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1. Introduction

The immersed-boundary (IB) method is a popular approach to model fluid flows around curved, moving and/or de-
formable solid walls. First introduced by Peskin [1], the method has motivated a number of developments and has been
applied to a variety of fluid flow problems [2,3]. The key concept of the method relies on the introduction of a space/time-
dependant body force in the flow momentum equation, enforcing the no-slip condition on the wall. Different strategies
have been proposed concerning the transfer of information between the boundary and the fluid volume or regarding the
computation of the IB force, leading to the vast family of IB methods that one knows nowadays.

Among these methods, the direct-forcing approach is widely employed for configurations involving solid or flexible walls
[4-9]. In the time-discretized equations, the IB force is generally determined on the immersed boundary after the inter-
polation of a prediction flow velocity. The forcing is then distributed over the fluid volume using the same interpolation
kernel, an operation referred to as spreading. However, this explicit procedure can lead to boundary slip and flow pene-
tration, depending on the numerical and physical parameters [10]. Several strategies have been proposed to overcome this
problem, such as multi-direct-forcing methods [10] and implicit IB methods [9,11,12]. While these methods are effective
in correcting the slip error of the IB method, they involve additional computational cost and/or implementation effort. In
addition, a general theoretical analysis addressing the origin of these errors is still missing.

In this brief note, we use simple theoretical arguments to quantify the IB error in terms of non-reciprocity between the
interpolation and spreading operators. Our analysis allows us to propose a generic correction of the direct-forcing scheme
that takes the form of a rescaled IB forcing. The method is implemented in a lattice-Boltzmann code and applied to relevant
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test cases. The boundary slip predicted a priori is accurately reproduced in the numerical tests. A major decrease of these
errors is obtained when the corrected scheme is employed.

2. Theoretical analysis

In the two-dimensional (x, y) frame, consider the incompressible IB problem governed by the momentum equation

ou(x,t)
ot

where x is the position vector in the fluid volume €2, u is the flow velocity, t is time,  represents the momentum fluxes
of the Navier-Stokes momentum equation, G is the IB force defined on the immersed boundary I" and S is the spreading
operator distributing the force G over a small fluid volume around I'. Any position on the immersed boundary is represented
by X(r,t), where r is a curvilinear coordinate. The spreading process is performed using a regularized Dirac function §(x),
namely

=V.F(@&x1t)+S[Gl&x,1), (1)

S[G](x) =/G(r)8(x— X(r))AS(r)dr, (2)
r

where AS is a characteristic width of the boundary, that is typically set to 1, in mesh units. The same kernel function is
used to define the interpolation operator,

I[¢](r)=/¢(X)5(X—X(r))dxdy, (3)
Q

which is used to compute a representative value of any quantity ¢ on the boundary.

The procedure employed to determine G is described in the time-discrete space. Time is discretized as t" = nAt, where
At is the time step. In many explicit IB implementations, the time-stepping procedure is decomposed into two steps [9].
First, a prediction flow velocity u* is computed in the absence of IB forcing. Then, u* is interpolated on the immersed
boundary using equation (3), and the IB force is defined as

P
At*
where Up is the prescribed boundary velocity and At* denotes an IB time step that depends on the employed numerical

scheme. Several strategies can be used to update the flow velocity as a function of G. Here, the IB properties are illustrated
on the basis of a simple explicit time integration, namely

At*

G =

(Up — Z[u*]), 4)

™ =u* + —S[G]. (5)
The boundary slip resulting from the above model algorithm is determined hereafter. According to equation (5), the
interpolated velocity reads

I[u*]=Z[u"" - %I[S[G]]‘ (6)

As detailed in Ref. [13], the re-interpolation operator in (6) can be approximated as Z[S[G]] ~ G, where k = fa(x)zdx only
depends on the employed regularized Delta function. This analytical approximation is based on the following assumptions:
(i) the curvature of I' is small enough so that it can be locally represented by a straight wall and (ii) the variation of G along
the boundary remains small. Combining (4) and (6), the velocity slip on the boundary can be expressed as Uy — Z[u"t!] =
(1—k)GAt*/p. Therefore, the boundary slip vanishes if k = 1, i.e. if the interpolation and spreading operators are reciprocal;
however, since x < 1 for usual kernel functions [13], a substantial boundary slip typically emerges. Even though its detailed
expression may depend on the time integration scheme, such interpolation/spreading error is generally expected in IB
methods. In order to satisfy the hydrodynamic similarity principle, the magnitude of the IB force must scale as ~ ,oU% /An,
where Uy is the reference flow velocity and An is the typical grid spacing. Consequently, in the present model algorithm,
the normalized velocity-slip error magnitude |E| = |Up — Z[u"*1]|/Uy is expected to vary as

|E| ~ UgAt*/An, (7

i.e. the non-dimensional velocity slip scales with the Courant number C = UgAt*/An.

In order to enforce the no-slip condition on the boundary, the magnitude of the IB force can be corrected by introduc-
ing a non-dimensional scaling coefficient y, namely G* = yG. Using expressions (4)-(6), the correction coefficient can be
expressed as



S. Gsell and J. Favier Journal of Computational Physics 435 (2021) 110265

(2) ‘ (b)
G, Decreasing C ==
107" ¢ G*, Decreasing C —#— 5 g 107" L 4
G, Constant C g
5 102L G*, Constant C | “; 102 L ]
5 : S ‘
= T~ - = ~o~
@107 - 1 5 107t -~ 1
o0t I T
s
o \-\-\- ] i \-\-\- 1
10 100 10 100
D/An D/An

Fig. 1. Evolution of the (a) slip and (b) penetration errors on a straight immersed boundary, for the standard (4) and corrected (9) IB forces, G and G*. The
dashed line indicates the trend (D/An)~!.

AI*G*Z
V= 1 * x(x2 (8)
p (Up — Z[u™1]) - G* + k At*G

where G*2 = |G*|2. If the no-slip condition Z[u™t1] = U}, is satisfied, the correction coefficient reduces to 1/x. Therefore,
the corrected IB force should be expressed as

* 14 *
G*= NG (Up — Z[u*]). (9)
The corrected direct-forcing algorithm is then obtained by substituting G by G* in Eq. (5). Note that, even if a model
temporal algorithm has been used in the present analysis, the expression of G* is not related to any specific temporal
scheme, as it generally ensures Z[S(G*)] ~ G, correcting the boundary slip error emerging from interpolation/spreading
non-reciprocity. Expression (9) can be thought as an explicit analytical approximation of the implicit IB corrections [9,12]
that otherwise require the resolution of a linear system to enforce the interpolation/spreading reciprocity condition. As
shown in the following, this a priori correction allows to drastically decrease the numerically-observed boundary slip error.

3. Numerical results

The corrected IB scheme (9) is implemented in a two-relaxation-time lattice-Boltzmann code coupled to a direct-forcing
IB method. It is recalled that the analysis proposed in §2 is generic, since the choice of the fluid-flow solver mainly impacts
the computation of the prediction velocity u*, while the direct-forcing immersed-boundary algorithm remains mostly sim-
ilar from one method to the other. Here, the lattice-Boltzmann method is thus employed only as an example of numerical
method for the resolution of the Navier-Stokes equations. Details on the present algorithm are provided in Refs. [13,14]. Note
that the present implementation is equivalent to the time-stepping procedure described by Eqs. (4)-(5), with At* = At/2.
The employed Dirac function corresponds to x = 1/2; values of « for various usual functions are provided in Ref. [13]. It
is worth mentioning that the modification of the IB force magnitude in equation (9) may alter the stability of the com-
putations, depending on the physical configuration and numerical parameters. This effect is expected due to the increased
stiffness of the corrected method: since k < 1 in Eq. (9), the IB force magnitude generally tends to be locally higher when
using the corrected scheme. The resulting numerical stability might be flow-solver dependent. In the present simulations,
this effect was mostly observed during the first time steps after uniform-flow initializations, where significant oscillations of
the IB force were observed. In order to stabilize and accelerate the flow transition from initial conditions, these oscillations
have been damped by relaxing the IB force during the first time steps as G"*! = BG* + (1 — B)G", with 8 a relaxation
parameter set to 0.6.

A simple test case is proposed to illustrate the theoretical analysis developed in §2. In a periodic computational domain,
a straight immersed boundary extends from the bottom left corner to the top right corner of the domain, reproducing a
channel flow configuration. The flow is driven by a body force g, whose direction can be either parallel (leading to Poiseuille
flow) or normal (leading to hydrostatic equilibrium) to the wall, i.e. g =|g|t or g = |g|n, where (t,n) is the frame aligned
with the channel direction. The angle between t and x, denoted by 6, is set to § ~ 25° in this example (i.e. avoiding singular
cases as 0 =0° or O =45°). The reference velocity is set to Ug = /|g|D, where D is the channel width, and the Reynolds
number is Re =UgD /v ~ 2, with v the kinematic viscosity.

The evolution of the average slip error E; =< E -t >, where <> denotes the averaging over the IB markers and E,
defined in §2, is determined numerically by interpolating the corrected fluid velocity on the immersed boundary, is analyzed
in the case g = |g|t and depicted in Fig. 1(a). The mesh-unit channel width is varied while keeping the Reynolds number
constant, by varying either the mesh-unit velocity (i.e. Courant number) UgAt/An ~ (D/An)~! or the mesh-unit fluid
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Fig. 2. (a,b) Velocity error on a cylinder immersed in a flow: (a) evolution of the streamwise velocity error as a function of Re and D/An and (b) flow
streamlines below/above the symmetry plane at Re =40 and D = 40An, for the standard (4) and corrected (9) IB forces, G and G*. (c,d) Velocity error
on a rotating cylinder, for « =3 and D/An =40: (c) evolution of the streamwise velocity error as a function of Re and (d) streamlines near the cylinder
obtained using the corrected IB force G* (9) at Re = 40.

viscosity vAt/An? ~ D/An. As predicted by equation (7), a first-order mesh convergence is obtained when the Courant
number C is varied together with D/An; in contrast, the velocity error remains unchanged when C is kept constant. For
a given grid spacing, the slip error is decreased by two orders of magnitude when the corrected IB scheme is used. The
penetration error Ep =< E - n > exhibits the same evolution when g = |g|n (Fig. 1(b)), supporting that the boundary error
varies as a function of G (whose magnitude is prescribed by the external body force here) and does not depend on the flow
details.

The present method is then applied to a circular cylinder of diameter D immersed in an oncoming flow with velocity
Upx, as a typical configuration involving curved geometries, stagnation points, shear flows and possibly detached and un-
steady flows, depending on the Reynolds number. Velocity and pressure Dirichlet conditions are set at the inlet and outlet
of the domain, located at a distance of 20D upstream and 40D downstream of the body. Periodic conditions are set at the
two other boundaries, placed 20 diameters away from the cylinder. The flow velocity is fixed to Ugp = 0.05An/At to ensure
optimal numerical accuracy and efficiency, i.e. the Courant number is kept constant. The previously-observed IB properties
are confirmed in the present configuration: on the considered range of Reynolds numbers, the streamwise velocity error
Ex =< E - x > is hardly affected by the grid spacing and it is decreased by two orders of magnitude by the corrected
direct-forcing method, as depicted in Fig. 2(a) and illustrated by the streamlines in Fig. 2(b). When the corrected method
is used, the boundary error tends to decrease as a function of D/An, as expected since the estimation of x is based on a
plane-boundary approximation. It is shown however that these variations are small compared to the difference of accuracy
between the standard and corrected IB forces. The fluid forces are also accurately predicted by the corrected method. At
Re =100 and D/An = 40, the non-dimensional vortex-shedding frequency, time-averaged drag coefficient and peak lift co-
efficient are equal to 0.164, 1.37 and 0.34, in agreement with the values 0.164, 1.32 and 0.32 issued from the high-resolution
simulations performed by Bourguet and Lo Jacono [15].

Finally, the rotating cylinder is considered as a typical test case involving non-zero boundary velocities. The rotation
rate o« = wD/2Ug, with w the angular velocity of the cylinder, is fixed to 3, the inflow velocity is set to Uy = 0.05/c, and
the cylinder diameter is D/An = 40. Fig. 2(c) shows the evolution of the streamwise velocity error as a function of the
Reynolds number. The substantial improvement provided by the corrected scheme is also clearly noted in this case, as the
velocity error is globally decreased by two orders of magnitude by the corrected method. The flow streamlines, plotted in
Fig. 2(d) for the corrected-IB simulation at Re = 40, are well-aligned with the cylinder surface and in good agreement with
previously reported flow patterns [16].
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4. Summary

Using a general theoretical framework, we have emphasized the existence of a boundary slip error intrinsic to the direct-
forcing IB method and emerging from the non-reciprocity of the interpolation and spreading operators. When a simple
explicit time integration is employed, the resulting slip error scales with the Courant number, as predicted by the theory
and accurately confirmed by lattice-Boltzmann simulation results. This error, whose exact magnitude may depend on the
implemented numerical schemes, can however be corrected through a simple and generic a priori correction of the IB force,
without any additional computational time or implementation effort.

CRediT authorship contribution statement

Simon Gsell: Conceptualization, Investigation, Methodology, Software, Writing - original draft. Julien Favier: Funding
acquisition, Project administration, Supervision, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

S. G. has received funding from the SINUMER project (ANR-18-CE45-0009-01) of the French National Research Agency
(ANR).

References

[1] CS. Peskin, The immersed boundary method, Acta Numer. 11 (2002) 479-517.
[2] R. Mittal, G. laccarino, Immersed boundary methods, Annu. Rev. Fluid Mech. (2004) 24.
[3] W. Kim, H. Choi, Immersed boundary methods for fluid-structure interaction: a review, Int. J. Heat Fluid Flow 75 (2019) 301-309.
[4] E. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary finite-difference methods for three-dimensional complex flow simula-
tions, J. Comput. Phys. 161 (1) (2000) 35-60.
[5] J. Kim, D. Kim, H. Choi, An immersed-boundary finite-volume method for simulations of flow in complex geometries, ]. Comput. Phys. 171 (1) (2001)
132-150.
[6] E. Balaras, Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations, Comput. Fluids 33 (3) (2004)
375-404.
[7] M. Uhlmann, An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys. 209 (2) (2005) 448-476.
[8] K. Taira, T. Colonius, The immersed boundary method: a projection approach, J. Comput. Phys. 225 (2) (2007) 2118-2137.
[9] A. Pinelli, I. Nagavi, U. Piomelli, ]. Favier, Immersed-boundary methods for general finite-difference and finite-volume Navier-Stokes solvers, J. Comput.
Phys. 229 (24) (2010) 9073-9091.
[10] T. Kempe, J. Frohlich, An improved immersed boundary method with direct forcing for the simulation of particle laden flows, ]. Comput. Phys. 231 (9)
(2012) 3663-3684.
[11] D. Le, B. Khoo, K. Lim, An implicit-forcing immersed boundary method for simulating viscous flows in irregular domains, Comput. Methods Appl. Mech.
Eng. 197 (25-28) (2008) 2119-2130.
[12] J. Wu, C. Shu, Implicit velocity correction-based immersed boundary-lattice boltzmann method and its applications, J. Comput. Phys. 228 (6) (2009)
1963-1979.
[13] S. Gsell, U. D’'Ortona, J. Favier, Explicit and viscosity-independent immersed-boundary scheme for the lattice Boltzmann method, Phys. Rev. E 100 (3)
(2019) 033306.
[14] S. Gsell, U. D'Ortona, J. Favier, Multigrid dual-time-stepping lattice Boltzmann method, Phys. Rev. E 101 (2) (2020) 023309.
[15] R. Bourguet, D. Lo Jacono, Flow-induced vibrations of a rotating cylinder, J. Fluid Mech. 740 (2014) 342-380.
[16] D. Stojkovi¢, M. Breuer, F. Durst, Effect of high rotation rates on the laminar flow around a circular cylinder, Phys. Fluids 14 (9) (2002) 3160-3178.


http://refhub.elsevier.com/S0021-9991(21)00160-1/bibE3162CA8D1069056F1E33E0F57E1BA7Es1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bibC243EF8497F5953B5817B0DBF451A2DAs1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bib8E6ACEF5532940F0BE2E04079546F828s1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bibA9CF3E2E1C0B83C854137E57D11B3906s1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bibA9CF3E2E1C0B83C854137E57D11B3906s1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bib64D0D0CF2C58D461A195034241E7E5E2s1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bib64D0D0CF2C58D461A195034241E7E5E2s1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bib3567837D1B82B198CCF5B3B0A49C1AE9s1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bib3567837D1B82B198CCF5B3B0A49C1AE9s1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bibAF6DDFBFEC39B7AD3796732C60FE4A56s1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bib5BA226822A8DAE5B8F3BABEA68E975E1s1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bibD2625DE986641A4FE66E78F9E86D62DAs1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bibD2625DE986641A4FE66E78F9E86D62DAs1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bibA04D7C1A6361CE99C485D8E93E5CCC06s1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bibA04D7C1A6361CE99C485D8E93E5CCC06s1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bib5E06B28288467C58654BF7961C472EFDs1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bib5E06B28288467C58654BF7961C472EFDs1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bib118764F77D77FAFD24FC52584B360BDEs1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bib118764F77D77FAFD24FC52584B360BDEs1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bib991025D777F05A588F13E0CB97E174F2s1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bib991025D777F05A588F13E0CB97E174F2s1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bib6A7ADEBE1A599239EA158B01CDBACD4Cs1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bib4B04786107480B953E441B3788AAE627s1
http://refhub.elsevier.com/S0021-9991(21)00160-1/bibF67F01E56231F45E39559BDF8B22E1FDs1

	Direct-forcing immersed-boundary method: A simple correction preventing boundary slip error
	1 Introduction
	2 Theoretical analysis
	3 Numerical results
	4 Summary
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


