
Journal of Computational Physics 357 (2018) 263–281
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A low-rank approach to the solution of weak constraint

variational data assimilation problems

Melina A. Freitag ∗, Daniel L.H. Green

Department of Mathematical Sciences, University of Bath, Claverton Down, BA2 7AY, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 February 2017
Received in revised form 17 September
2017
Accepted 26 December 2017
Available online 2 January 2018

Keywords:
Data assimilation
Weak constraint 4D-Var
Iterative methods
Matrix equations
Low-rank methods
Preconditioning

Weak constraint four-dimensional variational data assimilation is an important method
for incorporating data (typically observations) into a model. The linearised system
arising within the minimisation process can be formulated as a saddle point problem.
A disadvantage of this formulation is the large storage requirements involved in the linear
system. In this paper, we present a low-rank approach which exploits the structure of the
saddle point system using techniques and theory from solving large scale matrix equations.
Numerical experiments with the linear advection–diffusion equation, and the non-linear
Lorenz-95 model demonstrate the effectiveness of a low-rank Krylov subspace solver when
compared to a traditional solver.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Data assimilation is a method for combining a numerical model with observations obtained from a physical system, in
order to create a more accurate estimate for the true state of the system. One example where data assimilation is used is
numerical weather prediction, however it is also applied in areas such as oceanography, glaciology and other geosciences.

A property which these applications all share is the vast dimensionality of the state vectors involved. In numerical
weather prediction the systems have variables of order 108 [24]. In addition to the requirement that these computations
to be solved quickly, the storage requirement presents an obstacle. In this paper we propose an approach for implementing
the weak four-dimensional variational data assimilation method with a low-rank solution in order to achieve a reduction in
storage space as well as computation time. The approach investigated here is based on a recent paper [38] which imple-
mented this method in the setting of PDE-constrained optimisation. We introduce here a low-rank modification to GMRES
in order to generate low-rank solutions in the setting of data assimilation.

This method was motivated by recent developments in the area of solving large sparse matrix equations, see [3,23,30,32,
36,37], notably the Lyapunov equation

A X + X AT = −B BT

in which we solve for the matrix X , where A, B and X are large matrices of matching size. It is known that if the right
hand side of these matrix equations are low-rank, there exist low-rank approximations to X [21]. There are a number of

* Corresponding author.
E-mail addresses: m.a.freitag@bath.ac.uk (M.A. Freitag), d.l.h.green@bath.ac.uk (D.L.H. Green).
https://doi.org/10.1016/j.jcp.2017.12.039
0021-9991/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2017.12.039
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:m.a.freitag@bath.ac.uk
mailto:d.l.h.green@bath.ac.uk
https://doi.org/10.1016/j.jcp.2017.12.039
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2017.12.039&domain=pdf

264 M.A. Freitag, D.L.H. Green / Journal of Computational Physics 357 (2018) 263–281
methods which iteratively generate low-rank solutions; see e.g. [13,26,30,32,36], and it is these ideas which are employed
in this paper.

Alternative methods [14,31,39] have been considered for computing low-rank solutions, based on sequential data assim-
ilation methods such as the Kalman filter [22,31]. Furthermore there have been developments in applying traditional model
reduction techniques such as Balanced Truncation [29] and Principal Orthogonal Decomposition (POD) to data assimilation;
e.g. [10,25]. In this paper we take a different approach, the data assimilation problem is considered in its full formulation,
however the expensive solve of the linear system is done in a low-rank in time framework.

In the next section we introduce a saddle point formulation of weak constraint four dimensional variational data assim-
ilation. Section 3 explains the connection between the arising linear system and the solution to matrix equations. We also
introduce a low-rank approach to GMRES, and consider several preconditioning strategies. Numerical results are presented
in Section 4, with an extension to time-dependent systems considered in Section 5.

2. Variational data assimilation

Variational data assimilation, initially proposed in [34,35] is one of two families of methods for data assimilation, the
other being sequential data assimilation which includes the Kalman Filter and modifications [14,22,31].

We consider the discrete-time non-linear dynamical system

xk+1 = Mk(xk) + ηk, (2.1)

where xk ∈ R
n is the state of the system at time tk and Mk : Rn → R

n is the non-linear model operator which evolves the
state from time tk to tk+1 for k = 0, . . . N − 1. The model errors are denoted ηk , and are assumed to be Gaussian with zero
mean and covariance matrix Q k ∈R

n×n .
Observations of this system, yk ∈ R

pk at time tk for k = 0, . . . N are given by

yk = Hk(xk) + εk, (2.2)

where Hk : Rn → R
pk is an observation operator, and εk is the observation error. In general, pk � n. This observation

operator Hk may also be non-linear, and may have explicit time dependence. The observation errors are assumed to be
Gaussian, with zero mean and covariance matrix Rk ∈R

pk×pk .
We assume that at the initial time we have an a priori estimate of the state, which we refer to as the background state,

and denote xb . This is commonly the result of a short-range forecast, or a previous assimilation, and is typically taken to be
the first guess during the assimilation process. We assume that this background state has Gaussian errors with covariance
matrix B ∈R

n×n .

2.1. Four dimensional variational data assimilation (4D-Var)

Four dimensional variational data assimilation (4D-Var) is so called for three spatial dimensions, plus time, and to dif-
ferentiate it from three-dimensional variational data assimilation (3D-Var), where we do not consider multiple observation
times. In 4D-Var, we find an initial state which minimises both the weighted least squares distance to the background
state xb , and the weighted least squares distance between the model trajectory of this initial state xk and the observa-
tions yk for an assimilation window [t0, tN]. Mathematically, we can write this as a minimisation of a cost function, e.g.
argmin J (x), where

J (x) = 1

2
(x0 − xb

0)
T B−1(x0 − xb

0)︸ ︷︷ ︸
Jb

+ 1

2

N∑
i=0

(yi −Hi(xi))
T R−1

i (yi −Hi(xi))

︸ ︷︷ ︸
Jo

+ 1

2

N∑
i=1

(xi −Mi(xi−1))
T Q −1

i (xi −Mi(xi−1))

︸ ︷︷ ︸
Jq

,

= 1

2
‖x0 − xb

0‖2
B−1 + 1

2

N∑
i=0

‖yi −Hi(xi)‖2
R−1

i
+ 1

2

N∑
i=1

‖xi −Mi(xi−1)‖2
Q −1

i
,

(2.3)

where x = [xT
0 , xT

1 , . . . , xT
N]T , and xk is the model state at each timestep tk for k = 0, . . . , N . This is known as weak constraint

4D-Var. The assumption of a perfect model, gives rise to strong constraint 4D-Var, and a simplification of the cost function,
notably the removal of the Jq term.

The additional cost of weak constraint 4D-Var, and the difficulties in computing Q k mean that it is not widely imple-
mented in real world systems. However, accounting for this model error (with suitable covariances) would lead to improved
accuracy, and the added potential of longer assimilation windows [17,18].

M.A. Freitag, D.L.H. Green / Journal of Computational Physics 357 (2018) 263–281 265
2.2. Incremental 4D-Var

To implement 4D-Var operationally, an incremental approach [11] is used, which is merely a form of Gauss–Newton
iteration and generates an approximation to the solution of x = argmin J (x). We approximate the 4D-Var cost function by a

quadratic function of an increment δx(�) =
[
(δx(�)

0)T , (δx(�)
1)T , . . . , (δx(�)

N)T
]T

defined as

δx(�) = x(�+1) − x(�), (2.4)

where x(�) =
[
(x(�)

0)T , (x(�)
1)T , . . . , (x(�)

N)T
]T

denotes the �-th iterate of the Gauss–Newton algorithm. Updating this estimate

is implemented in an outer loop, whilst generating δx(�) is referred to as the inner loop. This increment δx(�) is a solution to
the minimisation of the linearised cost function

J̃ (δx(�)) = 1

2
(δx(�)

0 − b(�)
0)T B−1(δx(�)

0 − b(�)
0)

+ 1

2

N∑
i=0

(d(�)
i − Hiδx(�)

i)T R−1
i (d(�)

i − Hiδx(�)
i)

+ 1

2

N∑
i=1

(δx(�)
i − Miδx(�)

i−1 − c(�)
i)T Q −1

i (δx(�)
i − Miδx(�)

i−1 − c(�)
i).

(2.5)

Here Mk ∈ R
n×n and Hk ∈ R

n×pk , are linearisations of Mk and Hk about the current state trajectory x(�) . For convenience
and conciseness, we introduce

b(�)
0 = xb

0 − x(�)
0 , (2.6)

d(�)

k = yk −Hk(x(�)

k), (2.7)

c(�)

k = Mk(x(�)

k−1) − x(�)

k . (2.8)

We define the following vectors in order to rewrite the cost function in a more compact form.

δx =

⎡
⎢⎢⎢⎣

δx0
δx1
...

δxN

⎤
⎥⎥⎥⎦ , δp =

⎡
⎢⎢⎢⎣

δx0
δq1
...

δqN

⎤
⎥⎥⎥⎦ ,

where we have dropped the superscript for the outer loop iteration. These two vectors are related by δqk = δxk − Mkδxk−1,
or in matrix form

δp = Lδx, (2.9)

where

L =

⎡
⎢⎢⎢⎣

I
−M1 I

. . .
. . .

−MN I

⎤
⎥⎥⎥⎦ ∈R

(N+1)n×(N+1)n. (2.10)

Furthermore, we introduce the following matrices:

D =

⎡
⎢⎢⎢⎣

B
Q 1

. . .

Q N

⎤
⎥⎥⎥⎦ ∈R

(N+1)n×(N+1)n, R =

⎡
⎢⎢⎢⎣

R0
R1

. . .

R N

⎤
⎥⎥⎥⎦ ∈ R

N∑
k=0

pk×
N∑

k=0
pk

,

H =

⎡
⎢⎢⎢⎣

H0
H1

. . .

H

⎤
⎥⎥⎥⎦ ∈R

(N+1)n×
N∑

k=0
pk

,b =

⎡
⎢⎢⎢⎣

b0
c1
...

c

⎤
⎥⎥⎥⎦ ∈R

(N+1)n, d =

⎡
⎢⎢⎢⎣

d0
d1
...

d

⎤
⎥⎥⎥⎦ ∈R

N∑
k=0

pk
.

N N N

266 M.A. Freitag, D.L.H. Green / Journal of Computational Physics 357 (2018) 263–281
This allows us to write (2.5), with the superscripts dropped, as a function of δx:

J̃ (δx) = 1

2
(Lδx − b)T D−1(Lδx − b) + 1

2
(Hδx − d)T R−1(Hδx − d). (2.11)

Minimising the cost function is equivalent to solving the linear system for the gradient. Indeed, taking the gradient of
this cost function with respect to δx, we have

∇ J̃ (δx) = LT D−1(Lδx − b) +HT R−1(Hδx − d). (2.12)

Defining λ = D−1(b − Lδx) and μ =R−1(d −Hδx), allows us to write the gradient at the minimum as

∇ J̃ = LT λ +HT μ = 0. (2.13)

Additionally, we have

Dλ + Lδx = b, (2.14)

Rμ +Hδx = d, (2.15)

and (2.13), (2.14) and (2.15) can be combined into a single linear system:⎡
⎣ D 0 L

0 R H
LT HT 0

⎤
⎦

⎡
⎣ λ

μ
δx

⎤
⎦ =

⎡
⎣b

d
0

⎤
⎦ , (2.16)

which is solved for δx.
This equation is known as the saddle-point formulation for weak constraint 4D-Var, and allows us to exploit the saddle

point structure for linear solves and preconditioning [5,8,38].

The saddle point matrix in (2.16), is a square symmetric indefinite matrix of size
(

2n(N + 1) + ∑N
k=0 pk

)
. In order to

successfully solve this system we must use an iterative solver such as MINRES or GMRES as it is unfeasible with these
large problem sizes to use a direct method. Additionally we require a good choice of preconditioner for a saddle point
system [5–9,18], which in a data assimilation setting, has a (1, 2) block which is more computationally expensive than the
(1, 1) block. The inexact constraint preconditioner [8] has been found to be an effective choice of preconditioner for the
data assimilation problem [18], but application of this results in a nonsymmetric system necessitating the use of GMRES.
We consider different preconditioning approaches in Section 3.4. Furthermore, to overcome the storage requirements of the
matrix in (2.16), we wish to avoid forming it (and indeed as many of the submatrices as possible), which motivates the
method described in the following section.

3. Low-rank approach

3.1. Kronecker formulation

As noted above, the matrix formed in the saddle point formulation is very large, as indeed are the vectors λ, μ, δx. We
wish to adapt the ideas developed in [38] in order to solve (2.16). This approach is dependent on the Kronecker product
and the vec (·) operator; which are defined to be

A⊗ B =
⎡
⎢⎣

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎤
⎥⎦ , vec (C) =

⎡
⎢⎢⎢⎢⎢⎢⎣

c11
...

c1n
...

cmn

⎤
⎥⎥⎥⎥⎥⎥⎦ .

We also make use of the relationship between the two:

(BT ⊗A)vec (C) = vec (ACB) . (3.1)

Employing this definition, we may rewrite (2.16) as⎡
⎣ E1 ⊗ B + E2 ⊗ Q 0 IN+1 ⊗ In + C ⊗ M

0 IN+1 ⊗ R IN+1 ⊗ H
IN+1 ⊗ In + C T ⊗ MT IN+1 ⊗ H T 0

⎤
⎦

⎡
⎣ λ

μ
δx

⎤
⎦ =

⎡
⎣b

d
0

⎤
⎦ , (3.2)

where we make the additional assumptions that Q i = Q , Ri = R , Hi = H , Mi = M and the number of observations pi = p
for each i. The extended case relaxing this assumption is considered in Section 5. Here

M.A. Freitag, D.L.H. Green / Journal of Computational Physics 357 (2018) 263–281 267
C =

⎡
⎢⎢⎢⎣

0
−1 0

. . .
. . .

−1 0

⎤
⎥⎥⎥⎦ , E1 =

⎡
⎢⎢⎢⎣

1
0

. . .

0

⎤
⎥⎥⎥⎦ , and E2 =

⎡
⎢⎢⎢⎣

0
1

. . .

1

⎤
⎥⎥⎥⎦ .

The matrices C, E1, E2, IN+1 ∈ R
(N+1)×(N+1) , whilst B, Q , M, In ∈R

n×n, H ∈R
p×n , and R ∈R

p×p .
Using (3.1), we may rewrite (3.2) as the simultaneous matrix equations:

B�E1 + Q �E2 + X + M XC T = b,

RU + H X = d,

� + MT �C + H T U = 0,

(3.3)

where we suppose λ, δx, b, μ and d are vectorised forms of the matrices �, X, b ∈ R
n×(N+1) and U , d ∈ R

p×(N+1) respec-
tively. These are generalised Sylvester equations, which we solve for �, U and X , though for implementing incremental data
assimilation, we require only δx and hence the solution X .

For standard Sylvester equations of the form AX + XB = C , it is known that if the right hand side C is low-rank,
then there exist low-rank approximate solutions [21]. Indeed, recent algorithms for solving these Sylvester equations have
focused on constructing low-rank approximate solutions. These algorithms include Krylov subspace methods (see [37]) and
ADI based methods (see [2,4,19]). It is this knowledge which motivates the following approach.

3.2. Existence of a low-rank solution

We wish to show that we can find a low-rank approximate solution to (3.2). Further to the assumption that the
model and observations are not time-dependent, let us additionally assume that the model is linear and perfect. Thus
ck = Mk(xk−1) − xk = 0 for all k, giving

b =

⎡
⎢⎢⎢⎣

b0
c1
...

cN

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b0
0
...

0

⎤
⎥⎥⎥⎦ , and hence b = [

b0 0 · · · 0
] ∈R

n×(N+1). (3.4)

Assuming R is non-singular, solving the second block-row of (3.2) for μ yields,

μ = (IN+1 ⊗ R−1)d − (IN+1 ⊗ R−1 H)δx, (3.5)

which when substituted into the third block-row of (3.2) gives

(IN+1 ⊗ In + C T ⊗ MT)λ − (IN+1 ⊗ H T R−1 H)δx = −(IN+1 ⊗ H T R−1)d. (3.6)

Reformulating this as a matrix equation as before, we are left with the simultaneous (block-row) equations

X + M XC T + B�E1 + Q �E2 = b (3.7)

� + MT �C − H T R−1 H X = −H T R−1d. (3.8)

Assuming M−1 exists, we multiply (3.8) by M−T to obtain

M−T � + �C = M−T H T R−1 H X − M−T H T R−1d. (3.9)

Typically in real world applications, we only observe a small proportion of the state space. As such, the matrix d containing
these observations is low-rank, as is the observation operator H . Hence the right hand side of (3.9) is low-rank.

To proceed with the proof of existence we make use of the result in [21], which states that for standard Sylvester
equations of the form AX + XB = C , if A and B have disjoint spectra, or typically spectra separated by a line, then for
each matrix C of rank at most kC , and each 0 < ε < 1, there exists a matrix X̃ which approximates the solution X by

‖X − X̃‖2 ≤ ε‖X‖2.

Here the rank of X̃ is bounded by rank(X̃) ≤ kCkε , where kε is dependent on the location of the spectra of A and B. Given
sufficiently separated spectra, this results in a low rank approximate solution X̃ . In the following, the spectra of interest
are σ(M) and σ(C), thus to be disjoint, we require that 0 /∈ σ(M). This is trivially satisfied by the assumption that M is
invertible. To satisfy the stronger requirement that there is a line separating the spectra, the eigenvalues of M must be all
positive or all negative.

Applying this result to (3.9), we have that �, or indeed an approximate solution �̃, is of low-rank.

268 M.A. Freitag, D.L.H. Green / Journal of Computational Physics 357 (2018) 263–281
Finally, multiplying (3.7) by M−1, and substituting in �̃ gives another Sylvester equation of the form

M−1 X + XC T = M−1
(
b − B�̃E1 − Q �̃E2

)
. (3.10)

From the assumption that the model is perfect, we see from (3.4) that b is indeed low-rank, being rank 1, and hence
from above, so is �̃. Thus the right hand side of this Sylvester equation (3.10) is also low-rank. Applying once more the
result from [21], we obtain the desired property that X is low-rank, or indeed there is an approximate solution X̃ to X
which is low-rank.

We formulate this result as the following Theorem.

Theorem 3.1. Consider the solution to the saddle point formulation of the linearised weak constraint 4D-Var problem (3.3). Let the
model and observations be time-independent, with M = Mk, R = Rk, H = Hk, Q = Q k for all k. Furthermore, we assume there is no
model error, and that the model operator M, and the covariance matrix R are invertible. If the number of observations p � n, then
there exists a low-rank approximation Xr = W V T to X, where δx = vec (X).

It is necessary to note that it would be unfeasible to compute low-rank solutions to (2.16) in such a way. Indeed in (3.9)
the right hand side still contains X , however the observation operator allows us to know the right hand side is low-rank.

Furthermore we had to make a number of assumptions to obtain this result. Whilst the assumption that p � n is realistic,
the constant operators and covariance matrices are restrictive. However, as we will see in Section 5, relaxing some of these
assumptions still results in low-rank solutions observed numerically.

3.3. Low-rank GMRES (LR-GMRES)

In order to implement the above, we suppose as in [1,38], that the matrices �, U , X in (3.3) have low-rank representa-
tions, with

� = W�V T
�, W� ∈R

n×k�, V� ∈R
(N+1)×k�, (3.11)

U = W U V T
U , W U ∈R

p×kU , V U ∈R
(N+1)×kU , (3.12)

X = W X V T
X , W X ∈R

n×kX , V X ∈R
(N+1)×kX , (3.13)

where k�, kU , kX � n and k�, kU , kX � N .
This allows us to rewrite (3.3) as follows:

[
BW� Q W� W X MW X

]
⎡
⎢⎢⎢⎣

V T
�E1

V T
�E2

V T
X

V T
X C T

⎤
⎥⎥⎥⎦ = b,

[
RW U H W X

][
V T

U

W T
X

]
= d,

[
W� MT W� H T W U

]⎡
⎢⎣

V T
�

V T
�C

V T
U

⎤
⎥⎦ = 0.

(3.14)

Since using a direct solver would be infeasible, we use an iterative solver, in this case GMRES [33] to allow for flexibility
in choosing a preconditioner, see Section 3.4. Algorithm 1 details a low-rank implementation of GMRES, which leads to
low-rank approximate solutions to (3.2), making use of (3.14). Fundamentally this is the same as a traditional vector-based
GMRES with a vector z, where instead here we have

vec

⎛
⎜⎝

⎡
⎢⎣

Z11 Z T
12

Z21 Z T
22

Z31 Z T
32

⎤
⎥⎦

⎞
⎟⎠ = z.

Applying the concatenation Xk1 = [Yk1, Zk1], Xk2 = [Yk2, Zk2] for k = 1, 2, 3 is equivalent to the vector addition x =
y + z, since Xk1 X T

k2 = Yk1Y T
k2 + Zk1 Z T

k2 and hence

x = vec

⎛
⎜⎝

⎡
⎢⎣

X11 X T
12

X21 X T
22

X X T

⎤
⎥⎦

⎞
⎟⎠ = vec

⎛
⎜⎝

⎡
⎢⎣

Y11Y T
12 + Z11 Z T

12

Y21Y T
22 + Z21 Z T

22

Y Y T + Z Z T

⎤
⎥⎦

⎞
⎟⎠ = y + z.
31 32 31 32 31 32

M.A. Freitag, D.L.H. Green / Journal of Computational Physics 357 (2018) 263–281 269
Note that here we employ the same notation as in [38], using the brackets {} as a concatenation and truncation opera-
tion. Furthermore, after applying the matrix multiplication and the preconditioning, we also truncate the resulting matrices.
How this truncation could be implemented is also treated in [38], with options including a truncated singular value decom-
position, possibly through Matlab’s inbuilt svds function, or a skinny QR factorisation. In the numerical results to follow,
we use a modification of the Matlab svds function.

In order to compute the inner product 〈w, v(i)〉 which arises in GMRES when computing the entries of the Hessenberg
matrix (see line 11 in Algorithm 1), we make use of the relation between the trace and vec operators:

trace(AT B) = vec (A)T vec (B) .

Since here

vec

⎛
⎜⎝

⎡
⎢⎣

W11W T
12

W21W T
22

W31W T
32

⎤
⎥⎦

⎞
⎟⎠ = w and vec

⎛
⎜⎜⎝

⎡
⎢⎢⎣

V (i)
11 (V (i)

12)T

V (i)
21 (V (i)

22)T

V (i)
31 (V (i)

32)T

⎤
⎥⎥⎦

⎞
⎟⎟⎠ = v(i),

we see that we may compute the inner product 〈w, v(i)〉 as

〈w, v(i)〉 =trace
(
(W11W T

12)
T (V (i)

11 (V (i)
12)T)

)
+ trace

(
(W21W T

22)
T (V (i)

21 (V (i)
22)T)

)
+ trace

(
(W31W T

32)
T (V (i)

31 (V (i)
32)T)

)
,

(3.15)

by considering the submatrices which make up the vectors w and v(i) . Importantly however, the matrices formed in (3.15)
do not exploit the low-rank nature of the submatrices, being (N + 1) × (N + 1) matrices. Fortunately, using the properties
of the trace operator, we may consider instead:

〈w, v(i)〉 = trace
(

W T
11 V (i)

11 (V (i)
12)T W12

)
+ trace

(
W T

21 V (i)
21 (V (i)

22)T W22

)
+ trace

(
W T

31 V (i)
31 (V (i)

32)T W32

)
, (3.16)

and hence compute the trace of smaller matrices. In line 11 of Algorithm 1, we compute (3.16) as traceproduct(W11,

W12, W21, W22, W31, W32, V
(i)
11 , V (i)

12 , V (i)
21 , V (i)

22 , V (i)
31 , V (i)

32).
The matrix vector multiplication Az in traditional GMRES, is implemented in LR-GMRES by considering the low-rank

form of the saddle point equations generated in (3.14). The concatenation is explicitly written in Algorithm 2 and is denoted
Amult in Algorithm 1.

Note that we have considered traditional GMRES when implementing LR-GMRES, however it would require only a small
modification to allow for restarted GMRES. All that remains to consider is preconditioning LR-GMRES, which is implemented
in Algorithm 1 through the Aprec function.

Due to the truncation steps within the algorithm, introducing a low-rank approximation (by removing small singular
values), LR-GMRES does not minimise the residual in the same sense as traditional GMRES. Hence LR-GMRES is more
precisely a form of inexact GMRES.

3.4. Preconditioning LR-GMRES

We return to the saddle point problem in (2.16). Many approaches exist for preconditioning saddle point problems,
a number of which are detailed in [5,6]. However, the data assimilation setting introduces an unusual situation where the

(1, 2) block
[

L
H

]
of the saddle point matrix is more computationally expensive than the (1, 1) block

[
D 0
0 R

]
. In [15,18] it

is noted that the inexact constraint preconditioner [7–9] is an effective choice:

P =
⎡
⎣ D 0 L̃

0 R 0
L̃T 0 0

⎤
⎦ , (3.17)

provided a good approximation L̃ to L = IN+1 ⊗ In + C ⊗ M is chosen. Using an inexact constraint preconditioner requires
the use of GMRES since the resulting system is nonsymmetric.

Two further requirements must be considered when implementing a preconditioner for LR-GMRES. In order to maintain
the low-rank structure we wish to write this in Kronecker form, however we must also consider the inverse of the pre-
conditioner. It is the implementation of the inverse in Kronecker form which allows us to write this as a simple matrix
multiplication as in (3.14) for the saddle point matrix.

We present here a number of different choices of preconditioner for LR-GMRES.

270 M.A. Freitag, D.L.H. Green / Journal of Computational Physics 357 (2018) 263–281
Algorithm 1 Low-rank GMRES (LR-GMRES).

Choose X (0)
11 , X (0)

12 , X (0)
21 , X (0)

22 , X (0)
31 , X (0)

32 .

{ X̃11, X̃12, X̃21, X̃22, X̃31, X̃32} = Amult(X (0)
11 , X (0)

12 , X (0)
21 , X (0)

22 , X (0)
31 , X (0)

32).

V 11 = {B11, − X̃11}, V 12 = {B12, X̃12},
V 21 = {B21, − X̃21}, V 22 = {B22, X̃22},
V 31 = {B31, − X̃31}, V 32 = {B32, X̃32}.

ξ = [ξ1, 0, . . . , 0], ξ1 =
√
traceproduct(V (1)

11 , . . . , V (1)
11 , . . .).

for k = 1, . . . do
{Z (k)

11 , Z (k)
12 , Z (k)

21 , Z (k)
22 , Z (k)

31 , Z (k)
32 } = Aprec(V (k)

11 , V (k)
12 , V (k)

21 , V (k)
22 , V (k)

31 , V (k)
32)

{W11, W12, W21, W22, W31, W32} = Amult(Z (k)
11 , Z (k)

12 , Z (k)
21 , Z (k)

22 , Z (k)
31 , Z (k)

32).
for i = 1, . . . , k do

hi,k = traceproduct(W11, . . . , V (i)
11 , . . .),

W11 = {W11, hi,k V (i)
11 }, W12 = {W12, V (i)

12 },

W21 = {W21, hi,k V (i)
21 }, W22 = {W22, V (i)

22 },

W31 = {W31, hi,k V (i)
31 }, W32 = {W22, V (i)

32 }.
end for
hk+1,k = √

traceproduct(W11, . . . , W11, . . .)

V (k+1)
11 = W11/hk+1,k, V (k+1)

12 = W12,

V (k+1)
21 = W21/hk+1,k, V (k+1)

22 = W22,

V (k+1)
31 = W31/hk+1,k, V (k+1)

32 = W32.
Apply Givens rotations to kth column of h, i.e.
for j = 1, . . .k − 1 do[

h j,k

h j+1,k

]
=

[
c j s j

−s̄ j c j

][
h j,k

h j+1,k

]
end for
Compute kth rotation, and apply to ξ and last column of h.[

ξk

ξk+1

]
=

[
ck sk

−s̄k ck

][
ξk

0

]
, hk,k = ckhk,k + skhk+1,k,

hk+1,k = 0.

if |ξk+1| sufficiently small then
Solve H̃ ỹ = ξ , where the entries of H̃ are hi,k .

Y11 = { ỹ1 V (1)
11 , . . . , ỹk V (k)

11 }, Y12 = { ỹ1 V (1)
12 , . . . , ỹk V (k)

12 }
Y21 = { ỹ1 V (1)

11 , . . . , ỹk V (k)
21 }, Y22 = { ỹ1 V (1)

22 , . . . , ỹk V (k)
22 }

Y31 = { ỹ1 V (1)
31 , . . . , ỹk V (k)

31 }, Y32 = { ỹ1 V (1)
32 , . . . , ỹk V (k)

32 }
{Ỹ11, ̃Y12, ̃Y21, ̃Y22, ̃Y31, ̃Y32} = Aprec(Y11, Y12, Y21, Y22, Y31, Y32)

X11 = {X (0)
11 , Ỹ11}, X12 = {X (0)

12 , Ỹ12}
X21 = {X (0)

21 , Ỹ21}, X22 = {X (0)
22 , Ỹ22}

X31 = {X (0)
31 , Ỹ31}, X32 = {X (0)

32 , Ỹ32}
break

end if
end for

Algorithm 2 Matrix multiplication (Amult).
Input: W11, W12, W21, W22, W31, W32

Output: Z11, Z12, Z21, Z22, Z31, Z32
Z11 = [BW11, Q W11, W31, MW31], Z12 = [E1 W12, E2 W12, W32, C W32],
Z21 = [RW21, H W31], Z22 = [W22, W32],
Z31 = [W11, MT W11, H T W21], Z32 = [W12, C T W12, W22]

3.4.1. Inexact constraint preconditioner
As mentioned above, the inexact constraint preconditioner [7] has been seen to be an effective preconditioner for the

saddle point formulation of weak constraint 4D-Var [18], provided a suitable choice of approximation of L is taken.
The inverse of the inexact constraint preconditioner (3.17) is given by

P−1 =
⎡
⎣ 0 0 L̃−T

0 R−1 0
L̃−1 0 −L̃−1 DL̃−T

⎤
⎦ , (3.18)

which includes the term L̃−1. In order to implement this in LR-GMRES, we write L̃−1 in Kronecker form. This restricts the
choice of L̃, however taking an approximation L̃ of the form IN+1 ⊗ In + C ⊗ M̃ , where M̃ is an approximation to M , the
structure of L is maintained. Additionally, we can write the inverse in Kronecker form as

L̃−1 = IN+1 ⊗ In − C ⊗ M̃ + C2 ⊗ M̃2 − . . . + C N ⊗ M̃N

= IN+1 ⊗ In +
N∑

(−1)kCk ⊗ M̃k. (3.19)

k=1

M.A. Freitag, D.L.H. Green / Journal of Computational Physics 357 (2018) 263–281 271
Despite being able to write this in Kronecker form, this results in an unfeasible number of terms for large N , furthermore for
close approximations M̃ to the model matrix M , the computations are expensive. A possibility is therefore to approximate
L̃−1 by truncating (3.19) after a few terms.

Truncating after one term we obtain the approximation L̃−1 = In(N+1) . Hence in Kronecker form we can then write the
resulting inverse of the preconditioner as:

P−1
I =

⎡
⎣ 0 0 IN+1 ⊗ In

0 IN+1 ⊗ R−1 0
IN+1 ⊗ In 0 −E1 ⊗ B − E2 ⊗ Q

⎤
⎦ . (3.20)

To illustrate a possible choice of the Aprec function, we present the application of (3.20) as Algorithm 3.

Algorithm 3 Inexact constraint preconditioner L̃−1 = In(N+1) (Aprec).
Input: W11, W12, W21, W22, W31, W32

Output: Z11, Z12, Z21, Z22, Z31, Z32
Z11 = W31, Z12 = W32,
Z21 = R−1 W21, Z22 = W22,
Z31 = [W11, −BW31, −Q W31], Z32 = [W12, E1 W32, E2 W32]

If we take M̃ = In we may consider the approximation L̂ = IN+1 ⊗ In + C ⊗ In . Truncating the resulting inverse after two
terms we compute that the Kronecker inverse of the preconditioner is

P̂−1
L̂

=
⎡
⎣ 0 0 I ⊗ I − C ⊗ I

0 I ⊗ R−1 0
I ⊗ I − C ⊗ I 0 J

⎤
⎦ , (3.21)

where J = −(I ⊗ I − C ⊗ I)(E1 ⊗ B)(I ⊗ I − C T ⊗ I) − (I ⊗ I − C ⊗ I)(E2 ⊗ Q)(I ⊗ I − C T ⊗ I), and we drop the subscripts
for the identities.

An alternative approach is to consider an inexact constraint preconditioner where we approximate H in (2.16) in addition
to L. In this example we approximate L by L̃ = I , and using the exact H, we obtain

PIH =
⎡
⎣ D 0 I

0 R H
I HT 0

⎤
⎦ . (3.22)

The inverse of which is

P−1
IH =

⎡
⎣ HT FH −HT F I −HT FHD

−FH F FHD
I − DHT FH DHT F DHT FHD − D

⎤
⎦ , (3.23)

where F = (HDHT +R)−1 = (E1 ⊗ (H B H T + R)−1) + (E2 ⊗ (H Q H T + R)−1). If H is computationally expensive (such as if
H is not a simple interpolatory observation operator), this choice of preconditioner may prove unfeasible.

3.4.2. Schur complement preconditioners
An alternative choice of preconditioner is a Schur complement preconditioner, such as the block diagonal preconditioner

PD =
⎡
⎣ D 0 0

0 R 0
0 0 S̃

⎤
⎦ , (3.24)

where S̃ is an approximation to the Schur-complement

S = −LT D−1L −HT R−1H.

This choice of preconditioner is used in [38], and allows the use of LR-MINRES, though in Section 4.2 we use LR-GMRES
to compare the different choices as in the full-rank case, GMRES and MINRES are theoretically equivalent for symmetric
systems.

As an approximation to the Schur complement we consider

S̃ = −L̃T D−1 L̃, (3.25)

the inverse of which, S̃−1 = −L̃−1 DL̃−T is familiar as the (3, 3) term in the inexact constraint preconditioner inverse (3.18).
As such we must approximate this by truncating the expansion of L̃−1 (3.19) as before. Considering the approximation

272 M.A. Freitag, D.L.H. Green / Journal of Computational Physics 357 (2018) 263–281
L̂ = IN+1 ⊗ In + C ⊗ In and truncating after two terms as before, the block diagonal Schur complement preconditioner may
be implemented in the same way as the inexact constraint preconditioner (3.21) above. This results in

P−1
DL̂

=
⎡
⎣ E1 ⊗ B−1 + E2 ⊗ Q −1 0 0

0 I ⊗ R−1 0
0 0 J

⎤
⎦ , (3.26)

where J = −(I ⊗ I − C ⊗ I)(E1 ⊗ B)(I ⊗ I − C T ⊗ I) − (I ⊗ I − C ⊗ I)(E2 ⊗ Q)(I ⊗ I − C T ⊗ I) as before.
An alternative method for implementing the Schur complement approximation (3.25) in a low-rank form is detailed

in [38]. Instead of truncating the resulting inverse, and applying the technique used in Algorithm 3, the relationship between
the Kronecker product and Sylvester equations is exploited. In order to solve S̃ Z31 Z T

32 = W31W T
32, the Kronecker form

−(I ⊗ I + C T ⊗ M̃T)(E1 ⊗ B−1 + E2 ⊗ Q −1)(I ⊗ I + C ⊗ M̃)vec
(

Z31 Z T
32

)
= vec

(
W31W T

32

)
,

is written as two consecutive Sylvester equations. These resulting Sylvester equations are solved one after the other using a
low-rank solver such as an ADI [2,4] or Krylov [36] method to generate a low-rank approximation X31 X T

32. It is this approach
which we employ in our numerical implementations in Section 4.2.

An alternative Schur complement preconditioner is the block triangular Schur complement preconditioner, which re-
quires the use of LR-GMRES unlike the block diagonal one above. This choice uses approximations to L, H, and the Schur
complement S ,

PT =
⎡
⎣ D 0 L̃

0 R H̃
0 0 S̃

⎤
⎦ . (3.27)

When inverted, unlike the other preconditioners we have considered, this maintains a term containing L̃, in addition
to the L̃−1 in the Schur complement approximation inverse. Taking the same approximation to S as above, we obtain the
inverse

P−1
T =

⎡
⎣ D−1 0 −D−1 L̃S̃−1

0 R−1 −R−1H̃S̃−1

0 0 S̃−1

⎤
⎦ . (3.28)

In order to implement this preconditioner, (3.28) must be described in Kronecker form, approximating S̃−1 by truncation
or as we use in Section 4.2, the Sylvester equation approach above.

3.4.3. Analysis of preconditioners
As mentioned above, whilst there has been investigation into preconditioning saddle point problems such as [5,6,8], most

of these choices assume that the (1, 1) block is the computationally expensive one.
Schur complement preconditioners such as the block diagonal and block triangular examples we consider here are de-

tailed in [5,6]. Using exact matrices for the approximations S̃ , L̃ and H̃, in (3.24) and (3.27) results in the preconditioned
system having two or three eigenvalues; therefore methods such as MINRES or GMRES converge in at most three steps.
However in general, we must consider approximations which reduces the efficacy of the preconditioner. Furthermore, for
the data assimilation saddle point problem, these are not necessarily the most appropriate from a computational point of
view.

The use of the inexact constraint preconditioner [8] in the data assimilation setting is considered in [15,16,18], and
experimentally has proved effective. Here as the covariance matrices are less computationally expensive, the exact (1, 1)

block is typically used. Thus using the result in [8], the eigenvalues τ of the matrix⎡
⎣ D 0 L̃

0 R H̃
L̃T H̃ T 0

⎤
⎦

−1 ⎡
⎣ D 0 L

0 R H
LT HT 0

⎤
⎦ (3.29)

are either one (with multiplicity at least (N + 1)(2n + p) − 2 rank([LT , HT] − [L̃T , H̃T])) or bounded by

|τ − 1| ≤ ‖[LT , HT] − [L̃T , H̃T]‖
σ̃1

,

where σ̃1 is the smallest singular value of [L̃T , H̃T].
When considering the exact approximation L̃ = L, and taking H̃ = 0, the resulting preconditioned system has eigenvalues

τ = 1 ±
√

μT HL−1 DL−T HT μ

μT Rμ
i

M.A. Freitag, D.L.H. Green / Journal of Computational Physics 357 (2018) 263–281 273
where μ ∈ R
(N+1)p . Using the properties of the Rayleigh quotient, we know that the eigenvalues are on a line parallel to

the imaginary axis through 1, where the maximum distance from the real axis is given by√
λmax(HL−1 DL−T HT)

λmin(R)
.

Experimental results in [18] demonstrate that when an approximation is taken for L̃, the eigenvalues are clustered in a
cloud surrounding τ = 1 with the size of this cloud likely depending on the accuracy of the chosen approximation.

4. Numerical results

In this section we present numerical results using LR-GMRES. (For preconditioning strategies see Section 4.2). We use 20
iterations of LR-GMRES with a tolerance of 10−6. During the algorithm where we truncate the matrices after concatenation
and applying Amult, we use a truncation tolerance of 10−8. We present examples with different choices of reduced rank r.

4.1. One-dimensional advection–diffusion system

As a first example, let us consider the one-dimensional (linear) advection–diffusion problem, defined as:

∂

∂t
u(x, t) = cd

∂2

∂x2
u(x, t) + ca

∂

∂x
u(x, t) (4.1)

for x ∈ [0, 1], t ∈ (0, T), subject to the boundary and initial conditions

u(0, t) = 0, t ∈ (0, T)

u(1, t) = 0, t ∈ (0, T)

u(x,0) = u0(x), x ∈ [0,1].
We solve this system with a centered difference scheme for ux and ut , and a Crank–Nicolson scheme [12] for uxx , discretis-
ing x uniformly with n = 100, and taking timesteps of size �t = 10−3. For this example, we set the underlying system to
have cd = 0.1, ca = 1.4 and u0(x) = sin(πx).

We now consider this example as a data assimilation problem, and compare the solutions obtained both by the sad-
dle point formulation (2.16), and the low-rank approximation using LR-GMRES. We take an assimilation window of 200
timesteps (giving N = 199), followed by a forecast of 800 timesteps. Thus the resulting linear system (2.16) we solve here is
of size (40,000 + 200p), where p is the number of observations we take at each timestep. Independent of p, the full-rank
update δx ∈ R

20,000. In contrast the low-rank update is W V T , where W ∈ R
100×r, V ∈ R

200×r . For r = 20, this requires only
30% of the storage.

In the examples to follow, we compare the full- and low-rank solutions to the data assimilation problem with the
background estimate.

Perfect observations First let us suppose we have perfect observations of every state in the assimilation window. Hence
p = 100, and the size of the saddle point system we consider is 60,000. We take as the background estimate ub

0, a perturbed
initial condition with background covariance B = 0.1I100, and for this, and the following examples, we consider a model
error with covariance Q = 10−4 I100.

Fig. 4.1 shows the state u(x, ta) and absolute error |u∗(x, ta) − u(x, ta)| for the time ta immediately after assimilation. We
consider the three approaches, denoting the true solution by u∗ . In Fig. 4.2 we consider the root mean squared error of the
approaches, presenting the errors in both the assimilation window, and the forecast. The results show that the low-rank
solution matches the full-rank solution very closely, in both the observation window and the forecast. In Fig. 4.1, the low,
and full-rank approximations are indistinguishable, with both displaying the same characteristics in the state error plot. Both
methods for solving the data assimilation problem result in a superior forecast to the initial guess (without assimilation).

It is worth noting that here the low-rank solution to the data assimilation problem achieves a lower root mean squared
error than the full-rank solution for half of the forecast window. Investigating different random seeds, we saw that this was
not always the case, though in majority of experiments the two solutions were close. In this example, the full- and low-rank
solutions both outperformed the background estimate for all random seeds considered.

Partial, noisy observations Next, we introduce partial noisy observations, taking observations in every fifth component of u.
These are generated from the truth with covariance R = 0.01I p , for p = 20, and as such the linear system we consider for
this example is of size 44,000. In this example we take for the background error covariance Bi, j = 0.1 exp(

−|i− j|
50), keeping

Q = 10−4 I100 and r = 20. The resulting errors for three approaches, and the root mean squared errors are shown in Fig. 4.3.
As with the previous example, the state errors of both the full- and low-rank solutions are similar, though here we notice

a greater variation between the two than in the previous example. Unlike above, when we compare the root mean squared

274 M.A. Freitag, D.L.H. Green / Journal of Computational Physics 357 (2018) 263–281
Fig. 4.1. State and error for time ta after the assimilation window for 1D advection–diffusion problem with perfect observations. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4.2. Root mean squared errors for 1D advection–diffusion data assimilation problem with perfect observations. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

errors of the full- and low-rank approaches, there is a greater disparity between the two, with the full-rank performing
significantly better except at the very start of the forecast. Nonetheless the low-rank approximation is superior to using no
assimilation.

Different choices of rank We now consider the effect of the chosen rank on the assimilation result. In the previous
examples we have considered r = 20, which resulted in the low-rank approximation to δx requiring only 30% of the storage
needed for the full-rank solution. Here we consider r = 5 (requiring 7.5% of the storage), and r = 1 (needing just 1.5%),
and otherwise keep the setup of the example used in Fig. 4.3, with partial, noisy observations unchanged. In Fig. 4.4 we
obtain a very close forecast from taking r = 5 to that which we saw from r = 20, though the assimilation window has
greater variation for r = 5 whilst remaining close to the full-rank solution. In contrast, the behaviour of the root mean
squared error for r = 1 is considerably different to that of the full-rank solution. Despite this, the forecasts for both r = 5
and r = 1 are close to the full-rank solution and are comfortably more accurate than using no assimilation. The closeness to
the full-rank may be caused by the smoothing properties of this model operator, and the particular random seed, as noted
above. Though taking different random seeds results in similar behaviour in majority of cases.

Table 1 presents the storage requirements for the examples considered in this section. As Figs. 4.1–4.4 demonstrate,
despite the large reduction in the necessary storage for the low-rank approach, it results in close approximations to the
full-rank method.

M.A. Freitag, D.L.H. Green / Journal of Computational Physics 357 (2018) 263–281 275
Fig. 4.3. Error for time ta after the assimilation window, and root mean squared error for 1D advection–diffusion problem with partial, noisy observations
(r = 20). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4.4. Root mean squared errors for 1D advection–diffusion data assimilation problem with partial, noisy observations. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Storage requirements for full- and low-rank methods in the 1D advection–diffusion equation examples.

n N p rank # of matrix elements in solution storage reduction

full-rank low-rank

100 199 100 20 20,000 6,000 70%
100 199 20 20 20,000 6,000 70%
100 199 20 5 20,000 1,500 92.5%
100 199 20 1 20,000 300 98.5%

Computation time In Table 2, we present a comparison of the computation time for different choices of rank in the
advection–diffusion example using LR-GMRES. As above, we perform twenty iterations of LR-GMRES, and average over one
hundred runs. These computations were done on an Intel i5-4460 processor operating at 3.2GHz.

We note that due to the truncation steps in the LR-GMRES algorithm, which are currently performed using a (sparse)
svd, we do not see significant savings in time compared to solving the saddle point system using Matlab’s backslash
function because of this expense. However it is possible that in larger problem sizes, with a low choice of rank, we may see
superior time savings.

276 M.A. Freitag, D.L.H. Green / Journal of Computational Physics 357 (2018) 263–281
Table 2
Comparison of computation time for low-rank GMRES in the 1D advection–diffusion equation examples.

n N p rank saddle point size runtime (s)

100 199 20 99 44,000 21.6881
100 199 20 50 44,000 9.4815
100 199 20 20 44,000 2.7177
100 199 20 5 44,000 0.7075
100 199 20 1 44,000 0.4440

Fig. 4.5. Residual using different preconditioners for the 440 × 440 advection–diffusion example. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

4.2. Comparison of preconditioners

We present here a comparison between different choices of preconditioner for the 1D advection–diffusion equation
system in Section 4.1. We consider a small example taking n = 10, N = 19, p = 4 with Bi, j = 0.1 exp(

−|i− j|
50), Q = 10−4 I10,

R = 0.01I4. The resulting saddle point matrix is 440 × 440. In all the following cases a reduced rank size of r = 5 is
considered, though similar results are obtained when we vary this choice.

The preconditioners considered in Fig. 4.5a are inexact constraint preconditioners (3.17), which we compare to using no
preconditioner. We use L̃ = I, ̂L = IN+1 ⊗ In + C ⊗ In , and also consider PIH from (3.22) where L̃ = I , and use the exact H.

We see that none of the preconditioners achieve a residual smaller than 10−2 even after 440 iterations due to the
additional restrictions of the low-rank solver (e.g. the truncation during the algorithm). The three inexact constraint pre-
conditioners where we take H̃ = 0 exhibit very similar behaviour with the approximation L̂ performing slightly better than
the other two on the whole. The only preconditioner which achieved superior results to taking the identity, was PIH from
(3.22), incorporating the true H and taking L = I . Despite this, the improvement occurs only after 70 iterations which for
GMRES is not ideal since we must store all iterates. Even using the low-rank representation here, this becomes problematic.

For Fig. 4.5b, we experimented with a selection of Schur complement preconditioners, all of which approximate the
Schur complement using the approximation (3.25). For the block triangular preconditioner, we use the exact L and H in the
inverted matrix in addition to (3.25).

Unlike the inexact constraint preconditioners, none of the Schur complement preconditioners we consider here showed
better results than using no preconditioner. Comparison with the inexact constraint preconditioners shows the block di-
agonal Schur complement preconditioners using L̂ and L to be comparable. Despite the block triangular preconditioner
containing the true H it results in an ineffective choice, performing worse than all others considered.

To illustrate a larger problem size than those above, we conduct a further test using n = 20 with the remaining setup
unchanged from above. Thus the saddle point matrix is now of size 880. In Fig. 4.6 we compare the best performing of the
above preconditioners, the inexact constraint preconditioner PIH from (3.22) using L̃ = I and H̃ =H. We see that as before,
the inexact constraint preconditioner eventually results in a lower residual, though here it takes over 250 iterations, nearly
four times as many as in the 440 system which was merely half the size. As mentioned above this is infeasible for this
implementation of LR-GMRES, and hence we used no preconditioner in the numerical examples presented in Sections 4.1
and 5.1.

M.A. Freitag, D.L.H. Green / Journal of Computational Physics 357 (2018) 263–281 277
Fig. 4.6. Residual using the inexact constraint preconditioner for the 880 × 880 advection–diffusion example. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

A possible explanation for why preconditioning is not effective here is the following. During LR-GMRES, the truncation
process selects only the most important modes, e.g. the ones belonging to larger eigenvalues, ignoring the smaller ones.
Therefore, the low-rank approach acts like a regularisation, and hence in some sense like a projected preconditioner.

5. Time-dependent systems

Next we consider an extension of the Kronecker formulation (3.2) to the time-dependent case, allowing for time-
dependent model, and observation operators, and the respective covariance matrices. The remaining assumption we must
make is that the number of observations in the i-th timestep, pi is constant, i.e. pi = p for each i. With these assumptions,
the linear system in (3.2) becomes⎡

⎢⎢⎢⎢⎢⎢⎢⎣

F1 ⊗ B +
N∑

i=1
Fi+1 ⊗ Q i 0 I ⊗ Ix +

N∑
i=1

Ci ⊗ Mi

0
N∑

i=0
Fi+1 ⊗ Ri

N∑
i=0

Fi+1 ⊗ Hi

I ⊗ Ix +
N∑

i=1
C T

i ⊗ MT
i

N∑
i=0

Fi+1 ⊗ H T
i 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ λ

μ
δx

⎤
⎦ =

⎡
⎣b

d
0

⎤
⎦ , (5.1)

where Fi denotes the matrix with 1 on the ith entry of the diagonal, and zeros elsewhere, and Ci is the matrix with −1
on the ith column of the subdiagonal, and zeros elsewhere. Here Mi and Hi are linearisations of the model and observation
operators Mi and Hi respectively about xi .

As in Section 3.1, we may use (3.1) to rewrite this as the (now more general) matrix equations

B�F1 +
N∑

i=1

Q i�Fi+1 + X +
N∑

i=1

Mi XC T
i = b

N∑
i=0

Ri U Fi+1 +
N∑

i=0

Hi X Fi+1 = d

� +
N∑

i=1

MT
i �Ci +

N∑
i=0

H T
i U Fi+1 = 0.

(5.2)

Where as before λ, δx, b, μ and d are vectorised forms of the matrices �, X, b ∈ R
n×N+1 and U , d ∈ R

p×N+1 respectively.
These matrix equations must again be solved for �, U and X , where X is the matrix of interest.

Algorithm 4 is an implementation of Amult for the time-dependent case, explicitly writing the concatenation defined by
(5.2) in the form required for LR-GMRES. This requires linearisations of the model and observation operators at all timesteps
in order to be applied.

We note that further to the truncation expense highlighted in Section 4, the significantly increased number of matrices
being concatenated prior to truncation results in longer runtimes, particularly if new linearised matrices must be computed.

As an example, we consider the Lorenz-95 system [28] which is both non-linear, and also chaotic rather than smoothing
such as the previous example (Section 4.1), so as to better represent real world data assimilation problems such as weather
forecasting.

278 M.A. Freitag, D.L.H. Green / Journal of Computational Physics 357 (2018) 263–281
Algorithm 4 Matrix multiplication (time-dependent) (Amult).
Input: W11, W12, W21, W22, W31, W32

Output: Z11, Z12, Z21, Z22, Z31, Z32

Z11 = [BW11, Q 1 W11, . . . , Q N W11, W31, M1 W31, . . . , MN W31],
Z12 = [F1 W12, F2 W12, . . . , F N+1 W12, W32, C1 W32, . . . , CN W32],
Z21 = [R0 W21, . . . , RN W21, H0 W31, . . . , HN W31],
Z22 = [F1 W22, . . . , F N+1 W22, F1 W32, . . . , F N+1 W32],
Z31 = [W11, MT

1 W11, . . . , MT
N W11, H T

0 W21, . . . , H T
N W21],

Z32 = [W12, C T
1 W12, . . . , C T

N W12, F1 W22, . . . , F N+1 W22]

Fig. 5.1. Error |x∗ − x| for the time after the assimilation window, and root mean squared error for Lorenz-95 system with perfect observations. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

5.1. Lorenz-95 system

We consider the Lorenz-95 system [28], this is a generalisation of the three-dimensional Lorenz system [27] to n dimen-
sions. The model is defined by a system of n non-linear ordinary differential equations

dxi

dt
= −xi−2xi−1 + xi−1xi+1 − xi + f , (5.3)

where x = [x1, x2, . . . , xn]T is the state of the system, and f is a forcing term. It is known that for f = 8, the Lorenz system
exhibits chaotic behaviour [20,28]. Also noted is that for reasonably large values of n (here we take n = 40), this choice of
f leads to a model which is comparable to weather forecasting models.

We solve (5.3) using a 4th order Runge–Kutta method in order to obtain

xk+1 = Mk(xk), where xk = [x1
k , x2

k , . . . , xn
k]T , (5.4)

where Mk is the non-linear model operator which evolves the state xk to xk+1. As before Hk denotes the potentially
non-linear observation operator for the state xk . To formulate the data assimilation problem as a saddle point problem, we
generate the tangent linear model, and observation operators Mk and Hk by linearising Mk and Hk about xk .

As in Section 4.1, we compare the low-rank approximation computed using LR-GMRES, to the full-rank solution of the
saddle point formulation (2.16), and the background estimate (e.g. no assimilation). We perform the data assimilation using
an assimilation window of 200 timesteps, followed by a forecast of 1300 timesteps, where the timesteps are of size �t =
5 · 10−3. The full-rank update is therefore δx ∈ R

8,000, whilst in contrast the low-rank update W V T , is such that W ∈
R

40×r, V ∈ R
200×r . Here we consider r = 20 once more, which here requires 60% of the storage, still demonstrating a

significant reduction.

Perfect observations As with the advection–diffusion equation, let us first suppose we have perfect observations of every
state in the assimilation window, we take as the background estimate xb

0, a perturbed initial condition with background
covariance B = 0.1I40, and as before, we consider a model error with covariance Q = 10−4 I40. The error |x∗ − x| for the
time after assimilation, and the root mean square errors for the three approaches in this example are presented in Fig. 5.1.
The choice of r = 20 here results in a low-rank approximation which is very close to the full-rank solution. This is very

M.A. Freitag, D.L.H. Green / Journal of Computational Physics 357 (2018) 263–281 279
Fig. 5.2. Root mean squared error for Lorenz-95 system with noisy, and partial observations. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

good given that the low-rank approximation requires 40% less storage. In the state error plot we observe small differences
between solutions for the middle states, though this is still substantially smaller than the error with no assimilation. In the
forecast the low-rank approximation matches the full-rank until both reach the error with no assimilation, with only small
variation.

Noisy observations We next introduce noisy observations, taking R = 0.01I p for the observation error covariance, further-

more we take as the background error covariance Bi, j = 0.1 exp(
−|i− j|

50). In Fig. 5.2 we consider the root mean squared
errors for two different choices of observation operator: taking interpolatory observations in every component (p = 40)

shown on the left, and in every fifth component (p = 8) on the right. In both cases, the low-rank approximation matches
the full-rank very closely until the time at which both errors are comparable to the background estimate. In this example
the assimilation of noisy observations in every fifth component is similarly difficult for both approaches. To achieve these
very similar results using the low-rank approach, despite using just 60% of the storage is very promising.

150-dimensional Lorenz-95 Finally, we consider as a larger example, the 150-dimensional Lorenz-95 system with an
assimilation window of 150 timesteps. This gives a full-rank update δx ∈ R

22,500, and we consider two different choices
of low-rank, r = 20 requiring 27% of the storage, and r = 5 needing 7%. In this example we take noisy observations in each
state, with covariances Bi, j = 0.1 exp(

−|i− j|
50), R = 0.01I150 and Q = 10−4 I150.

These examples, shown in Fig. 5.3 demonstrate further that a low-rank approximation performs very closely to that of the
full-rank solution for small choices of r. Taking r = 20 we see that as in the previous examples, the resulting approximation
is nearly indistinguishable until both solutions reach the same level of error as with no assimilation. As before, we see
the low-rank performing better for r = 5, this is not always the case depending on the random seed as noted earlier,
and is emphasised by the chaotic system sensitivity. However repeated experimentation shows that the full- and low-rank
approximations are often close. Here the approximation using r = 5 gives similar results to the full-rank approximation,
despite requiring just 7% of the storage.

Table 3 presents the storage requirements for the examples considered in this section. As with the advection–diffusion
example, despite the large reduction in storage required, the experiments have shown that the low-rank approximations
give similar results to the full-rank approach, which is a very good prospect.

6. Conclusions

The saddle point formulation of weak constraint four-dimensional variational data assimilation results in a large linear
system which in the incremental approach is solved to determine the update δx at every step. In this paper we have
proposed a low-rank approach which approximates the solution to the saddle point system, with significant reductions in
the storage needed. This was achieved by considering the structure of this saddle point system and using techniques from
the theory of matrix equations. Using the existence of low-rank solutions to Sylvester equations we showed that low-rank
solutions to the data assimilation problem exist under certain assumptions, with numerical experimentation demonstrating
that this may be the case even when these assumptions are relaxed.

We introduced a low-rank GMRES solver, considered the requirements for implementing this algorithm, and investigated
several preconditioning approaches. For our examples we observed that no preconditioners were necessary, however further

280 M.A. Freitag, D.L.H. Green / Journal of Computational Physics 357 (2018) 263–281
Fig. 5.3. Root mean squared error for 150-dimensional Lorenz-95 system with r = 20 and r = 5. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 3
Storage requirements for full- and low-rank methods in the Lorenz-95 examples.

n N p rank # of matrix elements in solution storage reduction

full-rank low-rank

40 199 40 20 8,000 4,800 40%
40 199 8 20 8,000 4,800 40%
150 149 150 20 22,500 6,000 73.3%
150 149 150 5 22,500 1,500 93.3%

investigation of this may lead to new choices of preconditioners for the data assimilation setting, and new low-rank solvers
for weak constraint 4D-Var.

Numerical experiments have demonstrated that the low-rank approach introduced here is successful using both linear
and non-linear models.

In these examples we achieved close approximations to the full-rank solutions with storage requirements as low as
10% of those needed by the full-rank approach. We see that reducing the rank additionally results in a larger time sav-
ing, however due to the superiority of Matlab’s ‘\’, we do not achieve faster results than a sophisticated direct solver for
these problems. It is possible that with larger problem sizes, we may achieve greater time savings. These results are very
promising, though some further investigation is needed, in particular for non-linear problems.

References

[1] P. Benner, T. Breiten, Low rank methods for a class of generalized Lyapunov equations and related issues, Numer. Math. 124 (2013) 441–470.
[2] P. Benner, P. Kürschner, Computing real low-rank solutions of Sylvester equations by the factored ADI method, Comput. Math. Appl. 67 (2014)

1656–1672.
[3] P. Benner, J.-R. Li, T. Penzl, Numerical solution of large-scale Lyapunov equations, Riccati equations, and linear-quadratic optimal control problems,

Numer. Linear Algebra Appl. 15 (2008) 755–777.
[4] P. Benner, R.-C. Li, N. Truhar, On the ADI method for Sylvester equations, J. Comput. Appl. Math. 233 (2009) 1035–1045.
[5] M. Benzi, G.H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numer. 14 (2005) 1–137.
[6] M. Benzi, A.J. Wathen, Some Preconditioning Techniques for Saddle Point Problems, Springer-Verlag, 2008, pp. 195–211.
[7] L. Bergamaschi, On eigenvalue distribution of constraint-preconditioned symmetric saddle point matrices, Numer. Linear Algebra Appl. 19 (2011)

754–772.
[8] L. Bergamaschi, J. Gondzio, M. Venturin, G. Zilli, Inexact constraint preconditioners for linear systems arising in interior point methods, Comput. Optim.

Appl. 36 (2007) 137–147.
[9] L. Bergamaschi, J. Gondzio, M. Venturin, G. Zilli, Erratum to: Inexact constraint preconditioners for linear systems arising in interior point methods,

Comput. Optim. Appl. 49 (2009) 401–406.
[10] Y. Cao, J. Zhu, I.M. Navon, Z. Luo, A reduced-order approach to four-dimensional variational data assimilation using proper orthogonal decomposition,

Int. J. Numer. Methods Fluids 53 (2007) 1571–1583.
[11] P. Courtier, J.-N. Thépaut, A. Hollingsworth, A strategy for operational implementation of 4D-var, using an incremental approach, Q. J. R. Meteorol. Soc.

120 (1994) 1367–1387.
[12] J. Crank, P. Nicolson, A Practical Method for Numerical Evaluation of Solutions of Partial Differential Equations of the Heat-Conduction Type, Math.

Proc. Camb. Philos. Soc., vol. 43, Cambridge Univ. Press, 1947, pp. 50–67.
[13] V. Druskin, V. Simoncini, Adaptive rational Krylov subspaces for large-scale dynamical systems, Syst. Control Lett. 60 (2011) 546–560.

http://refhub.elsevier.com/S0021-9991(17)30933-6/bib42656E6E657232303133s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib42656E6E657232303134s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib42656E6E657232303134s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib42656E6E657232303038s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib42656E6E657232303038s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib42656E6E657232303039s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib42656E7A6932303035s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib42656E7A6932303038s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib42657267616D617363686932303131s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib42657267616D617363686932303131s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib42657267616D617363686932303037s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib42657267616D617363686932303037s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib42657267616D617363686932303039s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib42657267616D617363686932303039s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib43616F32303037s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib43616F32303037s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib436F75727469657231393934s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib436F75727469657231393934s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib4372616E6B31393437s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib4372616E6B31393437s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib447275736B696E32303131s1

M.A. Freitag, D.L.H. Green / Journal of Computational Physics 357 (2018) 263–281 281
[14] G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys.
Res. 99 (1994) 10143–10162.

[15] M. Fisher, S. Gratton, S. Gürol, Y. Trémolet, X. Vasseur, Low rank updates in preconditioning the saddle point systems arising from data assimilation
problems, Optim. Methods Softw. 33 (2018) 45–69.

[16] M. Fisher, S. Gürol, Parallelisation in the time dimension of four-dimensional variational data assimilation, Q. J. R. Meteorol. Soc. (2017),
https://doi.org/10.1002/qj.2997.

[17] M. Fisher, M. Leutbecher, G.A. Kelly, On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation,
Q. J. R. Meteorol. Soc. 131 (2005) 3235–3246.

[18] M. Fisher, Y. Trémolet, H. Auvinen, D. Tan, P. Poli, Weak-Constraint and Long-Window 4D-Var, Tech. Rep. 655, ECMWF, 2011.
[19] G.M. Flagg, S. Gugercin, On the ADI method for the Sylvester equation and the optimal-H2 points, Appl. Numer. Math. 64 (2013) 50–58.
[20] M.A. Freitag, R. Potthast, Synergy of Inverse Problems and Data Assimilation Techniques, Radon Ser. Comput. Appl. Math., vol. 13, Walter de Gruyter,

2013, pp. 1–53.
[21] L. Grasedyck, Existence of a low rank or H-matrix approximant to the solution of a Sylvester equation, Numer. Linear Algebra Appl. 11 (2004) 371–389.
[22] R.E. Kalman, A new approach to linear filtering and prediction problems, J. Basic Eng. 82 (1960) 35–45.
[23] D. Kressner, C. Tobler, Krylov subspace methods for linear systems with tensor product structure, SIAM J. Matrix Anal. Appl. 31 (2010) 1688–1714.
[24] A.S. Lawless, Variational Data Assimilation for Very Large Environmental Problems, Radon Ser. Comput. Appl. Math., vol. 13, Walter de Gruyter, 2013,

pp. 55–90.
[25] A.S. Lawless, N.K. Nichols, C. Boess, A. Bunse-Gerstner, Using model reduction methods within incremental four-dimensional variational data assimila-

tion, Mon. Weather Rev. 136 (2008) 1511–1522.
[26] J.-R. Li, J. White, Low-rank solution of Lyapunov equations, SIAM J. Matrix Anal. Appl. 24 (2002) 260–280.
[27] E.N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963) 130–141.
[28] E.N. Lorenz, Predictability: a problem partly solved, in: Proc. Seminar on Predictability, vol. 1, 1996.
[29] B.C. Moore, Principal component analysis in linear systems: controllability, observability, and model reduction, IEEE Trans. Autom. Control 26 (1981)

17–32.
[30] T. Penzl, A cyclic low-rank Smith method for large sparse Lyapunov equations, SIAM J. Sci. Comput. 21 (1999) 1401–1418.
[31] D.T. Pham, J. Verron, M.C. Roubaud, A singular evolutive extended Kalman filter for data assimilation in oceanography, J. Mar. Syst. 16 (1998) 323–340.
[32] Y. Saad, Numerical solution of large Lyapunov equations, in: Signal Processing, Scattering and Operator Theory, and Numerical Methods, Proc. MTNS-89,

Birkhäuser, 1990, pp. 503–511.
[33] Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Comput. 7 (1986)

856–869.
[34] Y. Sasaki, An objective analysis based on the variational method, J. Meteorol. Soc. Jpn. 36 (1958) 77–88.
[35] Y. Sasaki, Some basic formalisms in numerical variational analysis, Mon. Weather Rev. 98 (1970) 875–883.
[36] V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix equations, SIAM J. Sci. Comput. 29 (2007) 1268–1288.
[37] V. Simoncini, Computational methods for linear matrix equations, SIAM Rev. 58 (2016) 377–441.
[38] M. Stoll, T. Breiten, A low-rank in time approach to PDE-constrained optimization, SIAM J. Sci. Comput. 37 (2015) B1–B29.
[39] M. Verlaan, A.W. Heemink, Tidal flow forecasting using reduced rank square root filters, Stoch. Hydrol. Hydraul. 11 (1997) 349–368.

http://refhub.elsevier.com/S0021-9991(17)30933-6/bib4576656E73656E31393934s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib4576656E73656E31393934s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib46697368657232303136s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib46697368657232303136s1
https://doi.org/10.1002/qj.2997
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib46697368657232303035s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib46697368657232303035s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib4669736865723230313161s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib466C61676732303133s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib4672656974616732303133s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib4672656974616732303133s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib47726173656479636B32303034s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib4B616C6D616E31393630s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib4B726573736E657232303130s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib4C61776C65737332303133s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib4C61776C65737332303133s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib4C61776C65737332303038s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib4C61776C65737332303038s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib4C6932303032s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib4C6F72656E7A31393633s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib4C6F72656E7A31393936s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib4D6F6F726531393831s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib4D6F6F726531393831s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib50656E7A6C31393939s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib5068616D31393938s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib5361616431393930s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib5361616431393930s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib5361616431393836s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib5361616431393836s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib536173616B6931393538s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib536173616B6931393730s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib53696D6F6E63696E6932303037s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib53696D6F6E63696E6932303136s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib53746F6C6C32303135s1
http://refhub.elsevier.com/S0021-9991(17)30933-6/bib5665726C61616E31393937s1

	A low-rank approach to the solution of weak constraint variational data assimilation problems
	1 Introduction
	2 Variational data assimilation
	2.1 Four dimensional variational data assimilation (4D-Var)
	2.2 Incremental 4D-Var

	3 Low-rank approach
	3.1 Kronecker formulation
	3.2 Existence of a low-rank solution
	3.3 Low-rank GMRES (LR-GMRES)
	3.4 Preconditioning LR-GMRES
	3.4.1 Inexact constraint preconditioner
	3.4.2 Schur complement preconditioners
	3.4.3 Analysis of preconditioners

	4 Numerical results
	4.1 One-dimensional advection-diffusion system
	4.2 Comparison of preconditioners

	5 Time-dependent systems
	5.1 Lorenz-95 system

	6 Conclusions
	References

