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1 We use this term to refer to a specific technique re
In any case, the technique does achieve sparsification
a b s t r a c t

We describe a multidomain spectral-tau method for solving the three-dimensional heli-
cally reduced wave equation on the type of two-center domain that arises when modeling
compact binary objects in astrophysical applications. A global two-center domain may
arise as the union of Cartesian blocks, cylindrical shells, and inner and outer spherical
shells. For each such subdomain, our key objective is to realize certain (differential and
multiplication) physical-space operators as matrices acting on the corresponding set of
modal coefficients. We then achieve sparse realizations through the integration ‘‘precondi-
tioning’’ of Coutsias, Hagstrom, Hesthaven, and Torres. Since ours is the first three-dimen-
sional multidomain implementation of the technique, we focus on the issue of convergence
for the global solver, here the alternating Schwarz method accelerated by GMRES. Our
methods may prove relevant for numerical solution of other mixed-type or elliptic prob-
lems, and in particular for the generation of initial data in general relativity.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction and preliminaries

1.1. Introduction

This paper describes spectral methods designed with a specific application in mind: numerical solution of a mixed-type
problem arising in gravitational physics. In reviewing an ongoing program to construct helically symmetric solutions to the
Einstein equations, this introduction recalls the origins of this problem below. However, this paper also serves another pur-
pose; it demonstrates that spectral-tau integration preconditioning1 yields accurate numerical solutions to the helically
reduced wave equation (HRWE), a mixed-type, variable coefficient, linear partial differential equation (PDE) problem, here
posed on a nontrivial three-dimensional (3D) domain. Ref. [1] offered spectral-tau integration preconditioning as a general-pur-
pose strategy for spectral approximation of differential equations, and that reference provides the most thorough description
and analysis of the technique; related techniques were explored in [2] (integration postconditioning) and [3] (nodal integration
preconditioning), with applications described in, for example, Refs. [4,5]. Heretofore, spectral-tau integration preconditioning
has primarily been studied either in the ODE context or for PDE problems posed on basic two-dimensional (2D) domains (rect-
angles, annuli, and disks); however, as a warmup to the 3D problem addressed here, we have earlier studied it in a multidomain
context for the 2D HRWE [6]. While the 3D HRWE is of interest on its own, here it serves to demonstrate the general challenges
. All rights reserved.

rprice@phys.utb.edu (R.H. Price).
viewed below; however, insofar as our work is concerned the word preconditioning might be a misnomer.
, and this is the aspect of the technique we focus on here.

http://dx.doi.org/10.1016/j.jcp.2012.07.006
mailto:lau@math.unm.edu
mailto:rprice@phys.utb.edu
http://dx.doi.org/10.1016/j.jcp.2012.07.006
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


7696 S.R. Lau, R.H. Price / Journal of Computational Physics 231 (2012) 7695–7714
and conditioning issues encountered in applying spectral-tau integration preconditioning to a 3D multidomain problem. We
now describe the physical problem motivating our work.

The advent of gravitational wave detection has driven theoretical studies of gravitational wave sources. A source that is
possibly interesting for ground-based detectors, and perhaps the most exciting source for space-based detectors, is the inspi-
ral of two comparable mass black holes and their merger to form a single black hole. The early stage of inspiral is modeled
with reasonable accuracy by perturbations of the Newtonian analysis, and the post-merger stage can be analyzed with black
hole perturbation theory. The most difficult stage to analyze is the intermediate stage, when a few orbits remain. This epoch
of inspiral is too late for a modified Newtonian approach, but too early for black hole perturbation theory. Yet this is the
epoch in which a large part of the gravitational wave energy is generated.

The importance of, and difficulty in, analyzing this epoch was the original motivation for an innovative approximation, the
periodic standing wave (PSW) method. This approach uses the fully nonlinear field interactions, but models the binary com-
pact objects as forever on circular orbits of constant radius. Therefore, both the compact source motions and the fields exhibit
helical symmetry. Not only does this symmetry reduce the number of independent variables, it also changes the nature of the
governing PDEs, turning the problem from the hyperbolic evolution of initial data to one of mixed-type that is elliptic near a
rotation axis and hyperbolic well outside the axis and beyond the orbits in the wave zone of the system. More details of this
astrophysical background are given in [6]. Here we only point out that recent supercomputer evolutions of initial black hole
binary data have been run stably for many orbits in the intermediate epoch. See, for example, Refs. [7–23] (not an exhaustive
list), and [24] for a recent review. Even the inspiral of binaries with large mass ratios [21,22] or high spins [23], both
particularly challenging cases, can now be computed. To be sure, recent successes with purely hyperbolic numerical evolu-
tions have undercut the original motivation for the PSW approximation. Nevertheless, there remains a niche for the PSW
approximation for the following reasons. First, it should provide a test bench for understanding nonlinear gravitational radi-
ation reaction as a local process. Second, a helically symmetric solution of the Einstein equations would be, of its own accord,
of bewitching interest.

The numerical computation of PSW fields has, in fact, already been carried out, using a single grid and a unique method
devised especially for the problem by one of us (RHP) and coworkers. These computations were done in a series of steps
[25–29] moving from linearized scalar fields up to and including the nonlinear tensor fields of general relativistic gravity.
However, the method used proved too limited in accuracy to be useful. Furthermore, despite the attractive simplicity of
the computational method, its implementation for general relativistic tensor fields proved challenging. The astrophysical
PSW problem, therefore, can be viewed as yet unsolved. The spectral methods described here are designed to solve this
astrophysical problem to high accuracy. In any case, as mentioned above, our work is relevant as a successful use of spec-
tral-tau integration preconditioning for the solution of PDEs (even of mixed-type) on nontrivial 3D domains. From this stand-
point, the astrophysical problem simply provides a convenient application, with a particularly interesting feature. In the
astrophysical problem, the region in which the PDEs are hyperbolic (the distant wave zone) is a region in which the PDEs
have only very small nonlinearities. The strong linearities, near the source objects, are confined to a region in which the PDEs
are elliptic. While we do not consider nonlinearities in this paper, the methods we introduce for our linear model problem
deliver sufficient accuracy that nonlinearities can almost surely be included.

Multidomain spectral methods for the binary inspiral of compact relativistic objects are not new. In pioneering work, no-
dal (i.e. collocation) methods were used by Pfeiffer et al. [30,31] for the elliptical problem of constructing binary black hole
initial data, and are now being used by the Caltech-Cornell-CITA collaboration (see, for example, [20]) in the hyperbolic evo-
lution problem. This work, now highly developed, relies on SpEC (the Spectral Einstein Code [32]), a large C++ project chiefly
developed by Pfeiffer, Kidder, and Scheel, but also involving many other researchers and developers. In fact, the domain
decomposition of Refs. [30,31] has motivated our own choice. Nevertheless, to date the 3D problem we consider here has
not been numerically solved via spectral methods.

Our previous study [6] applied a modal multidomain spectral-tau method to a model nonlinear problem of two strong
field sources in binary motion with only two spatial dimensions. That study also relied on integration preconditioning,
although the relevant linear systems were inverted by direct rather than iterative methods (which was possible since the
2D problem was less memory intensive). Our 2D study, a proof of concept, showed that high accuracy could be achieved with
relatively modest memory and run-time requirements. Here we generalize our 2D method to 3D, that is to three spatial
dimensions and one time dimension, reduced to a problem with three independent variables by the imposition of helical
symmetry. Due to the larger set of modes needed for the 3D problem, iterative solution of the relevant linear system is
now necessary. We use the generalized minimum residual method (GMRES) [33,34]. Since the amount of work and storage
per iteration increases with the iteration count [33,34], preconditioning is a crucial issue (and here we mean further, one
might even say genuine, preconditioning on top of the ‘‘integration preconditioning’’). Through a multilevel preconditioning
scheme, we will achieve near round-off accuracy for large truncations (’ 600,000 unknowns) with modest iteration counts.
Moreover, as we achieve a sparse formulation of the relevant linear system, each iteration is also fast.
1.2. Specification of the problem

Before writing down our mixed-type PDE problem, we describe the two-center (hereafter 2-center) domain D on which
the problem is posed, first recalling the coordinate conventions of [26]. Let fx; y; zg represent the inertial Cartesian system
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related to the spherical-polar system fr; h;/g in the usual physicist’s convention (h and / are respectively the polar and azi-
muthal angles). We then introduce a ‘‘comoving’’ Cartesian system
Fig. 1.
inner b
ez ¼ r cos h; ex ¼ r sin h cosð/�XtÞ; ey ¼ r sin h sinð/�XtÞ; ð1Þ
where X < 1 is a fixed rotation rate. Note that the ez and z-axes coincide, and both are the azimuthal axis. Via a simple per-
mutation, we then define a new comoving system
eX ¼ ey; eY ¼ ez; eZ ¼ ex ð2Þ
for which the eZ-axis is not the azimuthal axis. If we imagine two compact objects with ‘‘centers’’ located at
n1ðtÞ ¼ a1 cosðXtÞex þ a1 sinðXtÞey and n2ðtÞ ¼ �a2 cosðXtÞex � a2 sinðXtÞey in the inertial fx; y; zg system, then the eZ-axis con-
nects these compact objects. That is, n1 ¼ a1eeZ and n2 ¼ �a2eeZ . We introduce the coordinates fer ; eh; eug as spherical coordi-
nates relative to the comoving fex; ey; ezg system. We will exclusively work with the comoving systems (or simple translations
or polar versions thereof), but we will often suppress tildes when doing so will not cause confusion. We will, for example, use
fr; h;ug, hereafter, to mean fer ; eh; eug; these coordinates should not be confused with fr; h;/g of Eq. (1).

Relative to the system feX ; eY ; eZg, the 2-center domain D that we have used is depicted in Fig. 1. Topologically, the domain
D is a large solid 3D ball with two excised regions (each a smaller solid 3D ball). The global domainD has been broken into 11
subdomains, each sufficiently simple to allow for spectral expansions in terms of classical basis functions. A large outer shell
(labeled O for ‘‘out’’) is not shown in Fig. 1, but the remaining 10 subdomains which comprise the ‘‘inner region’’ are shown.
The inner region is comprised of two ‘‘inner shells’’ (spherical shells labeled J and H), three ‘‘blocks’’ (rectangular subdomains
labeled B;C, and D), and five ‘‘cylinders’’ (cylindrical shells labeled 1;2;3;4, and 5).

The HRWE problem we consider is as follows:
Lw ¼ g on D; w ¼ h� on @H� [ @J�;
@

@r
�X

@

@u
þ 1

r

� �
w ¼ hþ on @Oþ; ð3Þ
where the defining operator is
L ¼ @2

@ex2
þ @2

@ey2
þ @2

@ex2
�X2 ex @

@ey � ey @

@ex
� �2

¼ @2

@eX2
þ @2

@eY 2
þ @2

@eZ2
�X2 eZ @

@eX � eX @

@eZ
� �2

: ð4Þ
Here the constant X is the rotation rate, and g is a prescribed source. As described in, for example, [6] this problem arises via
a helical reduction of the inhomogeneous 3+1 wave equation (see also the Appendix). Notice that the problem includes
Dirichlet conditions set on the inner boundaries of the spherical shells J and H. The boundary condition set on the outer
boundary of the spherical shell O is of radiative type, and is here expressed in terms of the polar coordinates fr; h;ug relative
to fex; ey;ezg. Although this radiation condition is described precisely below, it may here be thought of as an inhomogeneous
Sommerfeld condition. (The inhomogeneity hþ in (3) is a nonlocal expression.) This paper will consider only the variable-
coefficient linear problem (3). For numerical tests, g is taken as zero on D, but with distributional support, point sources, lo-
cated at the centers, n1 and n2, of J and H. For this choice of g, an exact solution is described in the Appendix. While we only
consider the linear scalar problem (3), the helical reduction of the Einstein equations described in [27,28] involves a tensorial
field resolved into ten coupled ‘‘helical scalars’’ wðabÞ each of which obeys a copy LwðabÞ ¼ gðabÞ of the above equation. However,
for this formulation gðabÞ is now not an external source, but rather is a nonlinear coupling function of the helical scalars which
DOMAIN DECOMPOSITION. The whole inner configuration of 10 subdomains is enclosed within an outer spherical shell which is not shown, save for its
oundary in (b). Our total configuration is therefore comprised of 11 subdomains.
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does include second-order derivative terms (albeit of quadratic smallness). The linear problem solved here is therefore the
first step towards considering the helically reduced Einstein equations.

1.3. Overview of 3D spectral-tau integration ‘‘preconditioning’’

Mostly focusing on the 3D HWRE in three Cartesian variables on a rectangular block, this subsection gives an overview of
integration preconditioning for spectral-tau methods, focusing on the Kronecker product representations necessary for 3D.
Our overview aims to provide the reader with enough context to follow the heavy details encountered later when applying
the technique on 3D spherical and cylindrical shells. Our earlier paper [6] gave a fuller account of the same issues for 2D,
many of which change little in going to 3D.

The following overview makes use of matrices Dk and Bm
½n�. These respectively represent kth order differentiation and mth

order integration with respect to a basis of Chebyshev polynomials. As explained later, the subscript ½n� indicates that the
first n rows of a matrix are empty. The following key properties are exploited later: (i) Dk is dense upper triangular,
(ii) Bm

½n� is sparse and banded with upper and lower bandwidth m, and (iii) Bn
½n�D

k ¼ Bn�k
½n� for n P k. Here B0

½n� � I½n� is the identity
matrix, except that each entry in its first n rows is a 0. For the standard interval ½�1;1� our earlier paper [6] gave expressions
for D � D1;D2, B½1� � B1

½1�, and B2
½2� (simple rescalings are necessary for a general interval); our treatment of the 3D HRWE (a

second order equation) relies on these matrices.

1.3.1. Direct product representations
A function on any of our 3D subdomains is encoded by the modal coefficients in its spectral expansion, and this set of

modal coefficients is often here viewed as a direct (Kronecker) product. For example, we take a rectangular block delineated
by the above comoving coordinates feX ; eY ; eZg, but for the rest of this overview we suppress the tildes on these coordinates.
Suppose a function wðX;Y ; ZÞ on the block is approximated by the finite series
PNX ;NY ;NZ wðX;Y; ZÞ ¼
XNX

n¼0

XNY

m¼0

XNZ

p¼0

ewnmpTnðnðXÞÞTmðgðYÞÞTpðvðZÞÞ; ð5Þ
where ðnðXÞ;gðYÞ;vðZÞÞmaps our block to ½�1;1�3 and the TnðnÞ are Chebyshev polynomials of the first kind. Then wðX;Y ; ZÞ is
represented (either exactly or approximately) by a three-index set fewnmp : 0 6 n 6 NX ; 0 6 m 6 NY ; 0 6 p 6 NZg of modal
coefficients. We view this set as a vector ew, with components ewðaÞ fixed by the direct product representation
ewðnðNY þ 1ÞðNZ þ 1Þ þmðNZ þ 1Þ þ pÞ ¼ ewnmp: ð6Þ
A single matrix operating on the vector ew (all modal coefficients representing the given function) may then equivalently
be considered as having block-elements which are other matrices. We always view the modal set for a function on a cylin-
drical or rectangular subdomain as a direct product of three one-dimensional sets. However, in the case of the spherical shells
(J;H, and O), we sometimes view the set of modal coefficients as the direct product of only two sets, the set corresponding to
the radial modes and the set corresponding to the spherical harmonic modes (which involve both the polar and azimuthal
angles).

Operators corresponding to a single dimension, that is ‘‘simple’’ matrices (whose elements are numbers, not matrices), are
usually represented by an ordinary-font capital, such as the identity operator/matrix IX or the matrix DZ which realizes dif-
ferentiation by Z. Matrices which act on the full set of modal coefficients are represented by a calligraphic capital, for exam-
ple B. Thus, if BZ½1� represents integration in Z, then on a rectangular block we might use B ¼ IX � IY � BZ½1� as the matrix
which, when applied to a vector ew holding the full set of modal coefficients, realizes integration in Z with no action in X
or Y. That is, if wðX;Y ; ZÞ has modal coefficients ew, then formally

R
wðX;Y ; ZÞdZ has modal coefficients Bew. The ½1� on BZ½1� indi-

cates that all entries in its first row (the zeroth row by our conventions) are zero, so that ðBewÞðaÞ ¼ 0 whenever p ¼ 0 for the
index a ¼ nðNY þ 1ÞðNZ þ 1Þ þmðNZ þ 1Þ þ p (cf. Eq. (6)). This choice would fix the integration ‘‘constant’’ (a function of X and
Y) in

R
wðX;Y ; ZÞdZ, but these empty rows (labelled by m and n) might also be subsequently filled with ‘‘tau-conditions,’’ that

is nontrivial vectors chosen to fix a different ‘‘constant.’’

1.3.2. Integration preconditioning
We review the key ideas behind the technique of integration preconditioning, continuing to assume a rectangular block

subdomain and also assuming the HRWE operator (4). Repeated use of the Leibniz rule casts (4) (again with tildes sup-
pressed) into the form
L ¼ @2
Y þ @

2
Xð1�X2Z2Þ þ @2

Zð1�X2X2Þ �X2ð@XX þ @ZZ � 2@X@ZXZÞ: ð7Þ
We view this equation as an operator identity; partial derivatives ‘‘see’’ both terms like Z2 and XZ to the right, and also the
function (not shown) on which L will eventually act. The TnðnÞ obey the three-term recurrence 2nTnðnÞ ¼ Tnþ1ðnÞ þ Tn�1ðnÞ.
Here n may be viewed as a suitable rescaling of either X;Y , or Z. Therefore, multiplication by the independent variable
(for the moment n) is represented in the corresponding space of modal coefficients by a banded (evidently a tridiagonal) ma-
trix An. In fact, multiplication by a polynomial pðnÞ is similarly represented by a banded matrix pðAnÞ. The matrix which
represents L is
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L ¼ IX � D2
Y � IZ þ D2

X � IY � ðIZ �X2A2
ZÞ þ ðIX �X2A2

XÞ � IY � D2
Z �X2ðDXAX � IY � IZ þ IX � IY � DZAZ

� 2DXAX � IY � DZAZÞ; ð8Þ
where each D represents differentiation in the space of modal coefficients for one coordinate. Overall L is neither sparse nor
banded, since these desirable features are spoiled by the derivative matrices (see the second paragraph of this subsection).

The idea behind integration preconditioning is to ‘‘undo’’ all matrix differentiations through repeated application of inte-
gration matrices (cf. point (iii) in the second paragraph of this subsection). To illustrate, we consider the modal representa-
tion Lew ¼ ~g of (3) on the block, ignoring boundary conditions for now. Introducing B � B2

X½2� � B2
Y½2� � B2

Z½2�, we then form
BLew ¼ B~g. The coefficient matrix of the new ‘‘preconditioned’’ system is then
BL ¼ B2
X½2� � IY ½2� � B2

Z½2� þ IX½2� � B2
Y½2� � ðB

2
Z½2� �X2B2

Z½2�A
2
ZÞ þ ðB

2
X½2� �X2B2

X½2�A
2
XÞ � B2

Y ½2� � IZ½2�

�X2ðBX½2�AX � B2
Y ½2� � B2

Z½2� þ B2
X½2� � B2

Y ½2� � BZ½2�AZ � 2BX½2�AX � B2
Y ½2� � BZ½2�AZÞ: ð9Þ
Built with Bs and As, this matrix is sparse and banded, albeit with large bandwidth.
The matrix BL has many empty rows, signaling missing information. The spectral-tau procedure is to put the ‘‘tau con-

ditions,’’ here the boundary conditions, in these empty rows, and the corresponding inhomogeneous values in B~g. When this
procedure is carried out correctly, with due regard to possible repetition in the specification of boundary data, the empty
rows provide precisely the space needed for the boundary data of a well-posed problem. To enforce boundary conditions
for the example at hand, we proceed as follows. We define, for example, hþðX;YÞ ¼ wðX;Y ; ZmaxÞ and h�ðX;YÞ ¼
wðX;Y ; ZminÞ. Then Dirichlet boundary conditions along the XY-faces of a block are expressible as
XNZ

p¼0

ewnmpd
�
p ¼ ~h�nm; ð10Þ
where a double Chebyshev projection appears on the right-hand side. Moreover, dþ (all 1’s) and d� (alternating þ1 and �1)
are the ðNZ þ 1Þ dimensional ‘‘Dirichlet vectors.’’ Similar equations correspond to YZ and XY faces, and in all
2ðNX þ 1ÞðNY þ 1Þ þ 2ðNY þ 1ÞðNZ þ 1Þ þ 2ðNX þ 1ÞðNZ þ 1Þ such equations are possible. This is more than the
2ðNX þ 1ÞðNY þ 1Þ þ 2ðNY þ 1ÞðNZ þ 1Þ þ 2ðNX þ 1ÞðNZ þ 1Þ � 4ðNX þ NY þ NZ þ 1Þ
available empty rows in (9). However, there are precisely 4ðNX þ NY þ NZ þ 1Þ linear dependencies amongst the set of all pos-
sible boundary equations, owing to the fact that faces share common edge values. Table 1 gives our prescription for filling
empty rows.

As a result of the integration preconditioning, we have reformulated the set of equations in terms of matrices with a dras-
tic reduction in the number of nonzero elements. In the context of ODEs, that is in the 1D origins of this method, Ref. [1] has
thoroughly studied the condition number of the resulting preconditioned matrix with respect to norms that arise from diag-
onal equilibration. While in the ODE context integration preconditioning often improves the conditioning of the original sys-
tem, in the PDE context at hand the matrix B2

X½2� � B2
Y ½2� � B2

Z½2� does not appear to be a beneficial preconditioner. Indeed, in
comparison with the ‘‘unpreconditioned’’ matrix (8), the ‘‘preconditioned’’ matrix (9) would seem no closer to the identity
(in fact, it is arguably farther from it). Regardless, sparsification is a desirable property, since it clearly affords a fast
matrix–vector multiply in Krylov methods. Therefore, for multidimensional problems we are more comfortable focusing
on the sparsifying aspect of the technique, with the understanding that further preconditioning (described below) on top
of the ‘‘integration preconditioning’’ will be required to enhance convergence of the underlying linear solver (in our case
GMRES).
2. Sparse spectral approximation of the 3d HRWE

This section describes the spectral-tau representation of L in (4) on each of the basic subdomains, except for the block case
which we have already described in Section 1.3. These descriptions allow for implementation of the left-hand side of (3) as a
‘‘matrix–vector multiply,’’ an implementation required by the iterative solver GMRES [33].
Table 1
Filling of empty rows for blocks.

Face Rows Index restrictions

Z ¼ Zmin nðNY þ 1ÞðNZ þ 1Þ þmðNZ þ 1Þ þ 0 0 6 n 6 NX ; 0 6 m 6 NY

Z ¼ Zmax nðNY þ 1ÞðNZ þ 1Þ þmðNZ þ 1Þ þ 1 0 6 n 6 NX ; 0 6 m 6 NY

Y ¼ Ymin nðNY þ 1ÞðNZ þ 1Þ þ p 0 6 n 6 NX ; 2 6 p 6 NZ

Y ¼ Ymax nðNY þ 1ÞðNZ þ 1Þ þ ðNZ þ 1Þ þ p 0 6 n 6 NX ; 2 6 p 6 NZ

X ¼ Xmin mðNZ þ 1Þ þ p 2 6 m 6 NY ; 2 6 p 6 NZ

X ¼ Xmax ðNY þ 1ÞðNZ þ 1Þ þmðNZ þ 1Þ þ p 2 6 m 6 NY ; 2 6 p 6 NZ
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2.1. Outer spherical shell

In the polar system associated with the comoving system (1) the operator (4) becomes
r2L ¼ r2D�X2JO; r2D ¼ @2
r r2 � 2@rr þ DS2 ; JO ¼ r2@2

u; ð11Þ
where DS2 is the unit-sphere Laplacian and O stands for the outer spherical shell. These equations should be viewed as oper-
ator identities acting on scalar functions. We approximate the solution w to Lw ¼ g as the finite triple series
PNr ;Nh
wðr; h;uÞ ¼

XNr

n¼0

XNh

‘¼0

ew‘0nP‘0ðcos hÞTnðnðrÞÞ

þ
XNr

n¼0

XNh

‘¼1

XNh

m¼1

P‘mðcos hÞ ew‘;2m�1;n cosðmuÞ þ ew‘;2m;n sinðmuÞ
h i

TnðnðrÞÞ; ð12Þ
where the P‘mðuÞ are normalized associated Legendre functions (denoted by Pm
‘ ðuÞ in Ref. [35]) and nðrÞ maps the radial do-

main to the standard interval ½�1;1�.
We represent the triply-indexed modal coefficients ew‘qn as a vector ewðaÞ of length ðNh þ 1Þð2Nh þ 1ÞðNr þ 1Þ, with the two

notations connected by
ewð‘ð2Nh þ 1ÞðNr þ 1Þ þ qðNr þ 1Þ þ nÞ ¼ ew‘qn: ð13Þ
For ‘ < Nh the sum over m in (12) includes too many terms. Indeed, m should run from 1 to ‘ only (the m ¼ 0 terms appear in
the first sum); therefore, when q > 2‘, we set ew‘qn ¼ 0 by hand [see after Eq. (18)]. We have enlarged the space of modal coef-
ficients for convenience when using spherical harmonic transformations. With this remark in mind, for our representation
(13) the index a of the vector ewðaÞ takes on all values corresponding to the ranges 0 6 ‘ 6 Nh, 0 6 q 6 2Nh, and 0 6 n 6 Nr .
We denote by P the projection matrix whose range is the set of vectors with proper spherical harmonic expansions,
ðPewÞð‘ð2Nh þ 1ÞðNr þ 1Þ þ qðNr þ 1Þ þ nÞ ¼ 0; for q > 2‘: ð14Þ
Let us first consider a sparse approximation of the Laplacian term r2D, which from (11) has the spectral representation
A2
r D ¼ P Ih � Iu � D2

r A2
r � 2DrAr

� �
�L2 � Ir �;

h
ð15Þ
whereA2
r ¼ Ih � Iu � A2

r , and Ar is the matrix equivalent to multiplying r-dependent functions by a factor of r. In the first term
within the square brackets Ih � Iu� implies that there are no operations mixing modes ew‘qn with different values of ‘, or of q
(i.e. the dual indices to h and /). The operator ðD2

r A2
r � 2DrArÞ is the matrix equivalent of the partial differentiation @2

r r2 � 2@rr
in (11). The matrix L2, representing �DS2 in (11), is comprised of ðNh þ 1Þ constant blocks ‘ð‘þ 1ÞIð2Nhþ1Þ�ð2Nhþ1Þ in each sub-
space labeled by ‘.

To get a sparse form of the Laplacian, we define B ¼ Ih � Iu � B2
r and write the expression
ðBA2
r DÞ

modified ¼ P Ih � Iu � ðIr½2�A
2
r � 2Br½2�ArÞ �L2 � B2

r½2�

h i
þ ðIh � Iu � Ir � PÞ: ð16Þ
Here, ‘‘modified’’ indicates that, by addition of the last term above, 1’s have been placed on the diagonal in rows set to
zero by the projection operation. Finally, from (11) the sparse preconditioned form of the operator JO is
BJ O ¼ �P Ih �M2 � B2
r½2�A

2
r

h i
; ð17Þ
where M2 ¼ diagð0;1;1;4;4; . . . ;N2
h ;N

2
hÞ is the ð2Nh þ 1Þ-by-ð2Nh þ 1Þ matrix representing �@2

u. Therefore, prior to inclusion
of boundary conditions, our sparse form of the linear system for the other shell O is
ðBA2
r DÞ

modified �X2BJ O

h iew ¼ BA2
r
~g: ð18Þ
Some of these equations are ew‘qn ¼ 0 for q > 2‘, since we demand that the spectral representation ~g of the inhomogeneous
source obeys ~g ¼ P~g.

We now consider radiation conditions on @Oþ, summarizing results given in [6]. Specification of Dirichlet (or of matching)
conditions on the inner boundary @O� is essentially the same issue described in detail below for the boundaries of an inner
shell. To specify the radiation conditions on @Oþ, we set R ¼ rmax, the radial coordinate value of @Oþ, and introduce
V ‘þ1=2ðnÞ ¼
ffiffiffiffiffiffi
pn
2

r
exp �i n� 1

2
p‘� 1

2
p

� �� �
HðþÞ‘þ1=2ðnÞ; ð19Þ
which satisfies V ‘þ1=2ðnÞ � 1 as n!1. Here HðþÞ‘þ1=2ðnÞ is the cylindrical Hankel function of the first kind, of half-integer order
‘þ 1=2. For our radiative boundary condition we will need the ‘‘frequency–domain kernel,’’
v‘þ1=2ðnÞ � n
V 0‘þ1=2ðnÞ
V ‘þ1=2ðnÞ

; ð20Þ
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which is computable as a continued fraction via Steed’s algorithm [37]. Radiation conditions involve
j‘m � mXRþ Im v ‘þ1=2ðmXRÞ
	 


; k‘m � 1� Re v‘þ1=2ðmXRÞ
	 


; ð21Þ

with j‘0 ¼ 0 and km0 ¼ ‘þ 1 for m ¼ 0 modes. (Ref. [6] used p and q for j‘m and k‘m, but we do not use that notation here in
order to avoid confusion with the indices on ew‘qn.) As tau-conditions, our radiation conditions are then expressible as
XNr

n¼0

Rew‘;2m;nmþn þ j‘m
ew‘;2m�1;nd

þ
n þ k‘m ew‘;2m;nd

þ
n

� �
¼ 0 ð22aÞ

XNr

n¼0

Rew‘;2m�1;nmþn � j‘m
ew‘;2m;nd

þ
n þ k‘m ew‘;2m�1;nd

þ
n

� �
¼ 0: ð22bÞ
Here dþ (all 1’s) and d� (alternating þ1 and �1) are the ðNr þ 1Þ dimensional ‘‘Dirichlet vectors’’ used to impose Dirichlet
conditions at the endpoints of a coordinate range. Similarly, mþ and m� are the ðNr þ 1Þ dimensional ‘‘Neumann vectors’’ used
to impose derivative conditions at the endpoints. Details are given in [1,6].

Along the block-diagonal of the matrix ðBA2
r DÞ

modified �X2BJ O, there are ðNr þ 1Þ-by-ðNr þ 1Þ blocks, one for each ð‘;qÞ
pair. When q exceeds 2‘, each such block is the identity matrix; however, the block corresponding to a physical mode
0 6 q 6 2‘ has the form
ð23Þ
Here 0 represents a row of zeros, and B‘q is a nonzero ðNr � 1Þ-by-ðNr þ 1Þ submatrix (here we use superscripts ‘ and q to label
matrices). The zeros in the first two rows are filled in with the Dirichlet boundary conditions on @O�, using d�, and the radi-
ation boundary conditions on @Oþ, using (22). Since these radiation conditions mix one cosine (q ¼ 2m� 1) and the other
sine (q ¼ 2m) mode, the tau conditions lead to a coupling between the blocks. The resulting 2ðNr þ 1Þ-by-2ðNr þ 1Þ block
neighborhood, with Dirichlet and radiation boundary conditions, takes one of the following forms (either representation
is possible due to the homogeneity of the boundary conditions):
ð24Þ
where 0 represents either a row (when opposite a d�) or a ðNr � 1Þ-by-ðNr þ 1Þ submatrix of zeros (when opposite a B).
Boundary conditions for m ¼ 0 correspond to blocks
ð25Þ
Evidently, for ‘‘zero modes’’ only a single azimuthal block need be considered.

2.2. Inner spherical shells

We assume that one of the ‘‘holes’’ is at eZ ¼ zH and define new comoving coordinates
z ¼ eZ � zH; x ¼ eX ; y ¼ eY : ð26Þ
The helically reduced wave operator (4) in the new coordinates is
L ¼ @2

@x2 þ
@2

@y2 þ
@2

@z2 �X2 ðzH þ zÞ @
@x
� x

@

@z

� �2

: ð27Þ
Spherical polar coordinates fr; h;/g in this subsection correspond to the fx; y; zg system which is not the comoving system
fex; ey;ezg in (1). Therefore, fr; h;/g is not the system fr; h;ug corresponding to the outer shell, although only the notation for
the azimuthal angle (/ vs u) reflects the difference. Nevertheless, for an inner shell our treatment of the Laplacian part of the
operator is the same as the treatment given in the last subsection. In particular, we adopt the same conventions for the
indexing of the spectral representation, and therefore again arrive at the expression (16). Notationally, the only difference
is that we replace all instances of u with /. Therefore, having already considered (r2�) the Laplacian part of the HRWE,
we turn to (r2�) the term in (27) paired with �X2,
JH � r2½ðzH þ zÞ@=@x� x@=@z�2: ð28Þ
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To facilitate the expression of (28) in terms of fr; h;/g, we introduce
Q ¼ sin h cos / ð29Þ
P ¼ cos h cos /@=@h� csc h sin /@=@/ ð30Þ
N ¼ cos /@=@h� cos h csc h sin /@=@/ ð31Þ
and note that
@=@x ¼ Q@=@r þ r�1P; z@=@x� x@=@z ¼ N: ð32Þ
With the identities (which should be read as operators acting on a scalar function)
r2@2
r ¼ @

2
r r2 � 4@rr þ 2; r@r ¼ @rr � 1; r2@r ¼ @rr2 � 2r; ð33Þ
we then find that JH in (28) can be written as
JH ¼ z2
HQ 2@2

r r2 þ z2
HðPQ þ QP � 4Q 2Þ@rr þ zHðNQ þ QNÞ@rr2 þ zHðNP þ PN � 2NQ � 2QNÞr þ N2r2

þ z2
HðP

2 þ 2Q 2 � PQ � 2QPÞ: ð34Þ
We use J H to denote the spectral form of the differential operator JH . The corresponding sparse form BJ H � ðIh � I/ � B2
r½2�ÞJ H

is then
BJ H ¼z2
HQ2 � Ir½2�A

2
r þ z2

HðPQþ QP� 4Q2Þ � Br½2�Ar þ zHðNQþ QNÞ � Br½2�A
2
r

þ zHðNPþ PN� 2ðNQþ QNÞÞ � B2
r½2�Ar þ N2 � B2

r½2�A
2
r þ z2

HðP� 2QÞðP� QÞ � B2
r½2�: ð35Þ
N;P, and Q (san serif font) are matrices acting on the spectral space of spherical harmonic expansion coefficients, as de-
scribed below. We compute the matrices appearing in (35) as truncations of the corresponding infinite dimensional matrices
(so products like PQ etc. are computed before truncation). The components Nða; bÞ of N obey the following condition:
N ‘ð2Nh þ 1Þ þ q; kð2Nh þ 1Þ þ pð Þ ¼ 0; for q > 2‘ or p > 2k ð36Þ
and similarly for the components Pða; bÞ and Qða; bÞ. (Here we have switched to parenthesis notation [34] for the
components Nða; bÞ ¼ Nab of a matrix.) This condition reflects the extraneous components we have included in our expansion
vector ew.

We first sketch how N stems from the action of N on spherical harmonics. Using standard formulas from the theory of
angular momentum (see the appendix of [37]), we find
NY ‘m ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘�mÞð‘þmþ 1Þ

p
Y ‘;mþ1 �

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þmÞð‘�mþ 1Þ

p
Y ‘;m�1: ð37Þ
Before turning to the construction of N, we relate the complex representation of spherical harmonics Y ‘mðh;/Þ to the real-
valued representation. Since
Y ‘mðh;/Þ ¼
ffiffiffiffiffiffiffi
1

2p

r
ð�1ÞmP‘mðcos hÞeim/; Y ‘;�mðh;/Þ ¼

ffiffiffiffiffiffiffi
1

2p

r
P‘mðcos hÞe�im/; 0 6 m 6 ‘ ð38Þ
for fixed ‘ an expansion in the azimuthal index can take either of the following forms:
c‘0Y ‘0 þ
X‘
m¼1

c‘mY ‘m þ c‘;�mY ‘;�mð Þ ¼ a‘0P‘0 þ
X‘
m¼1

P‘m a‘;2m�1 cos m/þ a‘;2m sin m/½ �; ð39Þ
where the real expansion coefficients a‘q are given by
ffiffiffiffiffiffiffi
2p
p

a‘0 ¼ c‘0 and
ffiffiffiffiffiffiffi
2p
p

a‘;2m�1 ¼ c‘mð�1Þm þ c‘;�m;
ffiffiffiffiffiffiffi
2p
p

a‘;2m ¼ i c‘mð�1Þm � c‘;�m
� �

; 1 6 m 6 ‘: ð40Þ
For a‘q the physical range of q is q ¼ 0; . . . ;2‘ (as mentioned, in practice this range is extended to q ¼ 0; . . . ;2Nh). We define
another set of complex expansion coefficients
f‘m ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þmÞð‘�mþ 1Þ

p
c‘;m�1 �

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘�mÞð‘þmþ 1Þ

p
c‘;mþ1; ð41Þ
so that from (37) the action of N has the effect
W ¼
X1
‘¼0

X‘
m¼�‘

c‘mY ‘m; NW ¼
X1
‘¼0

X‘
m¼�‘

f‘mY ‘m: ð42Þ
We can represent N by the matrix that converts the vector of coefficients c‘m to the vector f‘m. Correspondingly, with d‘q re-
lated to f‘m in the same way a‘q are related to c‘m, we view the action of N as a mapping from the real coefficients a‘q to the
real coefficients d‘q.

Similarly, expressions for Q and P following from the identities
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QY ‘m ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘�mþ 1Þð‘�mþ 2Þ
ð2‘þ 1Þð2‘þ 3Þ

s
Y ‘þ1;m�1 �

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þmþ 1Þð‘þmþ 2Þ
ð2‘þ 1Þð2‘þ 3Þ

s
Y ‘þ1;mþ1

� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þmÞð‘þm� 1Þ
ð2‘þ 1Þð2‘� 1Þ

s
Y ‘�1;m�1 þ

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘�mÞð‘�m� 1Þ
ð2‘þ 1Þð2‘� 1Þ

s
Y ‘�1;mþ1; ð43Þ

PY ‘m ¼ �
1
2
‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘�mþ 1Þð‘�mþ 2Þ
ð2‘þ 1Þð2‘þ 3Þ

s
Y ‘þ1;m�1 þ

1
2
‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þmþ 1Þð‘þmþ 2Þ
ð2‘þ 1Þð2‘þ 3Þ

s
Y ‘þ1;mþ1

� 1
2
ð‘þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þmÞð‘þm� 1Þ
ð2‘þ 1Þð2‘� 1Þ

s
Y ‘�1;m�1 þ

1
2
ð‘þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘�mÞð‘�m� 1Þ
ð2‘þ 1Þð2‘� 1Þ

s
Y ‘�1;mþ1; ð44Þ
which again stem from results tabulated in the appendix of [37].
To enforce the inner and outer boundary conditions in (3), we fill empty rows in ðBA2

r DÞ
modified �X2BJ H with the tau-con-

ditions. Let hþðh;/Þ ¼ wðrmax; h;/Þ and h�ðh;/Þ ¼ wðrmin; h;/Þ. Then Dirichlet boundary conditions on the inner and outer
boundaries of the shell are expressible as
XNr

n¼0

ew‘qnd
�
n ¼ ~h�‘q; ð45Þ
where spherical-harmonic projections appear on the right-hand side. Table 2 shows how empty rows are filled to enforce
these boundary conditions.

2.3. Cylindrical shells

Throughout this section we suppress the tildes on eX ; eY ; eZ . Let q ¼ ðX2 þ Y2Þ1=2, and multiply Eq. (4) by q2 to get the oper-
ator identity
q2L ¼ q2 @2
Y þ @

2
X þ @

2
Z �X2@2

XZ2 �X2@2
ZX2 �X2ð@XX þ @ZZ � 2@XX@ZZÞ

h i
: ð46Þ
Since X ¼ q cos / and Y ¼ q sin /,
q2ð@2
X þ @

2
Y þ @

2
ZÞ ¼ @

2
qq

2 � 3@qqþ 1þ @2
/ þ q2@2

Z ; ð47Þ
again with the view that this is an operator identity. Eq. (47) has the spectral representation
A2
qD ¼ I/ � ðIq þ D2

qA2
q � 3DqAqÞ � IZ þ D2

/ � Iq � IZ þ I/ � A2
q � D2

Z : ð48Þ
Here A2
q represents the matrix I/ � A2

q � IZ . To achieve this representation we start by introducing a mapping of ½Zmin; Zmax� to
½�1;1� with the function vðZÞ, so that Z dependence can be expressed with the Chebyshev polynomials TpðvðZÞÞ. Similarly
nðqÞ maps ½qmin;qmax� to ½�1;1�. The solution is then approximated as (taking N/ even for simplicity)
PNq ;N/ ;Nz wðq;/; ZÞ ¼
XNq

n¼0

XNz

p¼0

ew0npTnðnðqÞÞTpðvðZÞÞ þ
X12N/

k¼1

XNq

n¼0

XNz

p¼0

ew2k�1;np cosðk/Þ þ ew2k;np sinðk/Þ
h i

TnðnðqÞÞTpðvðZÞÞ: ð49Þ
The direct product structure in (48) has been determined by the convention
ewðmðNq þ 1ÞðNz þ 1Þ þ nðNz þ 1Þ þ pÞ ¼ ewmnp: ð50Þ
We ‘‘sparsify’’ the matrix representation (48) via multiplication by B ¼ B2
/ � B2

q½2� � B2
Z½2�. In this operator the B2

q½2� and B2
Z½2�

correspond to the usual B operators representing integration twice over a coordinate, and leaving two empty rows to be filled
by tau-conditions. The operator B2

/ is associated with a periodic coordinate, and hence no applicable boundary conditions. It
represents double integration over all Fourier modes except the zero mode, which is left unchanged. The matrix that accom-
plishes this has the explicit form B2

/ ¼ diagð1;�1;�1;� 1
4 ;� 1

4 ;� 1
9 ;� 1

9 ; 	 	 	Þ. Although B2
/ does not play a role in handling

boundary conditions, its application should further enhance spectrum clustering.
With this B sparsification of (48) yields
Table 2
Filling of empty rows for shells.

Boundary Rows Index restrictions

r ¼ rmin ‘ð2Nh þ 1ÞðNr þ 1Þ þ qðNr þ 1Þ þ 0 0 6 ‘ 6 Nh; 0 6 q 6 2‘
r ¼ rmax ‘ð2Nh þ 1ÞðNr þ 1Þ þ qðNr þ 1Þ þ 1 0 6 ‘ 6 Nh; 0 6 q 6 2‘



Table 3
Filling of empty rows for cylinders.

Boundary Rows Index restrictions

q ¼ qmin mðNq þ 1ÞðNz þ 1Þ þ p 0 6 m 6 N/; 2 6 p 6 Nz

q ¼ qmax mðNq þ 1ÞðNz þ 1Þ þ ðNz þ 1Þ þ p 0 6 m 6 N/; 2 6 p 6 Nz

Z ¼ Zmin mðNq þ 1ÞðNz þ 1Þ þ nðNz þ 1Þ þ 0 0 6 n 6 Nq; 0 6 m 6 N/

Z ¼ Zmax mðNq þ 1ÞðNz þ 1Þ þ nðNz þ 1Þ þ 1 0 6 n 6 Nq; 0 6 m 6 N/
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BA2
qD ¼ B2

/ � ðB
2
q½2� þ Iq½2�A

2
q � 3Bq½2�AqÞ � B2

Z½2� þ I/½1� � B2
q½2� � B2

Z½2� þ B2
/ � B2

q½2�A
2
q � IZ½2�: ð51Þ
Our analysis of the terms in the HRWE proportional to X2 starts with the operator identities
q2@XX ¼ @qq3 cos2 /� q2ðcos2 /þ @/ cos / sin /Þ ð52aÞ
q2@2

X ¼ ð@
2
qq

2 � 3@qqþ 1Þ cos2 /� @qqð1� 2 cos2 /þ 2@/ cos / sin /Þ þ @2
/ sin2 /þ 2 sin2 /� 1; ð52bÞ
which follow from the chain and product rules. We have chosen the first term on the right-hand side of (52b) to match a
similar term in the Laplacian part of the operator (cf. Eq. (47)).

We split the HRWE operator (46) on a cylindrical shell as q2L ¼ q2D�X2J, where
J ¼ J1 þ J2 þ J3 þ J4 ¼ q2@XXð1� 2@ZZÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
J1

þq2@2
XZ2|fflfflfflffl{zfflfflfflffl}

J2

þq2@ZZ|fflfflffl{zfflfflffl}
J3

þq2@2
ZX2|fflfflfflffl{zfflfflfflffl}

J4

: ð53Þ
The piece q2D was shown to lead to (51). We now focus on J whose matrix representation stems from the representations of
its constituents. Eqs. (52a,b) give us
J1 ¼ C2
/ � DqA3

q � ðIZ � 2DZAZÞ � ðC2
/ þ D/C/S/Þ � A2

q � ðIZ � 2DZAZÞ; ð54Þ

J2 ¼ C2
/ � ðIq þ D2

qA2
q � 3DqAqÞ � A2

Z � ðI/ � 2C2
/ þ 2D/C/S/Þ � DqAq � A2

Z þ ðD
2
/S2

/ þ 2S2
/ � I/Þ � Iq � A2

Z ; ð55Þ

J3 ¼ I/ � A2
q � DZAZ ; ð56Þ

J4 ¼ C2
/ � A4

q � D2
Z ; ð57Þ
where S/ and C/ are respectively the matrices in the Fourier basis which correspond to multiplication by sin / and cos /.
Application of the sparsifier B ¼ B2

/ � B2
q½2� � B2

Z½2� yields
BJ1 ¼ B2
/C2

/ � Bq½2�A
3
q � ðB

2
Z½2� � 2BZ½2�AZÞ � ðB2

/C2
/ þ B/½1�C/S/Þ � B2

q½2�A
2
q � ðB

2
Z½2� � 2BZ½2�AZÞ; ð58Þ

BJ2 ¼ B2
/C2

/ � ðB
2
q½2� þ Iq½2�A

2
q � 3Bq½2�AqÞ � B2

Z½2�A
2
Z � ðB

2
/ � 2B2

/C2
/ þ 2B/½1�C/S/Þ � Bq½2�Aq � B2

Z½2�A
2
Z

þ ðI/½1�S2
/ þ 2B2

/S2
/ � B2

/Þ � B2
q½2� � B2

Z½2�A
2
Z ; ð59Þ

BJ3 ¼ B2
/ � B2

q½2�A
2
q � BZ½2�AZ ; ð60Þ

BJ4 ¼ B2
/C2

/ � B2
q½2�A

4
q � IZ½2�: ð61Þ
The sparsified matrix representing (46) is then BA2
qL ¼ BAqD�X2ðBJ1 þ BJ2 þ BJ3 þ BJ4Þ.

To enforce boundary conditions, we fill empty rows in the matrix BAqD�X2BJ with the tau-conditions. Let
hþð/; ZÞ ¼ wðqmax;/; ZÞ, h�ð/; ZÞ ¼ wðqmin;/; ZÞ and fþðq;/Þ ¼ wðq;/; ZmaxÞ, f�ðq;/; ZminÞ ¼ wðq;/; ZminÞ. Then Dirichlet
boundary conditions on the inner and outer axial boundaries and on the top and bottom caps are expressible as
XNq

n¼0

ewmnpd
�
n ¼ ~h�mp;

XNz

p¼0

ewmnpd
�
p ¼ ~f�mn: ð62Þ
There are ðN/ þ 1ÞðNz þ 1Þ þ ðNq þ 1ÞðN/ þ 1Þ such equations possible. However, owing to the fact that the caps shares com-
mon edges with both the inner and outer axial boundaries, there are 2ðN/ þ 1Þ linear dependencies amongst these equations,
and in fact the number of available empty rows is precisely ðN/ þ 1ÞðNZ þ 1Þ þ ðNq þ 1ÞðN/ þ 1Þ � 2ðN/ þ 1Þ. Table 3 shows
how we fill zero rows to enforce the boundary conditions.
3. Gluing of subdomains

So far we have described individual subdomains as if they were decoupled. We refer to the process of making them parts
of a single problem as ‘‘gluing.’’ Gluing, or matching, must be done for each subset of subdomains that touch, whether that
touching is a finite volume overlap or a lower-dimensional shared boundary. The global problem requires matching for the
following subdomain configurations: (i) two adjacent cylinders, (ii) one inner shell and a combination of cylinders and
blocks, (iii) one cylinder and one block, and (iv) the outer shell O and the combination of blocks B and D and all cylinders.
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We describe (i) and (ii) in detail, provide a sketch of (iii), and omit a description of (iv) altogether. Although more compli-
cated, a description of (iv) would parallel that of (iii).

Before giving details, we comment on how gluing is reflected in the overall linear system. Let, for example, ewJ and ewB

respectively represent the vectors of modal coefficients belonging to the shell J and block B of Fig. 1. The overall set of un-
knowns is the concatenation
2 We
0;1;�4½
eW ¼ ðewJ ; ewH; ewB; ewC ; ewD; ew1; ew2; ew3; ew4; ew5; ewOÞt;
which satisfies a linear system stemming from Eq. (3),
M eW ¼ BeG; ð63Þ
with eG the concatenation of the sources on the subdomains. B indicates integration ‘‘preconditioning’’ (sparsification) on all
subdomains. The coefficient matrixM is BL, with L now the spectral representation of the HRWE operator L on the whole 2-
center domain. This symbolic view ignores multiplications by radial powers on spheres and cylinders.

Each subdomain in Fig. 1 is represented by one of eleven super-blocks (J-J;H-H, 	 	 	 ;O-O) which sit along the diagonal of
M representing the PDE on the whole 2-center domain. Here ‘‘super-block’’ is synonymous with ‘‘subdomain-block’’. The
supplementary equations needed for gluing are placed within existing empty rows in the same manner as for the tau-con-
ditions. However, the gluing conditions stretch beyond the super-block diagonal, since they are linear relationships between
the spectral expansion coefficients on two (or more) separate subdomains. For example, the gluing together of cylinders 1
and 2 (which share a common cap) involves not only filling rows within the 1–1 and 2–2 super-blocks along the diagonal of
M, but also filling rows within the 1–2 and 2–1 off-diagonal super-blocks.

3.1. Gluing of cylinders to cylinders

As a specific example, let us consider the gluing of cylinders 1 and 2 in Fig. 1, which as indicated share the cap at Z ¼ Z
,
where Z
 is Zmax for cylinder 1 and Zmin for cylinder 2 (the common cap has a hole in the middle, since 1 and 2 are cylindrical
shells). Let, for example, Pw1 be shorthand for the numerical solution PN1

q ;N
1
/ ;N

1
Z
w1 for cylinder 1, as expressed in (49). The

restriction Pw1ðq;/; Z
Þ is a two-variable function on the cap Z ¼ Z
, and it can be expanded in a finite Fourier–Chebyshev

series, with
PN1

Z
k¼0
ew1

qnkd
þ
k as the corresponding two-index modal coefficients. Likewise, the restriction ðdPw1=dZÞðq;/; Z
Þ of

the Z-derivative has a Fourier–Chebyshev series with two-index modal coefficients
PN1

Z
k¼0
ew1

qnka1mþk . The a1 factor is a scaling
of the Neumann vector mþ, and its presence is necessary since the range of Z is not ½�1;1� (details are given in [6]).

On the Z ¼ Z
 cap we likewise consider the numerical solution Pw2ðq;/; Z
Þ and its Z-derivative ðdPw2=dZÞðq;/; Z
Þ, as
determined by the numerical solution Pw2 on cylinder 2. We distinguish between two cases: (i) both the Nq and N/ trunca-

tions are the same for cylinders 1 and 2 (but N1
Z – N2

Z is allowed), and (ii) at least one of these truncations differs between the

two cylinders (i.e., either N1
q – N2

q or N1
/ – N2

/, or both, hold). Let us first consider case (i), returning to case (ii) in the next

paragraph. For case (i) both Pw1ðq;/; Z
Þ and Pw2ðq;/; Z
Þ have two-surface modes which are in one-to-one correspondence,
and likewise for the derivatives. Therefore, for this case we enforce2
XN1
Z

k¼0

ew1
qnkd

þ
k ¼

XN2
Z

k¼0

ew2
qnkd

�
k ;

XN1
Z

k¼0

ew1
qnka1mþk ¼

XN2
Z

k¼0

ew2
qnka2m�k ð64Þ
for each Fourier–Chebyshev index pair ðq;nÞ. Here, for case (i), the matching conditions enforce continuity between the finite
representations Pw1 and Pw2 across the cap, and also continuity between the finite representations dPw1=dZ and dPw2=dZ.
These matching conditions are reflected in the overall matrixM as follows. As the super-block corresponding to each of the
subdomains 1 and 2 has been sparsified in the described fashion, each has a collection of empty rows which are also empty
throughoutM. In, say, the empty rows stretching across the 1–1 and 1–2 super-blocks, we insert the first set of conditions
given in (64). In the empty rows stretching across the 2–2 and 2–1 super-blocks, we similarly place the Neumann conditions,
the second set of conditions given in (64). This filling of empty rows to achieve the required matching consists of relation-
ships of modal coefficients with no reference to any ‘‘sources’’; they are homogeneous equations.

To better understand the issues which will arise in matching volume-overlapping subdomains, we now consider case (ii),
the case in which the cylinders 1 and 2 give rise to a disparate set of surface modes on the Z ¼ Z
 cap. In this case, for example,

we again have
PN1

Z
k¼0
ew1

qnkd
þ
k as the modal coefficients determining Pw1ðq;/; Z
Þ, and

PN2
Z

k¼0
ew2

qnka2m�k as the modal coefficients

determining ðdPw2=dZÞðq;/; Z
Þ. Now, however, (64) is not applicable. Instead, we now fix (cf. the first equation in (62))
regret an error in the definition of m� in Ref. [6], Eq. (42). The correct expressions are m� ¼ T 00ð�1Þ; T 01ð�1Þ; T 02ð�1Þ; T 03ð�1Þ; T 04ð�1Þ; 	 	 	
� �

¼
;9;�16; 	 	 	�. In Ref. [6] the right-hand side of the second equation of (69) is also off by a sign.
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XN1
Z

k¼0

ew1
qnkd

þ
k ¼ ~fþqn; ~e�qn ¼

XN2
Z

k¼0

ew2
qnka2m�k ; ð65Þ
where here ~fþqn (for 0 6 q 6 N1
/ and 0 6 n 6 N1

q) and ~e�qn (for 0 6 q 6 N2
/ and 0 6 n 6 N2

q) are not to be viewed as inhomoge-
neities, rather as expressions built respectively with the modal coefficients for Pw2ðq;/; Z
Þ and ðdPw1=dZÞðq;/; Z
Þ. Note
that, as with Eq. (64), these equations have the form ‘‘cylinder 1 coefficients = cylinder 2 coefficients’’.

Let us consider only ~fþqn, since similar comments apply to ~e�qn. First, we start with cylinder 1 and define a Chebyshev–Lob-
atto/Fourier grid fðqj;/iÞ : 0 6 j 6 N1

q; 0 6 i 6 N1
/g on the Z ¼ Z
 cap of cylinder 1. The use of these points affords a double

discrete Fourier–Chebyshev transform, through numerical quadrature, relating function values at the points and mode coef-
ficients. (In practice, we have exploited the trigonometric form of the Chebyshev polynomials and have used the FFT to de-
fine both the Fourier and Chebyshev components of this transform.) The double discrete transform allows us to express the
modal coefficients ~fþqn in terms of the function values fþij , at (qi;/j), for Z ¼ Z
 on cylinder 1, in a form
~fþqn ¼
XN1

q

i¼0

XN1
/

j¼0

F qn;ijfþij : ð66Þ
Next, at the nodal points ðqj;/iÞ of cylinder 1, we evaluate fþij in terms of the expansion for the solution on cylinder 2, thereby
finding
fþij ¼ Pw2ðqj;/i; Z
Þ ¼
XN2

/

q¼0

XN2
q

n¼0

Eij;qn

XN2
Z

k¼0

ew2
qnkd

�
k : ð67Þ
Here, the values E ij;qn arise from the evaluations of the modal functions (Chebyshev and Fourier) of cylinder 2 at the nodal
points ðqj;/iÞ of cylinder 1. When the expressions for fþij from (67) are substituted in (66), we get expressions for ~fþqn in terms
of the modal coefficients ew2

qnk representing the solution in cylinder 2. Finally, we substitute this ~fþqn into (65), which yields
relationships between the modal coefficients on cylinder 1 and cylinder 2 that express continuity of the solution across
Z ¼ Z
.

The linear relationships (65) would likewise be inserted into the overall coefficient matrixM. Similar to before, the right-
hand side of the first equation in (65) would fill empty rows stretching across the 1–2 super-block, with the dþ vectors on the
left-hand side filling empty rows across the 1–1 super-block. The relationships expressed in the second equation in (65)
would fill empty rows stretching across the 2–2 and 2–1 super-blocks Finally, we note that the Eq. (65) reduce to (64) when
N1

/ ¼ N2
/ and N1

q ¼ N2
q.

3.2. Gluing of an inner shell to cylinders and blocks

The shells J and H in Fig. 1 overlap multiple blocks and cylinders. We focus on gluing H to the combination of blocks C;D
and cylinders 3, 4, 5. Let S represent one of C;D;3;4;5, and consider the portion @HþS of @Hþ which intersects subdomain S. At
nodal points on @HþS we require that the values of w agree whether they are computed with ewH or ewS . For nodal points
ðhj;/kÞ 2 @HþS this condition is (cf. Eq. (45))
hþjk � hþðhj;/kÞ ¼ PwSðxðrmax; hk;/jÞÞ: ð68Þ
Here PwS is the numerical solution (P indicates finite expansion) associated with ewS , and x are the relevant 3D coordinates
on subdomain S. Looping over S ¼ C;D;3;4;5 defines the grid function hþjk at all nodal points of @Hþ. The matching conditions
(+ case in (45)) can then be realized by expressing the spherical harmonic transform ~hþ‘q ¼

PNh
j¼0

P2Nh
k¼0Q‘q;jkhþjk as a matrix–vec-

tor product involving all ewS . The resulting equations are placed in empty rows ofMwhich stretch across the H-H and all H-S
super-blocks.

Again let S represent one of C;D;3;4;5. Then @S includes a portion @SH overlapping shell H which gives rise to further
gluing relations. These equations will be inserted into empty rows ofM which stretch across the S-S and S-H super-blocks.
For concreteness, take S ¼ C, and so the þ case in (10). Now ~hþnm is the double XY-Chebyshev transform of
hþjk ¼
XNr

n¼0

XNh

‘¼0

ewH
‘0nP‘0ðcos hjkÞTnðnðrjkÞÞ þ

XNr

n¼0

XNh

‘¼1

XNh

m¼1

P‘mðcos hjkÞ ewH
‘;2m�1;n cosðm/jkÞ þ ewH

‘;2m;n sinðm/jkÞ
h i

TnðnðrjkÞÞ: ð69Þ
Here ðrjk; hjk;/jkÞ 2 H is also a Chebyshev–Gauss–Lobatto node ðXðnjÞ;YðgkÞ; ZmaxÞ on the top XY-face of C. The matrix repre-
sentation ehþnm ¼

PNX
j¼0

PNY
k¼0F nm;jkhþjk of the transform then yields equations between ewC and ewH . As mentioned, these equations

then fill empty rows of M which stretch across the C-C and C-H super-blocks.

3.3. Gluing of a cylinder to a block

Here we sketch either the gluing of block B and cylinder 1, block C and cylinder 3, or block D and cylinder 5. We focus on
the middle case as a representative example. This process involves both (a) gluing two YZ and two XZ faces of block C to cyl-
inder 3, and (b) gluing the inner radial boundary of the cylinder to the block. The process for (a) is similar to the gluing
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described in the last paragraph (in which a face of C is glued to H), and we omit a description. To express the matching equa-
tions which enforce (b), we first define
Table 4
Domain
system
coordin

Sphe
J : 0:

Cylin

1 : �

Bloc

B : �
q�jk ¼
XNX

n¼0

XNY

m¼0

XNZ

p¼0

ewC
nmpTnðnðXjkÞÞTmðgðYjkÞÞTpðvðZjkÞÞ: ð70Þ
Here we use the following points:
Xjk;Yjk; Zjk

	 

¼ Xðqmin;/j; zkÞ;Yðqmin;/j; zkÞ; Zðqmin;/j; zkÞ
	 


; ð71Þ
where ðqmin;/j; zkÞ are nodal points along the inner radial boundary of cylinder 3. Next, we consider the Fourier–Chebyshev
transform ~q�mp ¼

PN/

j¼0

PNz
k¼0Cmp;jkq�jk. In terms of the transform the matching equations are
XNq

n¼0

ew3
mnpd

�
n ¼ ~q�mp: ð72Þ
These equations then fill empty rows of M which stretch across the 3–3 and 3-C superblocks.

4. Numerical solution of the 3d HRWE

Both on single subdomains and on the global 2-center multidomain D, this section considers numerical solution of the
HRWE for the field of two point sources in a circular binary orbit. For this problem we have essentially an exact solution,
a superposition of the fields for two point sources, each point source in a circular orbit and described by the Liénard–Wiec-
hert solution (A.9) found in the appendix. A numerical solution is a collection of modal expansion coefficients; however,
comparisons with the exact solution are always computed in physical space on the nodal grid (or grids in the multidomain
case) dual to the modal expansion. These nodal grids are coarse, and the norms reported in the tables do not settle down
quickly. All numerical solves are performed iteratively with preconditioned GMRES [33], and this section also describes
the relevant preconditioning (both for subdomain solves and for the global multidomain solve). Table 4 lists the parameters
used in all computations and describes their relationship with the coordinate systems introduced in Section 1.2.

Using the sparse representations described in Section 2, in Section 4.1 we numerically solve the HRWE on the following
subdomains (cf. Fig. 2 and Table 4): the outer shell O, (inner) spherical shell J, (inner) cylindrical shell 5, and (inner) block D.
For each subdomain labeled (inner) the HRWE operator is implemented as a matrix–vector multiply within preconditioned
GMRES without restarts. For these subdomain solves, Dirichlet boundary conditions are taken from the exact Liénard–Wiec-
hert solution, but the outer shell problem also involves the radiation boundary conditions given in Eq. (22). The particular
subdomains considered in Section 4.1 are representative, and similar experimentation on each subdomain has determined
the chosen truncations for the 2-center multidomain tests described in Section 4.2. Such experiments empirically yield
appropriate truncations necessary to achieve a desired accuracy. All tests in Sections 4.1 and 4.2 involve two charges, one
with zH ¼ 1;Q H ¼ 1 and the other with zJ ¼ �0:9; QJ ¼ 0:5. Section 4.1 considers X ¼ 0:1;0:3. We have also considered
X ¼ 0:5;0:7 (chosen to ‘‘break’’ our methods) [38], but give no results here.

4.1. Numerical solution on individual subdomains

We consider the outer shell O first, since results for this subdomain are the most disappointing. The solve for O differs
from the rest. Indeed, since the representation of the HRWE on O is comprised of blocks labeled by ð‘;mÞ along the block
diagonal, we invert each of these physical modes using LU-factorization [the ‘‘physical mode-blocks using’’ are those not
annihilated by the projection operator P defined in (14)]. Let Nh ¼ ‘max, so that N ¼ ðNh þ 1Þð2Nh þ 1ÞðNr þ 1Þ is the system
size, withN 2 � 4N4

h N2
r the storage requirement for the full coefficient matrix. However, storage of all blocks involves ðNh þ 1Þ

matrices of size ðNr þ 1Þ-by-ðNr þ 1Þ, one for each zero mode, in addition to 1
2 NhðNh þ 1Þ matrices of size 2ðNr þ 1Þ-by-

2ðNr þ 1Þ, one for each fixed-m cos/sin pair. Therefore, storage for this solve scales like
decomposition. J and H are respectively centered at ðeX ; eY ; eZÞ ¼ ð0;0;�0:9Þ and ð0;0;1:0Þ; for each the polar system fr; h;/g is relative to the Cartesian
arising from translation of feX ; eY ; eZg to the shell’s origin. For each cylinder, fq;/; eZg are cylindrical coordinates relative to feX ; eY ; eZg. The spherical polar
ates fr; h;ug for O are relative to fex; ey; ezg.
rical shells (all with 0 6 h 6 p; 0 6 / < 2p for J and H; 0 6 u < 2p for O)
4 6 r 6 1:1; H : 0:3 6 r 6 1:1; O : 2:0 6 r 6 150:0

drical shells (all with 0:452 6 q 6 2:120 and 0 6 / < 2p)

2:120 6 eZ 6 �1:525; 2 : �1:525 6 eZ 6 �0:275; 3 : �0:275 6 eZ 6 0:375; 4 : 0:375 6 eZ 6 1:625; 5 : 1:625 6 eZ 6 2:120

ks (all with �0:640 6 eX ; eY 6 0:640)

2:120 6 eZ 6 �1:525; C : �0:275 6 eZ 6 0:375; D : 1:625 6 eZ 6 2:120



Fig. 2. INDIVIDUAL SUBDOMAINS. We consider cylindrical shell five highlighted in the left figure, block D highlighted in the right, and the bottom inner spherical
shell J shown in both.

Table 5
Outer spherical shell O test.

Nr ‘max L2 error L2 norm L1 error L1 norm

X ¼ 0:1
65 10 1.1899E-05 1.8977E-01 2.7970E-04 1.1808E+00
85 18 2.1320E-07 1.8725E-01 3.6548E-06 1.1810E+00
125 28 2.4580E-10 1.8472E-01 5.4193E-09 1.1810E+00
185 42 2.2846E-13 1.8297E-01 2.7858E-12 1.1810E+00

X ¼ 0:3
65 10 7.4142E-04 1.9030E-01 1.0557E-02 1.2624E+00
85 18 9.4481E-04 1.8777E-01 1.3180E-02 1.2628E+00
125 28 1.2701E-04 1.8523E-01 2.0861E-03 1.2628E+00
185 42 5.1221E-06 1.8347E-01 1.2307E-04 1.2628E+00

Table 6
Inner sp

Nr

X ¼
12
18
20
30

X ¼
12
18
20
30
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ðNh þ 1ÞðNr þ 1Þ2 þ 2NhðNh þ 1ÞðNr þ 1Þ2 � 2N2
h N2

r ¼ OðNr 	 N Þ: ð73Þ
As shown in Table 5, the results for X ¼ 0:1 are excellent, but degradation has already set in for X ¼ 0:3 (for large X multiple
concentric outer shells may yield more accuracy).

We next consider the inner spherical shell J. Tables 6 and 7 list errors, without and with preconditioning. For the sake of
comparison, in both these and subsequent tables we have chosen the same requested tolerances (for the GMRES solve) for
both values of X. The chosen preconditioner is block-Jacobi. Namely, we invert physical mode-blocks labeled by ð‘;mÞ along
the block diagonal using a precomputed LU-factorization. The storage and scaling properties for this preconditioner are ex-
actly the same as described for the direct solve on the outer shell. However, for inner shells the HRWE representation is not
block diagonal in ð‘;mÞ pairs (as on the outer shell), rather the operator has significant bandwidth in both indices. Therefore,
the full matrix storage for an inner shell would require correspondingly larger memory relative to the preconditioner stor-
age. Further, the preconditioner storage requirement could be reduced by inverting each sin/cos block mode independently.
herical shell test J without preconditioning.

‘max L2 error L2 norm L1 error L1 norm Iterations Tolerance

0:1
12 3.4702E-06 1.3516E+00 2.2656E-05 1.9143E+00 54 1.0000E-07
23 9.9814E-09 1.3499E+00 3.6488E-08 1.9168E+00 129 1.0000E-09
33 6.0107E-11 1.3498E+00 2.6944E-10 1.9173E+00 238 1.0000E-11
46 6.2864E-13 1.3481E+00 2.8333E-12 1.9176E+00 415 1.0000E-13

0:3
12 7.6593E-06 1.3566E+00 7.8541E-05 1.9255E+00 57 1.0000E-07
23 2.1272E-08 1.3550E+00 3.8188E-07 1.9278E+00 138 1.0000E-09
33 1.1806E-10 1.3550E+00 2.4707E-09 1.9283E+00 255 1.0000E-11
46 4.3184E-13 1.3532E+00 5.2289E-12 1.9286E+00 442 1.0000E-13



Table 7
Inner spherical shell J test with preconditioning.

Nr ‘max L2 error L2 norm L1 error L1 norm Iterations Tolerance

X ¼ 0:1
12 12 3.4196E-06 1.3516E+00 2.2499E-05 1.9143E+00 3 1.0000E-07
18 23 3.4877E-09 1.3499E+00 3.6560E-08 1.9168E+00 4 1.0000E-09
20 33 1.3949E-11 1.3498E+00 2.1394E-10 1.9173E+00 4 1.0000E-11
30 46 3.0104E-14 1.3481E+00 3.0975E-13 1.9176E+00 5 1.0000E-13

X ¼ 0:3
12 12 7.6487E-06 1.3566E+00 7.8536E-05 1.9255E+00 4 1.0000E-07
18 23 2.0798E-08 1.3550E+00 3.8215E-07 1.9278E+00 6 1.0000E-09
20 33 1.0362E-10 1.3550E+00 2.4686E-09 1.9283E+00 7 1.0000E-11
30 46 1.0361E-13 1.3532E+00 3.1604E-12 1.9286E+00 9 1.0000E-13

Table 8
Cylindrical shell five test with preconditioning.

Nr N/ Nz L2 error L2 norm L1 error L1 norm Iterations Tolerance

X ¼ 0:1
13 5 7 7.9884E-08 9.0116E-01 4.6388E-07 1.5004E+00 3 1.0000E-08
19 9 9 5.2802E-10 8.9887E-01 2.7463E-09 1.5006E+00 4 1.0000E-10
23 13 13 5.6239E-13 8.9775E-01 4.4170E-12 1.5006E+00 5 1.0000E-12
29 19 18 8.3992E-15 8.9680E-01 9.3259E-14 1.5007E+00 6 1.0000E-14

X ¼ 0:3
13 5 7 6.2980E-06 9.4046E-01 3.8531E-05 1.5817E+00 6 1.0000E-08
19 9 9 1.2577E-07 9.3796E-01 5.9139E-07 1.5841E+00 10 1.0000E-10
23 13 13 4.9307E-09 9.3677E-01 4.0773E-08 1.5849E+00 14 1.0000E-12
29 19 18 3.2422E-10 9.3574E-01 1.3965E-09 1.5861E+00 18 1.0000E-14

S.R. Lau, R.H. Price / Journal of Computational Physics 231 (2012) 7695–7714 7709
Moreover, were the preconditioner chosen to correspond to only the Laplacian part of the operator, then it could be used for
the solves on both shells were their dimensions and truncations the same. In any case, the chosen preconditioner notably
improves the convergence of the GMRES solver.

Table 8 list the results for the corresponding single cylinder experiment, with block LU–preconditioning similar to before.
That is, for each Fourier mode we invert the associated diagonal block. Our choice (50) of direct product structure for the cyl-
inders determines that each block is ðNq þ 1ÞðNZ þ 1Þ-by-ðNq þ 1ÞðNZ þ 1Þ. For cylinders, preconditioning amounts to direct
inversion of each Fourier mode-block along the block diagonal. WithN ¼ ðN/ þ 1ÞðNq þ 1ÞðNz þ 1Þ the system size, the storage
requirement for the preconditioner requires N/ þ 1 matrices of size ðNq þ 1ÞðNz þ 1Þ-by-ðNq þ 1ÞðNz þ 1Þ, and so scales like so
ðNq þ 1Þ2ðNz þ 1Þ2ðN/ þ 1Þ ¼ OðNqNz 	 N Þ: ð74Þ
While NqNzN < N 2, this requirement is somewhat memory intensive. However, we have observed essentially the same per-
formance when using the corresponding Laplacian part of the operator to define the preconditioner. Provided that the
dimensions and truncations of two individual cylinders match, the same preconditioner could then be used for both.

Table 9 list errors for the block experiment, and again with a block-Jacobi preconditioner. In this case there are Nx þ 1
blocks with size ðNy þ 1ÞðNz þ 1Þ-by-ðNy þ 1ÞðNz þ 1Þ. Storage of the block preconditioner therefore scales as
ðNx þ 1ÞðNy þ 1Þ2ðNz þ 1Þ2 ¼ OðNyNz 	 N Þ: ð75Þ
Again, were the preconditioner based on the Laplacian part of the operator, it might be reused for the solves on different
blocks.

4.2. Numerical solution on the 2-center multidomain

We have also used GMRES [33] to solve the linear systemM eW ¼ BeG given in Eq. (63) for the HRWE on the whole 2-center
domainD. Sections 2 and 3 have described the matrixM, and therefore also implementation of the ‘‘matrix–vector multiply’’eW !M eW. Implementation of this multiply is required by the GMRES algorithm (with or without preconditioning). However,
an unpreconditioned GMRES strategy results in extremely poor convergence. Therefore, we have used (left) preconditioned
GMRES which further requires implementation of the operation eW !M�1

approx
eW, whereM�1

approx ’M
�1 is an approximate in-

verse. In this section we describe application ofM�1
approx, and document tests of the global solve. We stress that the precon-

ditioning afforded by M�1
approx is neither (i) the integration ‘‘preconditioning’’ technique used to achieve sparse

representations of (4) on each of the basic subdomains nor (ii) the preconditioning (typically a form of block-LU) used for
individual subdomain solves. However, type (ii) preconditioning does define part of the M�1

approx application.



Fig. 3. ALTERNATING SCHWARZ PRECONDITIONER. Numerical solution of the HRWE each subdomain/subregion above defines the preconditioner. Boundary conditions
for the solves are obtained through subdomain/subregion interpolation as described in the text. For the outer shell shown in (c), the small dot in the center
is, to scale, the inner configuration comprised of (a) and (b).

Table 9
Block D test with preconditioning.

Nx Ny Nz L2 error L2 norm L1 error L1 norm Iterations Tolerance

X ¼ 0:1
14 14 7 3.7513E-07 1.1367E+00 4.2360E-06 1.7854E+00 41 1.0000E-08
19 19 9 6.3235E-09 1.1394E+00 1.3616E-07 1.8098E+00 62 1.0000E-10
28 28 13 1.4351E-11 1.1418E+00 3.0822E-10 1.8040E+00 102 1.0000E-12
32 32 18 1.2749E-13 1.1421E+00 5.3182E-12 1.8054E+00 141 1.0000E-14

X ¼ 0:3
14 14 7 3.9020E-07 1.1955E+00 4.2789E-06 1.8911E+00 42 1.0000E-08
19 19 9 6.4495E-09 1.1986E+00 1.4194E-07 1.9176E+00 65 1.0000E-10
28 28 13 1.4448E-11 1.2013E+00 4.9319E-10 1.9116E+00 109 1.0000E-12
32 32 18 8.4807E-14 1.2017E+00 2.9017E-12 1.9131E+00 154 1.0000E-14
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The action of M�1
approx is defined through the simple alternating Schwarz method [39]. Application of this preconditioner

relies on independent numerical solves over (i) the inner shells J and H, (ii) the glued subregion3 R comprised of blocks and
cylinders depicted in Fig. 3, and (iii) the outer spherical shell O. More precisely, starting with a vanishing initial vector eW we
perform the following iteration.

1. Solve (also by GMRES, as described in Section 4.1) the HRWE on the inner shells J and H. For these solves inner Dirichlet
boundary conditions are the fixed physical ones, while outer boundary conditions stem from interpolation of the numer-
ical solution on R (which is initially zero). The tolerance for these solves is typically 0.1⁄tol, where tol is the tolerance
for the global GMRES solve of M eW ¼ BeG.

2. Solve (also by GMRES) the HRWE on R. For this solve inner Dirichlet boundary conditions stem from interpolation of the
solutions on J and H, while outer Dirichlet boundary conditions stem from interpolation of the solution on the outer shell
O (which is initially zero). This GMRES solve must also be preconditioned, as discussed shortly. The tolerance for this solve
is typically 0.2⁄tol.

3. Solve the HRWE on the outer spherical shell O, with inner Dirichlet boundary conditions stemming from interpolation of
the numerical solution on R and the outer radiation boundary conditions described in Section 2.1. As noted in Section 4.1,
this solve is performed via direct block-by-block LU factorization (note that the factorization of each block mode is pre-
computed and then used over and over in this third step).

This three-step iteration may be viewed as the Gauss–Seidel method, here applied in block form to J
S

H;R;O. Typically,
we have chosen four sweeps of this block Gauss–Seidel method. Step 2 requires its own preconditioning to enhance conver-
gence. Here we have again employed the alternating Schwarz method, now with blocks corresponding to B, C;D, and the
subregion G which is the composite of glued cylinders (1–5). This ‘‘inner’’ preconditioning typically involves five sweeps,
with appropriate interpolation. Each individual GMRES solve on B;C;D, and G uses the tolerance 0.1⁄tol. Table 10 depicts
the overall scheme.

Before turning to tests of the full solve, we consider the solve on the multidomain subregion G comprised of the glued cyl-
inders (1–5). Again, this solve is performed as part of the preconditioner for step 2 of the global preconditioner (see Table 10).
3 Whereas the basic spectral elements (such as shell J, block B, and cylinder 1) have been called subdomains, we informally refer to the multidomains R and G
(defined later) as subregions.



Table 10
Multilevel preconditioning scheme.

Table 12
Solution of the HRWE on the 2-center multidomain D. Here MPSPD stands for modes per subdomain per dimension. Note that an MPSPD of 37.9 corresponds to
ð11 subdomainsÞ � ð37:93Þ ’ 599000 unknowns.

MPSPD L2 error L2 norm L1 error L1 norm Iterations Tolerance

X ¼ 0:1
15.7 3.7532E-06 7.0509E-01 9.9579E-05 3.6556E+00 5 1.0000E-05
23.9 4.2440E-08 7.8382E-01 5.8222E-07 3.6563E+00 3 1.0000E-07
31.0 2.6333E-10 8.3492E-01 4.0406E-09 3.6564E+00 3 1.0000E-09
37.2 4.1855E-12 9.3982E-01 8.6696E-11 3.6565E+00 3 1.0000E-11
37.9 4.7733E-13 9.5252E-01 8.2254E-12 3.6565E+00 2 1.0000E-12

Table 11
Solution of the HRWE on the glued cylinder subregion G. The reported truncations N1

r and N1
/ were also used for cylinders 2, 3, 4, and 5.

N1
r N1

/ N1
z N2

z N3
z N4

z N5
z

L2 error L2 norm L1 error L1 norm Iterations Tolerance

X ¼ 0:1
13 5 7 17 7 17 7 2.2251E-06 9.8806E-01 2.7804E-05 2.4773E+00 17 1.0000E-06
19 9 9 23 9 23 9 3.5812E-08 1.0077E+00 2.2023E-07 2.4781E+00 22 1.0000E-08
23 13 14 31 16 31 14 1.2344E-10 1.0063E+00 1.2046E-09 2.4782E+00 28 1.0000E-10
29 19 15 35 15 35 15 6.6478E-12 1.0083E+00 7.4462E-11 2.4783E+00 42 1.0000E-12
29 19 18 39 21 39 18 4.9252E-13 1.0063E+00 5.3570E-12 2.4783E+00 45 1.0000E-13
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Table 11 collects errors and iteration counts associated with this solve for increasing truncations. Each solve documented in
the table has been started with the zero vector as initial iterate, and here we employ restarting after 20 iterations. The re-
ported iteration counts in Table 11 are cumulative over restarts. The individual block-LU preconditioning on each subdomain
(1–5) is the only preconditioning used for this solve. Nevertheless, it suffices to drastically reduce the number of iterations
(which would otherwise be in the thousands, with or without restarts).

Results for the full solve appear in Table 12. The largest solve involves more than half a million unknowns (597788 to be
precise). In fact the number of unknowns is larger, since we add modes to shells, but here count only physical ð‘;mÞ pairs (cf.
Section 2.1). Each solve in the table is used as the initial guess for the next, and the iteration count therefore drops.
5. Conclusion

We close by summarizing our results and describing future work. In our summary and description, we discuss our numer-
ical methods and the physical problem we aim to solve.
5.1. Results

We have demonstrated the feasibility of solving a partial differential equation in three independent variables by modal
spectral methods based on the technique of integration preconditioning. As designed, the technique yields an algorithmic
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way to achieve a sparse spectral formulation of the PDE problem with consistent incorporation of boundary conditions. How-
ever, particularly in higher dimensional settings, an integration ‘‘preconditioner’’ may not be an optimal approximate inverse
in any known sense; as a result the technique would not seem practical in and of itself. Here we mean that, for a higher
dimensional problem like ours, the sole use of integration preconditioning will likely lead to prohibitively large iteration
counts when using Krylov methods and/or loss of accuracy due to poor conditioning. At least for our problem, we have dem-
onstrated that both issues may be surmounted by further preconditioning. In particular, studying our problem on a given sub-
domain (spectral element), we have empirically demonstrated that block Jacobi preconditioning (with each block inverted
by LU factorization) is effective for the banded matrix produced by integration preconditioning. Moreover, for the matching
of subdomains in our multidomain approach the alternating Schwarz method (an elementary domain decomposition pre-
conditioner) works well. Given that little seems known about preconditioning for modal methods, whereas preconditioning
for nodal methods is well developed, we believe that our demonstration of effective modal preconditioning based on rather
standard methods is remarkable.

In addition to modal preconditioning, other aspects of our work are new from the standpoint of modal spectral methods,
in particular its multidomain character and focus on a mixed-type problem. Ref. [1] already presented the outline for apply-
ing the integration preconditioning technique to higher dimensional problems, that is to PDEs. While we have carried out
and presented the details of such an application, our work has gone further in developing a 3D multidomain version of
the technique (Ref. [6] consider the multidomain case in 2D). In particular, we have presented the details of gluing constit-
uent subdomains, and how this gluing is reflected in the overall linear system. As another new, and unusual, aspect, our work
is the first successful application of integration preconditioning to a three dimensional mixed-type problem, a problem with
both elliptic and hyperbolic regions. Whence it has numerically confirmed once more (cf. [6,26,27,29]) that such problems
can be well-posed; see [43] for a theoretical discussion. A multidomain decomposition is of special interest for mixed prob-
lems like ours, since the type change need not occur in all subdomains. For our example, it occurs on a cylinder that inter-
sects only the outer spherical shell. When the nonlinearities of the physical problem are included, this feature of our domain
decomposition may prove useful, because the true physical equations will be only mildly nonlinear on the outer shell, with
the strongest nonlinearities confined to subdomains on which the equations are elliptic. Our work therefore suggests that we
might treat the outer shell differently from the inner subdomains when solving the full nonlinear problem.
5.2. Outlook

While we have shown that our mix of methods delivers efficiency and remarkable accuracy when applied to a nontrivial
3D model problem, several issues merit further investigation. These include both particular challenges in the application of
this paper’s methods to helically symmetric general relativistic binary fields (our problem of interest), and numerical anal-
ysis questions pertaining to integration preconditioning for more general problems.

The numerical analysis issues center on the value of integration preconditioning, or sparsification, in the solution of high-
er dimensional PDEs, particularly in the context of a multidomain approach. Here we have applied the method to only one
linear PDE, with an empirical demonstration of its success. For any given linear equation, a fuller investigation of integration
sparsification for multidomain scenarios would focus on the interplay between condition number, field of values (Rayleigh
quotients), and computational efficiency (iteration counts). All of these issues would be examined both before and after some
form of ‘‘ordinary’’ preconditioning, e.g. the combination of block-LU and alternating Schwarz preconditioning used in this
paper. The sparse matrices produced by integration sparsification allow for fast matrix multiplies in a Krylov method like
GMRES. Our work suggests that this advantage might be gained without large iteration counts, but the issue deserves more
study. Efficient treatment of nonlinearities is also worthy of investigation, and such a study would build upon the results
already given in Ref. [1]. We are in process of evaluating integration sparsification in the context of these issues, mostly with
2D model problems.

Several challenges remain if we are to apply some variant of our method to the problem of helically symmetric general
relativistic binary fields. First, we must test the efficiency of our method in solving a nonlinear HRWE. In practice, this should
not be a problem. The strongest nonlinearities will occur closest to the black hole sources, i.e. near the surfaces on which the
inner boundary conditions are set. By choosing these boundaries some distance from the sources, we can, at the cost of accu-
racy in mathematically representing the physical problem, reduce the severity of the nonlinearities. The real question, then,
is not whether we can handle nonlinearities, but how close to the sources the inner boundaries can be placed. Second, we
must replace the outgoing radiative boundary conditions with ‘‘standing wave boundary conditions,’’ as described in Ref.
[25]. This change is straightforward in a linearized problem, and, as explained in Ref. [25], should not pose great difficulty
in nonlinear general relativity. Third, we must move from the scalar problem considered here to the actual tensor problem.
Solution of the helically symmetric problem of a binary in full general relativity will require all the information in the ten-
sorial fields, and the coupling of those fields. This proved to be the greatest challenge for the solution method presented in
Ref. [29], and it severely limited the achievable accuracy. We are confident that the method described in this paper will de-
liver the accuracy needed to find useful solutions.

The methods developed here have been motivated by the problem of binary inspiral in general relativity. However, our
methods may find broader use; they might be applied to problems distinct from the helically symmetric mixed PDEs of the
periodic standing wave approximation. As a salient example, multidomain spectral methods are already being used in the
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elliptical problem of generating binary black hole initial data [30,31]. Our set of methods, with integration sparsification,
might be used as an alternative approach.
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Appendix A. Explicit solution for a point source

This appendix considers the wave equation forced by a point source in a circular orbit (see Ref. [41] for the analogous
electrodynamics problem), thereby constructing a solution to the HRWE. Superposition of two such solutions yields the bin-
ary field used in our numerical tests. We derive two representations for the solution. Using both representations, we can
evaluate the binary field with enough accuracy (uniformly over the 2-center domain D) to make the comparisons reported
in Section 4. Precisely, we seek the retarded solution to
r2 � @2
t

� �
W ¼ �4pdð3Þðx� nðtÞÞ; ðA:1Þ
where the subluminal motion of source point is
nðtÞ ¼ a cosðXtÞex þ a sinðXtÞey; aX < 1: ðA:2Þ
To find a series solution, we assume Wðt; x; y; zÞ ¼ wðex; ey; zÞ in terms of the comoving coordinates (1). This assumption
transforms (A.1, A.2) into the inhomogeneous HRWE
er2 �X2@2
u

� �
w ¼ �4pdðr � aÞ

a2 dðcos hÞdðuÞ; ðA:3Þ
where er2 � @2ex þ @2ey þ @2
z and ða;p=2;0Þ specifies the location of the source point in the spherical polar system associated

with ðex; ey; zÞ. Using standard methods of separation of variables and one-dimensional Green’s functions, and assuming
the outgoing boundary conditions, we find a particular solution to (A.3),
wðr sin h cos u; r sin h sin u; r cos hÞ ¼ 2
X1
‘¼0

1
2‘þ 1

P‘0ðcos hÞP‘0ð0Þ
r‘<

r‘þ1
>

� 4X
X1
‘¼1

X‘
m¼1

mP‘mðcos hÞP‘mð0Þj‘ðmXr<Þ n‘ðmXr>Þ cosðmuÞ þ j‘ðmXr>Þ sinðmuÞ½ �:

ðA:4Þ
Here P‘mðuÞ is a normalized associated Legendre function, j‘ðzÞ and n‘ðzÞ are respectively spherical Bessel functions of the first
and second kind [35], and r>;< ¼max;minða; rÞ. The series converges poorly near r ¼ a, but converges rapidly for r � a when
aX� 1.

To derive a different representation of the same solution which is valid near r ¼ a, we take the retarded-time Liénard–
Wiechert solution to (A.1), (cf. pages 280–282 of Ref. [42])
Wðt;xÞ ¼ 1

jx� nðt0Þj � hn


ðt0Þ;x� nðt0Þi

ðA:5Þ
and then evaluate it at a rotating observation point
xðtÞ ¼ zez þ q cosðuþXtÞex þ q sinðuþXtÞey; ðA:6Þ
where q2 ¼ x2 þ y2 ¼ ex2 þ ey2 and where u is fixed. The evaluation point xðtÞ rotates with the source; whence this latter eval-
uation will effectively remove the time dependence from W. In Eq. (A.5) h; i is the Euclidean inner product, n



ðt0Þ is the deriv-

ative of nðt0Þ with respect to its argument, and the retarded time t0 is the solution to
t � t0 ¼ jx� nðt0Þj ¼ z2 þ q2 þ a2 � 2aq cosð/�Xt0Þ
� �1=2

: ðA:7Þ
Setting x ¼ xðtÞ and defining k � t � t0, we express the last equation as
k ¼ gðk; a;X;q;u; zÞ � z2 þ q2 þ a2 � 2aq cosðuþXkÞ
� �1=2

: ðA:8Þ
Since aX < 1, (A.8) has a unique solution and the fixed-point iteration knþ1 ¼ gðkn; a;X;q;u; zÞ converges for all choices of
a;X;q;u; z. Finally, since wðex; ey; zÞ ¼ Wðt;xðtÞÞ, we then have
wðq cos u;q sinu; zÞ ¼ 1
k� qaX sinðuþXkÞ : ðA:9Þ
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