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We propose in this paper the Wavelet-based Edge Multiscale Parareal (WEMP) Algorithm 
to solve parabolic equations with heterogeneous coefficients efficiently. This algorithm 
combines the advantages of multiscale methods that can deal with heterogeneity in the 
spatial domain effectively, and the strength of parareal algorithms for speeding up time 
evolution problems when sufficient processors are available. We derive the convergence 
rate of this algorithm in terms of the mesh size in the spatial domain, the level parameter 
used in the multiscale method, the coarse-scale time step and the fine-scale time step. 
Extensive numerical tests are presented to demonstrate the performance of our algorithm, 
which verify our theoretical results perfectly.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

We consider in this paper a new efficient multiscale parareal algorithm for parabolic problems with heterogeneous 
coefficients. We first formulate the heterogeneous parabolic problems to present our new multiscale methods. Let D ⊂ Rd

(d = 1, 2, 3) be an open bounded Lipschitz domain. We seek a function u(·, t) ∈ V := H1
0(D) such that

∂u

∂t
− ∇ · (κ∇u) = f in D × (0, T ]

u(·,0) = u0 in D

u = 0 on ∂ D × [0, T ],
(1.1)

where the force term f ∈ L∞([0, T ]; Ḣ2(D)) satisfying ∂t f ∈ L1([0, T ]; L2(D)), the initial data u0 ∈ L2(D) and the perme-
ability coefficient κ ∈ C∞(D) with α ≤ κ(x) ≤ β almost everywhere for some lower bound α > 0 and upper bound β > α. 
Here, Ḣ s(D) ⊂ L2(D) is a Hilbert space to be defined in (2.1). We denote by � := β

α the ratio of these bounds, which reflects 
the contrast of the coefficient κ . To simplify the notation, let I := [0, T ]. Note that the existence of multiple scales in the 
coefficient κ rends directly solving Problem (1.1) challenging, since resolving the problem to the finest scale would incur 
huge computational cost.
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The accurate description of many important applications, e.g., composite materials, porous media and reservoir simula-
tion, involves mathematical models with heterogeneous coefficients. In order to adequately describe the intrinsic complex 
properties in practical scenarios, the heterogeneous coefficients can have both multiple inseparable scales and high-contrast. 
Due to this disparity of scales, the classical numerical treatment becomes prohibitively expensive and even intractable for 
many multiscale applications. Nonetheless, motivated by the broad spectrum of practical applications, a large number of 
multiscale model reduction techniques, e.g., multiscale finite element methods (MsFEMs), heterogeneous multiscale meth-
ods (HMMs), variational multiscale methods, flux norm approach, generalized multiscale finite element methods (GMsFEMs) 
and localized orthogonal decomposition (LOD), have been proposed in the literature [5,8–10,20,21,24,31] over the last few 
decades. They have achieved great success in the efficient and accurate simulation of heterogeneous problems. Recently, 
a so-called Wavelet-based Edge Multiscale Finite Element Method (WEMsFEM), cf. Algorithm 1, was proposed within the 
framework of GMsFEMs [10] that facilitates deriving a rigorous convergence rate with merely mild assumptions [15,16,23]. 
A key ingredient in GMsFEMs is designing local multiscale basis function in local regions with good approximation proper-
ties. However, deriving such local approximation is nontrivial. The main idea of WEMsFEM is to utilize wavelets as the basis 
functions over the coarse edges, and transform the approximation properties from the edges to each local region. Then the 
Partition of Unity Method (PUM) [32] is applied to derive the global convergence rate. The motivation for using wavelets as 
the ansatz space over the coarse edges origins from the low regularity of the solution to (1.1) in the spatial domain D due to 
the existence of heterogeneity in the coefficient κ , which makes its approximation use the standard basis functions, e.g., the 
element-wise polynomials, infeasible or even prohibitive. Further, the multiresolution analysis enables the approximation of 
functions with low regularities using wavelets. We will apply this method in this paper to handle the heterogeneity in the 
spatial domain D .

Furthermore, motivated by the great demand for an efficient solver with high accuracy as well as a reasonable wall-
clock time in many practical applications, e.g., financial mathematics [4], fluid mechanics and fluid-structure interaction 
[12–14], oceanography [26], chemistry [28,6] and quantum chemistry [29], and the increasing computational capacity of 
current computers, a variety of efficient numerical schemes exploiting parallel computing architectures emerge during the 
last few decades. Among them, the parareal algorithm is one of the most popular and successful algorithms. The parareal 
algorithm facilitates speeding up the numerical solver to time dependent equations on the condition of sufficient processors 
[3], which is an iterative solver based on a cheap inaccurate sequential coarse-scale time solver and expensive accurate fine-
scale time solvers that can be performed in parallel. If it converges sufficiently fast, then the parareal algorithm could result 
in less wall-clock time than sequentially computing. The parareal algorithm was introduced by Lions, Maday and Turinici 
[25] and extended to the linear problems in [2,4,30]. Its convergence for nonlinear system of ordinary differential equations 
and partial differential equations is derived in [4,17]. Convergence properties are investigated for three fine propagators 
in [34]: the trapezoidal rule, the third-order diagonal implicit Runge-Kutta method, and the fourth-order Gauss Runge-
Kutta method. A critical condition was derived, which guarantees the fast convergence of the parareal algorithm using these 
aforementioned fine propagators. Recently, new parareal algorithms are developed to solve problems involving discontinuous 
right-hand sides [18,19]. Coupling of parareal algorithm and other techniques has been developed in many literatures, see 
[1,7,11,22]. Among them is the coupling of parareal algorithm with the model reduction techniques. In [22], a micro-macro 
parareal algorithm for the time-parallel integration of multiscale-in-time systems is introduced to solve singularly perturbed 
ordinary differential equations. One contribution of this paper is that the fast variables are eliminated from the coarse 
propagator, therefore, the resulting algorithm only evolves with the slow variables. A new coupling strategy to compute high 
oscillatory solutions to a class of ODEs is introduced in [1], where multiscale integrators are coupled with fully resolved fine 
scale integrators for parallel in time.

In this paper, we incorporate the parareal algorithm into WEMsFEM to numerically calculate the time evolution problems 
efficiently. This new algorithm is called WEMP Algorithm, cf. Algorithm 2. This algorithm is divided into two steps: a 
multiscale space V EW

ms,� based on WEMsFEM with � as the wavelets level parameter is constructed in the first step, and 
then we apply the parareal algorithm by using V EW

ms,� as the ansatz space in the second step to obtain the solution more 
efficiently. The convergence analysis of this algorithm is presented in Theorem 4.1. We proved∥∥u(·, T n) − Un

k

∥∥
L2(D)

�
(

H ‖κ̃‖1/2
L∞(D) + 2−�/2‖κ‖L∞(FH ) + δt

) 1

T n
‖u0‖L2(D)

+
(

H ‖κ̃‖1/2
L∞(D)

+ 2−�/2‖κ‖L∞(FH )

)
T n sup

s≤T n
| f (·, s)|2

+ δt
(

T n sup
s≤T n

| f (·, s)|2 +
T n∫

0

‖∂s f (·, s)‖L2(D)ds
)

+
(
	k

j=0
1

T n− j

)

T k+1 ‖u0‖L2(D) ,

where u(·, T n) and Un
k are the exact solution and numerical solution derived from WEMP algorithm at T n = n × 
T for 

n = 2, · · · . The notations 
T and δt represent the coarse time step size and fine time step size, respectively. H , � and k
are the spatial domain mesh size, the level parameter and iteration number. FH denotes the collection of all edges in the 
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coarse mesh TH . We refer to Section 2 for more details. κ̃ is a weighted coefficient to be defined in (2.8). This implies that 
taking � = [−2 log2 H] and k = [− log
T δt], we recover O(H + δt) error, which actually is the error for the backward Euler 
conforming Galerkin method. Here, [.] denotes taking integer part of a number. Furthermore, the singularity of the solution 
for t → 0 is reflected in the coefficient of the last term, namely, 

(
	k

j=0
1

T n− j

)
. Note that similar convergence of parareal 

algorithm was derived for parabolic equations under the condition that n 
 k in [4]. Our result can be applied to small time 
step n.

To demonstrate the performance of our proposed algorithm we present several numerical tests using backward Euler 
and Crank-Nicolson schemes for the fine time step solver, respectively. Our numerical tests indicate similar convergence 
as derived in the theoretical results. Furthermore, we take different coarse time steps and observe similar convergence 
behavior.

The paper is organized as follows. We summarize the basics on the fully discretization of Problem (1.1), the framework 
of WEMsFEMs in Section 2. Our main proposed algorithm is presented in Section 3. The convergence of WEMsFEM and 
WEMP algorithms are derived in Section 4. Extensive numerical tests are presented in Section 5. Finally, we complete our 
paper with concluding remarks in Section 6.

2. Problem setting and the construction of multiscale space

In this section, we will mainly introduce the full discretization of problem (1.1), and its multiscale model reduction in 
the spatial domain D .

2.1. Full discretization

We present in this subsection the discretization of problem (1.1). Firstly, we define the Hilbert space Ḣ s(D), which is 
analogous to [33, Chapter 3].

Let {(λm, φm)}∞m=1 be the eigenpairs of the following eigenvalue problems with the eigenvalues arranged in a nonde-
creasing order,

Lφm := −∇ · (κ∇φm) = λmφm in D

φm = 0 on ∂ D.

Note that the eigenfunctions {φm}∞m=1 form an orthonormal basis in L2(D), and consequently, each v ∈ L2(D) admits the 
representation v = ∑∞

m=1(v, φm)Dφm with (·, ·)D being the inner product in L2(D). The Hilbert space Ḣ s(D) ⊂ L2(D) is 
defined by

Ḣ s(D) = {v ∈ L2(D) :
∞∑

m=1

λs
m|(v, φm)D |2 < ∞}. (2.1)

The associated norm in Ḣ s(D) is |v|s = (
∑∞

m=1 λs
m|(v, φm)D |2)1/2.

Remark 2.1. Since the initial data u0 ∈ Ḣ3(D) ∩ H0
1(D), we obtain

‖Lu0‖L2(D) = |u0|2. (2.2)

Indeed, u0 allows the expression

u0 =
∞∑

m=1

(u0, φm)Dφm.

Taking L2(D)-norm after operating L on both sides and utilize the definition (2.1), we obtain the desired assertion (2.2).

To discretize problem (1.1), we first introduce fine and coarse grids. Let TH be a regular partition of the domain D into 
finite elements (triangles, quadrilaterals, tetrahedral, etc.) with a mesh size H . We refer to this partition as coarse grids, and 
its elements as the coarse elements. Then each coarse element is further partitioned into a union of connected fine grid 
blocks. The fine-grid partition is denoted by Th with h being its mesh size. Let Fh (or FH ) be the collection of all edges in 
Th (or TH ). Over the fine mesh Th , let Vh be the conforming piecewise linear finite element space:

Vh := {v ∈ V : v|E ∈ P1(E) for all E ∈ Th},
where P1(E) denotes the space of linear polynomials on the fine element E ∈ Th .

The time interval I := [0, T ] is decomposed into a sequence of coarse subintervals [T n, T n+1] for n = 0, 1, · · · , M
 of 
size 
T with 
T := T /M
 for some M
 ∈ N+ and T 0 := 0. Each coarse time interval [T n, T n+1] is further discretized 
3
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Fig. 1. Illustration of a coarse neighborhood and coarse element.

with a fine time step δt . Let tn = n × δt for n = 0, 1, · · · , Mδ with Mδ := T × δt−1. Note that 
T 
 δt . To simplify the 
notations, backward Euler method is utilized to discretize the time variable, and we use conforming Galerkin method for 
the discretization in the spatial variable throughout this paper. Then the fine-scale solution Un

h ∈ Vh for n = 1, 2, · · · , Mδ

satisfies⎧⎪⎨⎪⎩(
Un

h − Un−1
h

δt
, vh)D + a(Un

h , vh) = ( f (·, tn), vh)D for all vh ∈ Vh,

U 0
h = Ihu0.

(2.3)

Here, the bilinear form a(·, ·) on V × V is defined by

a(v1, v2) :=
∫
D

κ∇v1 · ∇v2 dx for all v1, v2 ∈ V .

Ih is a proper projection from V to Vh . Furthermore, we define the energy norm ‖v‖H1
κ (D) := √

a(v, v) for all v ∈ V .
The fine-scale solution un

h will serve as a reference solution in Section 5. Note that due to the presence of multiple scales 
in the coefficient κ , the fine-scale mesh size h should be commensurate with the smallest scale and thus it can be very 
small in order to obtain an accurate solution. This necessarily involves huge computational complexity, and more efficient 
methods are in great demand.

2.2. Multiscale model reduction in the spatial domain D

We present in the section the multiscale model reduction to Problem (2.3) in the spatial domain D .

2.2.1. Multiscale solver in the spatial domain
The multiscale method we are investigating aim at solving Problem (1.1) on the coarse mesh TH , which, meanwhile, 

maintains a certain accuracy compared to the fine-scale solution Un
h to Problem (2.3). To provide a brief overview, we first 

recap a few definitions.
The vertices of TH are denoted by {O i}N

i=1, with N being the total number of coarse nodes. The coarse neighborhood 
associated with the node O i is denoted by

ωi :=
⋃

{K j ∈ TH : O i ∈ K j}. (2.4)

We refer to Fig. 1 for an illustration of neighborhoods and elements subordinated to the coarse discretization TH . Through-
out, we use ωi to denote a coarse neighborhood. Furthermore, let Fh(∂ωi) (or FH (∂ωi)) be the restriction of Fh on ∂ωi (or 
FH on ∂ωi ).

Let V ms be the multiscale finite element space to be defined in Section 2.2.2. The multiscale solution Un
ms ∈ V ms for 

n = 1, · · · , Mδ satisfies⎧⎨⎩(
Un

ms − Un−1
ms

δt
, vms)D + a(Un

ms, vms) = ( f (·, tn), vms)D for all vms ∈ V ms,

U 0
ms = Imsu0,

(2.5)

where V ms denotes the multiscale space spanned by these multiscale basis functions and Ims is a L2(D)-projection operator 
from V to V ms.

Note that we need a very tiny fine-scale time step δt to guarantee a reasonable approximation property of un
ms to u(·, tn)

for n = 1, · · · , Mδ due to, e.g., the singularity of the solution u(·, t) at t = 0 arising from the rough initial data u0 or when 
4



G. Li and J. Hu Journal of Computational Physics 444 (2021) 110572
the source term f fails to have certain regularity. Consequently, the computational complexity of the multiscale method 
(2.5) can be extremely expensive. For this reason, we present in Section 3 a multiscale algorithm incorporated with the 
parareal algorithm to reduce further this part of computational cost.

We end this section with assumptions on the permeability field κ , which is required to obtain approximation properties 
of the multiscale finite element space V ms in the energy norm, cf., (4.1):

Assumption 2.1 (Structure of D and κ). Let D be a domain with a C1,α (0 < α < 1) boundary ∂ D , and {Di}m
i=1 ⊂ D be m

pairwise disjoint strictly convex open subsets, each with a C1,α boundary �i := ∂ Di , and denote D0 = D\∪m
i=1 Di . Let the 

permeability coefficient κ be piecewise regular function defined by

κ =
{
ηi(x) in Di,

1 in D0.
(2.6)

Here ηi ∈ Cμ(D̄i) with μ ∈ (0, 1) for i = 1, · · · , m. Denote ηmin := min
i

{min
x∈Di

{ηi(x)}} ≥ 1 and ηmax := max
i

{‖ηi‖C0(Di)}.

2.2.2. Multiscale space construction
This subsection is concerned with the construction of the multiscale space by means of the Wavelet-based Edge Mul-

tiscale Finite Element Methods (WEMsFEM) [23,16]. The algorithm is presented in Algorithm 1. Given the level parameter 
� ∈N , and the type of wavelets on each edge of the coarse neighborhood ωi , one can obtain the local multiscale space V i,�
on ωi by solving 2�+2 local problems in Step 2 using the fine-scale mesh and its associated proper finite element space. 
Those local problems Li are homogeneous elliptic operators coupled with wavelets Dirichlet data V i,� . In Step 3, we can use 
these local multiscale space to build the global multiscale space V EW

ms,� by multiplying the partition of unity functions χi . 
Finally, we can solve (2.5) by backward Euler conforming Galerkin scheme using this global multiscale space, coupled with 
I�u0 as the initial condition. Here, I� denotes the L2(D)-projection from L2(D) to V EW

ms,� .
The weighted coefficient appears in Step 3 is

κ̃ = H2κ

N∑
i=1

|∇χi |2. (2.7)

Further, its inverse κ̃−1 is

κ̃−1(x) :=
{
κ̃−1, when κ̃(x) �= 0,

1, otherwise ,
(2.8)

which will be utilized in the analysis. The partition of unity functions χi used in Step 4 are the standard multiscale basis 
functions defined coarse elementwise. On each coarse element K ∈ TH , it satisfies

−∇ · (κ(x)∇χi) = 0 in K , (2.9)

χi = gi on ∂ K ,

where gi is affine over ∂ K with gi(O j) = δi j for all i, j = 1, · · · , N . Recall that {O j}N
j=1 are the set of coarse nodes on TH . 

By its definition, χi is locally supported,

supp(χi) ⊂ ωi .

Algorithm 1 Wavelet-based Edge Multiscale Finte Element Method (WEMsFEM).

Input: The level parameter � ∈ N; coarse neighborhood ωi and its four coarse edges �i,k with k = 1, 2, 3, 4, i.e., ∪4
k=1�i,k = ∂ωi ; the subspace V i

�,k ⊂
L2(�i,k) up to level � on each coarse edge �i,k .
Output: Multiscale solution uEW

ms,� .

1: Denote V i,� := ⊕4
k=1 V i

�,k . Then the number of basis functions in V i,� is 4 × 2� = 2�+2. Denote these basis functions as vk for k = 1, · · · , 2�+2.

2: Calculate local multiscale basis L−1
i (vk) for all k = 1, · · · , 2�+2. Here, L−1

i (vk) := v satisfies: 
{
Li v := −∇ · (κ∇v) = 0 in ωi ,

v = vk on ∂ωi .

3: Solve one local problem.⎧⎪⎪⎨⎪⎪⎩
−∇ · (κ∇vi) = κ̃∫

ωi
κ̃ dx

in ωi ,

−κ
∂vi

∂n
= |∂ωi |−1 on ∂ωi .

4: Build global multiscale space. V EW
ms,� := span{χiL−1

i (vk), χi vi : 1 ≤ i ≤ N, 1 ≤ k ≤ 2�+2}.
5: Solve for (2.5) by backward Euler conforming Galerkin method in V EW

ms,� with U EW,1
ms,� = I�u0 to obtain U EW,n

ms,� for n = 1, · · · , Mδ .
5
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3. Wavelet-based edge multiscale parareal algorithm

We construct in this section the Wavelet-based Edge Multiscale Parareal (WEMP) Algorithm, cf. Algorithm 2, which is 
divided into two main steps. In the first step, the multiscale space V EW

ms,� for � ∈ N+ is built based on Section 2.2.2. This 
multiscale space serves as the trial space and test space for our conforming Galerkin method, cf. (2.5). Then the parareal 
algorithm is utilized in the second step to solve the problem.

We first recap a few terminologies commonly appeared in parareal algorithm.
The one step coarse solver on the time domain (0, T ) is

Un+1 = E
(T n, Un), U 0 = Ihu0,

Un+1
ms,� = Ems,�


 (T n, Un
ms,�), U 0

ms,� = Imsu0, (3.1)

which yields Un+1 (or Un+1
ms,�) as a coarse approximation to u(·, T n+1), provided with an approximation Un (or Un

ms,�) of 
u(·, T n). In matrix form, it reads

Un+1 = (M + 
T × A)−1M(Un + 
T × F n+1),

Un+1
ms,� = �ms,�(�

T
ms,�M�ms,� + 
T × �T

ms,� A�ms,�)
−1�T

ms,�M(Un
ms,� + 
T × F n+1).

Here, A and M are the mass matrices and stiffness matrices corresponding to the discretization of the elliptic opera-
tor −∇ · (κ∇·) in the finite element space Vh := span{φ1, · · · , φdofh }. Here, dofh denotes the dimension of Vh . (F n+1)i :=∫

D f (·, tn+1)φi dx for all i = 1, · · · , dofh . �ms,� denotes a matrix with columns composed of the coefficients of multiscale 
basis functions in V EW

ms,� in the finite element space Vh .
The one step fine solver

ψ = Fδ(s,σ ,φ),

ψms,� = Fms,�
δ (s,σ ,φ), (3.2)

yields an approximation ψ(·, s + σ) (or ψms,�(·, s + σ)) to the solution u(·, s + σ) with the initial condition ψ(·, s) = φ (or 
ψms,�(·, s) =P�(φ)) and a uniform discrete time step δ for all s ∈ (0, T ) and σ ∈ (0, T − s) in the infinite dimensional space 
V (or in the ansatz space V EW

ms,�) with s/δt ∈N+ .
We also define the semi-discretization in space solver

ums,�(·, s + σ) = Fms,�(s,σ ,φ), (3.3)

which yields an approximation ums,�(·, s + σ) to the solution u(·, s + σ) with initial condition ums,�(·, s) = P�(φ) for all 
s ∈ (0, T ), σ ∈ (0, T − s) in the ansatz space V EW

ms,� . We will denote Ēms,�

 (T n, Un

ms,�) as the one step coarse solver with 
f = 0. We will define F̄ms,�(s, σ , φ) and F̄ms,�

δ (s, σ , φ) analogously.

Note that the cheap multiscale coarse solver Ems,�

 is sequentially utilized over the global time interval I to provide 

a rough approximation to u(·, T n+1), while the expensive accurate multiscale fine solver Fms,�
δ is applied in each subin-

terval [T n, T n+1] for n = 0, 1, · · · , M
 − 1 independently. This local fine solver will embed more detailed information to 
the approximation of u(·, T n+1), which usually differs from the one obtained from the global coarse solver. In the process 
of parareal algorithm, a correction operator is very important to improve the approximation to u(·, T n+1) based on the 
discrepancy between the coarse solver and fine solver, which is defined by

S(T n, Un
ms,�) := Fms,�

δ (T n,
T , Un
ms,�) − Ems,�


 (T n, Un
ms,�) and U 0

ms,� = Imsu0

for all n = 0, 1, · · · , M
 − 1.
Now we are ready to present our main algorithm, i.e., Algorithm 2. To obtain a good approximation to the solution of (1.1)

at discrete time points {T n} for n = 1, · · · , M
 , we first construct a proper multiscale space V EW
ms,� based on the WEMsFEM, 

i.e., Algorithm 1, which corresponds to Steps 1 to 3. This allows one to solve (2.5) using the constructed multiscale space 
V EW

ms,� and obtain an intermediate solution U EW,n
ms,� with certain accuracy depending on the spatial coarse mesh size H and 

level parameter �. This solution will only be utilized in the convergence analysis.
In order to further reduce the computational cost, we apply the parareal algorithm in the following. Given the iteration 

parameter k, we apply the global coarse solver (3.1) in Step 6 to obtain Un+1
k , which is an approximation to the intermediate 

solution U EW,n+1
ms,� from Algorithm 1. Using the coarse solution Un

k as the initial condition, the fine solver (3.2) subsequently 
is used to calculate the fine solution Un+1

k in parallel on each local time subinterval [T n, T n+1]. Then we calculate the 
discrepancy between the coarse solution and the fine solution in Step 8 on each discrete coarse time point T n for n =
1, 2, · · · , M
 , and denote it as S(T n−1, Un−1

k ). Subsequently, this jump term is utilized in Step 9 to update the coarse 
solution via the global coarse solver (3.1). This process will be performed iteratively until certain tolerance on the jump 
terms is satisfied.
6
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The multiscale solution in Algorithm 1 is calculated using a fine time step δt � 
T , which solves a linear system of 
size Nms a number of T

δt times, where Nms denotes the dimension of the multiscale space V EW
ms,� . In each iteration, a linear 

system of size Nms is solved a number of T

T times sequentially and a number of 
T

δt times simultaneously using T

T

processors. In total, Algorithm 2 involves solving a linear system of size Nms a number of k × T

T times sequentially after k

iteration. Algorithm 2 converges within a shorter wall-clock time compared with Algorithm 1 when k � T

T , which, indeed, 

can be supported by extensive numerical experiments presented in Section 5.

Algorithm 2 Wavelet-based Edge Multiscale Parareal (WEMP) algorithm.
Input: The initial data u0, the source term f ; tolerance ε; the level parameter � ∈ N; coarse neighborhood ωi and its four coarse edges �i, j with 
j = 1, 2, 3, 4, i.e., ∪4

j=1�i, j = ∂ωi ; the subspace V i
�, j ⊂ L2(�i, j) up to level � on each coarse edge �i, j .

Output: U .

1: Denote V i,� := ⊕4
k=1 V i

�,k . Then the number of basis functions in V i,� is 4 × 2� = 2�+2. Denote these basis functions as vk for k = 1, · · · , 2�+2.

2: Calculate local multiscale basis L−1
i (vm) for all m = 1, · · · , 2�+2. Here, L−1

i (vm) := v satisfies: 
{
Li v := −∇ · (κ∇v) = 0 in ωi ,

v = vm on ∂ωi .

3: Build global multiscale space. V EW
ms,� := span{χiL−1

i (vk), χi vi : 1 ≤ i ≤ N, 1 ≤ k ≤ 2�+2}.
4: k = 0, err= 1.
5: while err> ε do
6: Compute U n+1

k for n = 0, · · · , M
 − 1:

Un+1
k = Ems,�


 (T n, Un
k ),

U 0
k =P�u0.

7: Compute un+1
k for n = 0, · · · , M
 − 1 on each local time subinterval [T n ,T n+1]:

un+1
k =Fms,�

δ (T n,
T , Un
k ).

8: Compute the jumps for n = 1, · · · , M
:

S(T n−1, Un−1
k ) := un

k − Un
k .

9: Compute the corrected coarse solutions U n+1
k+1 for n = 0, · · · , M
 − 1:

Un+1
k+1 = S(T n, Un

k ) + Ems,�

 (T n, Un

k+1),

U 0
k+1 =P�u0.

10: Calculate:

err := 1/M


M
∑
n=1

‖Un
k+1 − Un

k ‖�2 .

k ← k + 1
11: end while
12: Un := U n

k and U := [U0, · · · , U M

].

4. Convergence study

This section is concerned with the theoretical study of Algorithm 1 and Algorithm 2. The proof of the former follows 
from [33, Theorems 7.7 and 8.5], where the approximation properties of the multiscale space V EW

ms,� and the convergence 
rate of the associated solver L−1

� are needed. The error of the latter can be decomposed as the summation of the error from 
the multiscale space and the parareal error.

4.1. Convergence for Algorithm 1

We first derive in the section the properties of the numerical operator that approximate the differential operator in 
Algorithm 1, then present the approximation properties of this numerical operator in the multiscale space V EW

ms,� .

Let L := −∇ · (κ∇·) be the elliptic operator defined on V , and let its discrete operator L� : V EW
ms,� → L2(D) be

(L�w�, v�) := (Lw�, v�) = a(w�, v�) for all v� and w� ∈ V EW
ms,�.

Then the inverse operator L−1
� exists, which is self-adjoint, positive semi-definite on L2(D), and positive definite on V EW

ms,� . 
Further, let R� be the Riesz operator associated to L in the multiscale space V EW , i.e.,
ms,�

7
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∀v ∈ V and wms ∈ V EW
ms,� : a(v −R�v, wms) = 0.

Then it holds

L−1
� = R�L−1.

The approximation property of L−1
� in energy norm is derived in [15, Proposition 5.2]. For any v ∈ L2(D), it holds∥∥∥L−1 v −L−1

� v
∥∥∥

H1
κ (D)

�
(

H ‖κ̃‖1/2
L∞(D)

+ 2−�/2‖κ‖L∞(FH )

)
‖v‖L2(D). (4.1)

Together with the duality argument, we can derive the approximation property of L−1
� in L2(D)-norm.

Lemma 4.1 (Approximation property of L−1
� in L2(D)-norm). For all v ∈ L2(D), there holds∥∥∥L−1 v −L−1

� v
∥∥∥

L2(D)
�

(
H ‖κ̃‖1/2

L∞(D) + 2−�/2‖κ‖L∞(FH )

)∥∥L−1 v
∥∥

H1
κ (D)

. (4.2)

Proof. This assertion can be derived from the duality argument together with (4.1). Indeed, let w ∈ V and wms ∈ V EW
ms,�

satisfy

Lw = L−1 v −L−1
� v

L�wms = L−1 v −L−1
� v.

Then it holds∥∥∥L−1 v −L−1
� v

∥∥∥2

L2(D)
= a(w − wms,L−1 v −L−1

� v)

≤ ‖w − wms‖H1
κ (D)

∥∥∥L−1 v −L−1
� v

∥∥∥
H1

κ (D)

Together with the estimate (4.1), we derive∥∥∥L−1 v −L−1
� v

∥∥∥2

L2(D)

≤ (
H ‖κ̃‖1/2

L∞(D)
+ 2−�/2‖κ‖L∞(FH )

)∥∥∥L−1 v −L−1
� v

∥∥∥
L2(D)

∥∥∥L−1 v −L−1
� v

∥∥∥
H1

κ (D)
. (4.3)

The stability of Riesz projection R� implies∥∥∥L−1 v −L−1
� v

∥∥∥
H1

κ (D)
≤ ∥∥L−1 v

∥∥
H1

κ (D)
,

then together with (4.3), this shows the desired assertion. �
Using the properties of the discrete operator L� , we can obtain the error estimate of Algorithm 1.

Proposition 4.1 (Pointwise-in-time error estimate in L2(D)-norm for Algorithm 1). For all m = 1, 2, · · · , Mδ , there holds∥∥∥u(·, tm) − U EW,m
ms,�

∥∥∥
L2(D)

�
(

H ‖κ̃‖1/2
L∞(D)

+ 2−�/2‖κ‖L∞(FH ) + δt
)

t−1
m ‖u0‖L2(D)

+
(

H ‖κ̃‖1/2
L∞(D)

+ 2−�/2‖κ‖L∞(FH )

)
tm sup

s≤tm

| f (·, s)|2

+ δt
(

tm sup
s≤tm

| f (·, s)|2 +
tm∫

0

‖∂s f (·, s)‖L2(D)ds
)
. (4.4)

Proof. This result can be obtained from [33, Theorems 7.7 and 8.5]. �

8
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4.2. Convergence for Algorithm 2

We present in this section the convergence analysis for Algorithm 2. To this end, we first prove the boundedness and 
Lipschitz continuity properties of the coarse solver Ems,�


 and the jump operator S in the multiscale space V EW
ms,�:

Lemma 4.2. For all n ∈ {1, · · · , M
 − 1}, the following properties hold.

1. The one step coarse solver Ems,�

 is Lipschitz in V EW

ms,� . For all v1, v2 ∈ V EW
ms,� , there holds∥∥∥Ems,�


 (T n, v1) − Ems,�

 (T n, v2)

∥∥∥
L2(D)

≤ α ‖v1 − v2‖L2(D)

with

α := 1

1 + 
T /Cpoin(D)
.

Here, Cpoin(D) denotes the Poincarè constant over the domain D.
2. The jump operator S is an approximation of order 1 with Lipschitz regularity. For all v1, v2 ∈ V EW

ms,� ∩ Ḣ2(D) and any ε > 0, there 
holds ∥∥S(T n, v1) − S(T n, v2)

∥∥
L2(D)

≤ 
T
2

ε
(
T )ε/2|v1 − v2|2+ε . (4.5)

Proof. 1. Let en+1
ms := Ems,�


 (T n, v1) − Ems,�

 (T n, v2), then it holds

∀wms ∈ V EW
ms,� :

∫
D

en+1
ms wms dx + 
T

∫
D

κ∇en+1
ms · ∇wms dx =

∫
D

(v1 − v2)wms dx.

Choosing wms := en+1
ms leads to∥∥en+1

ms

∥∥2
L2(D)

+ 
T
∥∥en+1

ms

∥∥2
H1

κ (D)
=

∫
D

en+1
ms (v1 − v2)dx.

Finally an application of the Young’s inequality and the Poincarè inequality proves the first assertion.
2. To prove the second assertion, let

en+1
ms := S(T n, v1) − S(T n, v2)

=
(
Fms,�

δ (T n,
T , v1) −Fms,�
δ (T n,
T , v2)

)
−

(
Ems,�


 (T n, v1) − Ems,�

 (T n, v2)

)
= F̄ms,�

δ (T n,
T , v1 − v2) − Ēms,�

 (T n, v1 − v2)

=
(
F̄ms,�

δ (T n,
T , v1 − v2) − F̄ms,�(T n,
T , v1 − v2)
)

−
(

Ēms,�

 (T n, v1 − v2)

− F̄ms,�(T n,
T , v1 − v2)
)

=: en+1
ms,δ − en+1

ms,
.

To estimate en+1
ms , we only need to derive the estimate for en+1

ms,δ and en+1
ms,
 , separately.

To this end, let vn+1
ms,i := vms,i(·, T n+1) := Fms,�(T n, 
T , vi) for i = 1, 2, we first construct the equation for en+1

ms,
 by the 
definitions of the coarse solver (3.1) and fine solver (3.2). There holds

∀wms ∈ V EW
ms,� :

∫
D

en+1
ms,
wms dx + 
T

∫
D

κ∇en+1
ms,
 · ∇wms dx =

∫
D

w0 · wms dx.

Here,

w0 := 
T
(

− ∂t vms,1|t=T n+1 + vn+1
ms,1 − v1


T
+ ∂t vms,2|t=T n+1 − vn+1

ms,2 − v1


T

)
= −

T n+1∫
T n

(s − T n)∂ss(vms,1 − vms,2)(·, s)ds.
9
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Note that

‖w0‖L2(D) ≤ 
T

T n+1∫
T n

∥∥∂ss(vms,1 − vms,2)(·, s)
∥∥

L2(D)
ds.

An adaptation of the proof to [33, Lemma 3.2] shows∥∥∂tt(vms,1 − vms,2)(·, t)
∥∥

L2(D)
� (t − T n)−1+ε/2|v1 − v2|2+ε for all t > 0.

Consequently, we derive

‖w0‖L2(D) ≤ 
T
2

ε
(
T )ε/2|v1 − v2|2+ε .

Choosing wms := en+1
ms,
 leads to∥∥∥en+1

ms,


∥∥∥2

L2(D)
+ 
T

∥∥∥en+1
ms,


∥∥∥2

H1
κ (D)

=
∫
D

en+1
ms,
w0 dx.

Consequently, an application of the Young’s inequality implies∥∥∥en+1
ms,


∥∥∥
L2(D)

≤ 
T
2

ε
(
T )ε/2|v1 − v2|2+ε .

Analogously, we can obtain the estimate for en+1
ms,δ , which reads∥∥∥en+1

ms,δ

∥∥∥
L2(D)

≤ δt
2

ε
(δt)ε/2|v1 − v2|2+ε .

Note that δt � 
T , then a combination of the two estimates above with the triangle inequality, shows the second asser-
tion. �

We present in the next theorem the convergence rate of Algorithm 2 to Problems (1.1) in pointwise-in-time in L2(D)-
norm. To derive it, we first decompose the error from Algorithm 2 as a summation of the error from WEMsFEM and the error 
from parareal algorithm. Then we estimate the former by Proposition 4.1, and the latter can be estimated by mathematical 
induction. This result relies on the following assumption.

Assumption 4.1. Let m be a positive integer such that T n = tm for some integer n. For ε > 0 be sufficiently small, we assume 
the following inequality holds

|U EW,m
ms,� − Un

k |2+ε ≤ (
2

e
)4(T n)−1

∥∥∥U EW,m
ms,� − Un

k

∥∥∥
L2(D)

.

We remark here this assumption is provable for the continuous problem [33, Lemma 3.2].

Theorem 4.1. [Pointwise-in-time error estimate in L2(D)-norm for Algorithm 2] Let Assumptions 2.1 and 4.1 hold. Assume that the 
source term f ∈ L∞([0, T ]; Ḣ2(D)) satisfying ∂t f ∈ L1([0, T ]; L2(D)) and initial data u0 ∈ L2(D). Let � ∈N+ be the level parameter. 
The coarse time step size and fine time step size are 
T and δt. Let u(·, t) ∈ V be the solution to Problem (1.1) and let Un

k be the 
solution from Algorithm 2 with a small iteration k ∈N . There holds∥∥u(·, T n) − Un

k

∥∥
L2(D)

�
(

H ‖κ̃‖1/2
L∞(D) + 2−�/2‖κ‖L∞(FH ) + δt

) 1

T n
‖u0‖L2(D)

+
(

H ‖κ̃‖1/2
L∞(D) + 2−�/2‖κ‖L∞(FH )

)
T n sup

s≤T n
| f (·, s)|2

+ δt
(

T n sup
s≤T n

| f (·, s)|2 +
T n∫

0

‖∂s f (·, s)‖L2(D)ds
)

+
(
	k

j=0
1
n− j

)

T k+1 ‖u0‖L2(D) .
T

10
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Proof. We first define the multiscale solution to Problem (1.1) using Algorithm 1. Find U EW,m
ms,� ∈ V EW

ms,� for m = 1, · · · , Mδ , 
satisfying

∀wms ∈ V EW
ms,� : ( U EW,m

ms,� − U EW,m−1
ms,�

δt
, wms)D + a(U EW,m

ms,� , wms) = ( f (·, tm), wms)D (4.6)

U EW,0
ms,� = I�(u0).

Then we only need to estimate 
∥∥∥u(·, T n) − U EW,m

ms,�

∥∥∥
L2(D)

and 
∥∥∥U EW,m

ms,� − Un
k

∥∥∥
L2(D)

for m := 
T /δt × n. Note that T n = tm . 

Therefore, we can replace T n with tm . Similarly, let m′ := 
T /δt × (n − 1), then it holds tm′ = T n−1. The first term ∥∥∥u(·, tm) − U EW,m
ms,�

∥∥∥
L2(D)

can be estimated by Proposition 4.1. The second term 
∥∥∥U EW,m

ms,� − Un
k

∥∥∥
L2(D)

corresponds to the er-

ror induced by parareal algorithm in the multiscale method, and we will prove by mathematical induction:

en
k :=

∥∥∥U EW,m
ms,� − Un

k

∥∥∥
L2(D)

≤ Co

(
	k′

j=0
1

T n− j

)

T k+1 ‖u0‖L2(D) . (4.7)

Here, Co is a positive constant independent of H , M
 or T with its value changes from context.
Obviously, the inequality (4.7) holds when k = 0. Assume that it holds for iteration k for some k ∈ N+ . We will show 

that it holds for the next iteration k + 1.
We can obtain from Algorithm 2:

en
k+1 = ‖S(T n−1, U EW,m′

ms,� ) − S(T n−1, Un−1
k ) + Ems,�


 (T n−1, U EW,m′
ms,� ) − Ems,�


 (T n−1, Un−1
k+1 )‖L2(D).

Consequently, an application of Lemma 4.2 and Assumption 4.1 lead to

en
k+1 ≤

∥∥∥S(T n−1, U EW,m′
ms,� ) − S(T n−1, Un−1

k )

∥∥∥
L2(D)

+
∥∥∥Ems,�


 (T n−1, U EW,m′
ms,� ) − Ems,�


 (T n−1, Un−1
k+1 )

∥∥∥
L2(D)

≤ 
T
2

ε
(
T )ε/2|U EW,m′

ms,� − Un−1
k |2+ε + α

∥∥∥U EW,m′
ms,� − Un−1

k+1

∥∥∥
L2(D)

≤ (1 − α)

T

T n−1 ‖U EW,m′
ms,� − Un−1

k ‖L2(D) + α
∥∥∥U EW,m′

ms,� − Un−1
k+1

∥∥∥
L2(D)

= (1 − α)

T

T n−1 en−1
k + αen−1

k+1 . (4.8)

In the last inequality we choose the positive parameter ε satisfying

ε ≥ (
2

e
)4 2

1 − α
.

Note that en
k+1 = 0 for all n ≤ k + 1. We can obtain by using (4.8) repeatedly

en
k+1 ≤ (1 − α)

n−(k+1)∑
j=1

α j−1 
T

T n− j
en− j

k .

≤ (1 − α)

n−(k+1)∑
j=1

α j−1Co

T

T n− j

(
	k

i=0
1

T n− j−i

)

T k+1 ‖u0‖L2(D)

= Co

(
	k+1

j=0
1

T n− j

)

T k+2 ‖u0‖L2(D) × (1 − α)

n−(k+1)∑
j=1

α j−1
(
	k+1

i=0
T n−i

T n− j−i

) T n− j−k−1

T n− j

≤ Co

(
	k+1

j=0
1

T n− j

)

T k+2 ‖u0‖L2(D) × (1 − α)

n−(k+1)∑
j=1

α j−1
(
	k+1

i=0
T n−i

T n− j−i

)
.

We only need to prove A(n, k) as defined in the following, is bounded.

A(n,k) := (1 − α)

n−(k+1)∑
j=1

α j−1
(
	k+1

i=0
T n−i

T n− j−i

)

= (1 − α)

n−1∑
m=k+1

αn−1−m
(
	k+1

i=0
n − i

m − i

)
.

11
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Fig. 2. The heterogeneous permeability field κ and the initial data u0 = x(1 − x)y(1 − y). (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

We can further express A(n, k) as

A(n,k) = (1 − α)Ck+1
n−1

n−1∑
m=k+1

αn−1−m

Ck+1
m

=: (1 − α)Ck+1
n−1

n−1∑
m=k+1

am. (4.9)

Note that

am+1

am
= m − k

m + 1
α−1 ≤ n − 1 − k

n
α−1 := ηα−1

ak+1 = αn−k−2.

Consequently, we obtain

A(n,k) ≤ (1 − α)Ck+1
n−1(n − k − 2)max{η,α}n−k−2.

Since k is small, A(n, k) is bounded for any n.
This proves estimate (4.7) corresponding to the case with iteration k + 1. Hence, the estimate (4.7) is proved. Finally, a 

combination with (4.4) results in the desired estimate. �
Theorem 4.1 indicates that the pointwise-in-time error estimate of Algorithm 2 to Problems (1.1) in L2(D)-norm will 

deteriorate when the time step approaches the original t = 0. This blow-up of error is produced by the parareal algorithm 
(Step 2 in the proof to Theorem 4.1), which essentially arises from the approximation property of the jump operator (4.5).

Remark 4.1. Algorithm 2 outweighs Algorithm 1 only when the former achieves similar accuracy to the latter within a very 
few iteration k � M
 . Therefore, we are not interested in the case when k ≥ M
 or the error at time level T n with k ≥ n.

5. Numerical results

In this section, we perform a series of numerical experiments to demonstrate the performance of the proposed WEMP 
Algorithm. In particular, we compare the performance of Algorithms 1 and 2 for each experiment. Furthermore, we inves-
tigate whether replacing backward Euler scheme by Crank-Nicolson scheme would reduce the iteration number. Motivated 
by the critical condition proposed in [34], we choose different values of 
T

δt to test how they will influence the iteration 
number. It can be seen from Equation (4.6) that WEMP Algorithm would generate a solution of better accuracy when the 
source term being 0. In the last subsection, we conduct experiments to verify this.

We consider the parabolic equation (1.1) in the space domain D := [0, 1]2 and the time domain [0, T ] = [0, 1]. The 
permeability coefficient κ we choose has two distinct value: 1 and 1000. It is high-contrast and heterogeneous. We refer to 
Fig. 2 (left figure) for an illustration. The initial data tested in our numerical experiments is chosen to be a smooth function 
u0 := x(1 − x)y(1 − y). We refer to Fig. 2 (right figure) for an illustration.

Let TH be a decomposition of the domain D into non-overlapping shape-regular rectangular elements with maximal 
mesh size H := 2−4. These coarse rectangular elements are further partitioned into a collection of connected fine rectangular 
elements Th using fine mesh size h := 2−7. Similarly, we define Vh to be a conforming piecewise affine finite element 
12
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Fig. 3. Numerical solution U n
h to (2.3) for n = 103,3 × 103,5 × 103 and 104 with δt = 10−4.

associated with Th . In our numerical experiments, space meshes TH and Th are fixed. To keep our presentation concise, 
we will only present the numerical results with a fixed level parameter � := 2. The temporal discretization is presented in 
Section 2 with T := 1. The coarse time step size and fine time step size are 
T and δt . Note that δt � 
T .

We introduce the following notations to calculate the errors. The relative errors for the multiscale solution in L2(D)-norm 
and H1

κ (D)-norm are

RelEW
L2 (tm) :=

∥∥∥Um
h − U EW,m

ms,�

∥∥∥
L2(D)∥∥Um

h

∥∥
L2(D)

× 100 and RelEW
H1

κ
(tm) :=

∥∥∥Um
h − U EW,m

ms,�

∥∥∥
H1

κ (D)∥∥Um
h

∥∥
H1

κ (D)

× 100.

Analogously, the relative errors for our proposed algorithm with iteration k ∈N in L2(D)-norm and H1
κ (D)-norm are

RelkL2(T n) :=
∥∥Um

h − Un
k

∥∥
L2(D)∥∥Um

h

∥∥
L2(D)

× 100 and Relk
H1

κ
(T n) :=

∥∥Um
h − Un

k

∥∥
H1

κ (D)∥∥Um
h

∥∥
H1

κ (D)

× 100

with m := 
T /δt × n.
Our numerical experiments include testing nonzero source term in section 5.1 and zero source term in section 5.2. We 

investigate the influence of different tempo discretization schemes, e.g., backward Euler scheme and Crank-Nicolson Galerkin 
scheme, on the performance of our algorithm.

5.1. Numerical tests with nonzero source term

To define nonzero source term, we take time-dependent smooth function

f (x, y, t) := 200π2 sin(πx) sin(π y) sin(10πtx).

Since there is no analytic solution to system (1.1), we need to find an approximation of the exact solutions. To this end, 
we take time step size δt = 10−4 and use backward Euler Galerkin Method in (2.3) to obtain the reference solutions Un

h . 
Note that we use a much finer time step size to simulate the reference solution. We plot the reference solutions U n

h for 
n = 103, 3 × 103, 5 × 103 and 104 in Fig. 3. In the rest of this subsection, we will present numerical tests using backward 
Euler scheme with 
T

δt = 100 in Experiment 1, Crank-Nicolson scheme with 
T
δt = 100 in Experiment 2 and backward Euler 

scheme with 
T
δt = 10 in Experiment 3. For all the three experiments, our proposed algorithm, i.e. Algorithm 2, can generate 

numerical solutions by a few iterations at least of the same accuracy as the multiscale solutions from Algorithm 1. For the 
brevity of the paper, we only present numerical solutions Un

k from Algorithm 2 with iteration number k = 0, 1 and 2 and 
multiscale solutions U EW,m

ms,� from Algorithm 1 in Experiment 1.

Experiment 1: backward Euler with 
T
δt = 100

We test in this experiment the performance of Algorithm 2 with a fine time step size δt = 10−3 and a coarse time step 
size 
T = 0.1. The backward Euler scheme is utilized for the time discretization.

We present the numerical solutions Un
k for n = 1, 3, 5, 10 from Algorithm 2 with iteration number k = 0, 1 and 2 in 

Fig. 4. One can observe that Un
k converges to the multiscale solution U EW,n

ms,� as the iteration k increases.

The convergence history of Algorithm 2 in relative L2(D)-norm and relative H1
κ (D)-norm are presented in Fig. 5.

One observes from Fig. 5 that 4 iterations is sufficient for Algorithm 2 to attain the same accuracy as Algorithm 1 for all 
discrete time steps under the L2(D)-norm, while 2 iterations under the H1

κ (D)-norm. Each iteration involves a number of 
1/
T = 10 sequential solver and 
T /δt = 100 parallel solver. In comparison, Algorithm 1 involves a number of 1/δt = 1000
sequential solver. Consequently, Algorithm 2 involves much less wall clock time with the aid of a sufficient number of 
processors.
13
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Fig. 4. Numerical solutions U n
k for n = 1, 3, 5, 10 from Algorithm 2 with 
T = 0.1 and δt = 10−3, backward Euler scheme: iteration number k = 0 (top), 

k = 1 (middle) and k = 2 (bottom).

Fig. 5. Convergence history of Algorithm 2 in relative L2(D) error and relative H1
κ (D) error for Experiment 1: backward Euler scheme with 
T = 0.1 and 

δt = 10−3.

Experiment 2: Crank-Nicolson with 
T
δt = 100

Since the backward Euler scheme is only first order accurate, a higher order accurate scheme can improve the perfor-
mance of Algorithm 1 and Algorithm 2. This can be seen from the proof to Theorem 4.1. In this section, we will present the 
numerical tests with Crank-Nicolson scheme for both algorithms.

A direct application of Crank-Nicolson scheme as a time discretization fails to maintain second order accuracy due to the 
possible blow up of the eigenvalues of the elliptic operator −∇ · (κ∇·) when ηmax → ∞. To improve its performance and 
maintain second order convergence rate, we use 3 steps of backward Euler scheme before Crank-Nicolson scheme kicks in 
[27,33].

The convergence history of Algorithm 2 in L2(D)-norm and H1
κ (D)-norm is presented in Fig. 6. Similar to Experiment 

1, we observe that 4 iterations is sufficient for Algorithm 2 to reach the same accuracy as Algorithm 1 at all discrete time 
levels under the L2(D)-norm, while 2 iterations under the H1

κ (D)-norm. Comparing Fig. 5 with Fig. 6, one observes that 
Algorithm 2 with Crank-Nicolson scheme outperforms that with backward Euler scheme under L2(D)-norm.

Experiment 3: backward Euler with 
T
δt = 10

We are also interested in studying how the coarse solver and fine solver affect the performance of our proposed WEMP 
algorithm. To this end, we choose 
T = 10−2, δt = 10−3 and utilize backward Euler scheme in time discretization. Note 
that the ratio between the coarse time step and fine time step is smaller than that in Experiment 1.
14
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Fig. 6. Convergence history of Algorithm 2 in relative L2(D)-norm and relative H1
κ (D)-norm for Experiment 2: Crank-Nicolson scheme with 
T = 0.1 and 

δt = 10−3.

Fig. 7. Convergence history of Algorithm 2 in relative L2(D) error and relative H1
κ (D) error for Experiment 3: backward Euler scheme with 
T = 10−2 and 

δt = 10−3.

Fig. 8. Numerical solutions U n
h to (2.3) with f = 0 for n = 10,30,50 and 100 with δt = 10−3.

The convergence history of Algorithm 2 in L2(D)-norm and H1
κ (D)-norm is presented in Fig. 7. Comparing Fig. 5 with 

Fig. 7, one can see 1 iteration is sufficient for the numerical solutions from Algorithm 2 to reach the same accuracy as 
multiscale solutions from Algorithm 1 under L2(D)-norm and H1

κ (D)-norm when the coarse time step 
T = 10−2 becomes 
smaller. However, this involves more coarse solvers for each iteration. Furthermore, a decreased coarse time step is only 
practical when sufficient processors are available.

5.2. Numerical tests with a vanishing source term

To avoid the complicated requirement on the source term in Theorem 4.1, we test in this section the performance of 
Algorithm 2 for Problem (1.1) with a vanishing source term f := 0 using a backward Euler scheme and Crank-Nicolson 
scheme. Consequently, the solution decays rapidly to 0. To generate solutions with reasonable size, we set the final time 
T = 0.1, the coarse time step 
T := 10−2 and the fine time step δt = 10−3. The initial data and permeability are the same 
as in the previous section. We use backward Euler scheme with time step 10−3 to obtain the reference solutions Un

h . The 
reference solutions Un

h for n = 10, 30, 50, 100 are plotted in Fig. 8.
We present the numerical solutions Un

k for n = 1, 3, 5, 10 from Algorithm 2 with iteration number k = 0, 1, 2 in Fig. 9. 
One can observe Un

k converges to U EW,n
ms,� as the iteration number k increases.

The convergence history of Algorithm 2 in L2(D)-norm and H1
κ (D)-norm is presented in Fig. 10. From the figure, one 

can see that 1 iteration is sufficient for the numerical solutions from Algorithm 2 with backward Euler to converge under 
15
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Fig. 9. Numerical solutions U n
k for n = 1, 3, 5, 10 from Algorithm 2 with 
T = 10−2 and δt = 10−3, backward Euler scheme: iteration number k = 0 (top), 

k = 1 (middle) and k = 2 (bottom).

Fig. 10. Convergence history of Algorithm 2 in relative L2(D)-norm and relative H1
κ (D)-norm for f = 0: backward Euler scheme with 
T = 10−2 and 

δt = 10−3.

L2(D)-norm and H1
κ (D)-norm. We can conclude that our proposed algorithm with backward Euler scheme is effective in 

solving Problem (1.1) with zero source term.
Our last experiment is replacing backward Euler scheme by Crank-Nicolson scheme for the above problem. We observe 

the same convergence behavior as in the previous experiment that the numerical solutions from Algorithm 2 converges to 
the multiscale solutions from Algorithm 1. For brevity of the paper, we do not present these figures.

The convergence history of Algorithm 2 in L2(D)-norm and H1
κ (D)-norm is presented in Fig. 11. One observes that it 

takes 4 iterations to converge under L2(D)-norm and 3 iterations to converge under H1
κ (D)-norm when using Algorithm 2

with Crank-Nicolson scheme. Comparing Fig. 10 with Fig. 11, we can see that Algorithm 2 with the Crank-Nicolson scheme 
yields a better accuracy than that with the backward Euler scheme. We conclude that Algorithm 2 with backward Euler 
scheme converges faster than that with Crank-Nicolson scheme, while Algorithm 2 with Crank-Nicolson scheme generate 
solutions with a higher accuracy for Problem (1.1) with zero source term.

6. Conclusion

We propose in this paper a new efficient algorithm for parabolic problems with heterogeneous coefficients. This algo-
rithm is named as the Wavelet-based Edge Multiscale Parareal (WEMP) Algorithm, which incorporates parareal algorithm 
16
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Fig. 11. Convergence history of Algorithm 2 in relative L2(D)-norm and relative H1
κ (D)-norm for f = 0: Crank-Nicolson scheme with 
T = 10−2 and 

δt = 10−3.

into the Wavelet-based Edge Multiscale Finite Element Methods (WEMsFEMs). Therefore, it can handle parabolic problems 
with heterogeneous coefficients more efficiently if multiple processors are available. We derive the convergence rate of this 
algorithm, and verify its performance by several numerical tests. Numerical experiments demonstrate WEMP Algorithm with 
coarse and fine propagators of higher order accuracy, e.g., Crank-Nicolson scheme, can enhance its performance. However, a 
detailed study of such algorithm is beyond the scope of this paper, which demands a comprehensive spectral study on the 
approximating operator L� and its dependence on the multiple scales, especially when the coefficient κ is heterogeneous. 
Further, we also observe that the decay of the ratio between the coarse time step and fine time step 
T

δt leads to faster 
convergence, yet more computational complexity is involved in each iteration. Moreover, the application of our proposed 
WEMP algorithm to time-fractional diffusion problems with heterogeneous coefficients in a large time domain is nontrivial 
since the fractional derivative is nonlocal, which makes single step scheme used in our algorithm infeasible. This is our 
interest in the future.
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