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This results in a fully implicit nonlinear algebraic system of equations. Conventionally, an
exact Jacobian construction is employed during the Newton linearization to obtain a linear
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1. Introduction

Nonlinear processes are a common occurrence for multiphase, flow and transport problems in sub-surface porous media.
These nonlinearities originate from empirical, phenomenological and often mechanistic considerations during the modeling
of the physical processes. Conventionally, after spatial and temporal discretization of the partial differential equations of
the associated model formulation, linearization is necessary to solve the resulting nonlinear system of algebraic equations.
The Newton’s method is a well-known nonlinear solver and has proven quadratic rate of convergence in the vicinity of
the solution assuming a Lipschitz continuity argument. There is an extensive literature dedicated to different modifications
of Newton’s method that address a wide array of issues in solving nonlinear system of equations (inexact, chord, quasi-
Newton, semismooth, etc.), see e.g. [1-6] and references therein. The semi-smooth Newton methods, for example, are used
for treating system of non-smooth equations with lower regularity arising from model inequality constraints, inadvertent
roughness due to empirical considerations, or other modeling inconsistencies. This latter inconsistency is often seen in re-
alistic subsurface reservoirs with heterogeneous rock properties, where an empirical description of capillary pressure and
relative permeability introduces discontinuities at the interface between different rock types.

For flow and transport problems in porous media, a backward Euler discretization in time with an appropriate spatial
discretization gives rise to a fully-implicit nonlinear system of algebraic equations. A nonlinear solver, as described before,
is then used to obtain spatial distributions of desired unknowns (pressure, saturation, concentration etc.) at a given time.
In doing so, the solution available at the previous time, the time-step size, and the nonlinear solver convergence rates are
inherently tied. The primary focus in the development of computationally efficient, nonlinear solution strategies is to either
increase the convergence rates (optimally quadratic) or increase time-step sizes although at the cost of additional numerical
diffusion. However, these two desirable properties are closely related due to the linearization assumption inherent to the
nonlinear solver. A large time-step size requirement strains this linearization assumption, since an initial estimate from
previous time solutions is not sufficiently close to the final solution, resulting in reduced convergence rates. Similarly, a
requirement on the convergence rate constraints the time-step size. Since a rigorous derivation relating time-step size and
nonlinear convergence rate is not often achievable in the light of the wide ranging model nonlinearities, we draw our
conclusions based upon observed numerics.

Several approaches have been proposed that aim to alleviate or circumvent some of these aforementioned issues in favor
of overall computational efficiency. A number of these approaches [7-10] improve nonlinear convergence rates, for a given
time-step size, that rely upon modifying the Newton step-size or descent direction or both. These modifications are either
based upon determining an optimal nonlinear step size using line-search algorithms or altering descent direction (Jacobian)
using prior knowledge of the regularity of functions contributing to the Jacobian. The simplest example of modifying the
descent direction occurs in the case of slightly compressible fluid description where the contribution of the density deriva-
tive with respect to pressure to the Jacobian is often considered negligible. This latter modification improves the overall
efficiency by neglecting the computationally expensive evaluation of the density derivative. Another such approach, is the
reduced Newton algorithm proposed by [9,10] that relies upon saturation or concentration updates in an order determined
by pressure potential. The authors report an overall reduction in computational cost due to larger time-step sizes for which
the nonlinear iterations converge. However, the sequential nature of potential reordering and consequent saturation/concen-
tration updates in this proposed nonlinear solution algorithm might pose parallel scalability issues.

In this work, we present a nonlinear solver based upon modifying the Newton descent direction to improve the overall
computational efficiency for numerical reservoir simulations. Although, this work has been extended for fully implicit, mul-
tiphase, compositional flow [11], the model complexity precludes a fair comparison between the proposed and conventional
approaches. We therefore restrict ourselves to a slightly compressible, two phase flow model for the sake of simplicity.
This allows us to compare the differences between the conventional Newton method (exact Jacobian) and our approach
(approximate Jacobian) both in terms of nonlinear system formulation and consequent numerical benchmarking. We begin
with a description of a two-phase flow model formulation followed by a brief discussion of a mixed finite element spatial
discretization and its relation to the well known cell-centered finite difference. We then present a § notation relying upon
Gateaux derivatives to linearize the semi-discrete nonlinear partial differential equations obtained after temporal discretiza-
tion prior to spatial discretization. This is followed by a detailed discussion on the conventional and proposed approaches.
We use this aforementioned § notation to simplify the description and easily distinguish the differences in Jacobian con-
struction for the two approaches. Next we describe the nonlinear solvers and preconditioners used in this work with a brief
discussion on the accuracy of the two nonlinear solvers. Finally, we present extensive numerical experiments for benchmark-
ing the proposed approach against the conventional method to determine the computational speedup and overall increase
in efficiency.

2. Model formulation

We begin by describing the model formulation for immiscible, two-phase, slightly compressible flow in a porous medium
which is widely accepted in several porous media communities such as oil and gas, ground water hydrology and environ-
mental engineering.
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2.1. Phase conservation equations

Consider a time interval (0, T), along with a spatial domain, @ c R?, d =2 or 3 with boundary 9Q and outward unit
normal n. The mass conservation equation for phase « is
0 (dpaSa)
at

where ¢ is the rock porosity and py, Sq, Uy and g, are density, saturation, velocity and source/sink term, respectively of
phase «. The Darcy velocity is given by,

+ Vg =qq in Q2 x (0, T}, (M

kT(X .
Uy = —KpaM— (VDo — pa8) inQ x (0, T] (2)
o

Here, K and g are the rock permeability and gravitational constant, respectively. Further, k;o, [t and p, are the relative
permeability, viscosity and pressure of phase «.

2.2. Initial and boundary conditions

Although not restrictive, for the sake of simplicity we assume no flow boundary conditions.

Uy, -n=00n3Q x (0, T] (3)
Pa=05, Soa=S2, atQ x {t=0} (4)

Here, pg, Sg are the initial conditions for pressure and saturation of phase .
2.3. Constraints and other conditions

The phase saturations S, are constrained as,
Y Se=1. (5)
o

We assume capillary pressure and relative permeabilities to be continuous and monotonic functions of phase saturations.
A precise description of the functional forms is avoided to maintain generality.

Pc=f(S0) =Pw — Po (6)
kro =krq (Sa) (7)

Further, both oil and water phase are assumed to slightly compressible with phase densities evaluated using

Pa = Pa,ref EXP [Cfoc (Pa — poz,ref)] . (8)

Here, cfy is the compressibility and oy ref is the density of phase o at the reference pressure py ref.
3. MFEM as CCFD

The cell-centered finite difference scheme (CCFD) is well known in flow and transport in porous medium communities. In
this work, we use a mixed finite element method (MFEM) for spatial discretization related to the CCFD scheme in an effort
to assist code portability for legacy reservoir simulators. Earlier works [12] show that the mixed finite element method with
the lowest order Raviart-Thomas-Nedelec (RTN) spaces [13,14] on a rectangular grid reduces to a cell-centered finite differ-
ence scheme due to the choice of a numerical quadrature rule. The MFEM therefore results in the same nonlinear system,
after fluxes are eliminated, as for the CCFD scheme, making the two schemes equivalent. Some results on superconvergence
of this MFEM or CCFD scheme with flux boundary conditions for an elliptic problem can be found in [15]. An expanded
MFEM to handle full tensor permeability and general geometry using logically rectangular grids was presented in [16,17].
Later this scheme was applied to non-linear, two-phase and black-oil flow problems by [18] and [19], respectively. Here an
auxiliary flux term is introduced to avoid inversion of zero relative permeabilities. However, for discontinuous permeability
tensors the gradient in pressure and hence the auxiliary flux is also discontinuous wherein a hybrid form of the expanded
mixed method is necessary to recover accuracy.

A multipoint flux mixed finite element (MFMFE) method was later presented by [20] to handle non-smooth grids and
permeabilities. This scheme avoids Lagrange pressure multipliers at the discontinuous interfaces introduced by the former
expanded MFEM while preserving the cell-centered structure of the CCFD scheme. The MFMFE scheme can also handle full
tensor permeabilities on logically rectangular distorted hexahedra to capture general geometries. An expanded form of the
MFMEFE scheme is then used to avoid inversion of zero relative permeabilities in the case of non-linear multiphase flow
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problems. This MFMFE scheme has been extended to handle complex, non-linear flow and transport problems including
equation of state compositional flow [11]. In this work, we use this latter MFE scheme for the sake of generalization to
more complex flow models and simplicity in outlining the differences between approximate and exact Jacobian approaches.
In what follows, a two-phase, slightly compressible flow model is used resulting in a nonlinear algebraic system of equations.

4. The § notation

Conventionally, to solve a nonlinear partial differential equation (PDE) system using finite element methods, one begins
with a fully-discrete weak formulation. This is followed by a linearization step on the resulting nonlinear system of algebraic
equations. In contrast, for the approximate Jacobian approach presented here, Newton linearization is performed on the
discrete-in-time variational formulation before spatial discretization is considered. We use the § notation when calculating
the required derivatives which allows for simplicity of describing the approximations made in aforementioned method.
Although the conventional method can be used, we consider the latter for the sake of simplicity in comparing the two
formulations. To solve the nonlinear equation F(p) = 0, Newton method solves a sequence of linear problems,

F(phsp* = —F(p"),

for §pk = pk*t1 — pk, the difference between two consecutive iterates. Here, F'(p) is the Fréchet derivative of the operator F.
To show the similarities between computing derivatives of (nonlinear) operators and derivatives of real-valued functions,
note that F'(p) is also the Giteaux derivative of F [21]. The latter is a generalization of the classical directional derivative
and is defined as

F(p+¢edp) — F(p)
&

F'(p)(@ép) := lim (9)

We formally write § as an operator that maps F(p) to its Gateaux derivative in the direction §p, i.e.

8(F(p) == F'(p)(3p). (10)

Note that the § operator is independent of the spatial operators V and V-.
5. Fully implicit with exact Jacobian construction

We first describe a fully implicit scheme for solving the two-phase flow model formulation discussed earlier. As described
in Section 3, an RTNg space is used for spatial discretization with a specific quadrature rule which results in the well-known
finite difference scheme. A backward Euler scheme is used for temporal discretization resulting in a fully-implicit, nonlinear
system of equations. The exact Jacobian construction refers to the Newton linearization of this nonlinear system of equations
where the derivatives of the nonlinear terms with respect to the primary unknowns are evaluated exactly without making
any approximations. We later describe an approximate Jacobian construction wherein approximations are made to facilitate
easier elimination of the some of the primary unknowns to derive a reduced linear system. We select oil phase concen-
tration, c, (defined below), oil phase pressure, p,, phase velocities, u,, and auxiliary phase velocities i1, as the primary
unknowns following by temporal and spatial discretization prior to Newton linearization of the resulting system. Please note
that the phase velocities are taken to be primary unknowns to draw out some of the necessary details and are eliminated
after Newton linearization resulting in a reduced system with p, and c, as the unknowns. We suggest that the reader to
go over this section cursorily, returning only to compare the differences between exact and inexact Jacobian constructions
after linearization, as described in Sections 5.2 and 6.2, respectively.

5.1. Time discrete variational formulation
Let us define c, as the concentration of phase « as follows,

Co = PaSa- (11)

Then using backward Euler scheme for time discretization of the two phase mass conservation equations results in an
implicit system in pressure (p, ), concentration (c,) and velocities (u,, Uy ) unknowns.

(pca)™ — ($ca)"
At

n+1 kro !
u, = _I<IOOM_ (Vpo — 008) ) (12b)
0

V=gt (12a)

n+1 krw mH
u,” =|—-Kpw 'u_ (V(po—pc) — pw8) . (12¢)
w
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The saturation constraint, Eqn. (5), can be expressed in terms of the unknowns ¢y and p, using Eqn. (11) as,

ZC—"‘ZL (12d)
~ P

The phase densities (py) are explicit functions of p, whereas the capillary pressure (p.) is an explicit function of water
saturation and can be easily evaluated. To simplify notation we suppress time index n + 1 unless superscript n is explicitly
used to denote known quantities at the previous time step.

(90w (1=3)) = (o (1= 2))

AL + Vg =qw (13a)
W + Vilo =qo (13b)
Uy =—KXo (VDo — 008) (13¢)
Uy =—Kiw (V(po—Dpc) — Pw8) (13d)
Ao = A (Do, Co) =pa(po)w (13e)
Pe=pc(So) = pc(Co, Po) ) (13f)

In order to avoid inverting a zero, water and oil relative permeabilities at irreducible and residual saturations, respectively,
we define an auxiliary velocity unknown i, and rewrite the constitutive equations or Darcy’s law for each phase « as,
Uy = Aqlly, gy =—K(Vpy — po8). (14)

We define velocity and pressure spaces as V = {v in H(div; ) : v-n =0 on 992} and W = L%(Q), respectively. The
expanded mixed variational problem is: Given ¢} and p? find p, € W, uy € V and ¢, € W such that,

<<¢co) ;t(qbco) 7W>+(V.uo,w):(q0,w) (15a)
oow (1-2) = (d0w (1-2))’

( "°> A(t ( ”)) W |+ (Ve W) = (qw, W) (15b)
(K10, v) = (Do, V-¥) = (pog. V) (15¢)
(K™Y, v) = (po, V-¥) = — (e, V-¥) + (0w &, V) (15d)
(g, V) = (Aqlly, V) (15e)

Here, we W and v e V.
5.2. Linearization

Next we linearize the above system to construct an exact Jacobian. We omit the nonlinear/Newton iteration counter,
represented by the superscript k, for simplicity of description in the following. The Newton step sa¥ is then defined as,

8(1k — ak+l _ ak. (16)

(98Co, W) + (V-8Up, W) At = — ((¢Co) — (¢Co)", W) — [(V-uo, w) — (4o, W)}At (17a)
Pw Co Co
<¢( - ESCO + crwpw(l— E)‘SPO + chfoE5P0>, W) + (V-duy, w) At

1 Co ¢ \"
[aml2) -2

+Vuw, w) — (Qw, W):|

(K180, v) — (8p0. V-¥) — (Cfopo&8Po. v) = — (KMo, V) — (Do, V-¥) — (008, V)] (17¢)
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5 3 3 3
(K~'8ity, v) = (8po, V-¥) — (cprw {Spo - ﬂ(Sco}g, v) + (ﬁéco + 2P s pe v V)

9¢o ¢ 9po (17d)
=—[(K 'ltw, v) = (po. V-¥) + (e, V-¥) — (pw 8, V)]
s BV 3 e . - 5
(Ottg, V) — (Agbila, V) — | ——8Polla. v ) — | ——8Coila, ¥ =—((ua,V)—(kaua,V)) (17e)
31)0 aco

For slightly compressible flow models, the contribution of the third term in each of the Eqns. (17c¢), (17d), and (17e) is small
and is often neglected. We assume that the capillary pressure at the domain boundaries is zero or,

/pcv-nzo, (18)
aQ

in the above equations. This is consistent with the physical observation of capillary end effects in core-flooding experiments
due to absence of capillary pressure at the core boundaries. Another argument in favor of this assumption comes from
subsurface porous media considerations where saturation condition and hence capillary pressure at the domain boundaries
are usually not known.

A B 0 0 g“" —Rio
0 0 D, BT||%Po|=|—Ry (19)

dc
_Ao Aop Aoc 1 51.!(; —R3,
A B 0 07|%Mw ~Riw

0 C, D, BT||®Po|=|—Ry, (20)
8¢Co

_Aw Awp  Awe I Sty —R3w
(BTADA—‘B - BTAOP)(SpO n (DO - BTAOC)(SCO - BT(Rgo - AOA_lRw) ~ Rao 21)
(CW +BTAyA"'B— BTAWP)(SpO + (DW - BTAWC)(SCO - BT(R3W - AWA_]le) — Row (22)

Eqns. (21) and (22) constitute the linear system of equations in unknowns p, and c,. The block matrices A and B
correspond to the first and second terms in Eqns. (17c), (17d). Note that both A and B are independent of the fluid phase
description. The choice of quadrature rules, discussed in previous section, results in different sparsity patterns in matrix A,
block diagonal for the MFMFE scheme [20], and diagonal for the CCFD scheme [17]. Similar differences in sparsity patterns
also occur in matrices Ay, p/c due to differences in quadrature rules used for evaluating the integral. All other matrices are
diagonal and are described as follows,

Ao =diag(—Aqy)

Oy -~ _
Aga = [W"“]U ,a =Py OI Cq
. C C
szdlag(cfw,ow(l — p—i)—i—pwcfop—(;) (23)
—diage( — 4 P"
Dy _dlag( ¢ o )
D, =diag(¢)

We abuse the notation by reusing subscripts i and j, used differently in the previous sections, to denote matrix entries
of Agq.

6. Fully implicit using approximate Jacobian construction

Here, we present an approximate Jacobian construction resulting from the nonlinear system of algebraic equations after
spatial and temporal discretizations as described in the previous section. This formulation differs in the choice of primary
unknowns which are oil phase pressure, p,, saturation of both phases, S, and S,, and phase velocities, u, and u,,. The
saturation constraint is not used to eliminate one of the saturation unknowns and treated as an additional constraint. Again,
as described in Section 5, the phase velocities are eliminated here as well after linearization resulting in a reduced linear
system. The approximate Jacobian approach is designed to trivially eliminate phase saturations, with negligible computa-
tional overheads, resulting in a reduced linear system in oil phase pressure unknown, p,. In what follows, we first present
the temporal and spatial discretizations to arrive at a nonlinear system of algebraic equations. Thereafter, an approximate
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Jacobian construction is described for linearization and consequently the resulting reduced linear system. One important
point to note is that a special two-stage or CPR preconditioner is not needed for this linear system in contrast to the
exact Jacobian construction. The numerical results presented in Section 8 later demonstrate the computational savings ow-
ing to the reduced linear system inherent to the approximate Jacobian construction when compared to the exact Jacobian
construction.

6.1. Time discrete variational formulation

We use backward Euler scheme for time discretization of the two phase mass conservation equations resulting in an
implicit system in pressure (p,), saturations (S,, Sy ) and velocities (u,, Uy ) unknowns. Again, p, is an explicit function
of py and can be easily evaluated whereas p. is an explicit function of saturation. As before, to simplify notation we
suppress time index n 4+ 1 unless superscript n is explicitly used to denote known quantities at the previous time step. The
time-discrete form is then given by,

(PPaSa) — (PPaSa)"

» +V-ttly =qq (242)

Uy =—KXo (VDo — 008) (24b)

uy =—Kiw (V(Po— Do) — pw8) (24c)
ko (Sa)

ra =2a(Pos Sa) = Pa s (24d)

o

Again, the expanded mixed variational problem is: Given S}, and p find p, € W, uy € V and Sy € W such that,

<(¢pasa) gt(qﬁpasa)” , W) (Vg W) = (G W) (252)
(K™ it0, v) = (Do, V-¥) = (0og. V) (25b)
(K™ 'itw, v) — (o, V-¥) = — (P, V-¥) + (pw8g, V) (25¢)
(Ug, V) = (Aqlly, V) (25d)

)

Y Sa=1 (25e
o

As before, we W and ve V.
6.2. Linearization

A variant of the chord method is,

where A¥ =~ F/(xX) and can also be viewed as a preconditioned nonlinear Richardson iteration. For more details regarding
chord method or its variants along with convergence rates please read [4].

(#PaéSa, W)+ (¢Cfotpa5a5p07 W) + (V-duy, w) At

" (27a)
=—((@PaSa) = (PPaS)" . W) — [(V-ltg, W) — (qu, W)] AL
(K~"8it) — (8o, V-¥) = (C0p088Po, ¥) = — [(K ™o, v) — (Do, V-¥) = (008, V)] (27b)
s dpc dpc dpc
K18y, v) — (8po, V-v) — | ¢ 8po — ——8Sw |g. v +< 8Sw + —=8 ,V~v>
( w ) (6po ) (fw:ow|: Do 35w wi|g ) 39Sy w T Do (27¢)
=—[(K itw, v) = (Po. V-¥) + (pc, V-¥) — (pw8g. V)]
(Gttg. V) — (A (Po. Sar) S v)—(aﬂa it v)—(aﬂas ii v)
o> a(Dos da as P, Polg, 39S, ala, (27d)

= [(ua: V) — (Mx(pw So) Ug, V)]

> 88 =-— [Z Se — 1} (27e)

The above constitute 7 linear equations in 7 unknowns (p,, S¢, Uy, Uy ). We neglect the third term in each of the Eqns. (27b)
through (27d) as in the case of exact Jacobian construction in the previous section. Additionally, we also neglect the fourth
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term in each of the Eqns. (27¢) and (27d) to construct our approximate Jacobian. These additional approximations allow us
to eliminate the saturation unknowns (S, ) in favor of the pressure unknowns (p,) as shown below. In matrix form this
linear system can be expressed as,

A B 0 o07]%% “Rig
~ ~ T (Spo ~
0 Cy Dy B ss. | =] —Ra |- (28)
Agy 0 0 I « —R3q
Sy

Eliminating 1y, uy from Eqns. (27a) using Eqns. (27b), (27c) and (27d) we obtain a system of linear equations in p, and Sy .

A =diag(—Ay)
Cy = diag(éc o P Se) (29)
Dy = diag(¢pa)
(fa + BTAaAilB)apo + 5a85a = BT(/ﬁBa - AaAilﬁla) — Rag (30)
8Sq = (Do)~ (BT@a — AaA""R1g) — Rao — (Co + BTAD[A”B)(SpO) (31)

Eqns. (30) and (31) are two equations in three unknowns 8p,, §S, and, §Sy . Since D, is a diagonal matrix, it can be easily
inverted to express §Sy in terms of §p,. Substituting these §S, in Eqn. (27e), we obtain a further reduced linear system of
equations in §p, only.

> (D)™ (Cu+ BT AaAT'B) Do = [Z Se — 1] + > (Ba) ™" (BT (Rsa — AaA™"Ria) — o) (32)

The nonlinear residuals (Ry) for the exact (Eqns. (21) and (22)), and approximate Jacobian (Eqns. (30)) approaches
converge to the same solution. The convergence criteria is kept the same for the two approaches and requires that a
max norm of the phase residuals Ry is less than a desired tolerance €. Hence there is no loss of accuracy, in terms of
mass conservation, due to the aforementioned approximation. The only difference is that the time step sizes, for nonlinear
convergence, are usually larger for the exact Jacobian compared to the approximate Jacobian approach. Furthermore, the
approximate Jacobian requires more number of nonlinear iterations when compared to the exact approach. However, the
computational times of the former remain lower than the latter approach.

7. Linear solvers and preconditioners

The monolithic linear system obtained using the exact Jacobian approach is sparse, highly non-symmetric, ill-conditioned,
and contains blocks with different nature. Particularly effective approach to solve it is to use the Generalized Minimum
RESidual (GMRES) method [22] with two-stage preconditioning that decouples the pressure and saturation (or concentra-
tion) variables for each grid block [23,24,18,25-27]. There are several decoupling techniques where the matrix is transformed
such that the pressure-concentration block (or submatrix) has zero diagonal [25]. The two predominantly used matrix trans-
formations are the Constrained Pressure Reduction (CPR) [23] and the Householder reflection [28].

As mentioned earlier, the CPR or two-stage preconditioner locally decouples pressure and concentration using matrix op-
erations. This results in lower triangular sub-matrices that is reduced to a diagonal matrix assuming the off-diagonal terms
after the aforementioned matrix operation are small. The monolithic system is then reduced and solved using conventional
linear solvers for definite systems (e.g. GMRES) to obtain an update in the pressure and saturation unknowns. On the other
hand, the approximate Jacobian approach makes an approximation at the nonlinear level, during linearization of the alge-
braic system, prior to the construction of the linear monolithic system. These approximations allow us to diagonalize these
sub-matrices at the cost of additional nonlinear iterations. In our numerical experiments, we observe that the computational
cost of these additional nonlinear iterations for the approximate approach are consistently less than the costs incurred by
the two-stage preconditioner for the exact approach.

For our numerical simulations, for exact Jacobian approach we use two-stage preconditioned GMRES method with House-
holder reflection [28] to decouple the pressure and concentration variables. We then employ 4 different preconditioners for
the pressure block: multilevel incomplete LU (MLILU) [29], algebraic multigrid (AMG) [30,31], and their two-stage precondi-
tioner versions using the line successive over-relaxation (LSOR) as a smoother in the vertical direction (MLILU2 and AMG2).
The last two methods are considered since they balance the major computational cost of the initialization of the pres-
sure multilevel preconditioners. For the concentration block we use a block Gauss-Seidel preconditioner. For more details,
see [26]. For the approximate Jacobian approach, we have only pressure variables and the system is positive definite, so
there is no need to employ two-stage preconditioner. Here we simply use a GMRES solver with the above 4 preconditioners,
MLILU, MLILU2, AMG, and AMG2.
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Fig. 1. Flow-chart for time step size variation with nonlinear convergence.
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Fig. 2. Relative permeability (left) and capillary pressures (right) as function of water saturation for the quarter five spot pattern.

8. Numerical results

In this section, we present a number of numerical results to benchmark and compare the proposed approximate Jacobian
approach against the conventional exact Jacobian method. These numerical experiments are performed using our in-house
reservoir simulator IPARS (Integrated Parallel Accurate Reservoir Simulator). A number of user specifications are required
for initial, minimum, and maximum time-step sizes during simulation run. The maximum permissible nonlinear iterations,
for the nonlinear solve, are taken to be 15. When these iterations are exceeded the time-step size is reduced by a half for
the following time-steps. A successful non-linear solve with iterations below the aforementioned iteration threshold results
in an increase in the time-step size for the next non-linear solve. This is a fairly standard practice in commercial reservoir
simulators for computational efficiency. Fig. 1 shows a schematic of time-step size reduction and increase used in a number
of commercial reservoir simulators. Here, 8 and « are the time-step size reduction and increase factors, respectively.

8.1. Quarter five spot pattern

We present a comparison of CPU runtimes for the two approaches using a quarter five spot well pattern. The compu-
tational domain is 80 ft x 100 ft x 100 ft discretized using 4 x 50 x 50 elements. The reservoir properties are taken to be
homogeneous with an isotropic, diagonal permeability tensor of 10 mD and a porosity of 0.2. Further, the oil and water
phase densities and compressibilities are 56 and 62 Ib/ft3, and 10~% and 10~8, respectively. The gravity vector is taken to
be going into the plane of paper in Fig. 3 with an initial condition of 1000 psi and 0.2 for the pressure and saturation, re-
spectively. The numerical simulations are performed for a total of 500 days for all of the cases described in this subsection.
Fig. 2 shows the relative permeability and capillary pressure curves used in this numerical experiment.

We consider four cases with increasing time-step sizes to identify computational speedups obtained. Case 1 uses a
maximum time-step size of 0.2 days for which we observed one or two additional nonlinear iterations for the approximate
approach when compared to the exact approach. A larger maximum time-step size of 1.0 day results in substantial increase
in additional nonlinear iterations however, the computational speedup is not affected adversely. Please note that Cases 1
and 2 were chosen such that the aforementioned time-step cuts do not occur throughout the simulation run. Table 2 shows
the time-step reduction and increase factors used for each of the four comparison cases. The check mark indicates that
no time-step cuts were observed. A maximum time-step size of 5 days was used for Case 3 where time-step cuts were
observed for the approximate approach. Finally, Case 4 uses a time-step size of 10 days with time-step cuts observed for
both exact and approximate approaches. The water injection and production wells are located at the bottom left and top
right corners in, as shown in Fig. 3 with pressure specifications of 4000 and 1000 psi, respectively.
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Table 1
Comparison of total and linear solver CPU times for Exact and Approximate approaches.
Exact Approximate
Total time Solver time Total time Solver time
Case 1 307.2 288.2 74.6 473
Case 2 137.6 132.2 34.6 25.1
Case 3 873 85.3 40.6 344
Case 4 79.1 773 28.5 23.6

Table 2
Nonlinear solver convergence for Exact and Approximate approaches with varying time-step sizes.
o B Atmin Atmax Exact Approximate
Case 1 1.0 0.5 0.1 0.2 v v
Case 2 1.01 0.5 0.1 1.0 v v
Case 3 1.05 0.5 0.1 5.0 v -
Case 4 1.05 0.5 0.1 10.0 - -
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Fig. 3. Matching saturation profiles at the end of 500 days for exact (left) and approximate (right) Jacobian approaches. (For interpretation of the colors in
the figure(s), the reader is referred to the web version of this article.)

A computational speedup of approximately 4 times was observed for cases 1 through 4, as shown in Table 1, and is
primarily due to a reduction in computational overheads for the linear solver. Fig. 3 shows the saturation profile after 500
days of continuous water injection for the exact (left) and approximate (right) approaches. Further, Fig. 4 show the spatial
distributions of the absolute value of the difference in saturation profiles (error norm), after 500 days, obtained from the
two approaches for Case 1 through 4.

Please note that the differences in the absolute values of the saturation distributions for Cases 3 and 4 are expected
due to differences in time-step cuts between exact and approximate approaches. These differences arise due to unequal
numerical diffusion introduced by different time-step sizes. In fact, as we go from Case 1 to 4 in Figs. 4 the saturation
difference between the two approaches increases. However, for each of these approaches the nonlinear residuals converge
to the same relative, nonlinear tolerance of 1 x 1078, Since large time-step sizes also introduce large numerical diffusions,
in what follows we have selected appropriate maximum time-step sizes that allow us to compare the two approaches while
avoiding unreasonably diffuse solutions. We do not report the production oil rates, water cuts and cumulative recoveries as
these aforementioned differences are almost negligible and cannot be identified using these plots.

8.2. Kueper sandbox problem

Next, we use a modified Kueper sandbox problem with strong counter-current flow due to capillary pressure and density
differences. The setup contains four different rock types with different capillary pressure and relative permeability curves
defined using Brooks-Corey model. The computational domain is 50 cm x 70 cm x 1 cm uniformly discretized using 50 x
70 x 1 elements. In this numerical experiment, we use the computational domain along with rock and reservoir properties
as described in the original work by [32]. Fig. 5 shows a schematic of the Kueper sandbox problem with four different rock
types (or sand-packs) with different relative permeability and capillary pressure curves.

The initial conditions for pressure and water saturation are taken to be 0.2 and 100 psi, respectively. We assume a
no-flow boundary condition on the entire domain. A pressure specified injection well is place at the top-middle of the com-
putational domain with 5 equidistant pressure specified production (or boundary) wells each at the left and right boundaries
of the domain to mimic the original Kueper sandbox problem. The injection and production well pressure specification is
set at 100.1 psi and 100 psi, respectively. The pressure difference between the source and sink is purposely kept small (at
0.1 psi) so that the flow is mostly gravity and capillary pressure dominated.
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Fig. 6. Matching saturation profiles at the end of 0.005 days for exact (left) and approximate Jacobian approaches.

The numerical simulations are run for a total duration of 0.005 days (or 7.2 minutes) for both exact and approximate
Jacobian approaches. The initial, minimum, and maximum time-step sizes for the two approaches are kept the same and
are taken to be 1078, 1078, and 107>, respectively. Further, the time-step increase and reduction factors are taken to be
0.5 and 1.01, respectively. We observed nonlinear iteration failures, leading to time-step cuts, occurring at different times
for both the approaches. Fig. 6 shows the saturation profiles at the end of 0.005 days for the exact (left) and approximate
(right) Jacobian approaches. Further, Fig. 7 shows the absolute difference in the saturation profiles at the same time. The
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Fig. 8. Matching saturation profiles at the end of 7301 days for exact (left) and approximate Jacobian approaches.

total and linear solver times are 1300.755 and 1207.336, respectively for the exact approach, and 604.923 and 508.230,
respectively for the approximate approach. As can be seen, the speedup obtained by approximate Jacobian approach is
approximately 2.15 times and is primarily due to reduced computational overheads for the linear solver. These numerical
results demonstrate that the solution accuracy of the approximate against the exact approach.

8.3. Brugge field water flooding

We now consider a field scale water flooding scenario with reservoir geometry, rock properties, and well placement
taken from the Brugge field history matching study [33]. The rock properties are heterogeneous and include distributions of
permeability and porosity as well as different rock types with varying relative permeability and capillary pressure descrip-
tions. The numerical reservoir model consists of 7172 grid elements with no-flow external boundaries. The reader is referred
to [33] for further details regarding reservoir property description. The fluid densities are taken to be 56.0 and 62.6 Ib/ft3
with viscosities 1.0 and 1.29 cP for the oil and water phases, respectively. Further, the water and oil phase compressibilities
are 3 x 1076 and 9.26 x 107 psi~!, respectively. The initial conditions for pressure and saturation are evaluated using
equilibrium calculations consistent with the estimated original oil in place.

The Brugge field scenario consists of 10 injection and 20 production wells with bottom-hole pressure specification of
4000 psi and 2000 psi, respectively. These modified specifications are chosen to prevent well-shut down during the simula-
tion run for both exact and approximate Jacobian approaches. Additionally, the gravity vector is taken to be in the positive
x direction as shown in Fig. 8. The numerical simulations are performed for a total of 7301 days or approximately 20 years
with initial, minimum, and maximum time-step sizes of 0.1, 0.1, and 10 days, respectively. The time-step size increase and
reduction factors are further taken to be 1.1 and 0.5, respectively. The total and linear solver CPU times are observed to be
98.481 and 88.234, and 74.044 and 50.577, respectively for the exact and approximate Jacobian approaches. The approximate
approach is therefore 1.32 times faster than the exact Jacobian approach.

Fig. 8 shows the saturation profiles after 7301 days obtained using exact (left) and approximate (right) Jacobian ap-
proaches. The absolute differences in saturation distributions at the end of the simulation is also shown in Fig. 9. As
mentioned before, although the nonlinear solver tolerances for the two approaches are the same, the differences occur
due to differences in time-step cuts and increases during the simulation run. The order of magnitude of these differences
remain the same during the simulation run.
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Fig. 10. Oil and water phase relative permeability curves for the Stuttgart field case.

8.4. Stuttgart field water flooding

Next, we consider another field scale water flooding case with reservoir geometry obtained using the Stuttgart field.
The computational domain in this problem models the Johansen formation off the coast of Norway and is a stair-stepped
approximation of the original field. It is discretized into 12166 grid elements with no flow boundary conditions as before.
The heterogeneous porosity and permeability distributions are obtained from the original dataset which can be downloaded
at [34]. The capillary pressure is assumed to be identically zero with oil and water phase relative permeability variation
with water saturation shown in Fig. 10. A single pressure specified injection well is considered in the center of the reservoir
domain with a bottom-hole pressure specification of 7000 psi. Further, 34 production wells are placed equidistantly at the
external reservoir boundaries with bottom-hole pressure specifications ranging from 3953 to 4841 psi. The fluid densities
are 62.6 and 56. Ib/ft3> with viscosities 0.5 and 2.0 cP and compressibilities 1 x 1076 and 1 x 10~ psi~! for the water and
oil phases, respectively. The initial conditions are specified at 7000 psi and 0.2 for the initial pressure and water saturation,
respectively.

The numerical simulation is performed for a total duration of 4000 days, approximately 11 years, with initial, minimum,
and maximum time-step sizes of 0.2, 0.2 and 5.0, respectively. Again the time-step size reduction and increase factors are
kept the same as before at 0.5 and 1.1, respectively. The total and linear solver CPU times are observed to be 206.755 and
188.465, and 59.757 and 42.836, respectively for the exact and approximate Jacobian approaches. A computational speedup
of 3.5 times is obtained for the approximate approach and can be easily observed from the computational savings in the
linear solver time. Fig. 11 shows the water saturation distributions, after 200 days, using exact (left) and approximate (right)
Jacobian approaches. The absolute differences in the two saturation distributions is also shown in Fig. 12.

9. Conclusions

We presented an approximate Jacobian construction as an alternative to the conventional Newton method, with exact
Jacobian construction, as a nonlinear solver. The proposed approach is a fully implicit, nonlinear solver for coupled mul-
tiphase flow and transport problems that is easier to implement compared to the conventional method since it does not
require construction of tedious contributions to the Jacobian matrix. The approximation is made in an effort to diagonalize
a few sub-matrices in the monolithic system allowing trivial elimination (Schur complement) of the saturation unknowns.
The resulting reduced system in the pressure unknown is a positive definite matrix that can be solved using conventional
linear solvers such as GMRES with AMG preconditioner. Our numerical results indicated computational speedups ranging
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from 1.32 to 4 times when the approximate Jacobian construction is used as opposed to the exact Jacobian construction. The
results consistently indicate a large computational cost reduction in the linear solver resulting in overall gain in efficiency.
The exact Jacobian approach converges for larger time-steps and requires lesser nonlinear iterations for a given time-step
size when compared to our approach. However, the overall computational gain in the linear solver times with approxi-
mate Jacobian construction allows it to surpass the conventional method during our extensive numerical benchmarking. We
demonstrate computational speedups for a wide range of numerical experiments considering heterogeneous rock properties
such as permeability, porosity, capillary pressure, and relatively permeability. The Kueper sandbox problem demonstrates
the capability of the approximate Jacobian approach in solving multiphase, counter-current flow problems dominated by
capillary pressure and buoyancy forces.
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