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A numerical technique for computations of turbulent flows is described. The tech-
nique is based on B-splines and allows grid embedding in physically significant flow
regions. Numerical tests, which include solutions of nonlinear advection-diffusion
equations and computations of flow over a circular cylinder at Reynolds numbers up
to 300, indicate that the method is accurate and efficient. In computations of flow
over a cylinder, the lift, drag, and base suction coefficients agree well with existing
experimental data and previous numerical simulations.c© 1999 Academic Press
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1. INTRODUCTION

Numerical computations of turbulent flows require accurate treatment of essential flow
structures. However, the length scales of these structures can vary significantly throughout
the computational domain. For example, near-wall eddies in wall-bounded turbulent flows
are small compared to the overall flow dimensions but play an important role in the dynamics
of turbulent boundary layers. These structures require fine resolution in all three directions
near the wall. In large eddy simulation, the near-wall small structures are the important
large eddies that cannot be treated accurately with current subgrid-scale parameterizations
[1]. Instead, they need to be resolved or completely modeled with dynamic wall treatments
[2–4]. In typical computations of wall-bounded turbulent flows, the fine grid resolution in
the near-wall region is extended into the outer layers where it is not required.

Grids with refined resolutions in different parts of the computational domain are also
necessary for numerical simulations of complex separated flows. For example, in flow over
a bluff body, a fine grid is required to resolve the thin boundary and separating shear layers as
well as the turbulent wake. A fine grid is usually not necessary in most of the computational
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FIG. 1. Streamwise vorticity contours (negative are dashed) in a fully developed turbulent channel flow. The
mean flow is into the page. Also shown is the zonal embedded mesh with fine grid near the walls and coarse grid
in the middle of the channel.

domain, for instance, in the region upstream of the body where the flow is relatively
smooth.

Efficient grid refinement in the physically significant flow regions can be implemented
with zonal embedded grids. In this approach, the mesh consists of coarse and fine grid
regions (zones), constructed such that appropriate resolution is provided in different parts
of the computational domain. This reduces the total number of grid points and leads to
savings in CPU time and memory. At the zonal boundaries, the mesh size changes in steps,
providing flexibility in designing grids. Figure 1 shows an example of a zonal embedded
grid with the mesh size decreasing in steps as one approaches the wall. Such a grid can be
used to resolve streamwise vortical structures and wall-layer streaks in the near-wall region
of turbulent boundary layers.

Several studies have been undertaken to develop numerical techniques with grid em-
bedding for computations of compressible [5–7] and incompressible [8, 9] flows. Some of
these techniques were applied to large eddy simulations [10, 11]. In most of the cases, the
techniques were based on low-order finite volume methods with high-order accurate in-
terpolation procedure for exchange of information between zones, and a special treatment
of the internal grid boundaries for mass, momentum, and energy conservation. Besides
having to deal with the problems of zonal boundary interpolation and conservation [7], in



B-SPLINE METHOD AND ZONAL GRIDS 759

computations of turbulent flows, these low-order methods may also suffer from significant
numerical errors that can overwhelm the effect of subgrid-scale models. The errors can be
especially pronounced on zonal grids with large variations in mesh sizes. A quantitative
analysis of discretization errors in large eddy simulations has been performed recently by
Ghosal [12] who showed that low-order finite-difference schemes might have numerical er-
rors of the same order of magnitude as the subgrid-scale terms. The findings of Ghosal [12]
were confirmed numerically in the studies of Lund and Kaltenbach [13] and Kravchenko
and Moin [14]. Lund and Kaltenbach [13] used explicit grid filtering to control numerical
errors in large eddy simulations of turbulent channel flow at high Reynolds number with
a second-order central finite-difference scheme. The smallest scales that would be mostly
affected by numerical errors were simply removed from the simulations at every time step.
The results were clearly improved but the grid, and therefore the cost of simulations, had
to be increased significantly to discern the effect of explicit grid filtering. Kravchenko and
Moin [14] performed a series of large eddy simulations of turbulent channel flow to investi-
gate effects of numerical errors in finite-difference schemes of various orders. It was found
that, in some cases, the results obtained with the second-order finite-difference scheme were
virtually the same with and without a subgrid-scale model, which is not a satisfactory out-
come. In contrast, simulations with a 6th-order Pad´e scheme were significantly improved
when the subgrid-scale model was activated.

The studies mentioned above point to the need for the development of high-order non-
dissipative numerical schemes that can be used with zonal embedded grids. Nonlinear
numerical stability considerations require such schemes to be kinetic energy conserving
[14]. However, it is difficult to construct fully conservative finite-difference schemes. The
popular staggered mesh scheme for incompressible flows [15, 16] is an example of a fully
conservative scheme. A recent work by Morinishiet al. [17] has produced a fourth-order
conservative scheme.

The objective of the current study is to develop an efficient, accurate, and conservative
numerical technique for simulation of turbulent flows in complex geometries on zonal
embedded grids. To achieve this objective, we have extended the numerical methodology
based on B-splines developed by Kravchenkoet al.[18] to computations of flows with more
than one inhomogeneous direction. The present grid embedding is based on the technique
suggested by Shariff and Moser [19]. The resulting numerical methodology is accurate,
conservative, and free of aliasing errors. It also offers a greater flexibility for simulations
on zonal embedded grids.

2. NUMERICAL METHOD

2.1. Galerkin Method Based on B-Splines in Two Directions

Consider a two-dimensional body with body-fitted coordinates(ξ, η) in the (x, y) plane.
Let the velocity vector,u, be represented in terms of two distinct classes of divergence-free
vectors which is equivalent to independently representing two components of the velocity
vector with the third determined by the continuity equation,

u(ξ, η, z, t) =
∑

kz

∑
m

[
α̂+m(t, kz)q+m,kz

(ξ, η, z)+ α̂−m(t, kz)q−m,kz
(ξ, η, z)

]
, (1)

wherekz is the spanwise wave number. The method of divergence-free expansions was
developed by Leonard and Wray [20]. The expansion vectorsq±(ξ, η, z) belong to the
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spaceV defined as

V = {q : q ∈ (H1(Ä))3,∇ · q = 0},

whereÄ is an open set inR3 with boundary∂Ä, and(H1(Ä))3 is the Hilbert space defined
by

(H1(Ä))3 = { f : f ∈ (L2(Ä))
3,∇ f ∈ (L2(Ä))

3
}
.

(L2(Ä))
3 is the space of square-integrable functions defined onÄ with inner product,

( f, g) =
∫
Ä

f g dÄ ∀ f, g ∈ L2(Ä),

and norm

‖ f ‖ = ( f, f )
1
2 ∀ f ∈ L2(Ä).

Furthermore, let us choose two classes of weight vectorsψ±(ξ, η, z) belonging to the space
W defined as

W = {ψ : ψ ∈ (H1(Ä))3,∇ ·ψ = 0,ψ = 0 on∂Ä}.

Following the standard weighted residual approach, we obtain a weak form of the Navier–
Stokes equations,∫

Ä

ψ± · ∂u
∂t

dÄ =
∫
Ä

ψ± · (H −∇ p) dÄ− 1

Re

∫
Ä

(∇ ×ψ±) · (∇ × u) dÄ, (2)

whereH denotes the nonlinear term,P is pressure, and the last term is modified using
integration by parts and the identity

∇2u = −∇ × ∇ × u, (3)

which is valid foru satisfying∇ · u= 0. Note that the boundary terms resulting from the
integration by parts are zero sinceψ= 0 on∂Ä. Using the properties of the weight functions,
∇ ·ψ= 0 onÄ andψ= 0 on∂Ä, we can eliminate the pressure term (after integration by
parts) from the weak formulation (2) to obtain∫

Ä

[
ψ± ·

(
∂u
∂t
− H

)
+ 1

Re
(∇ ×ψ±) · (∇ × u)

]
dÄ = 0. (4)

2.2. Weight and Expansion Functions

The expansion functions can be chosen as

q+m,kz
(ξ, η, z) = ∇ ×

 0
0

Bm(ξ, η)

 eikzz, (5a)

q−m,kz
(ξ, η, z) = ∇ ×


yη
J Bm(ξ, η)

− xη
J Bm(ξ, η)

0

 eikzz. (5b)
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Satisfaction of the divergence-free restriction onq is guaranteed by the identity∇ · q=∇ ·
(∇ ×Ψ)= 0. Bm(ξ, η) for m= 1 . . .M are the two-dimensional B-splines for the given
zonal mesh. EachBm(ξ, η) is a product of one-dimensional B-splines in the directionsξ

andη,

Bm(ξ, η) = fi (ξ)gj (η),

where indexm corresponds to two-dimensional functions, andi and j are the indices for
one-dimensional B-splines. One-dimensional B-splines,fi (ξ) of degreek are defined on a
set of(Nξ + 1) knot points [t0, t1, . . . , tNξ ] by the following recursive relationship [21],

f k
i (ξ) =

(ξ − ti−k−1)

(ti−1− ti−k−1)
f k−1
i−1 (ξ)+

(ti − ξ)
(ti − ti−k)

f k−1
i (ξ), i = 1, . . . , Nξ + k, (6)

where a B-spline of degree zero is a top hat function, i.e.,f 0
i (ξ)= 1 if ti−1≤ ξ ≤ ti and

0 otherwise. One-dimensional B-splines,gj (η), are defined similarly. An example of the
quadratic B-splines (k= 2) defined on a uniformly spaced set of knot points is shown in
Fig. 2.

FIG. 2. Twelve second-order B-splines,bi (t), shown on a uniform 11-point knot set. Knots,ti , are indicated
by short vertical lines. The bottom composite graph is in the form that is useful to display sets of B-splines.
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The metric coefficientsxξ , yξ , xη, andyη are the derivatives of the generalized coordinate
system mapping functionsx(ξ, η) andy(ξ, η) andJ= xξ yη− xηyξ is the Jacobian.

The set of weight vectors is identical to the set of expansion vectors except that in
order to satisfy an additional restriction on weight functions,ψ= 0 on∂Ä, those vectors
having support on the boundaries are eliminated from the set. The particular choice of the
divergence-free vectors, (5), leads to a complete and relatively simple set of basis functions.
Different sets can also be used provided that they are complete [20].

Equation (5) can be written as

q+m,kz
(ξ, η, z) =

am(ξ, η)

bm(ξ, η)

0

 eikzz, (7a)

q−m,kz
(ξ, η, z) =


ikzca

m(ξ, η)

ikzcb
m(ξ, η)

dm(ξ, η)

 eikzz, (7b)

wherea, b, ca, cb, andd are (for brevity, the subscriptm is omitted in the following expres-
sions)

a(ξ, η) = [xξ Bη(ξ, η)− xηBξ (ξ, η)]/J, (8a)

b(ξ, η) = [yξ Bη(ξ, η)− yηBξ (ξ, η)]/J, (8b)

ca(ξ, η) = xηB(ξ, η)/J, (8c)

cb(ξ, η) = yηB(ξ, η)/J, (8d)

d(ξ, η) = −Bη(ξ, η)/J. (8e)

2.3. System of Equations

Evaluating the integrals in (4), we obtain the system of ordinary differential equations
for each wave numberkz,(

M++ M+−

M−+ M−−

)
d

dt

(
α̂+

α̂−

)
= −

(
R̂+(α+,α−)

R̂−(α+,α−)

)
− 1

Re

(
D++ D+−

D−+ D−−

)(
α̂+

α̂−

)
,

(9)

where ˆ indicates a Fourier transform andM±± andD±± are the mass and viscous matrices.
Due to de-coupling in thez-direction only matrices for two-dimensional operators have to
be stored. However, eachM or D matrix may involve a linear combination of up to three
such matrices, e.g.,

M−− = M1− k2
zM2, (10)

where matricesM1 andM2 are independent ofkz. R̂±(α+,α−) are the expressions for the
nonlinear terms. Complete expressions for the mass and viscous matrices and components
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of the nonlinear terms are given in the Appendix. The components of mass, viscous, and
nonlinear matrices are computed and stored prior to time advancement. Generally, the
metrics and Jacobian functions in the expressions forq andψ are not piecewise polynomials
and the integrals in (4) cannot be evaluated exactly. In our computations, such functions
were treated as if they were polynomials of high degree (at least 8) on each integration
interval. The system of ordinary differential equations (9) can be solved for the B-spline
expansion coefficientsα+ andα− with a standard time-stepping algorithm. In our study,
the time advancement is performed with Crank–Nicolson and third-order Runge–Kutta
schemes for the viscous and advection terms, respectively. The mass and viscous matrices
are symmetric and positive definite and, therefore, a conjugate gradient method can be
used for the iterative solution of the resulting linear system of equations at each time
step.

2.4. Nonlinear Terms

The expressions for̂R±(α+,α−) result from the integration of the products of weight
functions with the nonlinear terms in Eq. (4). To avoid the high computational cost asso-
ciated with evaluation of the convolution sums in Fourier space, the nonlinear terms are
computed in the B-spline/z physical space. Thus, the B-spline coefficients in the velocity
expansions are transformed from Fourier to physical space using the “3/2 rule” [22] for
de-aliasing. The expressions for all the nonlinear terms are shown in the Appendix. To
illustrate the computation of̂R±(α+,α−), we consider a sample nonlinear term arising in
thez momentum equation,

Ni j =
∫
Äξ

∫
Äη

fi (ξ)g
′
j (η)u

2
3 dξ dη, (11)

whereu3 is the spanwise component of velocity. Substituting the expansion foru3 one
obtains

Ni j =
∑
klmn

Ni jklmnα
−
klα
−
mn, (12)

where

Ni jklmn =
∫
Äξ

∫
Äη

1

J2(ξ, η)
fi g
′
j fkg′l fmg′ndξ dη. (13)

All nonlinear matrices have the same structure (pattern of non-zero elements) as (12) and
are pre-computed and stored prior to the time advancement. Here, we are using the term
“matrix” in a generalized sense to refer to a multi-indexed quantity. The number of operations
required for computing (12) is proportional to(2k+ 1)4Nα wherek is the degree of the
B-splines andNα is the total number of two-dimensional B-splines. This estimate for the
operation count is simply the number of elements in the nonlinear matrix: its structured
part has(2k+ 1)4 diagonals withNα entries in each. Even though the number of operations
is linear in Nα, the cost associated with computations of the nonlinear term can be very
high, especially for high-degree B-splines due to the large coefficient,(2k+ 1)4. In typical
simulations with second-degree B-splines (k= 2), more than 50% of the CPU time is spent
in evaluating the nonlinear terms.
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FIG. 3. An example of zonal grid in a generalized coordinate system for computations of flow over a cylinder
mapped onto a rectangular grid inξ andη. Also shown are locations of the periodic, inflow, and outflow boundary
conditions.

2.5. Boundary Conditions

One of the test problems chosen to assess the performance of the B-spline technique on
zonal grids is a two-dimensional flow over a circular cylinder. Therefore, we will describe
in detail the boundary conditions for this test case. The extension to three-dimensional flow
and other two-dimensional body shapes is straightforward.

The simulations of two-dimensional flow over a cylinder are carried out on an O-type
zonal mesh which is mapped to a rectangular domain (0≤ ξ ≤ 1, 0≤ η≤ 1). An example
of a typical grid, but with domain size smaller than the one actually used, is shown in
Fig. 3. For the two-dimensional case, the spanwise component of velocity and, therefore,
the coefficientsα−i, j are zero. The streamwise(x) and cross-flow(y) velocity components
are represented as

u(ξ, η) =
∑
i, j

α+i, j [xξ fi (ξ)g
′
j (η)− xη f ′i (ξ)gj (η)]/J,

v(ξ, η) =
∑
i, j

α+i, j [yξ fi (ξ)g
′
j (η)− yη f ′i (ξ)gj (η)]/J.

(14)

Non-slip boundary conditions are imposed at the cylinder surface,

u(ξ = 0, η) = v(ξ = 0, η) = 0. (15)

Constant potential flow boundary conditions are used at the inflow (0.25≤ η≤ 0.75),

u = Upotential, (16a)

v = Vpotential, (16b)

and convective boundary conditions are applied at the outflow portion of the outer boundary
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FIG. 4. Composite graph of non-periodic and periodic B-splines (see Fig. 2) of order 2 on domain 0≤ η≤ L; N
is number of grid intervals; in case of periodic B-splines,g1≡ gN+k−1 andg2≡ gN+k.

(0.0≤ η≤ 0.25, 0.75≤ η≤ 1.0),

∂u

∂t
+U∞

1

J

(
yη
∂u

∂ξ
− yξ

∂u

∂η

)
= 0, (17a)

∂v

∂t
+U∞

1

J

(
yη
∂v

∂ξ
− yξ

∂v

∂η

)
= 0. (17b)

An explicit third-order Runge–Kutta scheme is used to advance Eq. (17) in time.
Periodic boundary conditions are used atη= 0 andη= 1. Periodicity is implemented by

extending the computational domain inη and creating additional B-splines at one boundary
that are equivalent to the B-splines at the other one, as shown in Fig. 4. The matrices in
Eq. (9) are then modified to account for periodicity.

Consider boundary conditions atξ = 0 andξ = 1. At these boundaries, Eqs. (14) become

u(0, η) =
∑
i, j

α+i, j [xξ fi (0)g
′
j (η)− xη f ′i (0)gj (η)]/J,

(18)
v(0, η) =

∑
i, j

α+i, j [yξ fi (0)g
′
j (η)− yη f ′i (0)gj (η)]/J,

u(1, η) =
∑
i, j

α+i, j [xξ fi (1)g
′
j (η)− xη f ′i (1)gj (η)]/J,

(19)
v(1, η) =

∑
i, j

α+i, j [yξ fi (1)g
′
j (η)− yη f ′i (1)gj (η)]/J.

The only B-splines which have non-zero values atξ = 0 andξ = 1 are f1(0) and fNξ (1). The
only non-zero first derivatives atξ = 0 andξ = 1 are f ′1(0), f ′2(0), f ′Nξ−1(1), and f ′Nξ (1).
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With these simplifications, Eqs. (18) and (19) become

yηu(0, η)− xηv(0, η) =
∑

j

α+1, j f1(0)g
′
j (η),

yηu(1, η)− xηv(1, η) =
∑

j

α+Nξ , j fNξ (1)g
′
j (η),

(20)

yξu(0, η)− xξ v(0, η) =
∑

j

α+1, j f ′1(0)gj (η)+
∑

j

α+2, j f ′2(0)gj (η),

yξu(1, η)− xξ v(1, η) =
∑

j

α+Nξ , j f ′Nξ (1)gj (η)+
∑

j

α+Nξ−1, j f ′Nξ−1(1)gj (η).
(21)

Multiplying Eq. (20) byg′k(η) and Eq. (21) bygk(η) and integrating, we obtain a linear
system of equations from which coefficientsα+1, j , α

+
2, j , α

+
Nξ−1, j , andα+Nξ , j can be determined.

However, the coefficientsα+1, j andα+Nξ , j obtained from Eq. (20) are not unique. Since the
sum of the B-spline derivatives is zero [21],∑

j

g′j (η) = 0,

addition of constantsC1 and C2 to the coefficientsα+1, j andα+Nξ , j does not change the
values of velocities at the boundaries. The physical interpretation is thatC2−C1 represents
the constant up to which the flux function,F(η)≡ ∫ 1

0 u(ξ) dξ , is determined(u(ξ) is the
velocity in theξ -direction). This can be shown by considering the stream function. The
stream function,9, is defined by

u = ∇ ×
 0

0
9

 ,
and, therefore,

9(ξ, η) =
∑
i, j

α+i, j fi (ξ)gj (η). (22)

At the boundaries,

9(0, η) =
∑

j

α+1, j f1(0)gj (η),

9(1, η) =
∑

j

α+Nξ , j fNξ (1)gj (η),

where f1(0)= fNξ (1)= 1 according to the B-spline definitions. The flux function,F(η), is
related to the stream function at the boundaries by

F(η) = 9(1, η)−9(0, η) =
∑

j

(
α+Nξ , j − α+1, j

)
gj (η). (23)

Different expansion coefficients,α+Nξ , j +C2 andα+1, j +C1, produce different flux functions,

F̌(η) = 9̌(1, η)− 9̌(0, η) =
∑

j

(
α+Nξ , j + C2− (α+1, j + C1)

)
gj (η),
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or

F̌(η) = 9̌(1, η)− 9̌(0, η) = C2− C1+
∑

j

(
α+Nξ , j − α+1, j

)
gj (η), (24)

since ∑
j

gj (η) = 1.

Clearly, the two flux functions,F(η) and F̌(η), differ from each other by the constant,
C2−C1. One of the constants,C2 or C1, can be chosen arbitrarily. This corresponds to
the freedom of choosing a constant up to which the stream function is defined. Once one
constant is chosen, the other one must be determined as part of the solution. Of several
possible approaches, the one presently followed is to set the other constant arbitrarily as
well and to free the constraint thus imposed by introducing an additional divergence-free
function which is added to the set of expansion and weight functions. Then, the velocity
representation becomes

u(ξ, η) =
∑
i, j

α+i j [xξ fi (ξ)g
′
j (η)− xη f ′i (ξ)gj (η)]/J − β(t)xηF(ξ)/J,

v(ξ, η) =
∑
i, j

α+i j [yξ fi (ξ)g
′
j (η)− yη f ′i (ξ)gj (η)]/J − β(t)yηF(ξ)/J,

(25)

whereF(ξ) is an extra function, andβ is its coefficient, which is determined as part of the
solution together with the rest of the coefficients,α+i j . This function,F(ξ), is chosen to be

zero atξ = 0 andξ = 1 and to have non-zero value of
∫ 1

0 F(ξ) dξ .

3. ZONAL GRID

3.1. Mesh Definition and Function Selection

A typical zonal mesh with sudden grid resolution changes is shown in Fig. 5. This
particular mesh is constructed with two knot sets iny, shown by the solid circles, and two

FIG. 5. Construction of two-dimensional B-splines on zonal grid. Symbols• and× show locations of knot
points.



768 KRAVCHENKO, MOIN, AND SHARIFF

knot sets inx, shown by the x symbol. The knot sets are swept across certain regions to form
the lines of the zonal mesh. For example,y-knot set 1 is swept horizontally fromx0 to x1

andy-knot set 2 is swept fromx1 to x2 to form the horizontal lines. Similarly,x-knot set 1
andx-knot set 2 are swept vertically fromy0 to y1 and fromy1 to y2, respectively, to form
the vertical lines of the mesh. The zonal grid is then disassembled into three zones with
regular mesh in both directions of each zone, as shown in Fig. 5. Furthermore, two classes
of two-dimensional B-splines are constructed: confined and spilling functions. The support
of confined functions resides entirely in a particular zone. The support of spilling functions
is allowed to cross zonal boundaries. Two-dimensionalconfinedB-spline functions are
simply constructed by forming products of one-dimensional B-splines defined on the grids
in each direction of a zone. An algorithm for the construction ofspilling functions is more
complicated and is described in detail by Shariff and Moser [19]. As pointed out by Shariff
and Moser [19], there is no rigorous mathematical proof that the algorithm gives a complete
set of basis functions. Construction of spilling functions is based on finding the products of
B-splines in both directions such that no additional grid lines are produced by the supports
of these B-splines. For example, the product of the functionbA(x) defined on thex-knot
set 1 and the functionbB(y) defined on they-knot set 1 cannot be chosen as a spilling
function because it creates additional horizontal grid lines in zone 3. On the other hand,
a product of the functionbA(x) and the functionbC(y) defined on they-knot set 2 forms
a legitimate spilling function. The functionbC(y) is also called a suitable multiplier for
the functionbA(x). Our sample zonal grid shown in Fig. 5 gives the following number of
two-dimensional quadratic B-spline functions,

Nzone1 = Nx1 × Ny1 = 6× 6= 36,

Nzone2 = Nx2 × Ny2 = 3× 3= 9,

Nzone3 = Nx3 × Ny3 = 3× 8= 24,

Nc = 69, Ns = 22,

whereNzone1, Nzone2, and Nzone3 are the number of confined functions in zones 1, 2, and
3, respectively. The total number of confined functions isNc, andNs gives the number of
spilling functions selected on this grid.

Once the confined functions are formed and the spilling functions are selected, a numerical
representation of the dependent variable in a problem is

ũ(x, y) =
Nc∑

i=1

αi Ci (x, y)+
Ns+Nc∑

i=1+Nc

αi Si−Nc(x, y), (26)

whereC(x, y) andS(x, y) are the confined and spilling functions andNc andNs are the
numbers of the confined and spilling functions, respectively. For integer refinement ratios
across zones, Eq. (26) constitutes aCk−1 continuous spline with knot lines coinciding with
the mesh. The total number of confined functions isNc=

∑Nzones
i z=1 Niz

c , whereNiz
c is the

number of confined functions in each grid zonei z, andNzonesis the total number of zones.
The total number of degrees of freedom is given byNdof= Nc+ Ns. This number is related
to the number of knot points on a given mesh.
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3.2. Implementation of Galerkin B-Spline Method on Zonal Grid

To illustrate the implementation of the two-dimensional Galerkin B-spline method on
zonal grid, we consider the following nonlinear convection-diffusion equation,

∂u

∂t
+ u

∂u

∂x
= ν

(
∂2

∂x2
+ ∂2

∂y2

)
u, (27)

with boundary conditions

u(0, y) = uL(y), (28a)

u(Lx, y) = uR(y), (28b)

u(x, 0) = uB(x), (28c)

u(x, L y) = uT (x). (28d)

The implementation of the Galerkin B-spline method on zonal grid for the Navier–Stokes
equations is similar but more cumbersome. The parameterν in Eq. (27) is the diffusion
coefficient. Let us solve Eq. (27) on the zonal grid shown in Fig. 5. Substituting the expan-
sion (26) in Eq. (27) and performing the Galerkin procedure, i.e., multiplying both sides
of Eq. (27) by two-dimensional B-splines as weight functions and integrating over the en-
tire computational domain, we obtain a system of ordinary differential equations for the
expansion coefficientsα:

∑
j

mi j
dα j

dt
= ν

∑
j

vi j α j −
∑

j

∑
l

ni jl α jαl . (29)

In matrix form, the system (29) is

M
dα

dt
= νVα− N(α,α), (30)

whereM andV are linear mass and diffusion matrices andN(α,α) is the nonlinear term.
The elements of the linear and nonlinear matrices are given by

mi j =
∫
Äx

∫
Äy

Bi (x, y)Bj (x, y) dx dy,

vi j =
∫
Äx

∫
Äy

(
Bi (x, y)

∂2Bj

∂x2
(x, y)+ Bi (x, y)

∂2Bj

∂y2
(x, y)

)
dx dy,

ni jl =
∫
Äx

∫
Äy

Bi (x, y)Bj (x, y)
∂Bl

∂x
(x, y) dx dy.

The form of the linear matrix is shown in Fig. 6. This particular matrix corresponds to the
Galerkin method based on B-splines of second degree defined on the zonal grid of Fig. 5. The
elements in the unstructured part of the linear matrix result from the interactions between two
spilling functions or between spilling and confined functions. The functions interact if their
supports overlap, in which case the integral of the product of these functions is non-zero.
The number of different interactions is given in Table I. Only interactions between different



770 KRAVCHENKO, MOIN, AND SHARIFF

FIG. 6. Two-dimensional matrix resulting from zonal grid. Symbols× show locations of non-zero elements.

functions are recorded. However, each spilling function can interact with itself. Such an
interaction corresponds to the diagonal element in the unstructured part of the linear matrix.
The total number of unstructured elements isNus= 2(Nss+ Nsc)+ Ns. The three structured
parts of the matrix correspond to the three zones of the zonal grid of Fig. 5. Each part has
a form of a block-multidiagonal matrix with the elements formed from the interactions of
the confined functions in the zones. It is convenient to store the structured parts of linear
matrices for each zone by diagonals. The gaps in the diagonals are filled with zeros in order
to simplify the implementation. For each diagonal, we store all the elements, the number
of entries in the diagonal, and the row and column of the first element in each diagonal.
The number of diagonals in the structured part of a linear matrix depends on the degree
of B-splines,k, and is equal to(2k+ 1)2. For example, the structured parts of the matrix
in Fig. 6 have 25 diagonals(25= (2 · 2+ 1)2). The row and column of the first element of

TABLE I

Number of Interactions between Two-Dimensional B-Splines of Degree 2

Defined on Zonal Grid of Fig. 5

Nss= 100 Number of interactions between spilling functions
Nsc= 297 Number of interactions between spilling and confined functions

Nsss= 209 Number of triple interactions between spilling functions
Nccs= 776 Number of triple interactions between 2 confined and 1 spilling functions
Ncss= 778 Number of triple interactions between 1 confined and 2 spilling functions
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each diagonal are given by

rowi, j,n = 1−min(i, 0)−min( j, 0) · Nxn,

columni, j,n = 1−min(i, 0)+ i − (min( j, 0)− j ) · Nxn,

where−k≤ i, j ≤ k, n is the grid zone index andNxn is the number of B-splines in the
x-direction of zonen.

A so-called nonlinear matrix, corresponding to the nonlinear term, is formed from interac-
tions between three two-dimensional B-splines. The nonlinear matrix consists of structured
and unstructured parts. Unstructured elements of a nonlinear matrix are formed from in-
teractions among either three spilling functions, 2 confined and 1 spilling functions, or 1
confined and 2 spilling functions. The total number of unstructured elements in the nonlin-
ear matrix of Eq. (30) isNusq= 6(Nss+ Nsc+ Nsss+ Nccs+ Ncss)+ Ns, where the factor 6
is used to account for the symmetric interactions (interaction between a confined function,
C(x, y), and a spilling function, S(x, y), is the same as that between S(x, y) and C(x, y)—this
interaction is called symmetric). Note thatNss andNsc are present in the definition ofNusq.
These are used to account for interactions in which two functions are the same and the
third is different. For example, an interaction that involves a spilling function counted twice
and a confined function will contribute an element to the unstructured part of the nonlinear
matrix and is accounted for in the second term ofNusq. The number of different unstructured
interactions for the zonal grid of Fig. 5 is given in Table I. The structured part of a nonlinear
matrix is also similar to that of a linear matrix and consists of multidiagonal blocks. The
row, column, and depth of the first element of each diagonal in every block are given by

rowi1, j1,i2, j2,izone = 1− min(i1, j1, 0)− min(i2, j2, 0) · Nxizone,

columni1, j1,i2, j2,izone = 1− min(i1, j1, 0)+ i1− (min(i2, j2, 0)− i2) · Nxizone,

depthi1, j1,i2, j2,izone = 1− min(i1, j1, 0)+ j1− (min(i2, j2, 0)− j2) · Nxizone,

where−k≤ i1, i2≤ k,max(−k,−k+ i1)≤ j1≤ min(k, k+ i1) and max(−k,−k+ i2)≤
j2≤ min(k, k+ i2).

The boundary conditions, (28), are imposed strongly by determining the values of the
expansion coefficients corresponding to non-zero boundary B-splines. Thus, the boundary
condition (28a) is

ũ(0, y) =
Nc∑

i=1

αi Ci (0, y)+
Ns+Nc∑

i=1+Nc

αi Si−Nc(0, y) = uL(y).

Both confined and spilling functions at the boundary,x= 0, will have 1D B-splines de-
fined on the knot set of this boundary as one of their multipliers. The boundary expansion
coefficients are then determined from

ũ(0, y) =
Nb∑

i=1

α j bj (y) = uL(y), (31)

wherebj (y) are the B-splines defined on a knot set atx= 0, andNb is the number of these
B-splines. Expansion coefficients,α j , in (31) are obtained by B-spline projection.
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FIG. 7. Periodic B-splines on extended domain. Here,b1(y)≡ b7(y), b2(y)≡ b8(y), b3(y)≡ b9(y), and
b4(y)≡ b10(y).

In problems with periodic boundary conditions, linear matrices are modified to account
for the periodicity of the expansion coefficients. Consider, for example, a single-zone 5× 7
grid on which the second direction is periodic. The number of second-degree B-splines
defined on this grid is 6× 8= 48. However, as we saw above, some of the B-splines in the
second direction will be equivalent, i.e.,b1(y)≡ b7(y) andb2(y)≡ b8(y). For simplicity in
implementation, it is useful to introduce 2 (ork for a generalk-degree B-spline) additional
knot points at one end of the periodic direction so thatb3(y)≡ b9(y) andb4(y)≡ b10(y)
as shown in Fig. 7. A linear matrix corresponding to the new set of 6× 10 B-splines is
shown on the top of Fig. 8. This matrix is modified to account for the equivalence of the
B-splines and corresponding expansion coefficients, as shown on the bottom of Fig. 8.
The matrix entries corresponding to the B-splines,b1(y), b2(y), b9(y), andb10(y) are set
to zero except for the diagonal elements which are set to one to ensure that the matrix is
nonsingular. The resulting matrix is periodic and guarantees the periodicity of the expansion
coefficients. Once the matrix is inverted, the expansion coefficients corresponding to the
boundary B-splines are obtained from periodicity.

4. NUMERICAL TESTS

4.1. Accuracy of Galerkin B-Spline Method

The accuracy of a numerical technique based on piecewise polynomials, such as B-
splines, has been studied in the past [23]. For example, it has been shown that, for a method
based on B-splines of a particular orderk, the convergence rate ofL2 errors of numerical
solutions is equal tok+ 1, where theL2 error norm is estimated as

L2 error norm=
(∫

Ä

(uexact(x)− unumer(x))
2 dx

) 1
2

.

Convergence studies for two-dimensional problems solved with B-spline-based methods
are given in Ref. [19].

One of the better criteria for the accuracy evaluation of a numerical method is its modi-
fied wave number curve. Such a curve shows numerical errors versus wave numbers in the
solution and, therefore, demonstrates the suitability of a numerical technique for computa-
tions of problems with a broad spectrum such as in a turbulent flow.
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FIG. 8. Construction of periodic two-dimensional matrix. Symbols× show locations of non-zero elements.

Figures 9 and 10 show the modified wave number diagrams for the first and second
derivative operators approximated by Galerkin methods with various order B-splines. The
curves demonstrate that the methods based on B-splines have very good modified wave
number properties which resemble those of the Pad´e schemes (for modified wave numbers
of the compact finite-difference schemes see Ref. [24]). For instance, the Galerkin method
with B-splines of order 2 is fairly accurate for about 2/3 of the wave numbers. The accuracy
is always higher for low wave numbers and lower at high wave numbers, especially for the
first derivative operators. However, with an increase in the order of B-splines, the accuracy
at high wave numbers improves.

4.2. Two-Dimensional Nonlinear Convection-Diffusion Equation

The test problem chosen to assess the performance of the numerical technique with
embedding in two inhomogeneous directions is the two-dimensional nonlinear convection-
diffusion equation. This is a relatively simple problem that can provide insight into various
aspects of the B-spline methodology on zonal grids.
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FIG. 9. Modified wave number diagram for first derivative operator in Galerkin method. —, spectral; B-splines
of order –––, 1; ---, 2;· · · , 3; –·–, 4; –··–, 5.

The equations considered in this test are

∂u

∂t
+ u

∂u

∂x
+ v ∂u

∂y
= ν

(
∂2

∂x2
+ ∂2

∂y2

)
u, (32a)

∂v

∂t
+ u

∂v

∂x
+ v ∂v

∂y
= ν

(
∂2

∂x2
+ ∂2

∂y2

)
v, (32b)

where the diffusion coefficientν is chosen to be 0.03. Note that, for this test, the numerical
approximations of the variablesu andv in Eq. (32) are written in terms of B-spline functions
that are not divergence-free

ũ(x, y) =
∑

i j

α
(u)
i j fi (x)gj (y), (33a)

ṽ(x, y) =
∑

i j

α
(v)
i j fi (x)gj (y). (33b)

FIG. 10. Modified wave number diagram for second derivative operator in Galerkin method. —, spectral;
B-splines of order –––, 1; ---, 2;· · · , 3; –·–, 4; –··–, 5.
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TABLE II

Summary of Numerical Parameters for 2D Nonlinear Convection-Diffusion Equation

Case No. of zones Grid spacing (min.; max.) Total number of functions Max. error

1 1 0.0048 44,521 —
2 1 0.0167 3,721 3.67× 10−3

3 8 (0.0167; 0.0667) 1,195 3.67× 10−3

4 1 0.0294 1,225 5.72× 10−3

5 8 (0.01; 0.04) 3,271 0.62× 10−3

The boundary conditions are

u(0, y) = v(0, y)= 1− y, (34a)

u(1, y) = v(1, y)= 1− y, (34b)

u(x, 0) = v(x, 0)= 1, (34c)

u(x, 1) = v(x, 1)= 0. (34d)

Equations (32) were solved in the domain 0≤ x≤ 1, 0≤ y≤ 1. All simulations were per-
formed with the following initial conditions:

u(x, y) = v(x, y) = 1− y.

The choice for initial conditions is not important because the solution is advanced in time
to a steady state, where the results of different cases are compared. The test problem was
solved on several multi-zone and single-zone grids. A summary of cases considered is
shown in Table II. A constant time step1t = 0.01 was used in all cases except in the base
case 1, where1t = 0.005 was used. In all cases, the maximum CFL number was always
less than

√
3, which is required for stability of the third-order Runge–Kutta scheme.

The single-zone fine grid solution (case 1) was chosen as a base case against which the
solutions for all other cases were compared. Errors for each solution were determined by
computing an absolute value of the difference between the solution for this case and the base
case solution. Initially, a single-zone simulation was performed (case 2) to locate regions
of large errors. Based on this information, a zonal embedded grid was constructed in such a
way that it had the same grid density in the region of the largest error as in case 2 but coarser
elsewhere. Even though the errors in the fine zone were the same as in the same region of
case 2, the errors in the coarse region were larger. These errors were especially large in the
lower left corner of the domain. Due to the convective nature of the problem, the errors
propagated towards the upper right corner of the domain. By refining a small region in the
lower left corner (case 3), we were able to reduce these errors. Overall, the maximum errors
of the solutions in cases 2 and 3 were approximately the same, but the solution in the latter
case was obtained with the number of degrees of freedom almost three times smaller than in
the former case. A single-zone solution (case 4) with the same number of degrees of freedom
as in case 3 had errors that were almost two times larger than those of the zonal grid solution.
Finally, case 5 had approximately the same number of degrees of freedom as case 2 but a
finer grid in the region of the strong solution gradient (Fig. 11). The maximum error of the
solution in this case was approximately six times smaller than that of the single-zone case 2.
This was achieved primarily due to refining the important high gradient region atx= 1. The
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FIG. 11. Contours of error in the solution of nonlinear convection-diffusion equation: (a) case 2, single-zone
grid, max error= 3.67× 10−3; (b) case 5, multi-zone grid, max error= 0.62× 10−3. Contour interval in both cases
is 10−4.

rest of the domain had a relatively coarse grid as shown in Fig. 11. As a result, a more accurate
solution was obtained without an increase in the computational cost. It is also important to
note that there is no error accumulation near the region of sudden grid changes. There are
some error contours observed near the upper right corner but they are mostly associated
with the truncation errors in the solution and not with the zonal boundaries.

4.3. Laminar Flow over a Cylinder

Simulations of a laminar flow over a circular cylinder at two steady (ReD = 20 and 40)
and two unsteady (ReD = 80 and 100) Reynolds numbers were performed. The Reynolds
number is based on the free-stream velocity and the cylinder diameter. In each case, the
simulations were initialized with potential flow and advanced in time until a stationary flow
pattern was developed. At Reynolds numbers 20 and 40, two attached vortices are formed
behind the cylinder. The wake behind the cylinder at Reynolds numbersReD = 80 and 100
consists of negative and positive vortices shed alternately from the upper and the lower parts
of the rear cylinder surface. An example of such a wake is given in Fig. 12 where the vorticity
contours in the simulations atReD = 100 are shown. In our first simulations at unsteady
Reynolds numbers, the onset of vortex shedding was induced by truncation and round-off
errors that eventually break the symmetry of the numerical solution. However, this turned
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FIG. 12. Vortex shedding behind a circular cylinder at Reynolds number,ReD =U∞D/ν= 100, in simulations
on zonal embedded grid. Vorticity contours, superimposed on the grid, are shown.

out to be a very slow process. The flow tended to stay symmetric up totU∞/D= 200. In
order to initiate vortex shedding, a time-dependent slip velocity on the cylinder was applied
for a short period of time [25]. Thereafter, the flow was allowed to advance in time until all
transient solutions exited the computational domain. Mean global quantities were recorded
once a statistically steady flow pattern is formed.

Various flow quantities including pressure and viscous drag coefficients, mean length
of the recirculation bubble, separation angle, and base pressure coefficient were computed
and compared to the existing experimental and numerical results. At the unsteady Reynolds
numbers, non-dimensional frequency of vortex shedding, the Strouhal number, and the
amplitude of lift coefficients were also computed. Conventional definitions of the flow
quantities were used,

CDP =
1

(1/2)ρU2∞D

∫ 2π

0
P cosθ dθ, pressure drag

CDv
= 1

(1/2)ReDU∞

∫ 2π

0
ωw sinθ dθ, viscous drag

CD = CDP + CDv
, total drag

CL P =
1

(1/2)ρU2∞D

∫ 2π

0
P sinθ dθ, pressure lift

CLv =
1

(1/2)ReDU∞

∫ 2π

0
ωw cosθ dθ, viscous lift

CL = CL P + CLv , total lift

St= f D/U∞, Strouhal number

CPb =
P̄b − P∞
(1/2)ρU2∞

, base pressure,
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TABLE III

Summary of Cylinder Flow Computations at ReD = 100

Case Rd k Neff
r Neff

η Cmax
D Cmax

L −CPb St θsep L̄rec Ūmin

1 20 2 78 81 1.405 0.350 0.891 0.167 117.0◦ 1.44 −0.188
2 30 2 84 81 1.370 0.301 0.879 0.165 117.0◦ 1.48 −0.189
3 30 3 86 163 1.304 0.286 0.728 0.163 117.4◦ 1.44 −0.173
4 40 2 89 177 1.286 0.311 0.710 0.162 117.3◦ 1.47 −0.176
5 40 3 92 163 1.308 0.318 0.735 0.163 117.4◦ 1.45 −0.175
6 60 2 96 177 1.294 0.311 0.713 0.162 117.3◦ 1.45 −0.173
7 60 3 104 163 1.312 0.313 0.738 0.164 117.4◦ 1.45 −0.175
8 80 2 102 81 1.296 0.330 0.723 0.164 117.4◦ 1.44 −0.175
9 80 2 102 161 1.296 0.318 0.723 0.164 117.4◦ 1.44 −0.175

10 80 3 102 81 1.301 0.313 0.725 0.164 117.4◦ 1.43 −0.173
11 90 3 122 163 1.314 0.314 0.739 0.164 117.4◦ 1.45 −0.175
12 120 2 116 81 1.312 0.316 0.733 0.164 117.4◦ 1.45 −0.175
13 120 2 202 161 1.314 0.314 0.735 0.164 117.4◦ 1.45 −0.175

Note. Overline indicates averaging in time.Rd is radius of computational domain,k is degree of B-splines.
Other quantities are defined in the text.

whereU∞ is the uniform free-stream velocity,D is the diameter of the cylinder,f is the
shedding frequency,ωw is the wall vorticity, andP is the pressure. The separation angle,
θsep, is defined at a point of zero wall vorticity. Mean length of the recirculation bubble
(L̄ rec) is non-dimensionalized by the cylinder diameter. The negative of the base pressure
coefficient, a useful quantity, is usually called the base suction coefficient.

A series of simulations atRe D = 100 were performed to establish grid and domain size
independence. A summary of cases considered is shown in Table III. Domain sizes range
from Rd= 20 to Rd= 120, whereRd is the radius of the domain in terms of the cylinder
radius. The last six cases (cases 8–13) were performed on both single-zone and multi-zone
grids. The effective number of grid points in the radial (Neff

r ) and circumferential (Neff
η )

directions are given in the table. The effective number of grid points is introduced to de-
scribe a zonal mesh and defined with respect to the corresponding single-zone mesh with
the same resolution in the vicinity of the cylinder and in the wake. Normally, there are about
1.5–2.5 times less grid points in a multi-zone mesh than in a single-zone grid with the same
near-cylinder resolution. The grid size in the radial direction at the cylinder surface was
1r ∼ 5× 10−3 for cases 1–12 and1r ∼ 3.5× 10−3 for case 13. The grid was stretched in
the radial direction with a hyperbolic tangent stretching function. The results from the table
clearly show that the Strouhal number, separation angle, mean recirculation length, and
mean minimum streamwise velocity (Ūmin) become independent of the domain size when
Rd ≥ 60. Refining the grid in the circumferential and radial directions and increasing the
degree of the B-splines do not affect the results significantly. Total drag and lift as well as
base pressure coefficients appear to be more sensitive quantities especially for lower degree
B-splines for which an even finer grid should be selected to achieve a better convergence.

The results of our simulations on the zonal grid of case 13 are shown in Figs. 13 and
14 together with the experimental results [26–28] and the numerical results from spectral
calculations by Mittal [29] and spectral element simulations by Henderson [30]. Overall,
the agreement between the present simulations and the existing results is good. There is
a slight discrepancy between pressure drag coefficients obtained in our simulations and
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FIG. 13. Pressure and viscous drag and Strouhal number vs Reynolds number: —, experimental fit by
Williamson [26]; ---, numerical fit by Henderson [30]; symbols, B-spline simulations.

those suggested by the numerical fit of Ref. [30]. However, the agreement between all other
quantities is good.

4.4. Numerical Simulations of Flow over a Cylinder at ReD = 300

The wake behind a circular cylinder becomes unstable to three-dimensional disturbances
aroundReD = 180–200 [28] and develops large streamwise structures with spanwise wave-
length of approximately 3–4 cylinder diameters. As the Reynolds number increases to
aroundReD = 260, smaller three-dimensional structures with a spanwise wavelength of ap-
proximately one cylinder diameter become dominant. These structures are also known
as mode-B instabilities [28]. With further increase in the Reynolds number, fine-scale

FIG. 14. Base suction coefficient, amplitude of total lift, mean recirculation length and separation angle vs
Reynolds number: —, experimental data by Williamson and Roshko [27]; ---, numerical fits by Mittal [29]; –––,
numerical fit by Henderson [30] (for base suction coefficient); symbols, B-spline simulations.
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TABLE IV

Grid Parameters of Cylinder Flow Computations at ReD = 300

NBL at NBL at

Case Nzones Neff
r θ = 170◦ θ = 90◦ Neff

θ Nz Ntotal Rd × Lz

1 4 91 6 10 103 48 369,120 30D× 2πD
2 7 156 12 26 185 48 1,056,288 30D× 2πD

Note. Parameters areNzones, number of grid zones;Neff
r andNeff

θ , number of points in the radial and circumferential
directions for corresponding single-zone grid;Nz, number of points in spanwise direction;NBL, number of points
in boundary layer;Ntotal, total number of grid points;Rd, domain radius;Lz, spanwise domain size.

three-dimensional structures become more and more active. Flow over a cylinder at Reynolds
number,ReD = 300, which belongs to this regime, was chosen for our study. Relatively low
Reynolds number, availability of previous computational and experimental data, and the
presence of small and large three-dimensional structures make this flow an interesting and
yet not a computationally demanding test to assess the performance of the three-dimensional
version of the B-spline method on zonal grids. This flow has been studied computationally
by Mittal and Balachandar [25] who used a spectral method on an O-type cylindrical grid.
That study is used as a reference for our simulations.

Two simulations of the flow over a cylinder atReD = 300 were carried out with different
grid resolutions. The grid parameters for the two cases are summarized in Table IV. The
total number of grid points is approximately 3 times larger in case 2 than in case 1. The grids
of cases 1 and 2 make use of zonal grid embedding and grid stretching in both the radial
and circumferential directions. Our reference case, simulations of Mittal and Balachandar
[25], had the O-type mesh withNr × Nθ × Nz= 81× 160× 288 grid points. Because Mittal
and Balachandar [25] used spectral methods, their grid was uniform in the spanwise and
circumferential directions and stretched with a cosine function in the radial direction. The
radius of the domain in the calculations of Mittal and Balachandar [25] was 15D and the
spanwise domain wasLz∼ 10.8D. The grid in case 1 is coarser in the circumferential
direction but comparable in the radial direction at the cylinder to that in the simulations of
Mittal and Balachandar [25]. The grid resolution in case 2 is about two times finer in the
radial direction in the vicinity of the cylinder.

Two important flow features should be considered when designing a grid for computa-
tions of the flow over a cylinder: the thickness of the boundary layer and the size of the
dominant streamwise vortical structures in the wake. The thickness of the boundary layer is
estimateda posteriorifrom the size of the vorticity layer at the cylinder surface. The number
of grid points in the boundary layer on the cylinder atθ = 170◦ andθ = 90◦ (θ = 0◦ is at
the base of the cylinder andθ = 180◦ is at the front stagnation point) is given in Table IV.
Case 2 has two times more grid points in the boundary layer than case 1. As reported in the
experimental studies by Williamson [28], the estimated spanwise length scale of the stream-
wise vortices atReD = 300 isλz∼ D. Mittal and Balachandar [25] found that simulations of
flow over a cylinder atReD = 300 are very sensitive to the size of the spanwise computational
domain and showed variations in the mean flow parameters such as drag and lift coefficients,
Strouhal shedding frequency, and base suction coefficient, when different spanwise domains
were used. The prediction of mean flow quantities improved on a larger spanwise domain.
Following that study, we chose the spanwise domain for our calculations to be 2πD.
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FIG. 15. Isosurfaces of instantaneous streamwise vorticity in the wake of a circular cylinder atReD = 300:
light, ωx D/U∞ = .24; dark,ωx D/U∞ =−.24; three-dimensional view.

The code for the computations was compiled and executed on Cray C90 in vectoral mode
and on SGI Origin 2000 in parallel mode. It was able to achieve the performance of around
4× 10−5 s per grid point per time step on Cray C90.

Coarse grid simulations were initialized with the potential flow solution and advanced
in time until a statistically steady flow pattern was developed. Fine grid simulations were
initialized with a velocity field interpolated from the coarse grid calculations. Once the
three-dimensional wake was developed, both simulations were advanced in time for ap-
proximately 12 shedding cycles (T ∼ 60D/U∞) to ensure the removal of initial transients.
The statistics of the mean flow quantities were then accumulated for 8 more shedding cycles
(T ∼ 40D/U∞).

Figures 15 and 16 show perspective and bottom (x-z plane) views, respectively, of the
instantaneous streamwise vorticity iso-surfaces. The flow is from left to right. The figures
clearly show the development of the pattern associated with the Karman vortex street and

FIG. 16. The same conditions as Fig. 15 butx-z plane view.
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TABLE V

Flow Parameters of Cylinder Flow Computations atReD = 300

Case CD CLrms −CPb St

Spectrala 1.26 0.38 0.99 0.203
Experiment 1.22 — 0.96 0.203

1 1.24 0.33 0.90 0.202
2 1.28 0.40 1.01 0.203

Note. ExperimentalStand−CPb are from Ref. [28];CD from Ref. [31].
a Simulations by Mittal and Balachandar [25].

the presence of mode-B streamwise vortices which were also observed in other numerical
[32, 33] and experimental [33–35] studies. Even though the dominant structures in the near-
wake are the counter-rotating streamwise vortices, they appear to vary in size and strength.
A highly complex evolution of these structures have been also observed in the previous
numerical simulations [32, 36]. Farther downstream, the number of the streamwise vortical
structures seems to decrease, which is also consistent with the observations of Mittal and
Balachandar [32].

Mean flow parameters are summarized in Table V. All statistical quantities are averaged
both in time and across the cylinder span and non-dimensionalized with respect to the
free-stream velocity,U∞, and the cylinder diameter,D. The overall agreement between the
B-spline computations, the spectral results, and experimental data is good. The small differ-
ences are attributed to insufficient time-averaging. The flow is believed to have large time
scales that require prohibitively large computer resources to obtain a sufficient statistical
sample [32].

Figures 17 and 18 show the mean velocity profiles from coarse and fine grid simulations
at five downstream locations in the near-wake of the cylinder. The B-spline simulations are
compared to the results of spectral computations [32]. The intensities of velocity fluctuations
and Reynolds shear stress are shown in Figs. 19–21. The profiles of both mean velocities

FIG. 17. Mean streamwise velocity at different locations in the wake of a circular cylinder atReD = 300: —,
B-spline simulations on fine grid; – – –, B-spline simulations on coarse grid;•, spectral simulations by Mittal and
Balachandar [32].
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FIG. 18. Mean crossflow velocity at different locations in the wake of a circular cylinder atReD = 300. See
caption for Fig. 17.

FIG. 19. Time-averaged streamwise velocity fluctuations at different locations in the wake of a circular
cylinder atReD = 300. See caption for Fig. 17.

FIG. 20. Time-averaged crossflow velocity fluctuations at different locations in the wake of a circular cylinder
atReD = 300. See caption for Fig. 17.
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FIG. 21. Time-averaged Reynolds shear stress at different locations in the wake of a circular cylinder at
ReD = 300. See caption for Fig. 17.

and velocity fluctuations show excellent agreement between the fine B-spline and spectral
computations. The coarse grid simulations are slightly off but the differences are small and
there is a convergence of the profiles with grid refinement.

5. CONCLUSIONS

There is a need for the development of high-order non-dissipative schemes for simula-
tions of turbulent flows in geometries more complex than those treated by spectral methods.
It was demonstrated that a numerical method based on B-splines appears to be an attractive
alternative to high-order finite-difference schemes. The method is accurate, non-dissipative,
and free of aliasing errors. The method is also promising for computations on zonal em-
bedded grids which are necessary for large eddy simulations of wall-bounded flows. In
such flows, a fine grid is required in all three directions near the walls to resolve important
turbulent structures (large eddies) that are small compared to the overall flow dimensions.
An efficient resolution of these structures can be achieved with zonal grids. Zonal grids are
also necessary for LES of complex separated flows with thin shear layers.

The B-spline method developed in this paper is based on divergence-free B-spline func-
tions and is designed for simulations of turbulent flows in complex geometries. The method
employs zonal grids and permits fine meshes to be embedded in physically significant flow
regions without placing a large number of grid points in the rest of the computational domain.

The method was successfully tested in numerical solutions of nonlinear advection-
diffusion equations. The tests indicated that the method provides for an efficient infor-
mation transfer between zones without accumulation of errors in the regions of sudden grid
changes.

The performance of the numerical method was also assessed in simulations of laminar
flows over a circular cylinder at low Reynolds numbers. The lift, drag, and base suction
coefficients, the size of the recirculation bubble, and the vortex shedding frequency agree
well with the experimental data and previous simulations of these flows. The numerical
solutions on multi-zonal grids are of the same accuracy as those on a single-zone grid but
require less computer resources. Three-dimensional numerical simulations of flow over a
cylinder atReD = 300 show good agreement with the corresponding spectral calculations
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in terms of velocity profiles in the wake. Coefficient of drag and the Strouhal shedding
frequency agree well with the experimental data.

APPENDIX

A.1. Mass Matrices

Mass matrices in (9) are given by

M±± =
∫
Ä

ψ± · q±J dξ dη.

Therefore,

M++ =
∫ 1

0

∫ 1

0
(a2+ b2)J dξ dη,

M+− =
∫ 1

0

∫ 1

0
ikz(caa+ cbb)J dξ dη,

M−+ =
∫ 1

0

∫ 1

0
−ikz(caa+ cbb)J dξ dη,

M−− =
∫ 1

0

∫ 1

0
−k2

z

(
c2

a+ c2
b

)+ d2J dξ dη.

A.2. Viscous Matrices

Viscous matrices in (9) are given by

D±± =
∫
Ä

∇ ×ψ± · ∇ × q±J dξ dη.

Using definitions forψ± andq±, we obtain

D++ =
∫ 1

0

∫ 1

0

[
k2

z(a
2+ b2)J2+ [aξ xη − aηxξ + bξ yη − bηyξ ]

2
] 1

J
dξ dη,

D+− =
∫ 1

0

∫ 1

0

[
ikz

[
b(dηxξ − dξ xη)− a(dηyξ − dξ yη)

+ 1

J
(aξ xη − aηxξ + bξ yη − bηyξ )(caξ xη − caηxξ + cbξ yη − cbηyξ )

]
+ ik3

z(aca + bcb)J

]
dξ dη,

D−+ =
∫ 1

0

∫ 1

0

[
−ikz

[
(dηxξ − dξ xη)b− (dηyξ − dξ yη)a

+ 1

J
(caξ xη − caηxξ + cbξ yη − cbηyξ )(aξ xη − aηxξ + bξ yη − bηyξ )

]
− ik3

z(caa+ cbb+)J
]
dξ dη,
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D−− =
∫ 1

0

∫ 1

0

[
(dηxξ − dξ xη)

2+ (dηyξ − dξ yη)
2

+ k2
z[caξ xη − caηxξ + cbξ yη − cbηyξ ]

2

+ k2
z[ca J(dηyξ − dξ yη)+ J(dηyξ − dξ yη)ca

+ cb J(dηxξ − dξ xη)+J(dηxξ − dξ xη)cb] + k4
z J2
(
c2

a + c2
b

)] 1

J
dξ dη.

A.3. Nonlinear Terms

Before computation of the nonlinear terms, we transform the coefficients in the velocity
expansions (1) from Fourier to physical space:

α̂+(t, kz)→ α+(t, z),

α̂−(t, kz)→ α−(t, z).

In physical space, the velocity vector is given by

u =
∑
n,m

α+(t, z)

a(ξ, η)

b(ξ, η)

0

+
α

−
z (t, z)ca(ξ, η)

α−z (t, z)cb(ξ, η)

α−(t, z)d(ξ, η)

 ,
where the subscript inαz indicates differentiation with respect toz. Let us decompose the
weight vectors,ψ+(ξ, η, z) andψ−(ξ, η, z), as

ψ+(ξ, η, z) = [ψ1+(ξ, η)]e−ikzz, ψ−(ξ, η, z) = [ψ1−(ξ, η)− ikzψ2−(ξ, η)]e−ikzz,

where

ψ1+(ξ, η) =

a(ξ, η)

b(ξ, η)

0

 , ψ1−(ξ, η) =
 0

0
d(ξ, η)

 , ψ2−(ξ, η) =

ca(ξ, η)

cb(ξ, η)

0

 .
Then, the nonlinear terms are

N+1 =
∫ 1

0

∫ 1

0
ψ1+i pl

[(yηui u)ξ − (xηui v)ξ − (yξui u)η + (xξui v)η] dξ dη,

N+2 =
∫ 1

0

∫ 1

0
ψ1+i pl

(uiw)J dξ dη,

N−1 =
∫ 1

0

∫ 1

0
ψ1−i pl

[(yηui u)ξ − (xηui v)ξ − (yξui u)η + (xξui v)η] dξ dη,

N−2 =
∫ 1

0

∫ 1

0
ψ2−i pl

[(yηui u)ξ − (xηui v)ξ − (yξui u)η + (xξui v)η] + ψ1−i pl
(uiw) dξ dη,

N−3 =
∫ 1

0

∫ 1

0
ψ2−i pl

(uiw)J dξ dη.
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These expressions can be re-written in terms of expansion coefficientsα+ andα− as

N+1 = N1+1 α
+α+ + N2+1 α

+α−z + N3+1 α
−
z α
−
z ,

N+2 = N1+2 α
+α− + N2+2 α

+
z α
−,

N−1 = N1−1 α
+α− + N2−1 α

+
z α
−,

N−2 = N1−2 α
+α+ + N2−2 α

+α−z + N3−2 α
−
z α
−
z + N4−2 α

−α−,

N−3 = N1−3 α
+α− + N2+3 α

−
z α
−,

where

N1+1 =
∫ 1

0

∫ 1

0
[(aηyξ − aξ yη)aa+ (bξ xη − bηxξ )bb

+ (aξ xη − aηxξ + bηyξ − bξ yη)ab] dξ dη,

N2+1 =
∫ 1

0

∫ 1

0
[2(aηyξ − aξ yη)aca + (aξ xη − aηxξ + bηyξ − bξ yη)(acb + bca)

+ 2(bξ xη − bηxξ )bcb] dξ dη,

N3+1 =
∫ 1

0

∫ 1

0
[(aηyξ − aξ yη)caca(bξ xη − bηxξ )cbcb] dξ dη,

N1+2 =
∫ 1

0

∫ 1

0
[aad+ bbd] J dξ dη,

N2+2 =
∫ 1

0

∫ 1

0
[acad + bcbd] J dξ dη,

N1−1 =
∫ 1

0

∫ 1

0
[(dηyξ − dξ yη)ad+ (dξ xη − dηxξ )bd] dξ dη,

N2−1 =
∫ 1

0

∫ 1

0
[(dξ xη − dηxξ )cad + (dξ xη − dηxξ )cbd] dξ dη,

N1−2 =
∫ 1

0

∫ 1

0
[(−caηxξ + caξ xη)ab+ (−caξ yη + caηyξ )bb

+ (cbηyξ − cbξ yη)ab+ (cbξ xη − cbηxξ )bb] dξ dη,

N2−2 =
∫ 1

0

∫ 1

0
[(−caηxξ + caξ xη)aca + 2(−caξ yη + caηyξ )aca

+ (cbηyξ − cbξ yη)acb + 2(cbξ xη − cbηxξ )bcb] dξ dη,

N3−2 =
∫ 1

0

∫ 1

0
[(−caξ yη + caηyξ )caca + (cbξ xη − cbηxξ )cbcb

+ (−cbξ yη + cbηyξ + caξ xη − caηxξ )cacb] dξ dη,

N4−2 =
∫ 1

0

∫ 1

0
[−ddd] J dξ dη,
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N1−3 =
∫ 1

0

∫ 1

0
[caad+ cbbd] J dξ dη,

N2−3 =
∫ 1

0

∫ 1

0
[cacad + cbcbd] J dξ dη.

Each of the expressions above is a multi-indexed quantity of the formNi jklmn and size
∼Nξ × Nη× (2k+ 1)4 discussed above. These so-called nonlinear matrices are pre-
computed and stored before the time advancement. Once the nonlinear terms are evalu-
ated, they are transformed back to Fourier space,

N±i (t, z)→ N̂±i (t, kz),

and we obtain expressions for the nonlinear parts of the RHSs of our system of Eqs. (9),

R̂+(α+,α−) = N̂+1 + ikzN̂+2

R̂−(α+,α−) = N̂−1 − ikzN̂−2 + k2
zN̂−3 .
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