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A numerical technique for computations of turbulent flows is described. The tech-
nique is based on B-splines and allows grid embedding in physically significant flow
regions. Numerical tests, which include solutions of nonlinear advection-diffusion
equations and computations of flow over a circular cylinder at Reynolds numbers up
to 300, indicate that the method is accurate and efficient. In computations of flow
over a cylinder, the lift, drag, and base suction coefficients agree well with existing
experimental data and previous numerical simulations1999 Academic Press
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1. INTRODUCTION

Numerical computations of turbulent flows require accurate treatment of essential
structures. However, the length scales of these structures can vary significantly throu
the computational domain. For example, near-wall eddies in wall-bounded turbulent f
are small compared to the overall flow dimensions but play an importantrole in the dyna
of turbulent boundary layers. These structures require fine resolution in all three direc
near the wall. In large eddy simulation, the near-wall small structures are the impo
large eddies that cannot be treated accurately with current subgrid-scale parameteriz
[1]. Instead, they need to be resolved or completely modeled with dynamic wall treatrr
[2—4]. In typical computations of wall-bounded turbulent flows, the fine grid resolutior
the near-wall region is extended into the outer layers where it is not required.

Grids with refined resolutions in different parts of the computational domain are :
necessary for numerical simulations of complex separated flows. For example, in flow
a bluff body, a fine grid is required to resolve the thin boundary and separating shear lay:
well as the turbulent wake. A fine grid is usually not necessary in most of the computati

1 Current address: Dupont Experimental Station, Wilmington, DE 19880.
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z

FIG. 1. Streamwise vorticity contours (negative are dashed) in a fully developed turbulent channel flow. T
mean flow is into the page. Also shown is the zonal embedded mesh with fine grid near the walls and coarse
in the middle of the channel.

domain, for instance, in the region upstream of the body where the flow is relative
smooth.

Efficient grid refinement in the physically significant flow regions can be implementse
with zonal embedded grids. In this approach, the mesh consists of coarse and fine
regions (zones), constructed such that appropriate resolution is provided in different p
of the computational domain. This reduces the total nhumber of grid points and lead:
savings in CPU time and memory. At the zonal boundaries, the mesh size changesin s
providing flexibility in designing grids. Figure 1 shows an example of a zonal embedd
grid with the mesh size decreasing in steps as one approaches the wall. Such a grid ¢
used to resolve streamwise vortical structures and wall-layer streaks in the near-wall re
of turbulent boundary layers.

Several studies have been undertaken to develop numerical techniques with grid
bedding for computations of compressible [5-7] and incompressible [8, 9] flows. Some
these techniques were applied to large eddy simulations [10, 11]. In most of the cases
techniques were based on low-order finite volume methods with high-order accurate
terpolation procedure for exchange of information between zones, and a special treatr
of the internal grid boundaries for mass, momentum, and energy conservation. Bes
having to deal with the problems of zonal boundary interpolation and conservation [7],
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computations of turbulent flows, these low-order methods may also suffer from signific
numerical errors that can overwhelm the effect of subgrid-scale models. The errors ce
especially pronounced on zonal grids with large variations in mesh sizes. A quantite
analysis of discretization errors in large eddy simulations has been performed recent
Ghosal [12] who showed that low-order finite-difference schemes might have numerice
rors of the same order of magnitude as the subgrid-scale terms. The findings of Ghosa
were confirmed numerically in the studies of Lund and Kaltenbach [13] and Kravchel
and Moin [14]. Lund and Kaltenbach [13] used explicit grid filtering to control numeric
errors in large eddy simulations of turbulent channel flow at high Reynolds number v
a second-order central finite-difference scheme. The smallest scales that would be i
affected by numerical errors were simply removed from the simulations at every time s
The results were clearly improved but the grid, and therefore the cost of simulations,
to be increased significantly to discern the effect of explicit grid filtering. Kravchenko &
Moin [14] performed a series of large eddy simulations of turbulent channel flow to inve
gate effects of numerical errors in finite-difference schemes of various orders. It was fc
that, in some cases, the results obtained with the second-order finite-difference scheme
virtually the same with and without a subgrid-scale model, which is not a satisfactory «
come. In contrast, simulations with a 6th-order @adheme were significantly improved
when the subgrid-scale model was activated.

The studies mentioned above point to the need for the development of high-order
dissipative numerical schemes that can be used with zonal embedded grids. Nonl
numerical stability considerations require such schemes to be kinetic energy conse
[14]. However, it is difficult to construct fully conservative finite-difference schemes. T
popular staggered mesh scheme for incompressible flows [15, 16] is an example of a
conservative scheme. A recent work by Morinishial. [17] has produced a fourth-order
conservative scheme.

The objective of the current study is to develop an efficient, accurate, and conserv
numerical technique for simulation of turbulent flows in complex geometries on zo
embedded grids. To achieve this objective, we have extended the numerical method
based on B-splines developed by Kravcheekal.[18] to computations of flows with more
than one inhomogeneous direction. The present grid embedding is based on the tect
suggested by Shariff and Moser [19]. The resulting numerical methodology is accul
conservative, and free of aliasing errors. It also offers a greater flexibility for simulatic
on zonal embedded grids.

2. NUMERICAL METHOD

2.1. Galerkin Method Based on B-Splines in Two Directions

Consider a two-dimensional body with body-fitted coordingeg) in the &, y) plane.
Let the velocity vectony, be represented in terms of two distinct classes of divergence-f
vectors which is equivalent to independently representing two components of the velc
vector with the third determined by the continuity equation,

U(S, n, Z, t) = Z Z |:6l$(ts kz)ququ,kz(S, n, Z) + &%(t’ kZ)q;‘\,kz(é’ n, Z)] i (1)
k, m

wherek; is the spanwise wave number. The method of divergence-free expansions
developed by Leonard and Wray [20]. The expansion veddI§, », z) belong to the
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space) defined as
V={g:qe H Q)% V-q=0},

whereg is an open set iR with boundaryd 2, and(H(2))? is the Hilbert space defined
by

(HY @) = {f: f e (L) VT e (La)®}.

(Lo(£2))3 is the space of square-integrable functions defineg evith inner product,

(f,g):/ fgdQ  Vf,ge L),
JQ
and norm

Ifl=(f. )2 Vfely).

Furthermore, let us choose two classes of weight veatdt§, ,, z) belonging to the space
W defined as

= {1 e (HYQ)® V-4 =0, =00nQ}.

Following the standard weighted residual approach, we obtain a weak form of the Navi
Stokes equations,

/w a”dsz /qpi (H— Vp)dQ——/(qupi) vV xwde, ()

whereH denotes the nonlinear term®, is pressure, and the last term is modified using
integration by parts and the identity

Vu=-V xV xu, (3)

which is valid foru satisfyingV - u=0. Note that the boundary terms resulting from the
integration by parts are zero singe= 0 0nd 2. Using the properties of the weight functions,
V -4 =00nQ andy =0 ond2, we can eliminate the pressure term (after integration b
parts) from the weak formulation (2) to obtain

L (du 1 N B
/J@b (M—H)+Re(VX¢)-(VXU)]dQ—O. 4)

2.2. Weight and Expansion Functions

The expansion functions can be chosen as

0
Ok, (€. 1,2) =V x 0 ) gkez, (52)
Bm(gv 77)
% By (E. 1)
Ui, .12 =V x | =%By(&,n) | € (5b)

0
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Satisfaction of the divergence-free restrictionepis guaranteed by the identity-q=V -
(VxW)=0.By(,n) form=1... M are the two-dimensional B-splines for the giver
zonal mesh. EacBy (&, n) is a product of one-dimensional B-splines in the directions
andn,

Bm(&, m) = fi€)gj(m),

where indexm corresponds to two-dimensional functions, arahd j are the indices for
one-dimensional B-splines. One-dimensional B-splirfigg,) of degreek are defined on a
set of(N; + 1) knot points fo, ts, . . ., ty,] by the following recursive relationship [21],

¢ —tix-1) t —&)
(ti—1 —ti—k-1) & =t

where a B-spline of degree zero is a top hat function, {8()=1if t_; <& <t and

0 otherwise. One-dimensional B-splingg(n), are defined similarly. An example of the
quadratic B-splinesk(= 2) defined on a uniformly spaced set of knot points is shown
Fig. 2.

i) = @) + e, =1 Netk  (8)

FIG. 2. Twelve second-order B-splinds(t), shown on a uniform 11-point knot set. Knots,are indicated
by short vertical lines. The bottom composite graph is in the form that is useful to display sets of B-splines.
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The metric coefficients;, y, x,, andy, are the derivatives of the generalized coordinate
system mapping functions(&, ) andy(&, n) andJ = x¢ Yy, — X, ¥: is the Jacobian.

The set of weight vectors is identical to the set of expansion vectors except tha
order to satisfy an additional restriction on weight functionss 0 on 92, those vectors
having support on the boundaries are eliminated from the set. The particular choice of
divergence-free vectors, (5), leads to a complete and relatively simple set of basis functi
Different sets can also be used provided that they are complete [20].

Equation (5) can be written as

am(&, )
Ui € 1.2 = | bm(E, ) | €%, (7a)
0

ikzCR (&, 1)
qu’],kZ(Ev n, Z) = IkZCrt-Jn(%—5 7)) eikzZ’ (7b)
dm(é:v 77)

wherea, b, ¢?, c®, andd are (for brevity, the subscript is omitted in the following expres-
sions)

a(&. n) =[x B, (€. 1) — x,Be(&, ]/, (82)
b, n) = [yeBy(&. m) — v, Be (6. m)]/J. (8b)
. n) = x,BE. n)/J, (8c)
6. n) = y,BE. /3, (8d)
d€, n) = —B, &, n)/J. (8e)

2.3. System of Equations

Evaluating the integrals in (4), we obtain the system of ordinary differential equatio
for each wave numbé,

() () - AL B
M—+ M—/Jdt\a /) \R(at,a")) Re\D~+ D—/\&a )
9)

where " indicates a Fourier transform avid* andD** are the mass and viscous matrices.
Due to de-coupling in the-direction only matrices for two-dimensional operators have tt
be stored. However, ead?t or D matrix may involve a linear combination of up to three
such matrices, e.g.,

M~ =M; — k?Mj, (10)

where matriced!; andM are independent d,. Iii(oﬁ, «a”) are the expressions for the
nonlinear terms. Complete expressions for the mass and viscous matrices and compo
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of the nonlinear terms are given in the Appendix. The components of mass, viscous,
nonlinear matrices are computed and stored prior to time advancement. Generally
metrics and Jacobian functions in the expressiong &rdy are not piecewise polynomials
and the integrals in (4) cannot be evaluated exactly. In our computations, such func
were treated as if they were polynomials of high degree (at least 8) on each integr:
interval. The system of ordinary differential equations (9) can be solved for the B-sp
expansion coefficienta™ anda~ with a standard time-stepping algorithm. In our study
the time advancement is performed with Crank—Nicolson and third-order Runge—K
schemes for the viscous and advection terms, respectively. The mass and viscous m
are symmetric and positive definite and, therefore, a conjugate gradient method ce
used for the iterative solution of the resulting linear system of equations at each t
step.

2.4. Nonlinear Terms

The expressions fdR* (a*, a) result from the integration of the products of weigh
functions with the nonlinear terms in Eq. (4). To avoid the high computational cost as
ciated with evaluation of the convolution sums in Fourier space, the nonlinear terms
computed in the B-spline/physical space. Thus, the B-spline coefficients in the veloci
expansions are transformed from Fourier to physical space using the “3/2 rule” [22]
de-aliasing. The expressions for all the nonlinear terms are shown in the Appendix
illustrate the computation cfti(oﬁ, a”), we consider a sample nonlinear term arising i
thez momentum equation,

Nij = / / fi(6)g] (U3 dé di, (11)
Q‘c’ Qn

whereus is the spanwise component of velocity. Substituting the expansionsfane
obtains

Nij = Nijimn®q&mp: (12)
kimn
where
N —/ / L g g faglded (13)
ijkimn = o Ja, JZ(%" 77) Ig] k9 Tm0y n.

All nonlinear matrices have the same structure (pattern of non-zero elements) as (12
are pre-computed and stored prior to the time advancement. Here, we are using the
“matrix” in ageneralized sense to refer to a multi-indexed quantity. The number of operat
required for computing (12) is proportional tak + 1)*N, wherek is the degree of the
B-splines and\,, is the total number of two-dimensional B-splines. This estimate for tl
operation count is simply the number of elements in the nonlinear matrix: its structu
part hag2k + 1)* diagonals withN,, entries in each. Even though the number of operatiol
is linear in N,, the cost associated with computations of the nonlinear term can be v
high, especially for high-degree B-splines due to the large coeffiqizhnt- 1)*. In typical
simulations with second-degree B-splinks<(2), more than 50% of the CPU time is spen
in evaluating the nonlinear terms.
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FIG.3. Anexample of zonal grid in a generalized coordinate system for computations of flow over a cylinc
mapped onto a rectangular griddrands. Also shown are locations of the periodic, inflow, and outflow boundary
conditions.

2.5. Boundary Conditions

One of the test problems chosen to assess the performance of the B-spline techniqt
zonal grids is a two-dimensional flow over a circular cylinder. Therefore, we will descril
in detail the boundary conditions for this test case. The extension to three-dimensional 1
and other two-dimensional body shapes is straightforward.

The simulations of two-dimensional flow over a cylinder are carried out on an O-ty,
zonal mesh which is mapped to a rectangular doman§G< 1, 0<n <1). An example
of a typical grid, but with domain size smaller than the one actually used, is shown
Fig. 3. For the two-dimensional case, the spanwise component of velocity and, theref
the coefficientszifj are zero. The streamwigg) and cross-flow(y) velocity components
are represented as

uG.m =Y ot &g — x, 1/ €)g; 0]/ 3,

i
(14)
vE ) =Y eilye fiE)g; ) — v, F ©)g; ]/ J.
i
Non-slip boundary conditions are imposed at the cylinder surface,
u¢=0n=vE=0mn =0 (15)
Constant potential flow boundary conditions are used at the inflow €:25 0.75),
U = Upotentias (16a)
v = Vpotentiab (16b)

and convective boundary conditions are applied at the outflow portion of the outer bounc
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Non-periodic B-splines

12 3 +k
0 L
Periodic B-splines
I 2 3 N+k-1 N+k
0 L

FIG.4. Composite graph of non-periodic and periodic B-splines (see Fig. 2) of order 2 on domaig @ ; N
is number of grid intervals; in case of periodic B-splin@ss= gn.«_1 andg, = gn k-

(0.0 =<0.250.75<n<1.0),

au 1 ou au

Uy = — —y.— | =0, 17a
ot + J(y”as y58n> (17a)
ov 1 ov ov
— +Ugp— — —Vy:— | =0. 17b
ot + J<yn8§ YEan) (17b)

An explicit third-order Runge—Kutta scheme is used to advance Eq. (17) in time.
Periodic boundary conditions are usedyat 0 andn = 1. Periodicity is implemented by
extending the computational domairviiand creating additional B-splines at one boundat
that are equivalent to the B-splines at the other one, as shown in Fig. 4. The matric
Eq. (9) are then modified to account for periodicity.
Consider boundary conditionsgat 0 ands = 1. Atthese boundaries, Egs. (14) become

u©,m =Y _ati[x fi©Og ) — x, f(©0g;m]/J,
i

0.7 = > o i[ye fi Qg () — v,  (0)g; (11]/ I,
i

u(L. ) = o[ fig; () — x, § (Dg; ]/ J.
i

v = eflye (g ) -y, (DG 0]/ 3.
i

(18)

(19)

The only B-splines which have non-zero values at0 andt =1 aref;(0) and fy, (1). The
only non-zero first derivatives gt=0 andé =1 are f{(0), f;(0), f{,_,(1), and f{,(1).
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With these simplifications, Egs. (18) and (19) become

YU, m) — 00, m) = > af; 71(0)g} (),
i

(20)
YUl m) = xu(L ) = > e fn (D) (),
i

YU, m) — x:v(0,m) = > _af; FOg ) + Y _ g 1(0)g; (),
j j

(21)
Yeu(Lm) — xeo (Lo = Y e B g + Y en 1 Fy_1(Dg; ().
j i

Multiplying Eq. (20) byg, (1) and Eqg. (21) byak(n) and integrating, we obtain a linear
system of equations from which coefficients;, o5 ;, af, 1 ;, andwy, ; can be determined.
However, the coefficients;’; anday, ; obtained from Eq. (20) are not unique. Since the
sum of the B-spline derivatives is zero [21],

> g =0,
]

addition of constant€; and C, to the coefficiente.xfj and "‘ﬁs, i does not change the
values of velocities at the boundaries. The physical interpretation i€thalC, represents
the constant up to which the flux functioR,(n) = fol u® dg, is determinedu® is the
velocity in the&-direction). This can be shown by considering the stream function. Tt

stream functiony, is defined by
0
u=Vx| 0],
v

WE ) =Y o fiEgm. (22)
iyj

and, therefore,

At the boundaries,

WO, =Y af f10)g ),
j

(L) = oy fn Dy ().
j

where f;(0) = fy, (1) = 1 according to the B-spline definitions. The flux functiéi(y), is
related to the stream function at the boundaries by

Foy=w@Ln —wOmn=> (af;—ofj)gm. (23)
j

Different expansion coefficientaﬁs,j +C, andai‘fj + Cy, produce different flux functions,

Fop =W n) —W(0O.n)=> (o, ; +Co— (af; + C)g ().

J
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or

Fo) =W n - WO n=C—Ci+ Y (af;—ai;)gi(m, (24)
j

since
> g =1
i

Clearly, the two flux functionsF (1) and F(n), differ from each other by the constant,
C, — C;. One of the constant€;, or Cq, can be chosen arbitrarily. This corresponds t
the freedom of choosing a constant up to which the stream function is defined. Once
constant is chosen, the other one must be determined as part of the solution. Of se
possible approaches, the one presently followed is to set the other constant arbitrar
well and to free the constraint thus imposed by introducing an additional divergence-
function which is added to the set of expansion and weight functions. Then, the velc
representation becomes

ué,n) = Zaff[xs fi(&)g; ) — x, §/(E)g; ]/ I — BOX, F &)/,
b (25)

v =Y ol fET ) — ¥, §E G M1/ — BOY,FE)/I,
i]

whereF (&) is an extra function, and is its coefficient, which is determined as part of the
solution together with the rest of the coefficieruﬁ,. This function, F(§), is chosen to be

zero att =0 andé =1 and to have non-zero valueﬁ F(&)dE.
3. ZONAL GRID

3.1. Mesh Definition and Function Selection

A typical zonal mesh with sudden grid resolution changes is shown in Fig. 5. T
particular mesh is constructed with two knot sety jishown by the solid circles, and two

sweep of y-knot sets

- zone 2
y-knot set 1 y-knot set 2 zone 3
Y2
A
N
8|2
n 8|8 zone 1
X |8
= | g
b(y) 5
( ~=ba) boy) _ §
y - | @
213
B
Yo £
X <
xo xy i)

FIG. 5. Construction of two-dimensional B-splines on zonal grid. Symleadsdx show locations of knot
points.
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knot sets irx, shown by the x symbol. The knot sets are swept across certain regions to f
the lines of the zonal mesh. For exampteknot set 1 is swept horizontally frooy to X3
andy-knot set 2 is swept from; to X, to form the horizontal lines. Similarlyk-knot set 1
andx-knot set 2 are swept vertically frop to y; and fromy; to y,, respectively, to form
the vertical lines of the mesh. The zonal grid is then disassembled into three zones
regular mesh in both directions of each zone, as shown in Fig. 5. Furthermore, two cla:
of two-dimensional B-splines are constructed: confined and spilling functions. The supy
of confined functions resides entirely in a particular zone. The support of spilling functio
is allowed to cross zonal boundaries. Two-dimensiamifinedB-spline functions are
simply constructed by forming products of one-dimensional B-splines defined on the gr
in each direction of a zone. An algorithm for the constructiosmfling functions is more
complicated and is described in detail by Shariff and Moser [19]. As pointed out by Sha
and Moser [19], there is no rigorous mathematical proof that the algorithm gives a comp
set of basis functions. Construction of spilling functions is based on finding the product:
B-splines in both directions such that no additional grid lines are produced by the supp
of these B-splines. For example, the product of the fundigfx) defined on thex-knot
set 1 and the functiobg(y) defined on they-knot set 1 cannot be chosen as a spilling
function because it creates additional horizontal grid lines in zone 3. On the other ha
a product of the functioba(x) and the functiorbc (y) defined on the/-knot set 2 forms

a legitimate spilling function. The functiobc (y) is also called a suitable multiplier for
the functionba(x). Our sample zonal grid shown in Fig. 5 gives the following humber o
two-dimensional quadratic B-spline functions,

Nzona = Ny, x Ny, = 6 x 6 = 36,

Nyone = Ny, x Ny, =3x3=09,

Nzons = Ny, x Ny, = 3x 8 = 24,
Ne =69, Ng=22

where Nygna, Nzone, and Nzone are the number of confined functions in zones 1, 2, an
3, respectively. The total number of confined functionblis and Ns gives the number of
spilling functions selected on this grid.

Once the confined functions are formed and the spilling functions are selected, anume
representation of the dependent variable in a problem is

N Ns+Nc
a(xs y) = Zai Ci (X» y) + Z [oF] S*Nc(xs Y)» (26)
i=1 i=1+Nc

whereC(x, y) and S(x, y) are the confined and spilling functions aNd and Ng are the
numbers of the confined and spilling functions, respectively. For integer refinement ra
across zones, Eq. (26) constitutegka’ continuous spline with knot lines coinciding with
the mesh. The total number of confined functiondNis= 31Nz, where N is the
number of confined functions in each grid zapeandN,qnesis the total number of zones.
The total number of degrees of freedom is giverNgy: = N¢ + Ns. This number is related
to the number of knot points on a given mesh.
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3.2. Implementation of Galerkin B-Spline Method on Zonal Grid

To illustrate the implementation of the two-dimensional Galerkin B-spline method
zonal grid, we consider the following nonlinear convection-diffusion equation,

2 2
g—:+ug—§=V<%+aa—y2>u, (27)
with boundary conditions
u,y) = uc(y), (28a)
u(Lx, y) = ur(y), (28b)
u(x, 0) = ug(x), (28c)
u(x, Ly) = ur(x). (28d)

The implementation of the Galerkin B-spline method on zonal grid for the Navier-Sto
equations is similar but more cumbersome. The parameterEq. (27) is the diffusion
coefficient. Let us solve Eg. (27) on the zonal grid shown in Fig. 5. Substituting the exf
sion (26) in Eq. (27) and performing the Galerkin procedure, i.e., multiplying both sic
of Eq. (27) by two-dimensional B-splines as weight functions and integrating over the
tire computational domain, we obtain a system of ordinary differential equations for
expansion coefficienta:

doj
Zmijd—tlzquijaJ—ZZni“ajoq. (29)
j j il

In matrix form, the system (29) is

M c(jj—(tx =1vWa — N(a, a), (30)

whereM andV are linear mass and diffusion matrices af@d, «) is the nonlinear term.
The elements of the linear and nonlinear matrices are given by

mij=/ / Bi (X, y)Bj(x, y)dx dy,
Qu J Qy

32B; 92B;
v =/QX /Q (Bmx, D G )+ By o y))dxdy

0B,
nm:/ / B (X, ) B; (X, y) = (x, y) dx dy.
o Ja, axX

The form of the linear matrix is shown in Fig. 6. This particular matrix corresponds to
Galerkin method based on B-splines of second degree defined on the zonal grid of Fig. 5
elementsinthe unstructured part of the linear matrix result from the interactions betweer
spilling functions or between spilling and confined functions. The functions interact if th
supports overlap, in which case the integral of the product of these functions is non-:
The number of different interactions is given in Table I. Only interactions between differ
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FIG. 6. Two-dimensional matrix resulting from zonal grid. Symbglshow locations of non-zero elements.

functions are recorded. However, each spilling function can interact with itself. Such
interaction corresponds to the diagonal element in the unstructured part of the linear ma
The total number of unstructured elementblis= 2(Nss+ Ns¢) + Ns. The three structured

parts of the matrix correspond to the three zones of the zonal grid of Fig. 5. Each part
a form of a block-multidiagonal matrix with the elements formed from the interactions
the confined functions in the zones. It is convenient to store the structured parts of lin
matrices for each zone by diagonals. The gaps in the diagonals are filled with zeros in o
to simplify the implementation. For each diagonal, we store all the elements, the num
of entries in the diagonal, and the row and column of the first element in each diagol
The number of diagonals in the structured part of a linear matrix depends on the deg
of B-splines k, and is equal t@2k + 1)%. For example, the structured parts of the matrix
in Fig. 6 have 25 diagonal®5= (2- 2+ 1)?). The row and column of the first element of

TABLE |
Number of Interactions between Two-Dimensional B-Splines of Degree 2
Defined on Zonal Grid of Fig. 5

Nss=100 Number of interactions between spilling functions
Ngc=297 Number of interactions between spilling and confined functions
Nsss= 209 Number of triple interactions between spilling functions
Nces=776 Number of triple interactions between 2 confined and 1 spilling functions

Ncss= 778 Number of triple interactions between 1 confined and 2 spilling functions
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each diagonal are given by

row; jn = 1 —min(i, 0) — min(j, 0) - Ny,

column jn =1—min(i,0) +i — (Min(j, 0) — j) - Ny,,

where—k <i, j <k, n is the grid zone index andlly, is the number of B-splines in the
x-direction of zonen.

A so-called nonlinear matrix, corresponding to the nonlinear term, is formed from inter
tions between three two-dimensional B-splines. The nonlinear matrix consists of struct
and unstructured parts. Unstructured elements of a nonlinear matrix are formed fron
teractions among either three spilling functions, 2 confined and 1 spilling functions, ¢
confined and 2 spilling functions. The total number of unstructured elements in the nor
ear matrix of Eq. (30) ifNysq= 6(Nss+ Nsc+ Nsss+ Nees+ Nesd + Ns, where the factor 6
is used to account for the symmetric interactions (interaction between a confined func
C(x,y), and a spilling function, S(x, y), is the same as that between S(x, y) and C(X, y)—
interaction is called symmetric). Note thdisand Nsc are present in the definition &fsq
These are used to account for interactions in which two functions are the same an
third is different. For example, an interaction that involves a spilling function counted tw
and a confined function will contribute an element to the unstructured part of the nonlir
matrix and is accounted for in the second ternNgf, The number of different unstructured
interactions for the zonal grid of Fig. 5 is given in Table I. The structured part of a nonlin
matrix is also similar to that of a linear matrix and consists of multidiagonal blocks. T
row, column, and depth of the first element of each diagonal in every block are given k

OWi, jp iz, joizone = 1— Min(ig, j1, 0) — min(iz, j2, 0) - Ny, e
column j, i, jpizone = 1— Min(iy, j1, 0) +i1 — (Min(i2, j2, 0) —i2) - Nxione
depth, i, i, jpizone = 1— min(iy, j1, 0) + jo — (MiNn(iz, j2, 0) — j2) - Nx,one
where —k <iy, i <k, max(—k, —k+1i1) < j1 < min(k, k+i;7) and max—k, —k+iy) <
j2 < min(k, k+i5).
The boundary conditions, (28), are imposed strongly by determining the values of

expansion coefficients corresponding to non-zero boundary B-splines. Thus, the bour
condition (28a) is

NC N5+Nc
00, y)=> oGO,y + > &S n(0Y) =uLy).
i=1 i=1+N;

Both confined and spilling functions at the boundaty; 0, will have 1D B-splines de-
fined on the knot set of this boundary as one of their multipliers. The boundary expan
coefficients are then determined from

Np

G0, y) = > ajbj(y) = uL(y), (31)

i=1

whereb; (y) are the B-splines defined on a knot sexat 0, andNy, is the number of these
B-splines. Expansion coefficients;, in (31) are obtained by B-spline projection.
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0 I,
FIG. 7. Periodic B-splines on extended domain. Hebg(y) = b, (y), ba(y) =bg(y), bs(y) =be(y), and
b4 (y) = bio(y).

In problems with periodic boundary conditions, linear matrices are modified to accot
for the periodicity of the expansion coefficients. Consider, for example, a single-zofie 5
grid on which the second direction is periodic. The number of second-degree B-spli
defined on this grid is & 8 =48. However, as we saw above, some of the B-splines in tt
second direction will be equivalent, i.&5,(y) = b7(y) andb,(y) = bg(y). For simplicity in
implementation, it is useful to introduce 2 (ofor a generak-degree B-spline) additional
knot points at one end of the periodic direction so thdly) = bg(y) andb,(y) =bio(y)
as shown in Fig. 7. A linear matrix corresponding to the new set»fl6 B-splines is
shown on the top of Fig. 8. This matrix is modified to account for the equivalence of t
B-splines and corresponding expansion coefficients, as shown on the bottom of Fig
The matrix entries corresponding to the B-splinasgy), ba(y), ba(y), andbio(y) are set
to zero except for the diagonal elements which are set to one to ensure that the matt
nonsingular. The resulting matrix is periodic and guarantees the periodicity of the expan:
coefficients. Once the matrix is inverted, the expansion coefficients corresponding to
boundary B-splines are obtained from periodicity.

4. NUMERICAL TESTS

4.1. Accuracy of Galerkin B-Spline Method

The accuracy of a numerical technique based on piecewise polynomials, such a:
splines, has been studied in the past [23]. For example, it has been shown that, for a me
based on B-splines of a particular ordethe convergence rate &2 errors of numerical
solutions is equal ti + 1, where thd_2 error norm is estimated as

1
2

L2 error norm= (/ (UexactX) — Unumei(X))? dx)
Q

Convergence studies for two-dimensional problems solved with B-spline-based meth
are given in Ref. [19].

One of the better criteria for the accuracy evaluation of a numerical method is its mo
fied wave number curve. Such a curve shows numerical errors versus wave numbers il
solution and, therefore, demonstrates the suitability of a numerical technique for comp
tions of problems with a broad spectrum such as in a turbulent flow.
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FIG. 8. Construction of periodic two-dimensional matrix. Symbslshow locations of non-zero elements.

Figures 9 and 10 show the modified wave number diagrams for the first and se
derivative operators approximated by Galerkin methods with various order B-splines.
curves demonstrate that the methods based on B-splines have very good modified
number properties which resemble those of theePathemes (for modified wave numbers
of the compact finite-difference schemes see Ref. [24]). For instance, the Galerkin me
with B-splines of order 2 is fairly accurate for aboy82f the wave numbers. The accuracy
is always higher for low wave numbers and lower at high wave numbers, especially for
first derivative operators. However, with an increase in the order of B-splines, the accu
at high wave numbers improves.

4.2. Two-Dimensional Nonlinear Convection-Diffusion Equation

The test problem chosen to assess the performance of the numerical technique
embedding in two inhomogeneous directions is the two-dimensional nonlinear convec
diffusion equation. This is a relatively simple problem that can provide insight into varic
aspects of the B-spline methodology on zonal grids.
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FIG.9. Modified wave number diagram for first derivative operator in Galerkin method. —, spectral; B-splin
of order -—, 1; ---, 2;.., 3; ——, 4; ——, 5.

The equations considered in this test are

ou +u8u + ou ” + ” u (32a)
— —+tv—=v|—+— U,

ot X oy ax2  9y?

ov av ov 92 92
tu—tv—=v[— 4 — |u, 32b
at TYax Ty ”<3x2+ay2>” (32b)

where the diffusion coefficientis chosen to be 0.03. Note that, for this test, the numeric:
approximations of the variablesandv in Eq. (32) are written in terms of B-spline functions
that are not divergence-free

~ u
A0 y) =Y ag’ fi00g; (), (33a)
ij
506 y) =D fi(0g; (). (33b)
ij
3 -
—~ 2 L7 1
£ | .
:¥ . L 7’
10 e .
0 L L 1 I | L Ll
0 0.5 1 15 2 25 3
K
FIG. 10. Modified wave number diagram for second derivative operator in Galerkin method. —, spectr

B-splines of order ———, 1; ---, 2; -, 3; ——, 4; —-—, 5.



B-SPLINE METHOD AND ZONAL GRIDS 775

TABLE Il
Summary of Numerical Parameters for 2D Nonlinear Convection-Diffusion Equation

Case No. of zones Grid spacing (min.; max.) Total number of functions Max. error
1 1 0.0048 44,521 —
2 1 0.0167 3,721 3.6% 10°°
3 8 (0.0167; 0.0667) 1,195 3.6710°3
4 1 0.0294 1,225 5.72 1073
5 8 (0.01; 0.04) 3,271 0.6210°3

The boundary conditions are

u@©,y) =v0,y)=1-y, (34a)
uld,y) =v(l,y)y=1-y, (34b)
u(x,0) = v(x,0)=1, (34c¢)
uix,l) =v(x,1)=0. (34d)

Equations (32) were solved in the domaig @ <1, 0<y < 1. All simulations were per-
formed with the following initial conditions:

U(X, y) = U(X» Y) = 1_ y

The choice for initial conditions is not important because the solution is advanced in t
to a steady state, where the results of different cases are compared. The test proble!
solved on several multi-zone and single-zone grids. A summary of cases consider
shown in Table Il. A constant time steft = 0.01 was used in all cases except in the bas
case 1, where\t =0.005 was used. In all cases, the maximum CFL number was alw:
less than/3, which is required for stability of the third-order Runge—Kutta scheme.
The single-zone fine grid solution (case 1) was chosen as a base case against whi
solutions for all other cases were compared. Errors for each solution were determine
computing an absolute value of the difference between the solution for this case and the
case solution. Initially, a single-zone simulation was performed (case 2) to locate reg
of large errors. Based on this information, a zonal embedded grid was constructed in s|
way that it had the same grid density in the region of the largest error as in case 2 but co
elsewhere. Even though the errors in the fine zone were the same as in the same reg
case 2, the errors in the coarse region were larger. These errors were especially large
lower left corner of the domain. Due to the convective nature of the problem, the er
propagated towards the upper right corner of the domain. By refining a small region ir
lower left corner (case 3), we were able to reduce these errors. Overall, the maximum e
of the solutions in cases 2 and 3 were approximately the same, but the solution in the |
case was obtained with the number of degrees of freedom almost three times smaller tt
the former case. A single-zone solution (case 4) with the same number of degrees of fre
asin case 3 had errors that were almost two times larger than those of the zonal grid sol
Finally, case 5 had approximately the same number of degrees of freedom as case 2
finer grid in the region of the strong solution gradient (Fig. 11). The maximum error of |
solution in this case was approximately six times smaller than that of the single-zone ca
This was achieved primarily due to refining the important high gradient regioa-dt. The
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FIG. 11. Contours of error in the solution of nonlinear convection-diffusion equation: (a) case 2, single-zc
grid, max erroe= 3.67 x 10°3; (b) case 5, multi-zone grid, max errer0.62 x 10-3. Contour interval in both cases
is 107,
rest of the domain had arelatively coarse grid as shownin Fig. 11. As aresult,amore accl
solution was obtained without an increase in the computational cost. It is also importan
note that there is no error accumulation near the region of sudden grid changes. Ther
some error contours observed near the upper right corner but they are mostly assoc
with the truncation errors in the solution and not with the zonal boundaries.

4.3. Laminar Flow over a Cylinder

Simulations of a laminar flow over a circular cylinder at two sted®lgyr(= 20 and 40)
and two unsteadyRe, = 80 and 100) Reynolds numbers were performed. The Reynol
number is based on the free-stream velocity and the cylinder diameter. In each case
simulations were initialized with potential flow and advanced in time until a stationary flo
pattern was developed. At Reynolds numbers 20 and 40, two attached vortices are for
behind the cylinder. The wake behind the cylinder at Reynolds nunfitesrs- 80 and 100
consists of negative and positive vortices shed alternately from the upper and the lower |
ofthe rear cylinder surface. An example of such a wake is given in Fig. 12 where the vortic
contours in the simulations &e, =100 are shown. In our first simulations at unsteady
Reynolds numbers, the onset of vortex shedding was induced by truncation and rounc
errors that eventually break the symmetry of the numerical solution. However, this turr



B-SPLINE METHOD AND ZONAL GRIDS 777

!
i
7

D
e s
S
oy
Saes

ZIrl
S

o
%
b
i
.7.9,’
o,

7
&7
i
&’,g

0
2

47
s

%
s,

3.‘,9‘

S
e

o0,
o
o

<
-

N

e,

O

L

2

FIG.12. Vortexshedding behind acircular cylinder at Reynolds nunidey= U, D /v =100, in simulations
on zonal embedded grid. Vorticity contours, superimposed on the grid, are shown.

out to be a very slow process. The flow tended to stay symmetric tip,tg D = 200. In
order to initiate vortex shedding, a time-dependent slip velocity on the cylinder was apg
for a short period of time [25]. Thereatfter, the flow was allowed to advance in time until
transient solutions exited the computational domain. Mean global quantities were reco
once a statistically steady flow pattern is formed.

Various flow quantities including pressure and viscous drag coefficients, mean lel
of the recirculation bubble, separation angle, and base pressure coefficient were com
and compared to the existing experimental and numerical results. At the unsteady Rey
numbers, non-dimensional frequency of vortex shedding, the Strouhal number, anc
amplitude of lift coefficients were also computed. Conventional definitions of the fl
quantities were used,

1 2
Copp = ———— P cosd dg, ressure dra
P = (1/2)pUZD /o P g
1 21
Cp, = 7/ w,, SIN6 d9, viscous dral
P = @/2)ReoUn Jo g
Cp =Cp, +Cp,, total drag
1 21
C.,.=——— P sing dg, ressure lift
‘* = 1/2pU2D /o P
1 21
C,, = 7/ w,, COSH do, viscous lift
"7 (1/2ReoUx Jo
CL=CL.+C_, total lift
St= fD/U, Strouhal number
P,—P
Cp=—2 = base pressure,

(1/2)pUZ’
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TABLE Il
Summary of Cylinder Flow Computations at Rep = 100
Case Ry k N N ocmx cm _cy St Gsep Lree  Umin
1 20 2 78 81 1405 0350 0.891 0.167 127.0 1.44 -0.188
2 30 2 84 81 1370 0301 0879 0.165 1t7.0 1.48 -0.189
3 30 3 8 163 1304 0.286 0.728 0.163 117.4 1.44 —0.173
4 40 2 89 177 1286 0311 0710 0.162 1173 1.47 -0.176
5 40 3 92 163 1308 0318 0.735 0163 117.4 145 -0.175
6 60 2 96 177 1294 0311 0.713 0162 117.3 145 -0.173
7 60 3 104 163  1.312 0.313 0.738 0.164 117.4 145 -0.175
8 80 2 102 81 1296 0330 0.723 0.164  117.4 144 -0.175
9 80 2 102 161 1.296 0318 0.723 0164 117.4 1.44 -0.175
10 80 3 102 81 1301 0313 0.725 0.164 1174 143 -0.173
11 90 3 122 163 1.314 0314 0.739 0164 1174 145 -0.175
12 120 2 116 81 1312 0316 0.733 0.164 1174145 -0.175
13 120 2 202 161 1314 0314 0.735 0.164 1174145 -0.175

Note Overline indicates averaging in tim&y is radius of computational domaik,is degree of B-splines.
Other quantities are defined in the text.

whereU, is the uniform free-stream velocit) is the diameter of the cylindef, is the
shedding frequencyy,, is the wall vorticity, andP is the pressure. The separation angle
Osep is defined at a point of zero wall vorticity. Mean length of the recirculation bubbl
(Lrec) is non-dimensionalized by the cylinder diameter. The negative of the base pres:
coefficient, a useful quantity, is usually called the base suction coefficient.

A series of simulations akRep = 100 were performed to establish grid and domain siz
independence. A summary of cases considered is shown in Table Ill. Domain sizes re
from Ry =20 to Ry =120, whereRy is the radius of the domain in terms of the cylinder
radius. The last six cases (cases 8—13) were performed on both single-zone and multi-
grids. The effective number of grid points in the raditief) and circumferential I‘@;‘”)
directions are given in the table. The effective number of grid points is introduced to
scribe a zonal mesh and defined with respect to the corresponding single-zone mesh
the same resolution in the vicinity of the cylinder and in the wake. Normally, there are ab
1.5-2.5 times less grid points in a multi-zone mesh than in a single-zone grid with the se
near-cylinder resolution. The grid size in the radial direction at the cylinder surface w
Ar ~5x 1072 for cases 1-12 andr ~ 3.5 x 102 for case 13. The grid was stretched in
the radial direction with a hyperbolic tangent stretching function. The results from the ta
clearly show that the Strouhal number, separation angle, mean recirculation length,
mean minimum streamwise veIocitQ,Gm) become independent of the domain size wher
R4 > 60. Refining the grid in the circumferential and radial directions and increasing t
degree of the B-splines do not affect the results significantly. Total drag and lift as well
base pressure coefficients appear to be more sensitive quantities especially for lower de
B-splines for which an even finer grid should be selected to achieve a better converger

The results of our simulations on the zonal grid of case 13 are shown in Figs. 13 :
14 together with the experimental results [26—28] and the numerical results from spec
calculations by Mittal [29] and spectral element simulations by Henderson [30]. Over:
the agreement between the present simulations and the existing results is good. The
a slight discrepancy between pressure drag coefficients obtained in our simulations
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FIG. 13. Pressure and viscous drag and Strouhal number vs Reynolds number: —, experimental f

Williamson [26]; ---, numerical fit by Henderson [30]; symbols, B-spline simulations.

those suggested by the numerical fit of Ref. [30]. However, the agreement between all
quantities is good.

4.4. Numerical Simulations of Flow over a Cylinder atgre 300

The wake behind a circular cylinder becomes unstable to three-dimensional disturbe
aroundRe, = 180-200 [28] and develops large streamwise structures with spanwise wi
length of approximately 3—4 cylinder diameters. As the Reynolds number increase
aroundRe; = 260, smaller three-dimensional structures with a spanwise wavelength of
proximately one cylinder diameter become dominant. These structures are also kr
as mode-B instabilities [28]. With further increase in the Reynolds number, fine-sc

2 T T T 7
[ y.... Separation Angle bsep | 129
‘*Q il 1
1.5 _— “\\\'. ] 100
a Mean Recirculation Length L/D 1
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FIG. 14. Base suction coefficient, amplitude of total lift, mean recirculation length and separation angls
Reynolds number: —, experimental data by Williamson and Roshko [27]; ---, numerical fits by Mittal [29]; —
numerical fit by Henderson [30] (for base suction coefficient); symbols, B-spline simulations.
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TABLE IV
Grid Parameters of Cylinder Flow Computations at Rep =300

Ng, at Ng, at
Case Naones Neff 6 =170 6 =90 [\l N, Niotat Ry x L,
1 4 91 6 10 103 48 369,120 80x 27D
2 7 156 12 26 185 48 1,056,288 B0« 27 D

Note Parameters ag,,,es NUMber of grid zone:t\'lreff ande", number of points in the radial and circumferential
directions for corresponding single-zone g}, number of points in spanwise directidNg, , number of points
in boundary layerNta;, total number of grid pointsiRy, domain radiust ,, spanwise domain size.

three-dimensional structures become more and more active. Flow over acylinder at Reyn
numberRe, = 300, which belongs to this regime, was chosen for our study. Relatively I
Reynolds number, availability of previous computational and experimental data, and
presence of small and large three-dimensional structures make this flow an interesting
yet nota computationally demanding test to assess the performance of the three-dimens
version of the B-spline method on zonal grids. This flow has been studied computation:
by Mittal and Balachandar [25] who used a spectral method on an O-type cylindrical gt
That study is used as a reference for our simulations.

Two simulations of the flow over a cylinder Bter = 300 were carried out with different
grid resolutions. The grid parameters for the two cases are summarized in Table IV.
total number of grid points is approximately 3 times larger in case 2thanincase 1. The g
of cases 1 and 2 make use of zonal grid embedding and grid stretching in both the re
and circumferential directions. Our reference case, simulations of Mittal and Balachar
[25], had the O-type meshwitk, x Ny x N, =81 x 160x 288 grid points. Because Mittal
and Balachandar [25] used spectral methods, their grid was uniform in the spanwise
circumferential directions and stretched with a cosine function in the radial direction. T
radius of the domain in the calculations of Mittal and Balachandar [25] wasdrid the
spanwise domain wak, ~10.8D. The grid in case 1 is coarser in the circumferentia
direction but comparable in the radial direction at the cylinder to that in the simulations
Mittal and Balachandar [25]. The grid resolution in case 2 is about two times finer in t
radial direction in the vicinity of the cylinder.

Two important flow features should be considered when designing a grid for compt
tions of the flow over a cylinder: the thickness of the boundary layer and the size of
dominant streamwise vortical structures in the wake. The thickness of the boundary lay
estimatedh posteriorifrom the size of the vorticity layer at the cylinder surface. The numbe
of grid points in the boundary layer on the cylindemat 170 andgd =90° (§ =0° is at
the base of the cylinder arfd= 180 is at the front stagnation point) is given in Table IV.
Case 2 has two times more grid points in the boundary layer than case 1. As reported ir
experimental studies by Williamson [28], the estimated spanwise length scale of the stre
wise vortices aRey = 300 isA, ~ D. Mittal and Balachandar [25] found that simulations of
flow over acylinderaRe; = 300 are very sensitive to the size of the spanwise computation
domain and showed variations in the mean flow parameters such as drag and lift coefficit
Strouhal shedding frequency, and base suction coefficient, when different spanwise don
were used. The prediction of mean flow quantities improved on a larger spanwise dom
Following that study, we chose the spanwise domain for our calculations to De 2
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FIG. 15. Isosurfaces of instantaneous streamwise vorticity in the wake of a circular cylinBeg at 300:
light, o, D/U,, = .24; dark,w,D/U,, = —.24; three-dimensional view.

The code for the computations was compiled and executed on Cray C90 in vectoral r
and on SGI Origin 2000 in parallel mode. It was able to achieve the performance of arc
4 x 107° s per grid point per time step on Cray C90.

Coarse grid simulations were initialized with the potential flow solution and advanc
in time until a statistically steady flow pattern was developed. Fine grid simulations w
initialized with a velocity field interpolated from the coarse grid calculations. Once 1
three-dimensional wake was developed, both simulations were advanced in time fo
proximately 12 shedding cycle$ ¢~ 60D /U,,) to ensure the removal of initial transients.
The statistics of the mean flow quantities were then accumulated for 8 more shedding ¢
(T ~40D/Uy).

Figures 15 and 16 show perspective and bottera plane) views, respectively, of the
instantaneous streamwise vorticity iso-surfaces. The flow is from left to right. The figu
clearly show the development of the pattern associated with the Karman vortex stree

FIG. 16. The same conditions as Fig. 15 but plane view.
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TABLE V
Flow Parameters of Cylinder Flow Computations atRep = 300

Case CD EerS —Cpb St
Spectrd 1.26 0.38 0.99 0.203
Experiment 1.22 — 0.96 0.203
1 1.24 0.33 0.90 0.202
2 1.28 0.40 1.01 0.203

Note Experimentabtand—Cp are from Ref. [28]Cp from Ref. [31].
2 Simulations by Mittal and Balachandar [25].

the presence of mode-B streamwise vortices which were also observed in other nume
[32, 33] and experimental [33—35] studies. Even though the dominant structures inthe n
wake are the counter-rotating streamwise vortices, they appear to vary in size and strel
A highly complex evolution of these structures have been also observed in the previ
numerical simulations [32, 36]. Farther downstream, the number of the streamwise vort
structures seems to decrease, which is also consistent with the observations of Mittal
Balachandar [32].

Mean flow parameters are summarized in Table V. All statistical quantities are avera
both in time and across the cylinder span and non-dimensionalized with respect to
free-stream velocity),, and the cylinder diamete). The overall agreement between the
B-spline computations, the spectral results, and experimental data is good. The small di
ences are attributed to insufficient time-averaging. The flow is believed to have large ti
scales that require prohibitively large computer resources to obtain a sufficient statist
sample [32].

Figures 17 and 18 show the mean velocity profiles from coarse and fine grid simulati
at five downstream locations in the near-wake of the cylinder. The B-spline simulations
compared to the results of spectral computations [32]. The intensities of velocity fluctuati
and Reynolds shear stress are shown in Figs. 19-21. The profiles of both mean veloc

T T L T T T T T

-2 w
-3 W
[ , x/D =3.0]

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y/D

FIG. 17. Mean streamwise velocity at different locations in the wake of a circular cylindeeat 300: —,
B-spline simulations on fine grid; ———, B-spline simulations on coarse grigfectral simulations by Mittal and
Balachandar [32].
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FIG. 18. Mean crossflow velocity at different locations in the wake of a circular cylind&egt=300. See
caption for Fig. 17.

y/D

FIG. 19. Time-averaged streamwise velocity fluctuations at different locations in the wake of a circt
cylinder atRe, = 300. See caption for Fig. 17.

L e e B . L S S Sy B By B B S E S B By B B S B B B S B

FIG.20. Time-averaged crossflow velocity fluctuations at different locations in the wake of a circular cylin
atRe, = 300. See caption for Fig. 17.
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FIG. 21. Time-averaged Reynolds shear stress at different locations in the wake of a circular cylinde
Re&, =300. See caption for Fig. 17.

and velocity fluctuations show excellent agreement between the fine B-spline and spe
computations. The coarse grid simulations are slightly off but the differences are small
there is a convergence of the profiles with grid refinement.

5. CONCLUSIONS

There is a need for the development of high-order non-dissipative schemes for sim
tions of turbulent flows in geometries more complex than those treated by spectral meth
It was demonstrated that a numerical method based on B-splines appears to be an attr:
alternative to high-order finite-difference schemes. The method is accurate, non-dissipa
and free of aliasing errors. The method is also promising for computations on zonal ¢
bedded grids which are necessary for large eddy simulations of wall-bounded flows
such flows, a fine grid is required in all three directions near the walls to resolve import
turbulent structures (large eddies) that are small compared to the overall flow dimensi
An efficient resolution of these structures can be achieved with zonal grids. Zonal grids
also necessary for LES of complex separated flows with thin shear layers.

The B-spline method developed in this paper is based on divergence-free B-spline ft
tions and is designed for simulations of turbulent flows in complex geometries. The mett
employs zonal grids and permits fine meshes to be embedded in physically significant |
regions without placing a large number of grid points in the rest of the computational dome

The method was successfully tested in numerical solutions of nonlinear advecti
diffusion equations. The tests indicated that the method provides for an efficient inf
mation transfer between zones without accumulation of errors in the regions of sudden
changes.

The performance of the numerical method was also assessed in simulations of lam
flows over a circular cylinder at low Reynolds numbers. The lift, drag, and base sucti
coefficients, the size of the recirculation bubble, and the vortex shedding frequency a
well with the experimental data and previous simulations of these flows. The numeri
solutions on multi-zonal grids are of the same accuracy as those on a single-zone gric
require less computer resources. Three-dimensional numerical simulations of flow ov
cylinder atRe; = 300 show good agreement with the corresponding spectral calculatic
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in terms of velocity profiles in the wake. Coefficient of drag and the Strouhal shedd
frequency agree well with the experimental data.

APPENDIX

A.1. Mass Matrices

Mass matrices in (9) are given by
M = / ¥* - g*J d dn.
Q
Therefore,

1 p1

Mt = / / (@ +b%)J d& dn,
0 Jo
1 pr1

MT— :/ / ikz(caa + cyb) J d& dn,
0 JoO
1 ,r1

M~—F = / / —ikz(caa + cpb)J d& dn,
0 JoO
1 ,1

M= [ @)+ a3 de .
0 JoO

A.2. Viscous Matrices

Viscous matrices in (9) are given by
Dii=/vX¢i.vXqudgdn.
Q
Using definitions fory® andg*, we obtain
1,1 1
D+ = / / [Ke(a? + b7 92 + [aex, — 3% + by, — b, yel?] 5 dé i,
0 JO
1 rl
D" = / / {i k; [b(d,’Xg — dexy) — ald,;ys — deyy)
0 JO
1
+ j(afxn — apXe + bEyﬂ - bnyE)(CaEXn — CayXe + Coe Yy — Cbr)yé):|
+ik3ac, + boo).]} dé dn,
1 p1
D™t = / / [—ikZ |:(d,7XE —dgx,)b — (d,y: — d:ya
0 Jo
1
+ j(ca?;‘xn — CapXe + Cog Yy — Coy Y ) (@e Xy — ayXe + be Yy — by Ve)

—ik3(caa + Cbb—l—)J}ds dn,
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1 r1
D™ = / / [(d,]xg — dgxn)z + (d,]yg — dgyﬂ)2
0 Jo
+ kZ[Cag Xy — CayXe + Chz Yy — Cop Ye]?
+ kg[CaJ(dnyS - déyn) + \](dr]YE - dSyn)Ca
1
+CpJ (dyXe — e X,)+J (A X — deX,)Co] + K3 IZ(CE + ¢F) | 5 dédn.

A.3. Nonlinear Terms

Before computation of the nonlinear terms, we transform the coefficients in the veloc
expansions (1) from Fourier to physical space:

at(t k) — at(t, 2),

a (i, k) — a™(t, 2).

In physical space, the velocity vector is given by

aé,n o, (T, 2)Ca(E, n)
u=>Y a'(t,2) | b&m |+ [ o7t e |,
nm 0 a™(t, 2d(E, n)

where the subscript ia; indicates differentiation with respect o Let us decompose the
weight vectorsyt (&, n, 2) andvy ™~ (€, n, 2), as

Y, 0,2 =[p1TE e, YT E N, 2) = [P (E, n) — k2T (&, n)]e 'k

where
aé,n 0 Ca(€, 1)
P1ITE N =|bEn |, Y1 En= ( 0 ) . Y2 E = | wE )
0 de,n) 0

Then, the nonlinear terms are
1 r1
Nf:/o /O VI (Ui We — (Ui v)e — (YeUiu), + (XeUiv),] d& dn,
1 r1
N2+=/ / WIiJ;(uiw)J dé dn,
0 Jo
1 r1
N; =/O /O Y1 [(YUiw)e — (XUiv)s — (YsUiu), + (XgUiv),] d& da,
1 r1
N£=/O /O Y2 [(Yuil)e — (% Uiv)s — (YeUit), + (XeUiv)y] + 91 (Ujw) dé dn,

11
N3 :/ / 1/f2i_pl(ui w)J dé dn.
0 Jo
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These expressions can be re-written in terms of expansion coeffigier@tisde~ as

N = N1feta™ + N2faTa; + N3, o),

NI = N1Jeta™ + N2Jofa,

N; = N1ljeta™ + N2jof o,

N; = NLyeta® + N2,ot o, + N3y, 0, + Nd o o,

N3 = Nljeta™ + N2fo, o,
where

1 r1
N1 = / / [(a,y: — asy;)aa+ (bgx, — b,xs)bb
0 JoO

+ (@ X, — ay,Xe + b,y: — bey,)ab] d& dy,

1 r1
N2] = / / [2(a, Ve — asY,)ac + (3 X, — a,Xs + b,Ye — b:y,) (@G + bcy)
0 Jo
+ 2(be x,, — byXs)bg,] d& dn,

1 ,r1
N3] = / / [(@,Ys — @ Yy)CaCa(D: X, — byXe)CoCo] d€ d,
0 JO
1 p1
N1 = / / [aad + bbd] J dé dn,
0 JO
1 r1
N2§ = / / [acad + boyd]J d dn,
0 Jo
1 ,1
N1 = / / [(d,y: — deyy)ad + (d:x, — d,;X:)bd] d& dn,
0 JO
1 p1
N2] = / / [(deXx, — d;Xe)Cad + (d: X, — d,,X:)Cpd] A€ dn,
0 Jo

1 r1
N1, = / / [(—CapXe + CagXp)ab+ (—Cag Yy + CayYe)bb
0 Jo

+ (Coy Y — Coe Yy)a@b + (Cpe X, — CpyXe)bb] d& dn,

1 r1
N2, = / / [(—CanXe + CazXy)aACa + 2(—Cas Yy + CayY:)aCa
0 Jo

+ (Coy Y& — Coe V)80 + 2(Cpe Xy — CpyXe)DGp] d& d,

1,1
N3, = / / [(—Caz Yy + CayYe)CaCa + (Cos Xy — CoyXe)CoCo
0 JO

+ (—Coe Yy + ConYe + CagXyy — CayXe)CaCp] d& di,

1 ,r1
N42‘://[—ddd]J dé dn,
0 Jo
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1 p1
N1; = / / [caad + c,bd] J dg dn,
0 JO

1 r1
NZ; = / / [CaCad + Co0od] J d& di.
0 JO

Each of the expressions above is a multi-indexed quantity of the Mg, and size
~Ng x N, x (2k+1)* discussed above. These so-called nonlinear matrices are p
computed and stored before the time advancement. Once the nonlinear terms are €
ated, they are transformed back to Fourier space,

Ni“(t, 2) — Nt ko),
and we obtain expressions for the nonlinear parts of the RHSs of our system of Egs. (¢
R (a*,a”) = Nf +ik,NJ
R (", a”) = NJ —ik,N; +k2N3.
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