrated in Fig. 6, where there is a clear gap in the 
frequency of reactions R1 and R2 (the slowest), R5 and R6 (fast reactions) and R3 and R4 (fastest reactions).

This system was chosen as we are able to, using the results in [22], find the exact invariant distribution of the slow 
variable S1 = X1 + X2 + X3. In this instance, it is a Poisson distribution with mean parameter

λ = k1 V

k2γ κ
(γ k2 + 3γ κ + 2k2κ) = 64.2.

5.3.1. QSSA-based analysis
One method to analyse such a system would be a nested QSSA-based analysis, similar to that which is suggested in 

[11]. In this paper the authors consider systems with reactions occurring on multiple timescales. If at first we consider all 
reactions R3–R6 to be fast reactions, then by applying the QSSA we are interested in finding the invariant distribution of 
the following fast subsystem:

C1 : X1 + X2 + X3 = S1,

R3 : X1
κ−→ X2,

R4 : X2
κ−→ X1, (18)

R5 : X2
γ−→ X3,

R6 : X3
γ−→ X2.

Note that the quantity S1 = X1 + X2 + X3 is a conserved quantity with respect to these reactions, and as such is the slow 
variable in this system. This is in itself also a system with more than one timescale, and as such, we may want to iterate 
again and apply a second QSSA assumption, based on the fact that reactions R3 and R4 are fast reactions in comparison 
with reactions R5 and R6. This leads to a second fast subsystem:

C1 : X1 + X2 + X3 = S1,

C2 : X1 + X2 = S2,

R3 : X1
κ−→ X2,

R4 : X2
κ−→ X1.
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Note that the quantity S2 = X1 + X2 = S1 − X3 is a conserved quantity with respect to these reactions, and as such is 
the slow variable in this system. At this point in [11], the authors simulate the system using the Gillespie SSA. We could 
adopt the approach that we used in Section 5.2, in which we find the invariant distribution of the system by constructing its 
generator and then finding the normalised eigenvector corresponding to the null space of that operator. This would not be 
expensive since there are only S2 different states. However, as in Section 5.1, as this system only contains monomolecular 
reactions, we can exactly find its invariant distribution. In this case, X1 and X2 follow a binomial distribution with mean 
X̄1, X̄2 = S2

2 . This can then be used to compute the effective rate of reaction R5 in the first subsystem (18), α5(X1, X2) ≈
γ X̄2 = γ

2 S . This fast subsystem is then reduced to the following:

C1 : X1 + X2 + X3 = S1 = S2 + X3,

C2 : X1 + X2 = S2,

R5 : S2
γ /2−→ X3,

R6 : X3
γ−→ S2.

Note that we have completely eliminated the fast variables X1 and X2, and instead consider the slower variable S2 =
X1 + X2, with effective rate for R5 given by the analysis above. This system is exactly solvable, and its invariant distribution 
is a gamma distribution with means given by X̄3 = S1

3 and S̄2 = 2S1
3 , found by computing the steady states of the mean 

field ODEs [22]. This in turn can be used to compute the effective rate of reaction R2 in the full system, where we now lose 
all of the fast variables X1, X2, X3 and instead wish to understand the dynamics of the slow variable S1 = X1 + X2 + X3, 
which is only altered by reactions R1 and R2. This system is given by the following:

R1 : ∅ k1−→ S1,

R2 : S1
k2/3−→ ∅.

Here the effective rate for R2 has been found by using the approximation of the effective rate α2(S1) = k2 X̄3 = k2
3 S .

5.3.2. CMA-based analysis
We will now go through the same procedure, but this time using the constrained subsystems instead of the fast subsys-

tems as used in the previous section. There are 3 choices for the fast reactions, each involving two out of X1, X2 and X3. 
Since X1 is the product of a zeroth order reaction, it is preferable not to include this as one of the fast variables, and so we 
pick F1 = [X2, X3]. We then construct the constrained subsystem for this choice of slow and fast variables:

C1 : X1 + X2 + X3 = S1,

R2 : X3
k2−→ X1,

R3 : X1
κ−→ X2,

R4 : X2
κ−→ X1, (19)

R5 : X2
γ−→ X3,

R6 : X3
γ−→ X2.

Note that R1 is removed, since it does not change the fast variables. R2 is the only other reaction which has changes to 
its stoichiometry due the constrained stoichiometric projector. We have reduced the dimension of the system (due to the 
constraint X1 + X2 + X3 = σ for some σ ∈ N), but we are still left with a multiscale system, which in theory could be 
computationally intractable for us to find the invariant distribution for, through funding the null space of its generator. 
Therefore, we can apply another iteration of the CMA to this constrained system.

Reactions R3 and R4 are the fastest reactions in the system, and therefore we pick our next slow variable that we 
wish to constrain to be S2 = X1 + X2, which is invariant with respect to these reactions. Due to the previous constraint 
S1 = X1 + X2 + X3, we are only required to define one fast variable for this system. Both choices F2 = X1, X2, are essentially 
equivalent, and so we pick F2 = X1. These choices lead us to the following second constrained system:

C1 : X1 + X2 + X3 = S1,

C2 : X1 + X2 = S2,

R2 : α2(X) =
{

k2 X3, if X2 > 0,

0 otherwise,
(20)

ν2 = [1,−1,0]T ,

R3 : X1
κ−→ X2,

R4 : X2
κ−→ X1.
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Fig. 7. Approximations of the invariant distribution of the slow variable S = X1 + X2 + X3 of system (16) with parameters (17), through marginalisation 
of the invariant distribution of the full system (histogram), of the effective generator computed using the CMA (solid line) and computed using the QSSA 
(dashed line).

Here ν i denotes the stoichiometric vector associated with reaction Ri , i.e. the vector which is added to the state X(t) if 
reaction Ri fires at time t . Notice that we now have two separate constraints, and as such reactions R5 and R6 now have 
zero stoichiometric vectors. Moreover, these constraints lead us to a somewhat unphysical reaction for R2. The reactant for 
this reaction is X3, but only X2 and X1 are affected by this altered reaction. In system (19) when reaction R2 fires, we lose 
one X3, and gain X1. Therefore, both constraints within (20) have been violated. In order to reset these constraints, without 
changing the fast variable F = X3, we arrive at the stoichiometry presented in (20). Note that we add the condition that 
this reaction can only happen if X2 > 0, as we cannot have negative numbers of any species.

This is a closed system, with a very limited number of different states. Therefore, it is computationally cheap to construct 
its generator, and to find that generator’s null space. Our aim with this system, is to find the invariant distribution of the 
fast variable given particular values for the constraints C1 and C2. This distribution will then allow us to compute the 
expectation of the reaction R4 within the constrained system (6), which is the only reaction which is dependent on the 
results of the second constrained system (since X3 = S1 − S2). Once the invariant distribution has been found, this can 
be used to find the effective propensity of reaction R5 given values of S1 = X1 + X2 + X3 and S2 = X1 + X2. In turn, the 
constrained system (19) can then be solved to find the invariant distribution on X3 given a value of S1. Finally, this leads 
us to the construction of an effective generator for the slow variable S1.

Since this final constrained subsystem is aphysical, we cannot use the results of [22] to find the invariant distribution, 
and as such we must approximate them through finding the null space of the generator, as we did in Section 5.2.

5.3.3. Comparison of approximation of invariant densities
Fig. 7 shows the invariant distributions of the slow variables S = X1 + X2 + X3 computed by marginalising the invariant 

distribution of the full system, and from the CMA and QSSA as outlined above. The distribution computed using the CMA 
is indistinguishable by eye from the true distribution, and has a relative error of 5.936 × 10−12, which can be largely 
attributed to rounding errors and error tolerances in the eigenproblem solvers. The QSSA approximation, on the other hand, 
has a significant relative error of 3.739 × 10−1. This demonstrates again the substantial improvements in accuracy that we 
gain in using the constrained approach rather than one based on the QSSA. This is delivered at no substantial additional 
computational effort. As in the previous two examples, the highly accurate effective generator approximated using the CMA 
can be used in a host of applications where the full generator could not, such as conditioned path sampling.

The CMA is more expensive in this example than the previous ones, as there are a very large number of small eigenvalue 
problems to solve. This is due to the fact that there are reactions of three species occurring on three different time scales. 
The generation of the CMA approximation of the effective generator took around 1240 seconds, and the subsequent approx-
imation of the invariant distribution of the slow variables took just over half a second. This still pales into comparison with 
the cost of exhaustive stochastic simulation of the system. The savings would be even more pronounced in systems with 
multimodal invariant distributions where switches between the modes are rare.

6. Conclusions

In this paper, we presented a significant improvement and extension to the original constrained multiscale algorithm 
(CMA). Through constructing and finding the null space of the generator of the constrained process, we can find its invariant 
distribution without the need for expensive stochastic simulations. The CMA in this format can also be used not just to 
approximate the parameters of an approximate diffusion, but to approximate the rates in an effective generator for the slow 
variables.

In this paper we have not discussed how the slow and fast variables in these systems can be identified. In the simple 
examples presented, this is relatively straightforward. However in general, this is far from the case. If the high probability 
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regions in the statespace are known a priori, or possibly identified through short simulations of the full system, then it is 
possible to identify which are the fast reactions in the system, and therefore what good candidates for the slow variable(s) 
could be. Other more sophisticated approaches exist, for example methods for automated analysis to identify the slow 
manifold [14,26,28]. One relatively ad hoc approach might be to briefly simulate the full system using the Gillespie SSA, 
which can give a good indication as to which the fast reactions are. Good candidates for slow variables are often linear 
combinations of the species who are invariant to the stoichiometry of the fast reactions, as we have seen in this paper. If 
the regions which the system is highly likely to spend the majority of its time are known, then looking at the relative values 
of the propensity functions, as we did in Fig. 3(b), can lead to an understanding of which reactions are fast and which are 
slow.

Through iterative nesting, the CMA can be applied to much more complex systems, as it can be applied repeatedly 
if the resulting constrained system is itself multiscale. This makes it a viable approach for a bigger family of (possibly 
biologically relevant) systems. This nested approach breaks up the original task of solving an eigenvalue problem for one 
large matrix per row of the effective generator, down into many eigenvalue solves for significantly smaller generators for 
smaller dimensional problems, making the overall problem computationally tractable.

In the first example, we demonstrated that the CMA produces an approximation of the dynamics of the marginalised 
slow process in the system which is exact, at least by the measures that we have applied thus far, in the case of systems 
of monomolecular reactions. Since such systems are well understood, we were also able to compare this with the accuracy 
of the equivalent QSSA-based method, which incurred significant errors. We then applied the method of Fearnhead and 
Sherlock [16] to the approximate effective generators of the two approaches, in order to approximately sample conditioned 
paths of the slow variables. This task would be computationally intractable to attempt with the full generator for this 
system. This also demonstrated how the accuracies of the two approximations can impact the accuracy of any application 
for which they may be used.

In the second example, a more complex bistable system was also analysed using the CMA, and the invariant distribution 
of the computed effective generator was shown to be very close to the best approximation that we could make of the 
invariant distribution of the slow variables, using the null space of the original generator with as little truncation as we 
could sensibly manage with our computational resources. This was in stark contrast with the poor approximation which 
was computed using the equivalent QSSA-based approach. This highlighted again the improvement, at no or little extra cost, 
of using the constrained approach as opposed to the QSSA.

In the final example, we demonstrated how the constrained approach might be applied to a more complex example with 
multiple timescales. The algorithm can be applied iteratively in order to reduce the constrained subsystems themselves 
into a collection of easily solved one-dimensional problems. When comparing the invariant distributions of the approximate 
processes computed using the two approaches, the QSSA once again was incorrectly approximating the distribution of 
the fast variables conditioned on the slow variables, and so incurred significant errors. In contrast, the CMA produced an 
approximation to the invariant measure which was accurate up to 12 digits.

We showed how these effective generators can be used in the sampling of paths conditioned on their endpoints. Such 
an approach could be employed as a method to sample missing data within a Gibb’s sampler when attempting to find the 
structure of a network that was observed [16]. This approach could also be used simply to simulate trajectories of the slow 
variables, in the same vein as [6] or [11]. In this instance, it would only be necessary to compute the column of the effective 
generator corresponding to the current value of the slow variables.

The constrained approach consistently significantly outperforms approximations computed using the more standard 
QSSA-based approach, and at negligible additional cost. Furthermore, in the limit of large separation of timescales, the 
constrained approach asymptotically approaches the QSSA approximation.

The computational savings that we make in using the CMA depends on the application with which we wish to use the 
effective generators. Similarly, if we wish to approximate the invariant distribution of the slow variables, then the CMA will 
always be less costly than exhaustive stochastic simulation. This is because we are able to directly compute the invariant 
distribution, whereas in the simulation setting, to obtain the same statistics we would be required to compute a very long 
simulations.

If, on the other hand, we simply wish to use the CMA to compute a trajectory of the slow variables, then the savings will 
vary, based on the size of the chosen domain, and the relative differences in propensity of the fast and slow reactions in the 
relevant regions. If our aim is only to produce one relatively short trajectory, then it is possible that stochastic simulation 
will be more efficient than using the CMA. However this is such a trivial task, that any modeller wishing to do so what not 
consider invoking any approximations such as the QSSA or CMA.

There are many avenues for future work in this direction, not least its application to more complex biologically rele-
vant systems. In particular, the treatment of systems where the effective behaviour of the slow variable(s) cannot be well 
approximated by a one-dimensional Markov process need to considered, for example systems which exhibit oscillations. 
Automated detection of appropriate fast and slow variables, and statistical tests for the validity of the approximation for 
different systems would be hugely beneficial. In the case of constrained systems which are deficiency zero and weakly re-
versible, using the results of [1] we can find the invariant distributions without even constructing the generator, and this 
could be a good direction to investigate.
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