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In this paper we provide a new approach for constructing non-reflecting boundary 
conditions. The boundary conditions are based on summation-by-parts operators and 
derived without Laplace transformation in time. We prove that the new non-reflecting 
boundary conditions yield a well-posed problem and that the corresponding numerical 
approximation is unconditionally stable. The analysis is demonstrated on a hyperbolic 
system in two space dimensions, and the theoretical results are confirmed by numerical 
experiments.

© 2016 Published by Elsevier Inc.

1. Introduction

Many applications in physics and engineering involve unbounded physical domains, which must be limited by Artificial 
Boundary Conditions (ABC’s). These boundary conditions will, if not chosen appropriately, produce non-physical reflections 
that pollute the solution in the interior of the domain.

Non-Reflecting Boundary Conditions (NRBC’s), i.e. ABC’s that do not produce reflections, are in most cases obtained in 
a transformed dual space, see [4,5,15]. The NRBC’s are exact in the transformed space, but hard to implement since they 
are expressed in the dual variables. To circumvent this issue, the exact boundary conditions are often approximated using 
various types of expansions in combination with suitable size assumptions on the frequencies involved [4,15]. The resulting 
approximate boundary conditions are local in both space and time, and relatively easy to implement.

Unfortunately, this approach has some drawbacks. First and foremost, although the exact NRBC’s result in a well-posed 
problem, an approximation of these often leads to an ill-posed problem [4], and consequently an unstable scheme. Sec-
ondly, even if the approximate NRBC’s lead to a well-posed problem and a stable scheme, the accuracy is ruined since 
the amplitude of the reflections is independent of the mesh size. The reflections will therefore not vanish during mesh-
refinement [5].

Another quite different approach for constructing approximate NRBC’s is to introduce buffer zones as artificial boundaries, 
where incoming waves are damped. When the interface between the computational domain and the buffer zone is exactly 
non-reflecting, it is called a Perfectly Matched Layer (PML) [1]. Buffer zone techniques will not be discussed further in this 
paper. For comprehensive reviews of NRBC’s including PML’s as well as other techniques, the reader is referred to [9,6,18].
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The use of Summation-By-Parts (SBP) operators [7,11,16] for the discrete formulation of partial differential equations has 
proven to be very successful. The boundary conditions for SBP approximations are implemented weakly by using Simulta-
neous Approximation Terms (SAT) [2,3]. In this paper, we will make use of the SBP-SAT technique in time [10,12,13] when 
constructing the NRBC’s. By using this technique, the complete analysis can be performed in real space, and hence, the 
NRBC’s can be implemented relatively easily. The resulting boundary conditions are global in space and time, and the whole 
procedure bypasses the transformation and accuracy problems mentioned above.

The remainder of this paper will proceed as follows. We describe the SBP-SAT technique on a one-dimensional problem 
in Section 2. In Section 3, NRBC’s are derived for a general two-dimensional hyperbolic problem. It is shown that the 
boundary conditions result in a well-posed problem. By considering the discrete problem, we introduce an alternative way 
of deriving the NRBC’s in Section 4. The theoretical results are verified by numerical experiments in Section 5. Finally, in 
Section 6, we summarize the results and draw conclusions.

2. The SBP-SAT technique

To introduce the SBP-SAT technique, we consider the advection equation in one space dimension,

ut + ux = 0, x ∈ [0,1], t > 0,

u(0, t) = g(t),

u(x,0) = f (x).

(1)

To examine well-posedness of (1), we multiply with u and integrate in space and time to get

||u||2 +
t∫

0

u2(1, τ )dτ = || f ||2 +
t∫

0

g2(τ )dτ , (2)

where the boundary and initial conditions in (1) and the notation ||u||2 = ∫ 1
0 u2(x, t)dx have been used. Obviously, u is 

bounded by the data f and g which implies that the problem is strongly well-posed. For a detailed discussion on well-
posedness of initial boundary value problems, see [8,14].

2.1. The fully discrete problem

Equation (1) is discretized using the SBP-SAT technique in space and time,

(P−1
t Q t ⊗ Ix)v + (It ⊗ P−1

x Q x)v = αt(P−1
t E0t ⊗ Ix)(v − f̄ ) + αx(It ⊗ P−1

x E0x)(v − ḡ), (3)

where Pt,x and Q t,x are the SBP-operators satisfying Pt,x = P T
t,x > 0 and Q t,x + Q T

t,x = diag(−1, 0, ..., 0, 1). Moreover, Pt is 
proportional to the time step �t and P x is proportional to the grid spacing �x. In (3), E0t,x = diag(1, 0, ..., 0) are of the 
same sizes as Pt,x , respectively, and f̄ , ḡ are grid functions with the values of f , g injected at appropriate grid points. The 
symbol ⊗ denotes the Kronecker product which, for two arbitrary matrices M and N , is defined as

M ⊗ N =

⎡
⎢⎢⎢⎢⎣

M11N . . . . . . M1n N
...

. . .
. . .

...
...

. . .
. . .

...

Mm1N . . . . . . Mmn N

⎤
⎥⎥⎥⎥⎦ .

The penalty coefficients αt,x will be determined such that the scheme becomes stable.
We now multiply (3) with v T (Pt ⊗ P x) from the left, choose αt = αx = −1 and add the transpose of the outcome to 

itself to find

v T (E Nt ⊗ P x)v + v T (Pt ⊗ E Nx)v = f̄ T (E0t ⊗ P x) f̄ + ḡT (Pt ⊗ E0x)ḡ

−(v − f̄ )T (E0t ⊗ P x)(v − f̄ ) − (v − ḡ)T (Pt ⊗ E0x)(v − ḡ).
(4)

Since the matrices E0x,t and E Nx,t in (4) are positive semi-definite, v is bounded by the data f̄ , ̄g , just as in the continuous 
case. This implies that the numerical scheme is strongly stable. The estimate (4) is valid for any choice of timestep and 
hence (3) is unconditionally stable.

Furthermore, the terms on the left-hand side of (4) mimic the terms on the left-hand side of (2). Also, if v = ḡ at 
x = 0 and v = f̄ when t = 0, the right-hand side of (4) mimics the right-hand side of (2). In summary: the discrete energy 
estimate (4) mimics the continuous energy estimate (2) with additional damping terms that vanish with mesh-refinement. 
For more details on the SBP-SAT technique, the reader is referred to [17].
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3. NRBC for the continuous problem

Consider a linear, hyperbolic system of equations in two space dimensions,

ut + Aux + Bu y = 0, x, y ∈ [0,1], t ≥ 0, (5)

where A and B are symmetric and constant matrices. Equations of the form (5) govern many problems in science and 
engineering, such as the linearized Euler and shallow water equations, as well as the Maxwell and elastic wave equations. 
We will henceforth consider B to be diagonal and non-singular. If B is not diagonal, one can always diagonalize it by an 
appropriate transformation.

We focus exclusively on non-reflecting properties of the boundaries at y ∈ {0, 1}, and therefore assume that (5) is periodic 
in x. With this assumption, we can apply a Fourier transform in the horizontal space direction and a Laplace transform in 
time (with zero initial data), such that (5) becomes

û y + C(s,ω)û = 0, (6)

where

C(s,ω) = sB−1 + iωB−1 A, (7)

while s and iω are the dual variables to t and x, respectively. To simplify the derivations below, we assume that C(s, ω) has 
distinct eigenvalues, and can therefore be diagonalized.

By inserting the ansatz û = e−kyψ(s, ω) in (6), we get

(C(s,ω) − kI)ψ(s,ω) = 0. (8)

Equation (8) has non-trivial solutions if det(C(s, ω) − kI) = 0. Hence, k is an eigenvalue of C(s, ω) and ψ j(s, ω) �= 0 is the 
corresponding eigenvector. By solving the eigenvalue problem (8), the solution to (6) can be written

û(y) =
n∑

j=1

σ je
−λ j(s,ω)yψ j(s,ω) = 	(s,ω)e−
C (s,ω)yσ̄ , (9)

where e−
C (s,ω)y = diag(e−λ1(s,ω)y, e−λ2(s,ω)y, ..., e−λn(s,ω)y). Here, λ j are the eigenvalues of C(s, ω); 	 = [ψ1, ..., ψn] is 
the matrix of eigenvectors, σ̄ = [σ1, ..., σn]T is the vector of coefficients and 
C = diag(λ1, λ2..., λn). The coefficients σ j , 
for j = 1, ..., n, will be determined by the boundary conditions at y = {0, 1}. Note that both the eigenvectors ψ j and the 
eigenvalues λ j depend on s and ω in general.

To construct the NRBC at y = 0, all decaying modes with Re(λ j) > 0, must be removed, which means that the corre-
sponding σ j must be zero. Similarly, all increasing modes must vanish at y = 1. We need,

σ j = 0, Re(λ j) > 0; y = 0

σ j = 0, Re(λ j) < 0; y = 1.
(10)

The requirements (10) can be enforced by the boundary conditions

C+(s,ω)û(0) = 0, C−(s,ω)û(1) = 0, (11)

where C±(s, ω) = 	
±
C 	−1 in which 
±

C denotes the part of 
C with positive and negative real parts, respectively, such 
that 
C = 
+

C + 
−
C . The equivalence between (11) and (10) can be realized by inserting û(0) and û(1) on the form (9)

in (11).
For the upcoming well-posedness analysis, the following lemma is needed.

Lemma 1. Let Re(s) = η > 0. If B in (5) has l+ positive and l− = n − l+ negative eigenvalues, then C(s, ω) in (6) has l+ eigenvalues 
with positive real part and l− eigenvalues with negative real part.

Proof. Consider the eigenvalue problem

C(s,ω)ψ j = B−1(sI + iωA)ψ j = λ jψ j . (12)

By multiplying (12) with ψ∗
j B from the left and adding the complex conjugate, one obtains

η|ψ j|2 = Re(λ j)ψ
∗
j Bψ j,

where ψ∗
j is the hermitian conjugate of ψ j and s = η + iξ . Since η > 0 and ψ j �= 0, both Re(λ j) �= 0 and ψ∗

j Bψ j �= 0, which 
implies that the number of eigenvalues with positive and negative real parts is constant, and independent of ω. Phrased in 
another way: since Re(λ j) �= 0, for all ω, no eigenvalue can cross the imaginary axis.
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The number of eigenvalues with positive and negative real part can now be determined by considering the simplified 
case C(s, ω = 0) = sB−1, which has l+ eigenvalues with positive real part and l− eigenvalues with negative real part for 
η > 0. Hence, C(s, ω) has l+ eigenvalues with positive real part and l− eigenvalues with negative real part for all ω and 
η > 0. �
3.1. Well-posedness and energy estimates

To ensure well-posedness of (5) with the boundary conditions (11), the solution must exist, be unique and the growth 
must be limited. We start by showing that the solution of (5) with boundary conditions (11) cannot grow. There is no 
growth if there are no solutions to (6) with the real part of the dual variable s = η + iξ being positive (see [5] for a similar 
analysis).

By multiplying (6) with û∗B from the left, integrating in y and adding the complex conjugate of the result, one obtains

2η

1∫
0

|û|2dy = û∗(0)Bû(0) − û∗(1)Bû(1), (13)

where we have used that s + s∗ = 2η, A = AT and |û|2 = û∗û.
The matrix C(s, ω) can be diagonalized as C(s, ω) = 	
C 	−1, and we partition 	 = [	̃+, 	̃−], where 	̃± contain the 

eigenvectors corresponding to eigenvalues with positive and negative real part, respectively. According to Lemma 1, 	̃+ is a 
n × l+ matrix and 	̃− is a n × l− matrix, in which l± denotes the number of positive and negative eigenvalues of B . In the 
remainder of this paper, the square matrices

	+ = [	̃+,0], 	− = [0, 	̃−], (14)

such that 	 = 	+ + 	− , will be used. The vector σ̄ = [σ+, σ−]T is also partitioned as

σ̄+ = [σ+,0]T , σ̄− = [0,σ−]T ,

where σ± are vectors of size l+ and l− corresponding to the growing and decaying modes, respectively.
By using (9), the solution û can be written as

û(y) = 	e−
C yσ̄ = 	+e−
C yσ̄+ + 	−e−
C yσ̄−. (15)

Next, the NRBC’s in (11) leading to (10) are imposed. By letting σ̄+ = 0 at y = 0 and σ̄− = 0 at y = 1, (13) becomes

2η

1∫
0

|û|2dy = σ̄ ∗−(	−,∗B	−)σ̄− − (e−
C σ̄+)∗(	+,∗B	+)(e−
C σ̄+). (16)

To proceed, the following lemma is needed.

Lemma 2. For η > 0, the matrices 	± in (14) have the properties

rank(	−,∗B	−) = l−, rank(	+,∗B	+) = l+,

independently of ω.

Proof. See Appendix A. �
We are now ready to state the main result of this section.

Proposition 1. The problem (5) with the boundary conditions (11) is well-posed.

Proof. Assume that η > 0. For ω = 0, the matrix C(s, 0) = sB−1. The standard basis vectors are then the eigenvectors of C
since B is diagonal. This implies that

	+(s,0) =
[

I+ 0
0 0

]
, 	−(s,0) =

[
0 0
0 I−

]
,

where I± are identity matrices of size l± , respectively. It then follows that

	−,∗(s,0)B	−(s,0) =
[

0 0
0 I

][
B+ 0
0 B−

][
0 0
0 I

]
=

[
0 0
0 B−

]
≤ 0 (17)
− −
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where B± is the positive and negative part of B , respectively. In (17), we have used that B− and I− have the same dimen-
sions.

Since the rank of 	−,∗B	− is constant for all η > 0 and all ω (according to Lemma 2), the number of eigenvalues on 
each side of the imaginary axis is constant. No eigenvalue can cross the origin (	−,∗B	− is hermitian, and its eigenvalues 
are therefore real) without lowering the rank of 	−,∗ B	− , and thus violating Lemma 2. Consequently, if 	−,∗ B	− ≤ 0 for 
ω = 0, then 	−,∗B	− ≤ 0 for all ω, Hence, we must have

	−,∗B	− ≤ 0, ∀ ω,η > 0. (18)

By repeating the procedure above for 	+,∗B	+ , one finds that

	+,∗B	+ ≥ 0, ∀ ω,η > 0. (19)

The relations (18) and (19) inserted into (16) now yields

2η

1∫
0

|û|2dy = σ̄ ∗−(	−,∗B	−)σ̄− − (e−
C σ̄+)∗(	+,∗B	+)(e−
C σ̄+) ≤ 0,

which means that there are no non-trivial solutions for η > 0. In summary, the boundary conditions (11) applied to (6)
yields û = 0 for any η > 0, which means that there are no growing solutions to (5).

Uniqueness follows directly by looking at the difference problem for (5), i.e. the same problem with another solution 
and the same data. Existence is given by the fact that we use the correct number of boundary conditions. Consequently, (5)
with the boundary conditions (11) is well-posed. �

Note that Proposition 1 is consistent with (2); the solution must be zero if the data is zero. Moreover, Proposition 1
holds for all systems of the form (5) with the NRBC’s given by (11). This means that the exact NRBC to all two-dimensional 
hyperbolic systems of the form (5), that are periodic in x, results in a well-posed problem.

4. The semi-discrete problem

Consider (5) with zero initial data and a periodic solution in x. The SBP-SAT technique described in Section 2.1 is used 
to discretize (5) in the t and x-direction,

(D̃t ⊗ Ix ⊗ I)v + (It ⊗ Dx ⊗ A)v + (It ⊗ Ix ⊗ B)v y = 0 (20)

where Dx = −DT
x approximates the derivative in x with periodic boundary conditions. Also, D̃t = P−1

t (Q t + E0t), where 
the added E0,t = diag(1, 0, ..., 0) comes from the penalty term in time with αt = −1 and f = 0, as in (4). Since Dx is 
skew-symmetric, it has purely imaginary eigenvalues and can be diagonalized with an orthonormal matrix Xx; that is, 
Dx = i Xx
̂X∗

x where 
̂ = diag(ω̂1, ω̂2, ..., ω̂Nx ) is a diagonal matrix.
We make the following assumption, based on the results in [12]:

Assumption 1. The matrix D̃t is diagonalizable and has eigenvalues with strictly positive real part.

By Assumption 1, the matrix D̃t can be written as D̃t = Xt Ŝ X−1
t where Ŝ = diag(ŝ1, ̂s2, ..., ̂sNt ) with Re(ŝ j) > 0. Multi-

plying (20) with X−1
t ⊗ X∗

x ⊗ B−1 from the left results in,

w y + Ĉ w = 0 (21)

where w = (X−1
t ⊗ X∗

x ⊗ I)v and Ĉ = ( Ŝ ⊗ Ix ⊗ B−1) + i(It ⊗ 
̂ ⊗ B−1 A).

Remark 1. Note that (21) is similar to the continuous relation (6). This indicates that we might be able to re-use part of the 
analysis in Section 3.

As in Section 3, the ansatz w = e−k̂ yψ̂ is applied to (21), and results in

(Ĉ − k̂I)ψ̂ = 0,

which has non-trivial solutions ψ̂ if det(Ĉ − k̂I) = 0. Hence, k̂ are the eigenvalues of Ĉ and ψ̂ j �= 0 the corresponding 
eigenvectors.
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The solution to (21) can be written

w =
N∑

j=1

σ je
−λ̂ j yψ̂ j = 	̂e−
̂Ĉ yσ̂ (22)

where 
̂Ĉ = diag(λ̂1, ̂λ2, ..., ̂λN ) in which λ̂ j are the eigenvalues of Ĉ . The matrix 	̂ = [ψ̂1, ψ̂2..., ψ̂N ] is the matrix of 
eigenvectors and σ̂ = [σ1, σ2, ..., σN ]T are coefficients to be determined by the boundary conditions.

The boundaries at y = {0, 1} produce no reflections if

σ j = 0, Re(λ̂ j) > 0, y = 0,

σ j = 0, Re(λ̂ j) < 0, y = 1.
(23)

Just as in the continuous case, the requirements (23) is enforced by the boundary conditions

Ĉ+w(0) = 0, Ĉ−w(1) = 0, (24)

where Ĉ± = 	̂
̂±
Ĉ
	̂−1 in which 
̂±

Ĉ
denotes the part of 
̂Ĉ with positive and negative real part, respectively. Note the 

similarity between (24) and (11).
Before moving on to the stability analysis, we make some observations. The matrix Ĉ is block diagonal:

Ĉ =

⎡
⎢⎢⎢⎢⎣

C(ŝ1, ω̂1) 0 . . . 0

0 C(ŝ1, ω̂2) . . .
...

... . . .
. . .

...

0 . . . . . . C(ŝNt , ω̂Nx)

⎤
⎥⎥⎥⎥⎦ , (25)

where C(·, ·) is given by (7). Consequently, the matrix of eigenvectors has the form

	̂ = diag(	(ŝ1, ω̂1),	(ŝ2, ω̂2), ...,	(ŝNt , ω̂Nx)) (26)

where 	(·, ·) has the functional form of matrix of eigenvectors in (9).
We are now ready to state the following Lemma.

Lemma 3. Let 	̂± = diag(	±(ŝ1, ω̂1), 	±(ŝ1, ω̂2), ..., 	±(ŝNt , ω̂Nx )) contain the eigenvectors of Ĉ corresponding to eigenvalues 
with positive and negative real part, respectively. We then have

	̂+,∗ B̂	̂+ ≥ 0, 	̂−,∗ B̂	̂− ≤ 0

where B̂ = It ⊗ Ix ⊗ B.

Proof. The matrices 	̂±,∗ B̂	̂± are block diagonal with the matrices 	±,∗(ŝk, ω̂l)B	±(ŝk, ω̂l) on the diagonal. Hence, the 
claim follows directly from (18) and (19). �
4.1. Stability and energy estimates

Consider the semi-discrete formulation (21). The boundary conditions (24) are imposed by using lifting operators and 
penalty terms, such that

w y + Ĉ w = L0

(
B̂−1�0Ĉ+w(0)

)
+ L1

(
B̂−1�1Ĉ−w(1)

)
(27)

approximates (5) with the boundary conditions (11). The matrices �0,1 are penalty matrices to be determined such that 
(27) is stable. The lifting operators Lz in (27) are defined such that for two arbitrary functions φ, θ , we have 

∫ 1
0 φLz(θ)dy =

φθ |y=z .
Analogously to the technique in the continuous setting, (27) is multiplied with w∗ B̂ from the left, integrated in y and 

added to the complex conjugate of the result. One obtains

2

1∫
0

w∗(η̂ ⊗ Ix ⊗ I)wdy = w∗(0)
(
�0Ĉ+ + (�0Ĉ+)∗ + B̂

)
w(0) + w∗(1)

(
�1Ĉ− + (�1Ĉ−)∗ − B̂

)
w(1), (28)

where the eigenvalue matrix Ŝ has been divided into a real and imaginary part, Ŝ = η̂ + iξ̂ in which η̂ and ξ̂ are real 
diagonal matrices. Recall that η̂ > 0 by Assumption 1, so that the left hand side of (28) is positive for w �= 0.
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By specific choices of the penalty matrices �0,1, we will now show that the right-hand side of (28) is non-positive, such 
that there are no non-trivial solutions. To proceed we write w(0) and w(1) on the form (22), such that

w(0) = 	̂σ̂ , w(1) = 	̂e−
̂Ĉ σ̂ (29)

and make the ansatz

�0 = 	̂−1,∗ (
α	̂+,∗ − 	̂−,∗) B̂ Ĉ−1,

�1 = 	̂−1,∗ (
β	̂−,∗ + 	̂+,∗) B̂ Ĉ−1,

(30)

where α, β are real constants to be determined.
Inserting (29) and (30) into (28) yields

2

1∫
0

w∗(η̂ ⊗ Ix ⊗ I)wdy = σ̂
(
	̂−,∗ B̂	̂− + (1 + 2α)	̂+,∗ B̂	̂+)

σ̂

−(e−
̂Ĉ σ̂ )∗
(
	̂+,∗ B̂	̂+ + (1 − 2β)	̂−,∗ B̂	̂−)

e−
̂Ĉ σ̂ .

(31)

The right-hand side of (31) is non-positive if α ≤ −1/2 and β ≥ 1/2, by the use of Lemma 3. In particular, if α = −β = −1/2, 
we get

2

1∫
0

w∗(η̂ ⊗ Ix ⊗ I)wdy = σ̂
(
	̂−,∗ B̂	̂−)

σ̂ − (e−
̂Ĉ σ̂ )∗
(
	̂+,∗ B̂	̂+)

e−
Ĉ σ̂ , (32)

which is analogous to the continuous energy estimate (16). Equation (32) implies that no non-trivial solutions exist, which 
proves stability. Note the clear connection to the continuous problem in Section 3.

We summarize the results of this section in the following proposition.

Proposition 2. The numerical scheme (27) is stable with �0,1 chosen according to (30) with α ≤ −1/2 and β ≥ 1/2.

We also state the following corollary.

Corollary 1. The numerical scheme (27) with the penalty matrices (30) is unconditionally stable.

Proof. Proposition 2 holds for any time-discretization Dt , i.e. for any �t . �
The fully discrete SBP-SAT scheme with an initial data f̄ and boundary operators (24) expressed in the original variable 

v can now be written,

(D̃t ⊗ Ix ⊗ I y ⊗ I)v + (It ⊗ Dx ⊗ I y ⊗ A)v + (It ⊗ Ix ⊗ D y ⊗ B)v =
(It ⊗ Ix ⊗ P−1

y E0y ⊗ I) X̃�̃0C̃+ X̃−1 v y=0 +
(It ⊗ Ix ⊗ P−1

y E N y ⊗ I) X̃�̃1C̃− X̃−1 v y=1 +
(P−1

t E0t ⊗ Ix ⊗ I y ⊗ I) f̄

(33)

where D y = P−1
y Q y is the SBP finite difference operator in the y-direction. In (33), X̃ = Xt ⊗ Xx ⊗ I y ⊗ I and C̃± , �̃0,1 are 

the boundary operators Ĉ± and the penalty matrices �0,1 injected at the appropriate grid points. Also, we have used the 
notation

v y=0,1 = (It ⊗ Ix ⊗ E0,N y ⊗ I)v, vt=0 = (E0t ⊗ Ix ⊗ I y ⊗ I)v.

The matrices X̃ , C̃± and �̃0,1 are obtained numerically, as part of the numerical procedure.

5. Numerical experiments

To test the new NRBC’s, we consider the problem (5) in the domain 
 = {0 ≤ x ≤ 2, 0 ≤ y ≤ 1} with

A =
⎡
⎣ ū c̄/

√
2 −c̄/

√
2

c̄/
√

2 ū 0
−c̄/

√
2 0 ū

⎤
⎦ , B =

⎡
⎣ v̄ 0 0

0 v̄ − c̄ 0
0 0 v̄ + c̄

⎤
⎦ ,
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Fig. 1. The reference solution u1 at different time levels using the grid �x = 2/40, �y = 1/40. Upper: t = 0, middle: t = 0.2 and bottom: t = 0.4. A third 
order SBP scheme has been used.

which constitutes the linearized and symmetrized shallow water equations, without the Coriolis term. In the following 
numerical calculations, the reference state velocities are ū = v̄ = 1/2 and the gravity wave speed is c̄ = 1. As the initial 
condition, a Gaussian pulse centered around (x0, y0) = (1, 0.7),

u1,2,3(x, y,0) = e−80
(
(x−1)2+(y−0.7)2)

is used. A reference solution is created by performing the calculation on the domain 
ref = {0 ≤ x ≤ 2, −0.5 ≤ y ≤ 1.5}, 
such that the physical reflections from the far field boundaries are not present at y = {0, 1} for t ≤ 0.4.

Let us define B± as the negative and positive parts of B , i.e.

B+ =
⎡
⎣ v̄ 0 0

0 0 0
0 0 v̄ + c̄

⎤
⎦ , B− =

⎡
⎣0 0 0

0 v̄ − c̄ 0
0 0 0

⎤
⎦ .

The first order classical approximate NRBC’s [4] are

B+u(x,0, t) = 0, B−u(x,1, t) = 0. (34)

Equation (5) together with the boundary conditions (34) result in a well-posed problem, and produce relatively small re-
flections. The performance of the new exact NRBC’s will be compared to results obtained using (34).

In Fig. 1, the reference solution is displayed at different time levels. We only show the results for the first component 
u1; the results for u2,3 are similar. In Fig. 2, the error, i.e. the deviation from the reference solution, at different time levels 
is displayed when using the first order classical NRBC’s (34). As one can see, the error increases significantly at t = 0.4, due 
to reflections at the boundary y = 1 when using (34); these reflections are not present when using the new exact NRBC’s 
(24), as can be seen in Fig. 3.

The calculations above are repeated for different mesh sizes using SBP schemes of second, third and fourth order overall 
accuracy, and the P-norm of the error, defined as ||e||2P = eT (P x ⊗ P y)e, at time t = 0.4 is computed. The results are sum-
marized in Table 1 and 2. In Table 1, the approximate NRBC’s (34) has been used. Note that the solution does not converge 
during mesh refinement. Applying the new exact NRBC (24) yields significantly smaller errors and the solution converges, 
as illustrated in Table 2. Moreover, the rate of convergence approach the overall accuracy of the scheme.

6. Summary and conclusions

A new approach for constructing NRBC’s, based on SBP-SAT technique in time, has been investigated. The derived NRBC’s 
results in an unconditionally stable scheme for linear hyperbolic problems.
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Fig. 2. The error of the component u1 at different time levels using the grid �x = 2/40, �y = 1/40 and the boundary conditions (34). Upper: t = 0, middle: 
t = 0.2 and bottom: t = 0.4. A third order SBP scheme has been used.

Fig. 3. The error of the component u1 at different time levels using the grid �x = 2/40, �y = 1/40 and the boundary conditions (24). Upper: t = 0, middle: 
t = 0.2 and bottom: t = 0.4. A third order SBP scheme has been used.

Since the boundary operators are constructed in the discrete setting, they can be implemented directly. This new tech-
nique bypasses the complicated inverse Fourier–Laplace transform normally required when implementing standard NRBC’s.

The new technique is exact, in the sense that it does not rely on approximations based on the angle of incidence or the 
size of the frequencies involved.

The method was applied to the linearized shallow water equations. Numerical experiments show that the numerical 
method is stable and accurate. Moreover, the derived boundary conditions produce very small reflections compared to 
approximate NRBC’s, and converge with the correct rate.
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Table 1
The P-norm of the error at t = 0.4 for different mesh-sizes when using a second (SBP(2,1)), 
third (SBP(4,2)) and fourth (SBP(6,3)) order SBP scheme and the approximate NRBC’s (34).

N SBP(2,1) Rate SBP(4,2) Rate SBP(6,3) Rate

12 4.34 · 10−2 – 7.26 · 10−2 – 1.32 · 10−1 –
20 4.92 · 10−2 −0.2 5.67 · 10−2 0.5 6.55 · 10−2 1.4
30 4.73 · 10−2 0.1 4.68 · 10−2 0.5 4.80 · 10−2 0.8
40 4.53 · 10−2 0.2 4.48 · 10−2 0.2 4.49 · 10−2 0.2
50 4.46 · 10−2 0.1 4.43 · 10−2 0.1 4.42 · 10−2 0.1

Table 2
The P-norm of the error at t = 0.4 for different mesh-sizes when using a second (SBP(2,1)), 
third (SBP(4,2)) and fourth (SBP(6,3)) order SBP scheme and the exact NRBC’s (24).

N SBP(2,1) Rate SBP(4,2) Rate SBP(6,3) Rate

12 2.79 · 10−2 – 5.57 · 10−2 – 1.41 · 10−1 –
20 1.55 · 10−2 1.2 1.95 · 10−2 2.1 4.02 · 10−2 2.5
30 8.00 · 10−3 1.6 6.64 · 10−3 2.7 1.13 · 10−2 3.1
40 4.56 · 10−3 2.0 3.13 · 10−3 2.6 3.56 · 10−3 4.0
50 2.92 · 10−3 2.0 1.39 · 10−3 3.6 1.28 · 10−3 4.6

Appendix A. Proof of Lemma 2

We will only prove the statement for the term 	−,∗B	− , since the proof for the term 	+,∗B	+ is analogous. First, we 
note that 	− = 	 I− where

I− =
[

0 0
0 Il−

]

in which Il− is an identity matrix of size l− . Note that, due to Lemma 1, Il− have the same dimensions as I− in (17), i.e. 
Il− = I− . Also, recall that 	 diagonalizes C = sB−1 + iωB−1 A; that is, C	 = 	
C . We have,

rank(	−,∗B	−) = rank(	−,∗B	 I−
C ) =
rank(	−,∗BC	 I−) = rank(	−,∗(sI + iωA)	−).

In the first step, we have multiplied the expression with the non-singular matrix 
C from the right. This can be done 
without altering the rank, as 
C is non-singular due to Lemma 1.

Next, let the vector x �= 0 satisfy 	−,∗(sI + iωA)	−x = 0, and let s = η + iξ where η > 0. We then have

0 = x∗	−,∗(sI + iωA)	−x = η||	−x||22 + i(ξ ||	−x||22 + ω(	−x)∗ A(	−x)). (A.1)

Note that ||	−x||22 and (	−x)∗ A(	−x) are real (since A is symmetric). Accordingly, (A.1) can only be satisfied if ||	−x||2 = 0
(the real part of (A.1) will be non-zero otherwise). This means that 	−,∗(sI + iωA)	−x = 0 if, and only if, 	−x = 0. In other 
words,

ker(	−,∗(sI + iωA)	−) = ker(	−)

where ker(·) denotes the null-space. This means that

rank(	−,∗(sI + iωA)	−) = rank(	−) = l−.

Hence, we have

rank(	−,∗B	−) = rank(	−,∗(sI + iωA)	−) = rank(	−) = l−,

which completes the proof.
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