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Abstract

Maxwell’s equations for propagation of electromagnetic waves in dispersive and absorptive (passive) media are repre-
sented in the form of the Schrödinger equation ioW/ot = HW, where H is a linear differential operator (Hamiltonian) acting
on a multidimensional vector W composed of the electromagnetic fields and auxiliary matter fields describing the medium
response. In this representation, the initial value problem is solved by applying the fundamental solution exp(�itH) to the
initial field configuration. The Faber polynomial approximation of the fundamental solution is used to develop a numerical
algorithm for propagation of broad band wave packets in passive media. The action of the Hamiltonian on the wave func-
tion W is approximated by the Fourier grid pseudospectral method. The algorithm is global in time, meaning that the entire
propagation can be carried out in just a few time steps. A typical time step DtF is much larger than that in finite differencing
schemes, DtF� iHi�1. The accuracy and stability of the algorithm is analyzed. The Faber propagation method is
compared with the Lanczos–Arnoldi propagation method with an example of scattering of broad band laser pulses on
a periodic grating made of a dielectric whose dispersive properties are described by the Rocard–Powels–Debye model.
The Faber algorithm is shown to be more efficient. The Courant limit for time stepping, DtC � iHi�1, is exceeded at least
in 3000 times in the Faber propagation scheme.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Many time-domain algorithms for numerical simulations of the broad band wave packet propagation in
electrodynamics of passive media and/or quantum mechanics use a time stepping, that is, given a configura-
tion of the system at time t, a time-domain algorithm produces the system configuration at time t + Dt, where
the time step Dt is determined by conditions resulting from the algorithm stability and required accuracy. For
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instance, in a finite differencing approach, such as, e.g., the classical leapfrog scheme, the time step is bounded
from above by the stability condition (the Courant limit), Dt 6 DtC. The upper bound DtC is typically deter-
mined by the time a signal needs to propagate through an elementary cell of the spatial grid, which is by sev-
eral orders of magnitude smaller than the total propagation time [1]. There is a class of problems in numerical
electromagnetism where the wave packet dynamics at intermediate times is not of significant interest, but
rather the final state is important. Computing the scattering matrix would give one such example. A related
and more sophisticated example would be simulations of the broad band wave packet propagation in random
media [2]. To obtain a numerical solution of the initial-value problem in this case, the propagation must be
carried out multiple times for every (random) state of the medium in order to perform the statistical averaging
over the medium states. Clearly, a global time-domain algorithm (Dt� DtC) would be of great help in reduc-
ing computational costs.

The present work offers a global time-domain algorithm for solving initial value problems for Maxwell’s
equations for passive media whose dispersive and absorptive properties can be described by suitable Lorentz,
or Rocard–Powels–Debye, or Drude models. The basic idea of our approach can be summarized as follows. In
Section 2, the Maxwell equations are cast in the form of the Schrödinger equation
i
oW
ot
¼ HW; ð1:1Þ
where W is a multidimensional vector field whose components are electromagnetic fields and a set of auxiliary
fields that describe the medium response to applied electromagnetic fields (e.g., the medium polarization), and
H is a linear differential operator that depends on the medium dispersive and absorptive properties. Its spec-
trum is real if no attenuation is present, and has a negative imaginary part otherwise. The squared L2 norm of
W is proportional to the electromagnetic energy of the wave packet.

If W0 is the initial wave packet configuration, then W(t) can be found by using the fundamental solution of
Eq. (1.1)
WðtÞ ¼ e�itHW0. ð1:2Þ

Given some (grid) approximation of the spatial dependence of H and W, Eq. (1.2) provides a numerical solu-
tion of the initial value problem. In what follows the same letters are used for spatial continuum and grid rep-
resentations of the Hamiltonian and wave functions, unless noted otherwise. An exact solution of the initial
value problem is understood here in the sense of (1.2) where H is a finite matrix obtained from the continuous
Hamiltonian by means of a suitable, sufficiently accurate, spatial (grid) representation.

If H can be directly diagonalized, then (1.2) gives an exact solution for any value of t > 0. But this is pre-
cisely what one wants to avoid in numerical simulations because the matrix H is typically huge and the direct
diagonalization is too expensive, if impossible at all. For this reason, time domain algorithms use the semi-
group property of the fundamental solution: exp(�itH) = [exp(�iDtH)]N, where Dt = t/N with an integer N

being the number of time steps. For a sufficiently small time step Dt, typically, Dt � iHi�1, where iHi is the
(matrix) norm of H, the action of the infinitesimal evolution operator exp(�iDtH) on the state vector W
can be approximated by various means that do not require any direct diagonalization of H.

Section 3 is devoted to an algorithm that involves neither a direct diagonalization of H nor many time steps.
It is based on the well known approximation of an analytical function by the Faber polynomial series [3] (see
also the textbooks [4]). The Faber approximation method has been applied to quantum scattering problems [5]
to compute the causal Green’s function for the Schrödinger equation. The Faber polynomial approximation
of the exponential of a non-Hermitian operator has also been used to solve the initial value problem for the
Liouville–von Neumann equation that describes the time evolution of the density matrix in statistical systems
[6,7]. In the case when the spectrum of H is real, the approximation yields the well known Chebyshev prop-
agation method that has been developed to study wave packet dynamics in quantum systems [8–10] and later
used in electrodynamics of non-dispersive media [11].

We apply the Faber propagation scheme to solve initial value problems in electrodynamics of passive media
reformulated in the form of the Schrödinger equation (1.1) with a non-Hermitian Hamiltonian,
Wðt þ DtFÞ ¼ e�iDtFHWðtÞ �
Xn

k¼0

ckðDtFÞF kðHÞWðtÞ. ð1:3Þ
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Here ck(DtF) are the expansion coefficients and Fk(H) are Faber polynomials. The action of Fk(H) on W(t) can
be computed recursively. The recursion relation depends on the choice of the family of Faber polynomials.
The latter, in turn, is motivated by spectral properties of H. An important point to note is that the expansion
(1.3) gives an accurate approximation for the fundamental solution for large values of DtF� DtC � iHi�1

and, hence, the propagation can be done in just a few time steps. The Faber series (1.3) is known to converge
exponentially as the approximation order n increases. The accuracy of the algorithm is assessed in Section 4. In
Sections 5 and 6 the algorithm is applied to scattering of broad band laser pulses on a dielectric grating. Dis-
persive properties of the grating material are described by the Rocard–Powels–Debye model with a single pole.
The frequency band of the initial pulse is chosen to cover the anomalous dispersion range (the pole) of the
dielectric. The Faber propagation scheme is shown to be more efficient than the Lanczos–Arnoldi propagation
scheme applied earlier to the same system [12]. The Courant limit can be exceeded in at least 3000 times,
DtF P 3000DtC. Due to the exponential convergence of the algorithm it can be used as a benchmark for testing
various time propagation schemes. Note also that it can be applied with any suitable finite-dimensional
approximation of the Hamiltonian H (finite elements, or finite differencing, or any spectral representation).
In our simulations, the Fourier grid pseudospectral representation of H has been used [13,14].
2. Maxwell equations in the Hamiltonian form

Let D and B be electric and magnetic inductions, respectively, and E and H the corresponding fields. When
no external currents and charges are present, the dynamical Maxwell’s equations read
_D ¼ c$�H; _B ¼ �c$� E. ð2:1Þ

The over-dot denotes the partial derivative with respect to time, and c is the speed of light in the vacuum. Eq.
(2.1) have to be supplemented by the Gauss law $ �D ¼ 0 and also by $ � B ¼ 0. Relations between the fields
and inductions are determined by physical properties of the medium in question.

As an example we consider the Rocard–Powles–Debye model dielectric (the ionic crystal model [15,16])
with one resonance, which is used in our numerical simulations. The case with multiple resonances can be
studied in a similar fashion. In this model H = B, and the Fourier harmonics of the electric field and induction
of frequency x are related by D(x) = e(x)E(x) where the dielectric constant is given by
eðxÞ ¼ e1 þ
ðe0 � e1Þx2

T

x2
T � x2 � igx

; ð2:2Þ
with e1,0 being constants, xT the resonant frequency, and g the attenuation. Let P be the dispersive part of the
total polarization vector of the medium. Then D = e1E + P. By using the Fourier transform, it is straightfor-
ward to deduce that P satisfies the second-order differential equation
€Pþ g _Pþ x2
TP ¼ e1x2

pE; ð2:3Þ
where x2
p ¼ ðe0 � e1Þx2

T=e1 if e0 � e1 is positive, otherwise, x2
p ! �x2

p in (2.3). Eq. (2.3) must be solved with
zero initial conditions, P ¼ _P ¼ 0 at t = 0.

Define a set of auxiliary fields Q1,2 by P ¼ ffiffiffiffiffiffi
e1
p

xpQ1=xT and _Q1 ¼ xTQ2. Maxwell’s equations and (2.3)
can be written as the Schrödinger equation (1.1) in which the wave function and the Hamiltonian are defined
by
W ¼

e1=2
1 E

B

Q1

Q2

0
BBB@

1
CCCA; H ¼

0 ice�1=2
1 $� 0 �ixp

�ic$� e�1=2
1 0 0 0

0 0 0 ixT

ixp 0 �ixT �ig

0
BBB@

1
CCCA. ð2:4Þ
Here e1,0 are set to one in the vacuum, and to some specific values in the medium in question. The squared L2

norm of the wave function is proportional to the total electromagnetic energy of the wave packet. When atten-
uation is not present, g = 0, the Hamiltonian is Hermitian relative to the conventional L2 scalar product, and
the norm (or energy) is conserved.
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In our simulations, an absorbing layer of a conducting medium has been introduced at the grid boundaries
to prevent reflections of the wave packet. The conductivity r of the layer depends on position. The induced
current in a conducting media has the form rE. Hence, in the presence of the conducting layer the Hamilto-
nian (2.4) is modified by inserting �4pi

ffiffiffiffiffiffi
e1
p

r in place of zero in the upper-right corner. Further details can be
found in our earlier works [17,18,12].

3. Faber polynomial propagation scheme

Let D be a bounded, closed continuum in the complex plane such that the complement of D is simply con-
nected in the extended complex plane and contains the point at z =1 (e.g., a polygon, an ellipse, etc.). By the
Riemann mapping theorem [4], there exists a conformal mapping n which maps the complement of a closed
disk with center at the origin and radius q onto the complement of D, satisfying the normalization condition,
n(w)/w! 1 as jwj ! 1. Then its Laurent expansion at 1 is given by
nðwÞ ¼ wþ
X
kP0

ckw�k. ð3:1Þ
The radius q of the disk is called the logarithmic capacity of D. This quantity plays an important role in the
accuracy analysis given below. The family of Faber polynomials Fk associated with a conformal mapping n is
defined via the recursion relation
F kþ1ðzÞ ¼ zF kðzÞ �
Xk

j¼0

cjF k�jðzÞ � kck; F 0ðzÞ ¼ 1. ð3:2Þ
For a function f(z) that is analytic at every point of D, the Faber series
f ðzÞ ¼
X1
k¼0

ckF kðzÞ
is defined by
ck ¼
1

2pi

Z
jwj¼R

f ðnðwÞÞ
wkþ1

dw; ð3:3Þ
where R > q is sufficiently small that f can be extended analytically to the contour CR being the image of the
circle jwj = R under the conformal mapping n. The value R = q is acceptable if n can be extended continuously
to the circle jwj = q (e.g., when the boundary of D is a closed simple curve with no self-intersections (a Jourdan
curve)). The Faber series converges uniformly and absolutely to f on every region bounded by CR to which f

can be extended analytically [19]. This theorem establishes mathematical foundations for the Faber polyno-
mial approximation (1.3) of the fundamental solution of (1.1).

The Faber polynomial algorithm for solving initial value problems for (1.1) is as follows. First, choose a
(Jourdan) contour C that encloses the spectrum of H. Some criteria for choosing such a contour are discussed
in the following section. Second, find the corresponding conformal mapping n. In particular, if C is a polygon,
this task can be accomplished by the Schwartz–Christoffel transformation. For complicated polygons, there is
a numerical algorithm to do so [20]. Next, the Faber expansion coefficients ck(DtF) are computed by means of
(3.3) where f(z) = exp(�iDtFz). The action of the Faber polynomials of H on W(t) in (1.3) is computed using
the recursion relation (3.2). Let Uk = Fk(H)W(t). Then
Ukþ1 ¼ ðH � kckÞUk �
Xk

j¼0

cjUk�j; ð3:4Þ
where U0 = W(t) and U1 = (H � c0)U0. The series (1.3) converges uniformly on the entire spectral range of H.
In order to make the algorithm memory friendly, it is desired to make the sequence of ck not only finite, but
also as short as possible. In Section 5, we apply this algorithm to the Hamiltonian (2.4) and choose an ellipse
to enclose its spectrum.
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From the numerical point of view, the recursion relation (3.4) is, in general, unstable because the minimax
norm of Faber polynomials grows rapidly as their order increases, maxDjFk(z)j 6 2qk (see [21]). In other
words, the norm of Uk would grow exponentially, while the decay of ck(DtF) still provides the convergence
of (1.3). However, in a numerical implementation of (3.4), one might encounter floating point exceptions with
a subsequent loss of accuracy. To avoid this instability, the Hamiltonian H must be scaled so that its spectrum
lies in the domain whose logarithmic capacity is one. If b is the scaling factor, then exp(�iDtFH) =
exp(�iDtsHs), where Hs = H/b and Dts = bDtF. Thus, in the recursion relation (3.4) the scaled Hamiltonian
Hs and the sequence ck generated by the conformal mapping (3.1) with q = 1 must be used, while the expan-
sion coefficients in the Faber series (1.3) are determined by
ckðDtsÞ ¼
1

2p

Z 2p

0

exp½�iDtsnðeiuÞ�e�iku du. ð3:5Þ
Note that the exponential f(z) = exp(�iDtsz) is an analytic function in the entire complex plane so that, assum-
ing C to be a Jourdan curve, one can set R = q in (3.3) and use the fact that the spectrum of the scaled Ham-
iltonian lies in a domain with q = 1 and therefore w = eiu in (3.3). Clearly, the scaling factor b must chosen as
small as possible to allow for larger time steps DtF = Dts/b.

4. Accuracy and efficiency assessment

The range RH of H is a set of complex numbers (W, HW)/iWi2 obtained for all normalizable wave functions
W. Here (Æ,Æ) denotes a scalar product, and iÆi is the norm associated with it. The norm of the resolvent of H is
bounded by [22]
kðz� HÞ�1k 6 ½dðz;RH Þ��1
; ð4:1Þ
where d(z, z 0) = jz � z 0j is the distance on the complex plane, and the distance between z and a set RH is
defined as minz02RH dðz; z0Þ. Let C be any closed (Jourdan) curve enclosing the spectrum of H. Let Pn be a
polynomial of order n that is used to approximate the fundamental solution of (1.1), that is,
exp(�itH)W0 � Pn(H)W0. By making use of the Cauchy theorem, it is straightforward to see that the accuracy
of the approximation is bounded by
ke�itHW0 � P nðHÞW0k ¼
1

2pi

Z
C

e�itz � P nðzÞ
z� H

W0 dz

����
���� 6 CCkW0kmax

z2C
je�itz � P nðzÞj 	 �nðCÞkW0k; ð4:2Þ
where the constant CC = LC/[2pd(C, RH)] and LC is the length of C. To find CC, Eq. (4.1) has been used. Note
that CC depends on H and C, but is independent of the approximation order n. Hence, it follows from (4.2)
that the error of the polynomial approximation of the solution of the initial value problem for (1.1) can be
made as small as desired because the Faber polynomial approximation Pn(z) converges to exp(�itz) absolutely
and uniformly in D.

In addition, it is worth noting that the Faber polynomial approximation provides the so called ‘‘near best’’
polynomial approximation of an analytic function. By definition, i f i1 = maxz2D j f(z) j. The maximum prin-
ciple for analytic functions states [4] that if f is analytic in D and continuous in the closure of D, then jfj cannot
attain its maximum at interior points of D. According to (4.2) and the maximum principle for functions ana-
lytic in D bounded by C, the accuracy �n(C) of a polynomial approximation of an analytic function f of a
matrix H (in our case, f(z) = exp(�itz)) is
�nðCÞ ¼ CCke�itz � P nðzÞk1. ð4:3Þ
The fundamental theorem for polynomial approximations of functions analytic in the interior of D and con-
tinuous in D states that there exists a unique best minimax polynomial approximation P f

n to f, that is, [23]
kf � P f
nk1 6 kf � P nk1 ð4:4Þ
for any polynomial Pn of order n. In practice, it is not easy to find P f
n . Suppose we choose some polynomial

approximation, that is, we define a projection operator Pnf ¼ P n. In particular, for Faber polynomials
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Pn ¼ PF
n , and PF

n f is given by the truncated Faber series. Then it follows from the identity f �Pnf ¼
f � P f

n þPnðP f
n � f Þ that
kf �Pnf k1 6 ð1þ kPnkÞkf � P f
nk1. ð4:5Þ
Thus, our polynomial approximation appears to be ‘‘near best’’, provided the norm of the projection operator
Pn is not so large. For Faber polynomials, one can show that [23,24]
kPF
n k 6

V
p

4

p2
ln nþ B

� �
ð4:6Þ
for n P 1. Here B � 1.773 and V ¼
R

C jdhðzÞjP 2p and h(z) is the angle that is made by a line tangent to C
with the positive real axis. For a convex D, V = 2p by the Radon theorem. In our simulations, D is an ellipse,
which is convex, therefore
kPF
n k < 9; n 6 835. ð4:7Þ
Eq. (4.7) shows that by using the Faber polynomial approximation to f we do not loose more than one decimal
place in accuracy as compared with the best minimax polynomial approximation. In this case, one can also
show that [4]
kf �PF
n f k1 6

ðq=RÞnþ1V
pð1� q=RÞ max

z2CR

jf ðzÞj; ð4:8Þ
for any domain bounded by CR, R > q, to which f can be extended analytically. Thus, the Faber series (1.3)
converges exponentially as the approximation order n increases. From (4.8) some basic principles for choosing
the contour C follow.

First, because of the exponential convergence of the Faber series, it is desired to make the logarithmic
capacity q as small as possible. Alternatively, if q is set to one, the scaling factor b must be as small as possible,
that is, the contour should enclose the spectrum of H as tight as possible. In principle, if the structure of the
spectrum of H (or, at least, its range) is roughly known, one can find a polygon that tightly encloses the spec-
trum. The corresponding conformal mapping can be computed numerically [20]. The unfortunate feature of
this approach is that the infinite Laurent series (3.1) is required. Hence, the recursion relation (3.4) becomes
memory unfriendly in numerical simulations: All the preceding Uk must be kept in the operational memory.
Thus, when choosing the contour, one should compromise between the approximation order and the memory
use efficiency of the algorithm [5].

Second, if possible, the contour C should not go too far into the upper part of the complex plane to avoid
the exponential growth of the factor maxCjexp(�iDtsz)j and to allow for larger time steps. Note that the nec-
essary accuracy can still be reached, even if the contour goes through the upper part of the complex plane, by
increasing the approximation order n. The latter, however, would lead to a less efficient propagation scheme
because more operations per time step are required.

5. The case of an elliptic contour

Faber polynomials associated with an elliptic contour have the simplest (shortest) recursion relation [4]. For
this reason this family of the Faber polynomials have been used in many aforementioned applications in quan-
tum and statistical mechanics. Here we use the Faber polynomials associated with an ellipse to illustrate the
Faber propagation scheme in electrodynamics of passive media.

Consider C being an ellipse (x � x0)2/a2 + (y � y0)2/b2 = 1 where z = x + iy. The ellipse is an image of the
circle jwj = q under the conformal mapping
nðwÞ ¼ wþ c0 þ c1=w; ð5:1Þ

where a = q + c1/q, b = q � c1/q, and c0 = x0 + iy0 is the center of the ellipse. The logarithmic capacity of an
ellipse is q = (a + b)/2 and c1 = q (a � b)/2. We choose q = 1 so that
c1 ¼ 1� b.
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In this case, the optimization parameters are the scaling factor b and the number b + y0 that determines the
factor maxCjexp(�iDtsz)j = exp[Dts(b + y0)] in the accuracy (4.8) of the Faber approximation.

The recursion relation (3.4) associated with the elliptic contour has only two terms
Ukþ1 ¼ ðHs � c0ÞUk � c1Uk�1; k > 1; ð5:2Þ

where U0 = W(t) and U1 = (Hs � c0)U0. The Faber expansion coefficients have the form
ckðtsÞ ¼
�iffiffiffiffi
c1

p
� �k

e�iDtsc0 J kð2ts
ffiffiffiffi
c1

p Þ. ð5:3Þ
Here Jk is the Bessel function. When computing the integral (3.5) we assume that c1 > 0 (which is consistent
with the spectral properties of the Hamiltonian H used in our simulations). The exponential convergence of
the Faber series can easily be seen from the exponential decay of the Bessel function for k > 2Dts

ffiffiffiffi
c1

p
.

The Hamiltonian (2.4) cannot have eigenvalues with positive imaginary parts, otherwise the energy of the
wave packet (the squared norm of W) would increase with time, which is not possible in passive media. Hence,
by physical reasons, the spectrum of the Hamiltonian lies in the lower half of the complex plane. It is also clear
that the spectrum of the Hamiltonian is symmetric about the imaginary axis (for every direction in space, there
are incoming and outgoing waves). Hence, we set x0 = 0. The spectrum of H lies in a rectangle
[�Em, Em] · [�v,0] with Em and v to be determined below. Our strategy is to find an ‘‘optimal’’ ellipse with
q = 1 that contains a scaled rectangle [�Es, Es] · [�vs, 0], where Es = Em/b and vs = v/b.

First, we determine the bounds, Em and v, on the spectral range of H. Let zw = (W, HW)/iWi2 be a point in
RH. Let H = H0 � iV where H 0 ¼ ðH þ H yÞ=2 ¼ H y0 and V = i(H � H�)/2 = V� is positive semidefinite. Then
Em ¼ max
W

Re zw ¼ max
W
ðW;H 0WÞ=kWk2 ¼ kH 0k. ð5:4Þ
Thus, Em is the maximal eigenvalue of H0 because H0 is Hermitian. It can be found by the standard
numerical procedure. If Wn = H0Wn�1 for n = 1,2,. . . for some initial vector W0, the sequence iWni/iWn�1i
converges to the maximal eigenvalue Em of H0 as n increases. A rough estimate for Em can also be obtained
by noting that the maximal wave vector supported by the grid in the Fourier pseudospectral representation is
kmax = p/amin with amin being the smallest grid step (if a non-uniform grid is used). Hence, Em � ckmax.
Similarly,
v ¼ max
W
ð�Im zwÞ ¼ max

W
ðW; V WÞ=kWk2 ¼ maxf4p

ffiffiffiffiffiffi
e1
p

rmax; gg ¼ 4p
ffiffiffiffiffiffi
e1
p

rmax; ð5:5Þ
where rmax is the maximal value of conductivity of the absorbing layer. Here we have used that fact that V is
diagonal and the medium attenuation g is small compared to rmax.

By the symmetry, the center of the ellipse is set to coincide with the center of the rectangle,
c0 ¼ �ivs=2.
An ellipse that contains the rectangle vertices should satisfy the following condition:
a
b
¼ Esffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � jc0j
2

q . ð5:6Þ
Since q = 1, a = b � 2. Eq. (5.6) relates b and the scaling factor b.
As has been argued above, to increase the time step DtF = Dts/b, the scaling factor b must be minimal. So,

one can take b for which b attains its minimal value. The smallest b is reached when
b
a
¼ jc0j

Es

� �2=3

¼ v
2Em

� �2=3

. ð5:7Þ
Observe that if v = 0, that is, if the spectrum of H is real, the optimal ellipse has b = 0 and b = Em. In this case,
the Faber polynomial series is nothing but the Chebyshev polynomial series. Unfortunately, when v 6¼ 0 by
making b smaller we increase the number b + y0. Hence, the ellipse gets farther into the upper half of the com-
plex plane and higher orders of the Faber approximation are needed to achieve desired accuracy according to
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(4.8). So, in our simulations we take b larger than its minimal value and thereby reduce b + y0 by making b

smaller (see following section for details).

6. Applications to nanostructured periodic materials

As an example of possible applications of the present method to photonics, the Faber propagation scheme
associated with an elliptic contour is applied to scattering of broad band wave packets on nanostructured peri-
odic materials, the subject of current interest in photonics [25]. We consider a grating made of a periodic array
of ionic crystal cylinders in vacuum. This system has been previously studied by the Lanczos–Arnoldi time
propagation scheme [12]. In particular, the role of trapped modes (guided wave resonances) and polaritonic
excitations in transmission and reflection properties of the grating in the infrared range has been elucidated.
Apart from illustrating the Faber propagation scheme, our primary interest is to compare its efficiency with
the efficiency of the Lanczos–Arnoldi propagation scheme.

The geometry of the system is sketched in the inset of Fig. 2. The system has a translation symmetry along one
of the Euclidean axes, chosen to be the y-axis. It is periodic along the x-axis with period Dg, while the z-direction
is transverse to the grating. The packing density R/Dg = 0.1, where R is the radius of cylinders and Dg = 10.8 lm
is the grating period. The broad band wave packet is represented by a Gaussian pulse that is about 38 fs long and
has the carrier frequency of 173 meV. It propagates along the z-axis and is linearly polarized with the electric field
oriented along the y-axis, i.e., parallel to the cylinders (the so called TE polarization). The spectrum of the wave
packet is concentrated in a wavelength domain k P Dg such that the scattering is dominated by the zero diffrac-
tion mode (the reflected and transmitted beams propagate mainly along the z-axis). A change of variables is used
in both x (x = f1(x1)) and z (z = f2(x2)) coordinates to enhance the sampling efficiency in the vicinity of medium
interfaces so that the boundary conditions are accurately reproduced by the Fourier grid pseudospectral method.
A typical size of the mesh corresponds to �17.3Dg 6 z 6 15.3Dg, and �0.5Dg 6 x 6 0.5Dg with, respectively,
384 and 64 mesh points. Note that, because of the variable change, a uniform mesh in the auxiliary coordinates
(x1,x2) corresponds to a non-uniform mesh in the physical (x, z) space. The Lanczos–Arnoldi time propagation
is carried out with a fixed time step DtL = 0.138 fs. The propagation by the Faber method has been done with
different time steps DtF = jDtL, with j = 25, 50, 100, 200, 400, and 1000 (see below).

The dielectric function of the ionic crystal material is approximated by the single oscillator model (2.3). Fol-
lowing the work [15], we chose the parameters representative for the beryllium oxide: e1 = 2.99, e0 = 6.6,
xT = 87.0 meV, and the damping g = 11.51 meV. Thus, for Dg = 10.8 lm two types of resonances can be
excited in the system within the frequency domain covered by the incident pulse. Structure resonances are
characteristic for periodic dielectric gratings. They are associated with the existence of guided wave modes
[26,27]. As has been demonstrated previously, in the absence of losses, structure resonances lead to 100%
reflection within a narrow frequency interval(s) for wavelengths k � Dg. The second type of resonances arise
because of polaritonic excitations for wavelengths k � DT = 2pc/xT = 26.9 lm. These are associated with sub-
stantial energy losses in the ionic crystal material. A detailed discussion of the transmission and reflection
properties of this grating can be found in [12].

Fig. 1a shows the elliptic contour used in our simulations. Its logarithmic capacity is one, q = 1, and the
corresponding conformal mapping (5.1) reads n(w) = w � 0.005i + 0.99/w so that b = 0.01. The scaling factor
b = Em/Es, where Em = 0.6468 and Es = 1.7. The shaded area is the rectangle [�Es, Es] · [�vs, 0] that contains
the range of the scaled Hamiltonian Hs = H/b as explained in Section 5. The maximum imaginary part of the
scaled Hamiltonian, vs = 0.01, is consistent with our choice of the absorbing layer. The order n of the Faber
polynomial approximation is set by the exponential decay of the expansion coefficients (5.3). In our simula-
tions, we demand that jckj becomes less than 10�15 for k P n. The behavior of jckj is shown in Fig. 1b for time
steps DtF = jDtL with j = 50, 200, and 1000.

The transmitted signal is collected on the ‘‘virtual detector’’ located at zd = 3.22Dg behind the structure.
The zero-order component of the electric field,
E0ðzd; tÞ ¼
1

Dg

Z Dg

0

Eðx; zd; tÞdx ð6:1Þ
is shown in Fig. 2.



Fig. 1a. The elliptic contour used in our simulations. Results are presented on the complex plane of the scaled energy (ReE, ImE). The
shaded rectangle contains the range of the scaled Hamiltonian Hs = H/b. Further details are given in the text.

Fig. 1b. The log–log plot of absolute values jckj of the expansion coefficients versus k for time steps DtF = jDtL with j = 50, 200, and 1000
as indicated in the inset of the figure.
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The existence of a trapped mode (resonance) can easily be inferred from the temporal evolution of the elec-
tromagnetic field. The main transmitted pulse is clearly visible. It has a significant amplitude and a duration
about 38 fs. After the main pulse passes the array, it leaves behind excited quasistationary modes which loose
Fig. 2. Electric field of the zero-order transmitted wave as a function of time measured in femtoseconds. The signal is registered by a
detector placed behind the periodic layer of ionic crystal cylinders. The grating geometry is sketched in the inset of the figure.
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their energy by radiating almost monochromatic waves. By symmetry, the same radiation of quasistationary
modes is registered in the reflection direction by a detector placed in front of the layer (not shown here). The
quasistationary mode associated with polaritonic excitations in the ionic crystal has a wave length k � DT and
is short-lived due to the strong absorption of the material at the resonance (the anomalous dispersion region).
Therefore the observed lasing effect is mainly due to the long-lived structure resonance at k � Dq. The radi-
ation of this mode appears as exponentially damped oscillations coming after the main signal. The exponential
decay due to a finite lifetime of the quasi-stationary mode is clearly seen. The resonance lifetime is in the pico-
second range, i.e., a thousand times longer than the initial pulse duration. For lossless media, the existence of
the quasistationary mode(s) leads to a 100% reflection at the resonant frequency, as has been discussed in
detail in Refs. [12,28]. Finally, the concept of trapped modes localized on successive layers and interacting with
each other provides a theoretical framework for light propagation in layered structures such as photonic crys-
tal slabs [29].

The main results of the paper are summarized in Fig. 3 and Table 1 where we show the precision of the
Faber propagation scheme and compare its numerical costs with those of the Lanczos–Arnoldi scheme.
Fig. 3 presents a relative error of the time propagation, defined as j{E0(zd,t) � Eref(zd,t)}/Eref(zd,t)j, where
the reference signal Eref(zd,t) is chosen to be the result obtained by the Faber propagation scheme with
DtF = 50DtL. The choice is motivated by a higher precision of the Faber scheme (thanks to its exponential
convergence) and by the fact that the factor maxCjexp(�iDtFz)j is minimal for the smallest DtF used in our
simulations. There is no change in Fig. 3 if the reference field is computed with DtF = 25DtL or DtF = 50DtL

(see below).
It follows from our results that the Faber propagation scheme has a higher accuracy than the Lanczos–

Arnoldi propagation at reduced computational costs. The error was saturated at 10�10 value when 10
Fig. 3. Relative error (defined in the text) for the zero-order wave transmitted through the periodic layer of ionic crystal cylinders. Results
obtained with the Faber propagation scheme (full symbols) and the Lanczos–Arnoldi scheme (open circles) are presented as a function of
time measured in femtoseconds. The time step for the Lanczos–Arnoldi propagation is DtL = 0.138 fs. The time step for the Faber
propagation scheme is given by DtF = jDtL, where the correspondence between different symbols and the values of j is indicated in the inset
of the figure.

Table 1
Numerical costs and efficiency of the Faber polynomial propagation

Time step units of DtL Number of HW operations Computation time gain �2.5NL/NF

NF (Faber) NL (Lanczos)

25 170 175 2.5
50 290 350 3.0

100 525 700 3.3
200 980 1400 3.6
400 1890 2800 3.7

1000 4560 7000 3.8
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significant digits in the calculated signal where found to coincide. The peaks correspond mainly to the
instants of time when the oscillating electric field is close to zero. The gain in the propagation efficiency as
compared to the Lanczos–Arnoldi scheme is twofold. First, a smaller number of actions of H on W(t) is
needed to obtain W(t + DtF). In the Faber propagation scheme, it is given by the order of the Faber polyno-
mial approximation of the fundamental solution, NF = n. In the case of the Lanczos–Arnoldi scheme, the
number of actions of H on W(t) is given by NL = KDtF/DtL where K is the dimension of the Krylov space.
For the precision shown in Fig. 3, K = 7. Second, as we have already discussed in Ref. [12], for a typical size
of the mesh as used here, computational costs of acting by H on W(t) are comparable with those of construct-
ing an orthonormal basis for the Krylov space (by means of the Arnoldi process) and projecting the Ham-
iltonian onto the Krylov space (a K · K Hessenberg matrix for a non-Hermitian H). This explains an extra
factor 2.5 in the fourth column of Table 1. For significantly larger sizes of the mesh, in particular, for 3D
simulations, the computational costs of acting by H on W should prevail, and the gain in the computation
time should simply scale as NL/NF.

It is worth noting that memory requirements are lower for the present Faber propagation owing to the
short recursion relation (associated with an elliptic contour). Indeed, in the case of the Lanczos–Arnoldi
scheme the number of vectors to be kept in the operational memory equals K.

Finally, in the Lanczos–Arnoldi propagation scheme applied to the above system the time step DtL exceeds
the Courant limit DtC = iHi�1 at least in three times [12]. Therefore, the Faber propagation scheme allows one
to exceed the Courant limit at least in 3000 times, DtF P 3000 DtC as one can see from Table 1.

7. Conclusions

We have shown that the Faber propagation scheme can successfully be used in electrodynamics of passive
media. The scheme is global in time, that is, it allows one for time steps that exceed the Courant limit in a few
orders of magnitude. As a point of fact, the propagation can actually be carried out in a single time step if the
system in question does not have long-lived quasistationary modes (as the structure resonance in the example
we have considered above).

The essential virtue of the scheme is the exponential convergence, which leads to superior accuracy as com-
pared to other time domain methods in passive media. The Faber propagation scheme can therefore be used as
a benchmark, when comparing various propagation methods. If the medium is lossless and no absorber is
present, the Faber scheme coincides with the Chebyshev propagation scheme, whose high accuracy is well
known in time domain methods in computational quantum physics.

Another advantage of the present Faber propagation scheme is a relatively low memory demand. This,
however, is essentially due to an elliptic contour which leads to a family of Faber polynomials that are gen-
erated by a short recursion relation. For example, the conventional leapfrog (time differencing) propagation
scheme requires to have two arrays W(t) and W(t � Dt) in the operational memory to compute W(t + Dt), while
in the Faber scheme associated with an elliptic contour, a recursive computation of the sum (1.3) requires stor-
ing three arrays Wm(t + DtF), Um, and Um�1, where Wm is the series (1.3) with k = 0,1, . . .,m 6 n, and
m = 1,2, . . .,n being the recurrence running index, Wm + 1 = Wm + cm + 1Um + 1. However, the gain of the Faber
scheme in efficiency and accuracy is enormous.

It should be noted that we have not explored a further optimization of the present Faber propagation
scheme because our main goal was to compare it with the Lanczos–Arnoldi propagation scheme (which
was applied to the above system and shown to be more accurate and efficient than a typical finite differ-
encing (leapfrog) scheme). For any application, the optimization should include the following. First, the
spread of the spectrum along the real axis is essentially determined by the smallest grid spatial step. So,
depending on the accuracy demand, Em can be reduced. Second, the absorbing layer can also be
optimized to reduce the spread v of the spectrum along the imaginary axis. In addition, one can try to esti-
mate (e.g., by perturbation theory) imaginary parts of eigenvalues with large real parts (of order Em). This
would lead to a tighter ellipse. Finally, the contour shape itself can also be optimized, which, in general,
requires a better knowledge of the spectrum of the Hamiltonian. Thus, for a specific problem on hands, the
Faber propagation scheme can be made even more efficient than the simplest example presented in our
work.
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