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In this paper, we consider the quasi-gas-dynamic (QGD) model in a multiscale environment. 
The model equations can be regarded as a hyperbolic regularization and are derived from 
kinetic equations. So far, the research on QGD models has been focused on problems with 
constant coefficients. In this paper, we investigate the QGD model in multiscale media, 
which can be used in porous media applications. This multiscale problem is interesting 
from a multiscale methodology point of view as the model problem has a hyperbolic 
multiscale term, and designing multiscale methods for hyperbolic equations is challenging. 
In the paper, we apply the constraint energy minimizing generalized multiscale finite 
element method (CEM-GMsFEM) combined with the central difference scheme in time 
to solve this problem. The CEM-GMsFEM provides a flexible and systematical framework to 
construct crucial multiscale basis functions for approximating the solution to the problem 
with reduced computational cost. With this approach of spatial discretization, we establish 
the stability of the fully discretized scheme, based on the coarse grid, under a coarse-
scale CFL condition. Complete convergence analysis of the proposed method is presented. 
Numerical results are provided to illustrate and verify the theoretical findings.

© 2021 Published by Elsevier Inc.

1. Introduction

The simulations of complex flows play an important role in many applications, such as porous media, aerodynamics, 
and so on. There are various model equations used for simulation purposes, which vary from kinetic to continuum models, 
such as the Navier-Stokes equations. There are several intermediate-scale models that are successfully used in the literature, 
which includes the quasi-gas dynamic (QGD) system of equations. The QGD model has shown to be effective for various 
applications. The QGD model equations are derived from kinetic equations under the assumption that the distribution 
function is similar to a locally Maxwellian representation. The QGD model has an advantage that it guarantees the smoothing 
of the solution at the free path distance. The QGD equations are extensively described in the literature [6–10,35].
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In the paper, we consider a simplified QGD system involving second derivatives with respect to the time, in addition to 
spatial diffusion. In literature, this model has also been used to regularize purely parabolic equations by adding a hyperbol-
icity. This regularization has been employed in designing efficient time stepping algorithms [7,9,10].

We consider the QGD model in a multiscale environment. More precisely, we consider a simplified QGD model (see (1)) 
and introduce multiscale coefficients. These coefficients represent the media properties and spatially vary. The applications 
of these equations can be considered in porous media for compressible flows. The heterogeneities of the coefficients rep-
resent the media properties, which can have large variations. Our objective in this paper is to make some first steps in 
understanding multiscale systems in these hyperbolic quasi-dynamic systems.

In the paper, we would like to solve the QGD model equations on a coarse grid that is much larger compared to spatial 
heterogeneities. There are many methods for coarse-grid approximation. These include homogenization-based approaches 
[3–5,25,33,34,39], multiscale finite element methods [27,30–32], generalized multiscale finite element methods [18,12,15,17,
20,26,11], constraint energy minimizing GMsFEM (CEM-GMsFEM) [13,14], Nonlocal Multi-continua Approaches (NLMC) [16], 
metric-based upscaling [37], heterogeneous multiscale method [1,19], localized orthogonal decomposition (LOD) [28,36], 
equation free approaches [38,41,40], computational continua [22–24], and hierarchical multiscale method [2,29,42]. Some 
of these approaches, such as homogenization-based approaches, are designed for problems with scale separation. In porous 
media applications, the spatial heterogeneities are complex and do not have scale separation. In addition, they contain large 
jumps in the coefficients. As a result, the coarse grid does not resolve scales and contrast. For these purposes, we have 
introduced a general concept CEM-GMSFEM and NLMC, where multiple basis functions or continua are designed to solve 
problems on a coarse grid [14,16]. These approaches require a careful design of multiscale basis functions. The applications 
of these methods to hyperbolic equations are challenging [12] due to distant temporal effects. In this paper, our goal is to 
design an approach for hyperbolic quasi-dynamic systems.

For spatial discretization, we adopt the idea of CEM-GMsFEM presented in [13] and construct a specific multiscale space 
for approximating the solution. Starting with a well-designed auxiliary space, we construct multiscale basis functions (sup-
ported in some oversampling regions) which are minimizers of a class of constraint energy minimization problems. One of 
the theoretical benefits of the CEM-GMsFEM is that the convergence of the method can be shown to be independent of 
the contrast from the heterogeneities; and the error linearly decreases with respect to coarse mesh size if the oversampling 
parameter is appropriately chosen. Our analysis indicates that a moderate number of oversampling layers, depending log-
arithmically on the contrast, seems sufficient to archive accurate approximation. The present CEM-GMsFEM setting allows 
flexibly adding additional basis functions based on spectral properties of the differential operators. This enhances the accu-
racy of the method in the presence of high contrast in the media. It is shown that if enough basis functions are selected in 
each local patch, the convergence of the method can be shown independently of the contrast.

For temporal discretization, we use a central finite difference scheme to discretize the first and second order time deriva-
tives in the equation. We show that the corresponding fully-discretized scheme based on the coarse grid is stable under a 
coarse-scale CFL condition. In order to prove the stability and convergence of the full discretization, we first establish an 
inverse inequality in the multiscale finite element space. This result relies on the localized estimate between the global and 
local multiscale basis functions [13]. A complete convergence analysis is presented in this work. In particular, the error es-
timate of semi-discretization is shown in Theorem 4.3. For the complete analysis of the fully-discretized numerical scheme, 
the main result is summarized in Theorem 4.7. Throughout the part of analysis, we need proper regularity assumptions on 
the source term and initial conditions. Numerical results are provided to illustrate the efficiency of the proposed method 
and it confirms our theoretical findings.

The remainder of the paper is organized as follows. We provide in Section 2 the background knowledge of the problem. 
Next, we introduce the multiscale method and the discretization in Section 3. In Section 4, we provide the stability estimate 
of the method and prove the convergence of the proposed method. We present the numerical results in Section 5. Finally, 
we give concluding remarks in Section 6.

2. Preliminaries

Consider the quasi-gas dynamics (QGD) model in a polygonal domain � ⊂ Rd (d = 2, 3):

ut + αutt − ∇ · (κ∇u) = f in (0, T ] × �,

u|t=0 = u0 in �,

ut |t=0 = v0 in �,

u = 0 on ∂�.

(1)

Here, ut denotes the time derivative of the function u, α is a constant, κ : � → R is a time-independent high-contrast 
permeability field such that 0 < γ ≤ κ(x) ≤ β for almost every x ∈ �, f is a source term with suitable regularity, and T > 0
is the terminal time. Further, we assume that the initial conditions u0 ∈ H1

0(�) and v0 ∈ L2(�).
We clarify the notation used throughout the work. We write (·, ·) to denote the inner product in L2(D) and ‖·‖ for the 

corresponding norm. Let H1
0(�) be the subspace of H1(�) with functions having a vanishing trace and the corresponding 

dual space is denoted by H−1(�). Moreover, we write Lp(0, T ; X) for the Bochner space with the norm
2
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‖v‖L p(0,T ;X) :=
⎛⎝ T∫

0

‖v‖p
X dt

⎞⎠1/p

1 ≤ p < ∞,

where X is a Banach space equipped with the norm ‖·‖X .
Instead of the original PDE formulation, we consider the variational formulation corresponding to (1): Find u ∈

L2(0, T ; H1
0(�)) with ut ∈ L2(0, T ; L2(�)) and utt ∈ L2(0, T ; L2(�)) such that

(ut, v) + α (utt, v) + a(u, v) = ( f , v) (2)

for all v ∈ V := H1
0(�). Here, we define a(u, v) := ∫

�
κ∇u · ∇v dx for all u, v ∈ V . Employing Galerkin’s method and the 

method of energy estimate, one can show the well-posedness of the variational formulation (2). See [21, Chapter 7.2] for 
more details.

In this research, we apply the constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM) 
to approximate the solution of the above QGD model. First, we introduce fine and coarse grids for the computational domain. 
Let T H = {Ki}N

i=1 be a conforming partition of the domain � with mesh size H > 0 defined by

H := max
K∈T H

(
max
x,y∈K

|x − y|
)
.

We refer to this partition as the coarse grid. We denote the total number of coarse elements as N ∈N+ . Subordinate to the 
coarse grid, we define the fine grid partition T h (with mesh size h 
 H) by refining each coarse element K ∈ T H into a 
connected union of finer elements. We assume that the refinement above is performed such that T h is also a conforming 
partition of the domain �. Denote Nc the number of interior coarse grid nodes of T H and we denote {xi}Nc

i=1 the collection 
of interior coarse nodes in the coarse grid.

3. Multiscale method

In this section, we outline the framework of CEM-GMsFEM and present the construction of the multiscale space for 
approximating the solution of the QGD model. We emphasize that the multiscale basis functions and the corresponding 
space are defined with respect to the coarse grid of the domain. The multiscale method consists of two steps. First, we 
perform a spectral decomposition and form an auxiliary space. Next, we construct a multiscale space for approximating the 
solution based on the auxiliary space. We remark that these basis functions are locally supported in some coarse patches 
formed by some coarse elements. Once the multiscale spaces are ready, one can use central difference scheme in time to 
discretize time derivatives and solve the resulting fully-discretized problem.

3.1. The spectral decomposition

We present the construction of the auxiliary multiscale basis functions. Let Ki ∈ T H be a coarse block. Define V (Ki) as 
the restriction of the abstract space V on the coarse element Ki . We consider a local spectral problem: Find λ(i)

j ∈ R and 

φ
(i)
j ∈ V (Ki) such that

ai(φ
(i)
j , v) = λ

(i)
j si(φ

(i)
j , v) for all v ∈ V (Ki). (3)

Here, ai : V (Ki) × V (Ki) is a symmetric non-negative definite bilinear form and si : V (Ki) × V (Ki) is a symmetric positive 
definite bilinear form. We remark that the above problem is solved on a fine mesh in actual computations. Based on the 
analysis, we choose

ai(v, w) :=
∫
Ki

κ∇v · ∇w dx, si(v, w) :=
∫
Ki

κ̃v w dx, where κ̃ :=
Nc∑
j=1

κ |∇χms
j |2.

The functions {χms
j }Nc

j=1 are the standard multiscale finite element basis functions which satisfy the partition of unity prop-
erty. More precisely, χms

j is the solution of the following system:

∇ · (κ∇χms
j ) = 0 in each K ⊂ ω j,

χms
j = g j on ∂ K \ ∂ω j,

χms
j = 0 on ∂ω j.

Here, we define ω j := ⋃{K : x j ∈ K } the coarse neighborhood corresponding to the coarse node x j . The function g j is 
continuous and linear along the boundary of the coarse element. We assume that the eigenvalues λ(i)

j are arranged in 
ascending order and we pick �i ∈N+ corresponding eigenfunctions to construct the local auxiliary space
3
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Fig. 1. Oversampling region Ki,m with m = 1.

V (i)
aux := span{φ(i)

j : j = 1, · · · , �i}.
We assume the normalization si

(
φ

(i)
j , φ

(i)
j

)
= 1. After that, we define the global auxiliary multiscale space

V aux :=
N⊕

i=1

V (i)
aux.

We remark that the global auxiliary space is used to construct multiscale basis functions that are orthogonal to the auxiliary 
space with respect to the weighted L2 inner product s(·, ·).

Note that the bilinear form si(·, ·) defines an inner product with norm ‖·‖s(Ki )
:= √

s(·, ·) in the local auxiliary space 
V (i)

aux. Based on these local inner products and norms, one can naturally define a new inner product and norm for the global 
auxiliary space V aux as follows: for all v, w ∈ V aux,

s(v, w) :=
N∑

i=1

si(v, w) and ‖v‖s :=√s(v, v). (4)

The inner product and norm defined above can be extended for the abstract space V . Note that if {χms
j }Nc

j=1 is a set of 
bilinear partition of unity, then ‖v‖s ≤ H−1β1/2 ‖v‖ for any v ∈ L2(�). In addition, we define π : L2(�) → V aux as the 
projection with respect to the inner product s(·, ·) such that

πu = π(u) :=
N∑

i=1

�i∑
j=1

si(u, φ
(i)
j )φ

(i)
j for all u ∈ L2(�).

3.2. The construction of multiscale basis functions

In this section, we present the construction of the multiscale basis functions. First, we define an oversampling region 
for each coarse element. Specifically, given a non-negative integer m ∈ N and a (closed) coarse element Ki , we define the 
oversampling region Ki,m ⊂ � such that

Ki,m :=
{

Ki if m = 0,⋃
{K : Ki,m−1 ∩ K 
= ∅} if m ≥ 1.

See Fig. 1 for an illustration of oversampling region. For simplicity, we denote K +
i the oversampled region Ki,m for some 

nonnegative integer m.
Recall that V (K +

i ) is the restriction of V on the coarse patch K +
i . Let V 0(K +

i ) be the subspace of V (K +
i ) with zero trace 

on the boundary ∂ K +
i . For each eigenfunction φ(i)

j ∈ V aux, we define the multiscale basis ψ(i)
j,ms ∈ V 0(K +

i ) to be the solution 
of the equation:

a(ψ
(i)
j,ms, v) + s

(
π(ψ

(i)
j,ms),π(v)

)
= s(φ(i)

j , v) for all v ∈ V 0(K +
i ). (5)

Then, the multiscale space is defined as V ms := span
{
ψ

(i)
j,ms : i = 1, · · · , N, j = 1, · · · , �i

}
. By construction, we have 

dim(V ms) = dim(V aux).

Remark. The local construction of multiscale basis function ψ(i)
j,ms supported in K +

i is motivated by the following global 

construction: Find ψ(i) ∈ V such that
j

4
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a(ψ
(i)
j , v) + s

(
π(ψ

(i)
j ),π(v)

)
= s(φ(i)

j , v) for all v ∈ V . (6)

We then define

V glo := span
{
ψ

(i)
j : i = 1, · · · , N, j = 1, · · · , �i

}
.

It has been shown in [13] that the decomposition V = V glo ⊕ Ker(π) holds and this decomposition is orthogonal with 
respect to the energy bilinear form a(·, ·). We will use this property to prove the inverse inequality (i.e., Lemma 4.5) below.

Using the result of [13, Lemma 5], we have the error estimate of localization: For any multiscale function vms =∑N
i=1
∑�i

j=1 α
(i)
j ψ

(i)
j,ms ∈ V ms, there exists a function vglo =∑N

i=1
∑�i

j=1 α
(i)
j ψ

(i)
j ∈ V glo such that

∥∥vglo − vms
∥∥2

a � (m + 1)d E
N∑

i=1

�i∑
j=1

(
α

(i)
j

)2
. (7)

Here, m is the number of oversampling, E := 3(1 + �−1) 
(
1 + (2(1 + �−1/2))

)1−m
is the factor of exponential decay, and 

� := min
1≤i≤N

λ
(i)
�i+1 with 

{
λ

(i)
j

}
being obtained from (3).

3.3. The method and discretization

In this section, we discuss the discretizations of the equation (2). Let ums ∈ V ms be the multiscale approximation to the 
exact solution u. In particular, the function ums solves

((ums)t, v) + α ((ums)tt, v) + a(ums, v) = ( f , v) for all v ∈ V ms. (8)

For time discretization, we first partition the temporal domain (0, T ) into equally NT pieces with time step size �t . For any 
function v = v(t), we use the following finite differences to approximate time derivatives appearing in the QGD model:

vt ≈ v(tn+1) − v(tn−1)

2�t
=: Dt vn and vtt ≈ v(tn+1) − 2v(tn) + v(tn−1)

(�t)2
=: Dtt vn.

The fully discretization of the equation (2) reads: Find uT
H := (un

H

)NT

n=0 with un
H ∈ V ms such that for any n = 1, · · · , NT − 1,(

Dt un
H + αDtt un

H , v
)+ a(un

H , v) = ( f n, v) for all v ∈ V ms, (9)

where f n := f (tn).

4. Convergence analysis

In this section, we analyze the convergence of the multiscale method. Throughout the work, we denote a � b if there is 
a generic constant C > 0 such that a ≤ Cb. We write a �T b if there is a constant CT depending on T such that a ≤ CT b. We 
denote ‖·‖ = ‖·‖L2(�) and ‖·‖a := √

a(·, ·).

4.1. Semi-discretized scheme

We first consider the stability and error estimate in semi-discretization. The following results give a stability estimate for 
the scheme (8).

Lemma 4.1. Let ums ∈ V ms be the solution of the equation (8). Then,

α ‖(ums)t(T )‖2 + ‖(ums)(T )‖2
a � α ‖v0‖2 + ‖u0‖2

a + ‖ f ‖2
L2(0,T ;L2(�))

. (10)

Proof. Let v = (ums)t in (8). We have

‖(ums)t‖2 + 1

2

d

dt

(
α ‖(ums)t‖2 + ‖ums‖2

a

)
= ( f , (ums)t) ≤ ‖ f ‖ · ‖(ums)t‖ .

We remark that if f ≡ 0, the scheme is of energy conservation. Integrating over (0, T ) leads to
5
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2

T∫
0

‖(ums)t‖2 dt + α ‖(ums)t(T )‖2 + ‖ums(T )‖2
a ≤ α ‖v0‖2 + ‖u0‖2

a + 2

T∫
0

1√
2

‖ f ‖ · √2‖(ums)t‖dt

≤ α ‖v0‖2 + ‖u0‖2
a + 1

2

T∫
0

‖ f ‖2 dt + 2

T∫
0

‖(ums)t‖2 dt

using Cauchy-Schwarz inequality. This completes the proof. �
To estimate the error bound for semi-discretization scheme, we introduce the definition of elliptic projection.

Definition 4.2. For any function v ∈ V , we define the elliptic projection v̂ ∈ V ms of the function v such that

a(v − v̂, w) = 0 for all w ∈ V ms. (11)

Next, we analyze the convergence of the proposed multiscale method. For any function v ∈ V , we define the energy 
functional E : V →R such that E(v) := √

α ‖vt‖ + ‖v‖a . It is not difficult to verify that

E(v + w) = √
α ‖vt + wt‖ + ‖v + w‖a ≤ √

α (‖vt‖ + ‖wt‖) + ‖v‖a + ‖w‖a = E(v) + E(w)

for any v, w ∈ V . That is, the triangle inequality holds for the energy functional. Note that for any v ∈ V , we have

(E(v))2 = (√α ‖vt‖ + ‖v‖a
)2 � α ‖vt‖2 + ‖v‖2

a .

We have the following error estimate for the semi-discretization of the QGD model.

Theorem 4.3. Let u ∈ V be the solution to (2) and ums ∈ V ms be the multiscale solution to (8). Assume that the number of oversampling 
layers m = O (log(βγ −1 H−1)) and {χms

j }Nc
j=1 are bilinear partition of unity. Then, for any t ∈ (0, T ], the following error estimate holds

‖u(t) − ums(t)‖a �T H�−1/2, (12)

where � = min
1≤i≤N

λ
(i)
�i+1 and {λ(i)

j } are the eigenvalues obtained by solving (3).

Proof. Denote ̂u the elliptic projection of the exact solution u. We write

e := u − ums = u − û︸ ︷︷ ︸
=:ρ

+ û − ums︸ ︷︷ ︸
=:θ

= ρ + θ.

Denote F := f − ut − αutt . Note that the function ̂u satisfies the equation:

a(̂u, v) = (F, v) for all v ∈ V ms.

Using the result of [13, Lemma 1], we obtain that

‖ρ‖a = ‖u − û‖a � H�−1/2
∥∥∥κ−1/2F

∥∥∥ and ‖ρt‖ = ‖(u − û)t‖ � H2�−1
∥∥∥κ−1/2Ft

∥∥∥ .

Therefore, we have

E(ρ) �
√

αH2�−1
∥∥∥κ−1/2Ft

∥∥∥+ H�−1/2
∥∥∥κ−1/2F

∥∥∥� H�−1/2.

Next, we analyze the term E(θ). Subtracting (8) from (2), we obtain

(et , v) + α (ett, v) + a(e, v) = 0 for all v ∈ V ms.

Note that, by the property of elliptic projection, we have a(ρ, v) = 0 for all v ∈ V ms. That is, we have

(θt , v) + α (θtt, v) + a(θ, v) = ((̂u − u)t + α(̂u − u)tt, v)

for all v ∈ V ms. Denote G := (̂u − u)t + α(̂u − u)tt . Let v = θt ∈ V ms and use the same technique for proving the stability 
result (10), one can show that

(E(θ))2 � α ‖θt(0)‖2 + ‖θ(0)‖2
a + ‖G‖2

2 2 .
L (0,T ;L (�))

6
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Note that θt(0) and θ(0) are given by the initial conditions of quasi gas-dynamics equation. If we choose ums(0) be such 
that

a(ums(0), v) = a(u0, v) for all v ∈ V ms,

then θt(0) = θ(0) = 0 because of the property of elliptic projection. Therefore, we have

E(θ) � ‖G‖L2(0,T ;L2(�)) � ‖ρt‖L2(0,T ;L2(�)) + α ‖ρtt‖L2(0,T ;L2(�)) �T H2�−1.

To conclude, we show that

E(u − ums) ≤ E(ρ) + E(θ) �T H�−1/2. (13)

This completes the proof. �
4.2. Fully discretization

In this section, we analyze the method in fully discretization. First, we define σaux := max
1≤i≤N

(
max

1≤ j≤�i

λ
(i)
j

)
. We observe that 

the inverse inequality (in the multiscale space) holds. To prove the inverse inequality in V ms, we first prove the following 
lemma.

Lemma 4.4. For any vms =∑N
i=1
∑�i

j=1 α
(i)
j ψ

(i)
j,ms ∈ V ms, the following estimation holds

N∑
i=1

�i∑
j=1

(α
(i)
j )2 ≤ (1 + D)‖vms‖2

s , (14)

where D is a generic constant depending on the value of σaux.

Proof. Let vms =∑N
i=1
∑�i

j=1 α
(i)
j ψ

(i)
j,ms ∈ V ms. By the variational formulation (5), for any φ(l)

k ∈ V aux, we have

s(π vms, φ
(l)
k ) =

N∑
i=1

�i∑
j=1

α
(i)
j s(πψ

(i)
j,ms, φ

(l)
k ) =

N∑
i=1

�i∑
j=1

α
(i)
j

(
s(πψ

(i)
j,ms,πψ

(l)
k,ms) + a(ψ

(i)
j,ms,ψ

(l)
k,ms)

)
.

Denote blk = s(π vms, φ
(l)
k ) and b = (blk), we have

‖c‖2 ≤ ‖A−1‖2 · ‖b‖2,

where A ∈Rp×p is the matrix representation of the bilinear form

s(πψ
(i)
j,ms,πψ

(l)
k,ms) + a(ψ

(i)
j,ms,ψ

(l)
k,ms)

with p =∑N
i=1 �i and c =

(
α

(i)
j

)
∈ Rp . We then estimate the largest eigenvalue of A−1. Define an auxiliary function φ :=∑N

i=1
∑�i

j=1 α
(i)
j φ

(i)
j ∈ V aux and ψms ∈ V ms to be the solution of the following equation:

a(ψms,ω) + s(πψms,πω) = s(φ,πω) for all ω ∈ V ms. (15)

On the other hand, by [13, Lemma 2], there is a function z ∈ V such that

π z = φ and ‖z‖2
a ≤ D‖φ‖2

s .

Here, D is a generic constant depending on the value of σaux (cf. [13, Lemma 2]). Taking ω = z in (15) and using the fact 
that s(φ, φ) = ‖c‖2

2, we have

‖c‖2
2 = a(ψms, z) + s(πψms, φ) ≤ ‖ψms‖a‖z‖a + ‖πψms‖s‖φ‖s

≤ (1 + D)
1
2 ‖φ‖s

(
‖ψms‖2

a + ‖πψms‖2
s

) 1
2
.

Note that c ∈ Rp is the vector representation of ψms. We write (·, ·)2 the �2 Euclidean inner product on Rp . This implies 
that

‖c‖2
2

(Ac, c)2
≤ (1 + D).

Hence, we have ‖A−1‖2 ≤ (1 + D)
1
2 . It follows that ‖c‖2 ≤ (1 + D)‖b‖2 ≤ (1 + D)‖vms‖2

s . �
2 2

7
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We are now able to prove the inverse inequality in the multiscale space V ms.

Lemma 4.5 (Inverse inequality). For any v ∈ V ms, there exists a constant Cms such that

‖v‖a ≤ Cms ‖v‖s . (16)

Furthermore, assume that {χms
j }Nc

j=1 is a set of bilinear partition of unity. Then, for any v ∈ V ms, there is a constant Cinv > 0 such that

‖v‖a ≤ Cinv H−1β1/2 ‖v‖ . (17)

Proof. Let v ∈ V glo. Applying the orthogonality of V glo, we get

‖v‖2
a = a(v, v) = a(v,π v) ≤ ‖v‖a ‖π v‖a ≤ ‖v‖a σ

1/2
aux ‖π v‖s ,

which implies that ‖v‖a ≤ σ
1/2
aux ‖π v‖s . Next, for any vms =∑N

i=1
∑�i

j=1 α
(i)
j ψ

(i)
j,ms ∈ V ms, let v =∑N

i=1
∑�i

j=1 α
(i)
j ψ

(i)
j ∈ V glo. 

We claim that ‖π v‖2
s ≤∑N

i=1
∑�i

j=1(α
(i)
j )2. Notice that by (6), we have

‖π v‖2
s = s(π v,π v) =

N∑
i=1

�i∑
j=1

α
(i)
j s(πψ

(i)
j ,π v) =

N∑
i=1

�i∑
j=1

α
(i)
j

(
s(φ(i)

j ,π v) − a(ψ
(i)
j , v)

)
= s(φ,π v) − a(v, v) = s(φ,π v) − ‖v‖2

a

with φ :=∑N
i=1
∑�i

j=1 α
(i)
j φ

(i)
j . This implies that

‖π v‖2
s ≤ s(φ,π v) ≤ ‖φ‖s ‖π v‖s =⇒ ‖π v‖2

s ≤ ‖φ‖2
s =

N∑
i=1

�i∑
j=1

(
α

(i)
j

)2

using the orthogonality of the auxiliary basis functions. By the inequalities (7) and (14), we have, for any vms ∈ V ms

‖vms‖2
a ≤ ‖(v − vms)‖2

a + ‖v‖2
a

� (m + 1)d E
N∑

i=1

�i∑
j=1

(
α

(i)
j

)2 + σaux‖π v‖2
s

�
(
(m + 1)d E + σaux

) N∑
i=1

�i∑
j=1

(
α

(i)
j

)2

�
(
(m + 1)d E + σaux

)
(1 + D)‖vms‖2

s .

Thus, the inequality (16) holds with Cms :=
√

((m + 1)d E + σaux)(1 + D).
We now show the inequality (17). Assume that {χms

j }Nc
j=1 is a set of bilinear partition of unity. Using the definition of 

s-norm, we have for any w ∈ L2(�),

‖w‖2
s =

∫
�

κ̃ |v|2 dx =
N∑

i=1

∫
Ki

∑
j:supp(χms

j )∩Ki 
=∅
κ |χms

j |2|v|2 dx ≤ CT H−2β ‖w‖2 ,

where CT := maxK∈T H |{ j : supp(χms
j ) ∩ K 
= ∅}|. We remark that the constant CT depends only on the coarse grid T H and 

the partition of unity. Therefore, this gives that the estimate

‖vms‖a ≤ C inv H−1β1/2 ‖vms‖
holds for any vms ∈ V ms with the constant C inv := Cms

√
CT > 0. This completes the proof. �

Recall that uT
H := (

un
H

)NT

n=0 with un
H ∈ V ms is the solution to (9). The following result gives the stability estimate of the 

fully discretization.
8
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Lemma 4.6 (Stability of the method). Assume that the CFL condition

α − 1

2
C2

inv H−2β(�t)2 ≥ δ (18)

holds for some constant δ > 0. Then, the fully discretization method (9) is stable; that is,

α

∥∥∥∥∥un
H − un−1

H

�t

∥∥∥∥∥+ ∥∥un
H

∥∥
a �

(
�t

n∑
k=1

∥∥∥ f k
∥∥∥+ α

∥∥∥∥∥u1
H − u0

H

�t

∥∥∥∥∥+ ∥∥u1
H

∥∥
a +

∥∥∥u0
H

∥∥∥
a

)
. (19)

Proof. Let v = un+1
H − un−1

H in (9). We have

1

2�t

∥∥∥un+1
H − un−1

H

∥∥∥2 + α

(�t)2

(
un+1

H − un
H − (un

H − un−1
H ), un+1

H − un
H + un

H − un−1
H

)
+a(un

H , un+1
H − un−1

H ) = �t

(
f n,

un+1
H − un−1

H

�t

)
.

Define En,H := 1

2

⎛⎝α

∥∥∥∥∥un
H − un−1

H

�t

∥∥∥∥∥
2

+ a(un−1
H , un

H )

⎞⎠. It implies that

α

⎛⎝∥∥∥∥∥un+1
H − un

H

�t

∥∥∥∥∥
2

−
∥∥∥∥∥un

H − un−1
H

�t

∥∥∥∥∥
2
⎞⎠+ a(un

H , un+1
H ) − a(un−1

H , un
H ) ≤ ( f n, un+1

H − un−1
H )

=⇒ En+1,H ≤ En,H + 1

2
( f n, un+1

H − un−1
H ).

Note that

En,H = 1

2

⎛⎝α

∥∥∥∥∥un
H − un−1

H

�t

∥∥∥∥∥
2

+ a(un
H , un−1

H )

⎞⎠
= α

2

∥∥∥∥∥un
H − un−1

H

�t

∥∥∥∥∥
2

+ 1

4
a(un

H , un
H ) + 1

4
a(un−1

H , un−1
H ) − 1

4
a(un

H − un−1
H , un

H − un−1
H )

≥ α

2

∥∥∥∥∥un
H − un−1

H

�t

∥∥∥∥∥
2

+ 1

4
a(un

H , un
H ) + 1

4
a(un−1

H , un−1
H ) − 1

4

∥∥∥(un
H − un−1

H )

∥∥∥2

a

≥ α

2

∥∥∥∥∥un
H − un−1

H

�t

∥∥∥∥∥
2

+ 1

4
a(un

H , un
H ) + 1

4
a(un−1

H , un−1
H ) − 1

4
C2

inv H−2β(�t)2

∥∥∥∥∥un
H − un−1

H

�t

∥∥∥∥∥
2

= 1

2

(
α − 1

2
C2

inv H−2β(�t)2
)∥∥∥∥∥un

H − un−1
H

�t

∥∥∥∥∥
2

+ 1

4

(∥∥un
H

∥∥2
a +

∥∥∥un−1
H

∥∥∥2

a

)
.

Then, we have

En+1,H − En,H ≤ 1

2
( f n, un+1

H − un−1
H ) ≤ 1

2
�t
∥∥ f n

∥∥(∥∥∥∥∥un+1
H − un

H

�t

∥∥∥∥∥+
∥∥∥∥∥un

H − un−1
H

�t

∥∥∥∥∥
)

≤ 1

2
�t
∥∥ f n

∥∥ ·
√

2

δ

(√
En+1,H +√En,H

)
,

√
En+1,H −√En,H ≤ 1√

2δ
�t
∥∥ f n

∥∥ =⇒ √
En,H ≤√E0,H + �t√

2δ

n∑
k=1

∥∥∥ f k
∥∥∥ .

This implies that

α

∥∥∥∥∥un
H − un−1

H

�t

∥∥∥∥∥+ ∥∥un
H

∥∥
a �

(
�t

n∑
k=1

∥∥∥ f k
∥∥∥+ α

∥∥∥∥∥u1
H − u0

H

�t

∥∥∥∥∥+ ∥∥u1
H

∥∥
a +

∥∥∥u0
H

∥∥∥
a

)
.

This completes the proof. �

9
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Recall that u ∈ V is the solution of (2). The total error between u := (u(tn))
NT
n=0 and uT

H can be split into two parts: the 
spatial discretization error u(tn) − ums(tn) and the time discretization error ums(tn) − un

H . Here, ums ∈ V ms is the solution of 
(8). Using the result of (13), we have

‖u(tn) − ums(tn)‖a �T H�−1/2.

Next, we estimate the time discretization error. Let ̃en := un
ms − un

H with un
ms := ums(tn). Subtracting (8) from (9), we obtain(

ẽn+1 − ẽn−1

2�t
, v

)
+ α

(
ẽn+1 − 2̃en + ẽn−1

(�t)2
, v

)
+ a(̃en, v) = (Hn, v

)
for all v ∈ V ms,

where

Hn := (ums)t + α(ums)tt − un+1
ms − un−1

ms

2�t
− α

un+1
ms − 2un

ms + un−1
ms

(�t)2
.

Using the result of (19), one can obtain

α

∥∥∥∥ ẽn+1 − ẽn

�t

∥∥∥∥+ ‖̃en‖a � α

∥∥∥∥ ẽ1 − ẽ0

�t

∥∥∥∥+ ‖̃e1‖a + �t
n∑

k=1

{∥∥∥∥∥(ums)t − uk+1
ms − uk−1

ms

2�t

∥∥∥∥∥
+α

∥∥∥∥∥(ums)tt − uk+1
ms − 2uk

ms + uk−1
ms

(�t)2

∥∥∥∥∥
}

.

(20)

Under the assumption of some additional regularity and appropriate initial conditions, the right-hand side of (20) scales like 
H + (�t)2.

Finally, we have the error estimate for the fully discretization scheme.

Theorem 4.7. Assume that u, ums, and f are smooth enough with respect to the variable t. Let ̃uH(t) be the piecewise linear function 
that interpolates uT

H in time. Then

∥∥u − ũH,ms
∥∥

L2(0,T ;a)
�T H + (�t)2, where ‖·‖L2(0,T ;a) :=

⎛⎝ T∫
0

‖·‖2
a dt

⎞⎠1/2

.

5. Numerical experiments

In this section, we present several numerical experiments to demonstrate the efficiency of the proposed method. We set 
the computational domain � = (0, 1)2. We partition the domain into 100 × 100 rectangular elements and refer it as a fine 
mesh T h with mesh size h = √

2/100.
In the example below, we solve the QGD model (2) with f (x1, x2) = sin(πx1) sin(πx2). Terminal time T = 4.0 is set and 

step size �t is chosen subjected to the CFL condition. The initial conditions are u0 = v0 = 0. To quantitatively determine the 
temporal step size, one needs to estimate the value of the constant C inv. To this aim, one may solve the largest eigenvalue 
(denoted as ζ ) of the following eigenvalue problem: find v ∈ V ms and ζ ∈R such that

a(v, w) = ζ s(v, w) ∀w ∈ V ms.

The largest eigenvalue ζ is approximately equal to the constant Cms. In the current setting for the coarse mesh, we have 
CT = 4 and thus we obtain an estimate of the constant C inv ≈ √

CT ζ = 2ζ . We take �t = 10−5, which provides a sufficient 
and rather sharp choice for the stability with small value of α and high value of contrast. To implement the scheme, we set 
u0

H = u1
H = 0. We use the permeability field κ with contrast 103 (see Fig. 2).

We solve the fully discretization (9) and seek un
H ∈ V ms. We define the corresponding relative L2 and energy errors 

between the multiscale solution and the exact solution (up to a fine-scale) as follows:

eL2 := ‖u(T ) − uNT
H ‖s

‖u(T )‖s
and ea := ‖u(T ) − uNT

H ‖a

‖u(T )‖a
,

where ‖·‖a = √
a(·, ·) and ‖·‖s = √

s(·, ·).
We present the convergence history in the energy and L2 norms when the coarse mesh size is H = √

2/5, 
√

2/10, and √
2/20, respectively. In order to obtain the expected first-order convergence with respect to the size of coarse mesh, one 

needs to the number of oversampling layer m to be m ≈ O (|log(H)|). In all experiments, the number of oversampling layers 
m is set to be 3, 4, and 6. The number of multiscale basis functions is �i = 3 in each local coarse element Ki . We test with 
10
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Fig. 2. Permeability field κ with contrast values 103. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Fig. 3. Convergence history (time-independent source) in ea (left) and eL2 (right) with α = 0.1.

Table 1
Convergence (time-independent source) in relative L2 norm for different α.

H m α = 10 α = 5 α = 1 α = 0.5 α = 0.1 α = 0.05 α = 0.01
√

2/5 3 2.07e-03 4.85e-05 2.09e-05 5.40e-06 9.49e-07 9.49e-07 9.49e-07√
2/10 4 9.39e-06 2.12e-07 1.60e-07 4.17e-08 1.99e-08 1.99e-08 1.99e-08√
2/20 6 1.95e-07 5.38e-09 2.45e-09 6.92e-10 6.92e-10 6.92e-10 6.92e-10

Table 2
Convergence (time-independent source) in relative energy norm for different α.

H m α = 10 α = 5 α = 1 α = 0.5 α = 0.1 α = 0.05 α = 0.01
√

2/5 3 2.08e-02 8.76e-03 8.54e-03 8.55e-03 8.53e-03 8.53e-03 8.53e-03√
2/10 4 1.75e-03 6.28e-04 6.74e-04 6.86e-04 6.84e-04 6.84e-04 6.84e-04√
2/20 6 1.89e-04 5.19e-05 5.11e-05 5.09e-05 5.08e-05 5.08e-05 5.08e-05

different values of α ∈ {0.01, 0.05, 0.1, 0.5, 1, 5, 10}. The results of eL2 and ea are shown in Tables 1 and 2, respectively. One 
can observe that the performance of the proposed multiscale method (in terms of the L2 and energy errors) is better when 
the constant α is smaller with mesh size H and the number of oversampling layer m being fixed. Moreover, we observe 
first-order convergence in energy norm and second-order convergence in L2 norm as expected; see Fig. 3 for illustration.

Next, we test our algorithm on problem with a time-dependent source. In this example, we set f (x1, x2, t) =
sin(πt) sin(πx1) sin(πx2). All the other settings are same with the first example. The numerical results in L2 and energy 
11
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Fig. 4. Convergence history (time-dependent source) in ea (left) and eL2 (right) with α = 0.1.

Table 3
Convergence (time-dependent source) in relative L2 norm for different α.

H m α = 10 α = 5 α = 1 α = 0.5 α = 0.1 α = 0.05 α = 0.01
√

2/5 3 3.00e-01 7.83e-01 1.89e-01 7.41e-03 7.57e-03 7.11e-03 6.76e-03√
2/10 4 1.07e-03 3.41e-03 8.82e-04 4.80e-05 4.40e-05 4.16e-05 3.98e-05√
2/20 6 1.03e-05 2.70e-05 6.52e-06 3.46e-07 3.17e-07 3.00e-07 2.87e-07

Table 4
Convergence (time-dependent source) in relative energy norm for different α.

H m α = 10 α = 5 α = 1 α = 0.5 α = 0.1 α = 0.05 α = 0.01
√

2/5 3 2.0198 1.5981 1.0128 0.8306 0.8304 0.8299 0.8295√
2/10 4 0.0656 0.0589 0.0565 0.0557 0.0558 0.0558 0.0558√
2/20 6 0.0072 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048

norm are presented in Tables 3 and 4. For a fixed value of α, one can obtain convergence with respect to the size of coarse 
mesh with appropriately chosen value of oversampling parameter. Convergence rate in either energy norm and L2 norm is 
observed (see Fig. 4).

6. Concluding remarks

In this work, we have proposed a novel computational multiscale method based on the idea of constraint energy mini-
mization for solving the problem of quasi-gas-dynamics. The spatial discretization is based on CEM-GMsFEM which provides 
a framework to systematically construct multiscale basis functions for approximating the solution of the model. The multi-
scale basis functions with locally minimal energy are constructed by employing the techniques of oversampling, which leads 
to an improved accuracy in the simulations. Combined with the central difference scheme for the time discretization, we 
have shown that the fully discrete method defined on the coarse grid is stable under a coarse-scale CFL condition and has 
optimal convergence rates despite the heterogeneities of the media. Numerical results have been presented to illustrate the 
performance of the proposed method.
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