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Projecting fields between different meshes commonly arises in computational physics. This 
operation may require a supermesh construction and in this case its computational cost 
is proportional to the number of cells of the supermesh n. Given any two quasi-uniform 
meshes of nA and nB cells respectively, we show under standard assumptions that n is 
proportional to nA + nB . This result substantially improves on the best currently available 
upper bound on n and is fundamental for the analysis of algorithms that use supermeshes.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The problem of projecting fields between non-nested meshes frequently arises in computational physics and scientific 
computing. For this operation, a key ingredient can be a supermesh construction, a mesh that is a common refinement of 
both input meshes, cf. Fig. 1. Applications of supermeshes arise in adaptive remeshing, diagnostic computation, multimesh 
discretisations, cut finite element methods, and multilevel Monte Carlo, among others [1–7]. Several efficient algorithms for 
supermesh construction have been published (cf. [8–11]). In applications, complexity bounds for supermesh construction 
are essential for the analysis of the algorithm as a whole. Typically, the total supermeshing cost is proportional to the 
number of cells n of the resulting supermesh, for which only crude estimates are currently available; cf. [9]. In this note, 
we substantially improve on the best currently available upper bound for n.

More specifically, we show that the number of cells of a supermesh between two quasi-uniform meshes is linear in the 
sum of the number of cells of the parent meshes. This behaviour has been reported in numerical experiments (cf. Fig. 10 
in [9] and Fig. 10 in [2]), and is expected by practitioners. However, no theoretical result is available in the literature to 
support what observed in practice. We prove the following result.

Theorem 1.1. Let Ah and Bh be two quasi-uniform tessellations of two bounded domains A, B ∈ Rd. Let nA ≥ 1 and nB ≥ 1 be 
the number of cells of Ah and Bh respectively and let Sh be a supermesh of Ah and Bh constructed in such a way that each pair of 
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intersecting cells is triangulated into a finite number of supermesh cells. Then there exists a constant C(d, A, B) ≥ 1/2 independent of 
nA and nB such that the number n of cells of Sh is bounded above by

n ≤ C(d, A, B)(nA + nB). (1)

This result improves on the previously known bound, proven e.g. in [9], which states that n ≤ C̃(d, A, B)nAnB for some 
positive constant C̃(d, A, B). Note that Theorem 1.1 applies to any type of (quasi-uniform) tessellation with any cell shape.

Fig. 1. An example of a supermesh construction with non-overlapping domains. The first two meshes on the left are the parent meshes and the mesh on 
the right is one of their supermeshes.

2. Preliminaries

Before proceeding, we briefly recall the definitions of a supermesh and of a quasi-uniform tessellation.

Definition 2.1 (Supermesh, [9,8]). Let A, B ⊂ Rd be two domains and let Ah , Bh be tessellations of A and B respectively. A 
supermesh Sh of Ah and Bh is a common refinement of Ah and Bh . More specifically, Sh is a triangulation of S = A ∪ B
such that:

1. vertices(Ah) ∪ vertices(Bh) ⊆ vertices(Sh),
2. |eS ∩ e| ∈ {0, |eS |} for all cells eS ∈ Sh , e ∈ (Ah ∪ Bh).

Here we indicate with |D| the measure of a domain D ⊂ Rd . The first condition means that every parent mesh vertex 
must also be a vertex of the supermesh, while the second states that every supermesh cell is completely contained within 
exactly one cell of either parent mesh; cf. [8]. The supermesh construction is not unique, as any conforming refinement 
of a supermesh is also a supermesh. Efficient algorithms for computing the supermesh are available, cf. [12]. Supermesh 
cells always lie within the intersection of a single pair of parent mesh cells and therefore the number of supermesh cells is 
proportional to the number of intersecting cells K .

Requiring that meshes involved in finite element computations are quasi-uniform is a standard working assumption in 
the literature, see e.g. [13]. We now recall the definition of quasi-uniformity.

Definition 2.2 (Definition 4.4.13 in [13]). Let D be a given domain and let {T ĥ}, be a family of tessellations of D such that 
for 0 < ĥ ≤ 1,

max{diam (e) : e ∈ T ĥ} ≤ ĥ diam (D), (2)

where diam (D) is the diameter of D . The family is said to be quasi-uniform if there exists ρ̂ > 0 (independent of ĥ) such 
that

min{diam (B̂e) : e ∈ T ĥ} ≥ ρ̂ĥ diam (D), (3)

for all ĥ ∈ (0, 1], where B̂e is the largest ball contained in e such that e is star-shaped with respect to B̂e (cf. Definition
4.2.2 in [13]).

To simplify the exposition of what follows, it is more convenient to use the following property of quasi-uniform tessel-
lations.

Lemma 2.1. Let D be a bounded domain and let {T ĥ} be a quasi-uniform family of tessellations. Then there exist h and ρ ∈ (0, 1] with 
0 < h ≤ cd = √

2d/(d + 1) such that
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max{diam (Be) : e ∈ T ĥ} ≤ h diam (D), (4)

where Be is the smallest ball containing e and

min{diam (Be) : e ∈ T ĥ} ≥ ρh diam (D), (5)

for all h ∈ (0, cd], where Be is the largest ball contained in e.

Remark 2.1. The proof of Theorem 1.1 does not strictly require quasi-uniformity. In fact, the slightly more general conditions 
(4) and (5) are sufficient.

Proof. Jung’s theorem (see [14,15]) states that for any compact set e ⊂Rd ,

diam (Be) ≤
√

2d

d + 1
diam (e) = cd diam (e). (6)

Therefore

max{diam (Be) : e ∈ T ĥ} ≤ cd max{diam (e) : e ∈ T ĥ} ≤ cdĥ diam (D), (7)

where we have used (2) in the last step. Equation (3), and the fact that e does not need to be star-shaped with respect to 
Be also gives us,

min{diam (Be) : e ∈ T ĥ} ≥ min{diam (B̂e) : e ∈ T ĥ} ≥ ρ̂ĥ diam (D). (8)

Equations (7) and (8) are the same as (4) and (5) respectively after setting h = cdĥ and ρ = ρ̂/cd . Note that since necessarily

min{diam (Be) : e ∈ T ĥ} ≤ max{diam (Be) : e ∈ T ĥ}, (9)

and by combining (9) with (4) and (5) it is clear that ρ ≤ 1. �
It will be more convenient in the sequel to index a family of tessellations by h instead of ĥ.
In what follows we also need two auxiliary lemmas. The first states that the constants h and ρ appearing in Lemma 2.1

also provide a lower and upper bound for the number of cells of a quasi-uniform mesh.

Lemma 2.2. Let Dh be a quasi-uniform tessellation of a bounded domain D ⊂ Rd with nD ≥ 1 cells and let cD = 2d|D|/
(cπ (d) diam(D)d) with the values of cπ (d) given by cπ (1) = 2, cπ (2) = π and cπ (3) = 4π/3, then

cDh−d ≤ nD ≤ cDρ−dh−d, (10)

where h and ρ are the constants appearing in Lemma 2.1.

Proof. Let ei ∈ Dh for i = 1, . . . , nD be the cells of Dh . We compute a lower bound for nD by noting that the measure of 
each cell is less than or equal to the measure of the smallest ball containing it, which gives

|D| =
∑

i

|ei | ≤ cπ (d)2−d
∑

i

diam(Bei )
d ≤ cπ (d)2−dnDhd diam(D)d, (11)

where we have used equation (4) in the last step. The lower bound is obtained by solving for nD . Similarly we obtain an 
upper bound by noting that the measure of each cell is larger than the measure of any ball it contains. This gives,

|D| =
∑

i

|ei | ≥ cπ (d)2−d
∑

i

diam(Bei
)d ≥ cπ (d)2−dnDρdhd diam(D)d, (12)

where we used equation (5) in the last step. Solving for nD yields the upper bound. �
For any G ⊂ Rd , we use the notation G ⊂⊂ Rd to indicate that the closure of G , Ḡ , is a compact subset of Rd . The 

second lemma we need provides an upper bound for the number of intersections between the cells of a mesh Dh and any 
G ⊂⊂Rd .
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Lemma 2.3. Let Dh be a quasi-uniform tessellation of a bounded domain D ⊂ Rd with nD ≥ 1 cells. Let G ⊂⊂ Rd and, for a fixed 
δ > 0, define its δ-fattening Fδ(G) to be the set of all points in Rd with distance from Ḡ smaller or equal than δ (with the convention 
that Fδ(∅) = ∅ for all δ). Let I(G, Dh) be the number of cells of Dh that intersect with G, then

I(G, Dh) ≤ min

(
ρ−d |Fh̃(G) ∩ D|

|D| , 1

)
nD , (13)

where h̃ = h diam (D) and h and ρ are the constants appearing in Lemma 2.1.

Proof. We first devise a crude criterion for excluding the possibility that a given e ∈ Dh can intersect with G . Since the 
diameter of e is less than h̃, if the maximum distance between e and G is greater than h̃, the cell cannot possibly intersect 
G . That is,

|e ∩ G| = 0, if max
x ∈ e

dist(x, G) > h̃, (14)

which implies that

|e ∩ G| = 0, if max
x ∈ e

dist(x, Fh̃(G)) > 0, (15)

i.e. all intersecting cells must entirely be contained in Fh̃(G), and, more specifically, in Fh̃(G) ∩ D since e ⊆ D . Therefore, we 
have that

I(G, Dh) ≤ P
(

Fh̃(G) ∩ D, Dh
)
, (16)

where P
(

Fh̃(G) ∩ D, Dh
)

is the number of cells of Dh that can be packed within Fh̃(G) ∩ D without overlapping. In turn, 
we can bound

P
(

Fh̃(G) ∩ D, Dh
) ≤ P

(
Fh̃(G) ∩ D, Bρh̃

)
, (17)

where with abuse of notation we denote with P(Fh̃(G) ∩ D, Bρh̃) the number of balls of diameter ρh̃ that can be packed 
within Fh̃(G) ∩ D without overlapping. This bound holds since all cells of Dh entirely contain a ball of this diameter by 
quasi-uniformity and Lemma 2.1. Finding the sharpest possible upper bound for the packing of balls within a domain is a 
classical and extremely difficult problem in geometry called the ball packing problem (see e.g. [16] for a survey). A crude 
upper bound is given by

P
(

Fh̃(G) ∩ D, Bρh̃

) ≤ |Fh̃(G) ∩ D|
|Bρh̃ | , (18)

since the sum of the measures of all the packed non-overlapping balls cannot exceed the measure of the set into which 
they are packed. Now, we have that

|Bρh̃ |−1 = cπ (d)−12d(ρh diam(D)
)−d ≤ |D|−1ρ−dnD , (19)

where cπ (d) is the same constant as in Lemma 2.2, which we used to obtain the upper bound. Combining equations 
(16)-(19) together, we obtain

I(G, Dh) ≤ ρ−d |Fh̃(G) ∩ D|
|D| nD . (20)

Noting that necessarily I(G, Dh) cannot exceed nD concludes the proof. �
3. Main result

We now prove Theorem 1.1. To the authors’ knowledge, this result is new.

Proof. Since Ah and Bh are quasi-uniform, we have by Lemma 2.1,

max{diam (Be) : e ∈ Ah} ≤ hA diam (A) = h̃A, (21)

max{diam (Be) : e ∈ Bh} ≤ hB diam (B) = h̃B , (22)

min{diam (Be) : e ∈ Ah} ≥ ρAhA diam (A) = ρAh̃A, (23)

min{diam (Be) : e ∈ Bh} ≥ ρBhB diam (B) = ρBh̃B , (24)
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for some hA , hB ∈ (0, cd], ρA , ρB ∈ (0, 1] independent of hA , hB . We have that

n = nin + nout, (25)

where nin is the number of supermesh cells in A ∩ B and nout is the number of supermesh cells in (A ∪ B) \ (A ∩ B).
We will first provide a bound for nout. We have that

nout ≤ c̄(d)

(
I(A \ B, Ah) + I(B \ A, Bh)

)
, (26)

where c̄(d) > 0 is the maximal number of simplices that the intersection between two cells of Ah and Bh is triangulated 
into; typical values for the intersection of convex polygons are given in [9]. In this case we have c̄(1) = 1, c̄(2) = 4, and 
c̄(3) = 45. We can now apply Lemma 2.3 to obtain

nout ≤ c̄(d)

(
ρ−d

A

|Fh̃A
(A \ B) ∩ A|

|A| nA + ρ−d
B

|Fh̃B
(B \ A) ∩ B|

|B| nB

)
(27)

≤ c̄(d) min(ρA, ρB)d(nA + nB) = cout(d, A, B)(nA + nB).

Note that from the first inequality we have that nout = 0 if A = B .
We now derive an upper bound for nin. Let I(Ah, Bh) be the number of intersecting cell pairs between Ah and Bh . We 

have that

nin ≤ c̄(d)I(Ah, Bh). (28)

For a given cell e A
i ∈ Ah , let I(e A

i , Bh) be the number of cells of Bh that intersect with e A
i . We then have that

I(Ah, Bh) =
nA∑
i=1

I(e A
i , Bh). (29)

Applying Lemma 2.3 we obtain

I(Ah, Bh) ≤ ρ−d
B |B|−1nB

nA∑
i=1

|Fh̃B
(e A

i ) ∩ B|, (30)

where each term in the sum can be bounded by

|Fh̃B
(e A

i ) ∩ B| ≤ |Fh̃B
(Bh̃A

)| = |Bh̃A+2h̃B
|, i = 1, . . . ,nA, (31)

where we used the fact that all cells e A
i ∈ Ah can be entirely contained within a ball of diameter h̃A . We then have that

nA∑
i=1

|Fh̃B
(e A

i ) ∩ B| ≤ nA |Bh̃A+2h̃B
| = nAcπ (d)2−d(h̃A + 2h̃B)d = nA(|A|1/dc−1/d

A hA + 2|B|1/dc−1/d
B hB)d, (32)

where cπ (d), c A and cB are as in Lemma 2.2. Note that we have removed the tildes since the diameter terms are included 
in c A and cB . For instance,

cπ (d)1/dh̃A/2 = cπ (d)1/dhA diam(A)|A|1/d

2|A|1/d
= |A|1/dc−1/d

A hA . (33)

Lemma 2.2 yields the upper bounds

c−1/d
A hA ≤ ρ−1

A n−1/d
A , c−1/d

B hB ≤ ρ−1
B n−1/d

B (34)

Using these in (32) and combining it with (30) gives

I(Ah, Bh) ≤ ρ−d
B |B|−1nAnB(|A|1/dρ−1

A n−1/d
A + 2|B|1/dρ−1

B n−1/d
B )d ≤ min(λABρAρB , ρ2

B/2)−d(n1/d
A + n1/d

B )d, (35)

where λAB = |A|/|B|. Combining (28) and (35) we have

nin ≤ c̄(d)min(λABρAρB , ρ2
B/2)−d(n1/d

A + n1/d
B )d ≤ cin(d, A, B)(nA + nB), (36)

where cin = 2d−1c̄(d) min(λABρAρB , ρ2/2)−d since by Jensen’s inequality,
B
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(
x + y

2

)d

≤ xd + yd

2
, ∀ x, y ≥ 0, d ∈N+, (37)

due to convexity of the function f (t) = td for all t ≥ 0, d ∈ N+ . Combining (25) with (36) and (27) yields the claim with 
C(d, A, B) = max(cin, cout). Note that C(d, A, B) cannot be smaller than 1/2. In fact, we have that

max(nA, nB) ≤ n ≤ C(d, A, B)(nA + nB), (38)

and therefore

max(nA, nB)

nA + nB
≤ C(d, A, B), with nA,nB ≥ 1. (39)

The quantity on the left attains its minimum value 1/2 when nA = nB . �
4. Numerical results

The constant in the bound derived in Theorem 1.1 is not sharp. However, a sharper constant can easily be estimated in 
practice. We now offer an example in the case in which A and B coincide and are equal to D = (−0.5, 0.5)d in 2D and 3D.

We consider a hierarchy {D�
h}�=L

�=1 of non-nested unstructured grids of the domain D , with L = 9 in 2D and L = 7 in 
3D. The grids have mesh size decreasing geometrically with � so that h� ∝ 2−� , where h� is the constant h appearing in 
Lemma 2.1 for the mesh D�

h . Hierarchies of this type are commonly used within non-nested geometric multigrid methods 
for which a conservative transfer technique is required.

For each � > 1 we construct a supermesh S�
h between D�

h and D�−1
h using the libsupermesh library [12] and we compute 

the ratio

R� = nS�

n� + n�−1
, (40)

where nS� , n� and n�−1 are the number of cells of S�
h , D�

h and D�−1
h respectively. The value of R� clearly provides an 

estimate for the constant C(d, A, B) appearing in Theorem 1.1 in this specific setting. The results are shown in Tables 1a 
and 1b together with some additional information about the meshes involved. In both 2D and 3D the value of R� appears 
to monotonically increase with � and to plateau for large � to a value which is approximately 4 in 2D and 40 in 3D. The 
observation that R� plateaus is expected from the bound given by Theorem 1.1.

Table 1
Mesh hierarchies considered in 2D (a) and 3D (b) and the resulting 
ratio R� between the number of cells of the supermesh between D�

h

and D�−1
h and the sum of the numbers of cells of the parent meshes. 

We indicate with h� and ρ� the constants appearing in Lemma 2.1
for the mesh D�

h . Note that the mesh size h� is roughly proportional 
to 2−� and that R� appears to plateau as � grows, as predicted by 
Theorem 1.1.

� h� ρ� R�

1 0.5878 0.35 n/a
2 0.3159 0.31 2.8
3 0.1455 0.26 3.2
4 0.7777 0.20 3.6
5 0.0393 0.21 3.7
6 0.0205 0.20 3.8
7 0.0108 0.18 3.9
8 0.0054 0.18 3.9
9 0.0027 0.17 3.9

� h� ρ� R�

1 0.4330 0.141 n/a
2 0.2173 0.056 22
3 0.1061 0.052 33
4 0.0534 0.040 36
5 0.0252 0.035 38
6 0.0123 0.027 39
7 0.0057 0.027 39

(a)

(b)

5. Conclusions

In this note we have improved on the previously known bound for the number of cells of a supermesh constructed 
between two meshes. Under the natural assumption that the parent meshes are quasi-uniform, we have showed that the 
number of supermesh cells is linear in the number of cells of the parent meshes. Numerical experimentation confirms the 
theory. This result is important for the analysis of algorithms that rely on supermesh construction, such as conservative 
interpolation and non-nested multilevel Monte Carlo algorithms.
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