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In this work, we develop a probabilistic estimator for the voltage-to-current map arising 
in electrical impedance tomography. This novel so-called partially reflecting random walk 
on spheres estimator enables Monte Carlo methods to compute the voltage-to-current 
map in an embarrassingly parallel manner, which is an important issue with regard 
to the corresponding inverse problem. Our method uses the well-known random walk 
on spheres algorithm inside subdomains where the diffusion coefficient is constant and 
employs replacement techniques motivated by finite difference discretization to deal with 
both mixed boundary conditions and interface transmission conditions. We analyze the 
global bias and the variance of the new estimator both theoretically and experimentally. 
Subsequently, the variance of the new estimator is considerably reduced via a novel control 
variate conditional sampling technique which yields a highly efficient hybrid forward solver 
coupling probabilistic and deterministic algorithms.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The mathematical formulation of static electrical impedance tomography (EIT) leads to a nonlinear and ill-posed inverse 
problem, which is unstable with respect to measurement and modeling errors. Namely, the reconstruction of the real-valued 
conductivity κ in the elliptic conductivity equation

∇ · (κ∇u) = 0 in D (1)

from boundary measurements of the electric potential u and the corresponding current on the boundary of a bounded, 
convex domain D ⊂ R

d , d = 2, 3, with piecewise smooth boundary ∂ D and connected complement. Due to the limited 
capabilities of static EIT, many practical applications focus on the detection of conductivity anomalies in a known background 
conductivity rather than conductivity imaging, cf., e.g., Pursiainen [34] and the recent works [39,38] by the second author. 
In this work, we consider such an anomaly detection problem, where a perfectly conducting inclusion occupies a region T
inside the domain D . A possible practical application modeled by this setting is breast cancer detection, where the electric 
conductivity of high-water-content tissue, such as malignant tumors, is approximately one order of magnitude higher than 
the conductivity of low-water-content tissue, such as fat, which is the main component of healthy breast tissue, cf. [7].
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The most accurate mathematical forward model for real-life impedance tomography is the complete electrode model (CEM), 
cf. [40], where the electric potential u is assumed to satisfy the Robin boundary condition

zν · κ∇u|∂ D + u|∂ D = φ on ∂ D. (2)

Here ν denotes the outer unit normal vector on ∂ D and the positive constant z is the so-called contact impedance which 
accounts for electrochemical effects at the electrode–skin interface. Given the full Robin-to-Neumann map

Rz,κ : φ �→ ν · κ∇u|∂ D ,

that maps the potential on the boundary to the corresponding current across the boundary, this knowledge uniquely deter-
mines z and is hence equivalent to the knowledge of the Dirichlet-to-Neumann map. In this case, uniqueness of solutions 
to the inverse conductivity problem for isotropic conductivities has been proved under various assumptions on both, spatial 
dimension and regularity of the conductivity, cf., e.g., the works by Astala and Päivärinta [2] for d = 2 and Haberman and 
Tataru [16] for d = 3.

Notice that the operator Rz,κ corresponds to idealized measurements on the whole boundary ∂ D . In practice, how-
ever, only a finite number of finite-sized electrodes is available and thus only incomplete and noisy measurements of the 
Robin-to-Neumann map can be obtained. Given such discrete voltage-to-current maps, the use of a regularization strategy is 
mandatory because of the severe ill-posedness of the inverse problem, cf. Alessandrini [1]. In statistical inversion theory, 
the inverse problem is therefore formulated in the framework of Bayesian statistics, that is, all the variables included in the 
mathematical model are treated as random variables. The solution to the statistical inverse problem is then given by the 
posterior probability distribution of the unknown parameters conditioned on the measured data, see, e.g., [17,18]. Comput-
ing the conditional mean estimate as well as common spread estimates from the posterior density leads to high-dimensional 
integration problems and Markov chain Monte Carlo (MCMC) techniques are usually employed for this task. However, each 
sampling step in such an algorithm requires solving the forward problem (1), (2) numerically so that the computation time 
can easily become excessive. This effect is amplified by the fact that the Robin boundary condition (2) leads to singulari-
ties of the solution u at the end points of the electrodes such that numerical approximations, both via finite element and 
boundary element methods, require very fine discretization.

In this work, we are concerned with the forward problem of EIT. More precisely, we develop a probabilistic estimator 
for the voltage-to-current map which has potential to overcome the aforementioned drawback if it is used on massively 
parallel hardware, such as GPUs, within the so-called Bayesian modeling error approach, cf. Kaipio and Somersalo [17]. The 
main advantage of the proposed method, beside its inherent parallel scalability, comes from the fact that the error estimates 
required for the Bayesian modeling error approach may be computed adaptively and on the fly at almost no additional 
computational cost. On top of that, our approach is well suited for uncertainty quantification in problems with random 
parameters.

Due to the advent of multicore computing architectures, probabilistic estimators for the numerical solution of boundary 
value problems for PDE in three or more dimensions have become a valuable alternative to deterministic methods. This is 
particularly true, when one needs to compute the solution at only a few points, or when moderate accuracy is sufficient. For 
instance in biophysical applications, where the linearized Poisson–Boltzmann equation must be solved, efficient probabilistic 
numerical algorithms have been developed recently, see, e.g., [29,4]. However, in contrast to these works, the derivation of 
a probabilistic estimator for the voltage-to-current map corresponds to the approximation of paths of the partially reflecting 
Brownian motion, cf. [15], rather than the killed Brownian motion. The partially reflecting Brownian motion behaves like 
the standard Brownian motion inside the domain and it is prevented from leaving the domain either by absorption or 
by instantaneous reflection. Under quite general assumptions, a Feynman–Kac type representation formula in terms of the 
boundary local time process of the partially reflecting Brownian motion for the electric potentials in EIT was recently 
obtained by Piiroinen and the second author in [33]. It is, however, well-known that direct simulation of the underlying 
Lebesgue–Stieltjes integrals with respect to the boundary local time process is quite a difficult task, see, e.g., [8,12,13]. To 
be precise, the first order convergence obtained by Gobet’s half-space approximation scheme [13] is currently the state of the 
art in time-discretization methods. See also the recent work [42] by Zhou, Cai and Hsu.

In this work we propose a different approach, namely we discretize with respect to space by expressing the unknown 
electrical potential as the expectation of some auxiliary random variable obtained via a local finite difference discretization. 
This yields a novel second order space discretization scheme. A similar technique, using a first order approximation, was 
first introduced by Mascagni and Simonov in [29] in the context of simulation of diffusion processes in discontinuous 
media. Also for the simulation of diffusion processes in discontinuous media, second order schemes were proposed and 
analyzed by Bossy et al. [4] and by Lejay and the first author [22]. The idea to use a local finite difference discretization for 
the simulation of the boundary behavior of reflecting diffusion processes was introduced recently by the first author and 
Tanré [26] and further developed by the first author and Nguyen [27]. Other, related schemes were defined by Lejay and 
Pichot [23] and Lejay and the first author [25]. The main advantage of the method proposed in this work, in comparison to 
the aforementioned works, lies in the fact that the variance of our estimator is greatly reduced due to a combined control 
variates conditional sampling technique. Therefore, we expect the resulting hybrid method to become a valuable alternative 
to established deterministic methods for the problem at hand.

The rest of the paper is structured as follows: We start in Section 2 by describing briefly the modeling of electrode mea-
surements and the anomaly detection problem in EIT. In Section 3 we recall the basic idea of the random walk on spheres 
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(RWOS). Subsequently, in Section 4 we introduce the novel partially reflecting random walk on spheres estimator and in 
Section 5 we describe how it can be used to approximate electrode measurements. Then in Section 6 the variance reduction 
technique is explained. Section 7 generalizes the partially reflecting random walk on spheres estimator to problems with 
layered conductivities as well as problems with random parameters. In Section 8 we present numerical examples to illus-
trate the efficiency of our algorithm. Finally, we conclude with a brief summary of our results and comment on directions 
for future research.

2. Modeling of electrode measurements

Let us briefly recall both, the modeling of electrode measurements in EIT and the anomaly detection problem. Consider 
the time-harmonic Maxwell’s equations, to be precise, Faraday’s law and Ampère’s law

curl E = iωμH, curl H = −(iωε − κ)E,

where ω is the frequency, μ the magnetic permeability and ε the electric permittivity. Notice that the physically relevant 
electric and magnetic fields are given by the real parts �(E(x)eiωt) and �(H(x)eiωt), respectively. Now let us specialize on 
the static, respectively quasi-static case, i.e., direct input currents, respectively low frequencies ω. Then the imaginary part 
of the electrical admittivity iωε−κ becomes negligible as well as the term iωμH . It can indeed be shown that the Maxwell 
system is approximated by

curl E = 0, curl H = κ E, (3)

see e.g. [5]. In particular the electric field must be a gradient field E = −∇u for the scalar electric potential u. Substitution 
of this expression into the second equation in (3) and taking the divergence finally yields the conductivity equation (1).

In anomaly detection problems, it is commonly assumed that the electric conductivity is constant apart from the 
anomaly. Without loss of generality let us assume that κ ≡ 1 in D\T . Moreover, we assume that T is simply connected 
and has a smooth boundary ∂T . In the setting which we are interested in here, T models a perfect conductor. Then poten-
tial differences in T equalize instantaneously and the governing conductivity equation is the Laplace equation

�u = 0 in D\T (4)

with Dirichlet boundary condition on ∂T

u|∂T = c, (5)

where the constant c is implicitly defined through the imposed electrode voltages. We consider here discrete voltage-to-
current measurements performed using N electrodes E1, . . . , E N , attached to ∂ D . The electrodes are modeled by disjoint 
surface patches which are assumed to be simply connected subsets of ∂ D , each having a smooth boundary curve. Within 
the CEM, given N electrodes, the electric potential u satisfies the Robin boundary condition

zν · ∇u|∂ D + f u|∂ D = g on ∂ D, (6)

where the functions f , g : ∂ D →R are given by

f (x) :=
N∑

l=1

χl(x), g(x) :=
N∑

l=1

Ulχl(x).

Here, χl(·) denotes the indicator function of the l-th electrode El and the vector U = (U1, . . . , U N)T denotes a prescribed 
electrode voltage pattern. Notice that the CEM accounts for two important physical phenomena: First, the shunting effect 
of the highly conducting electrodes and second the fact that the current densities are limited by the contact impedance 
z : ∂ D → R+ , which is caused by a thin, highly resistive layer at the electrode–skin interface. We always assume that the 
ground voltage has been chosen such that

N∑
l=1

Ul = 0. (7)

For a given voltage pattern U ∈ R
N satisfying (7), the equations (4), (5) and (6) uniquely define the potential–current pair 

(u, J ) ∈ H1(D) ⊕R
N with electrode currents

Jl = 1

|El|
∫
El

ν · ∇u|∂ D dσ(x), l = 1, . . . , N,
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Fig. 1. Current density κ∇u (arrows), equipotential lines and prescribed electrode voltages on E4 and E7. The box is a perfectly conducting inclusion in 
unit background conductivity. The forward problem of EIT is to determine the electrode currents ( J1, . . . , J10)T .

Fig. 2. Boundary current density ν ·κ∇u|∂ D in the CEM corresponding to the setting of Fig. 1. The ticks on the x-axis correspond to the electrode midpoints.

satisfying the conservation of charges condition

N∑
l=1

Jl = 0, (8)

cf. [40]. For simplicity of the presentation let us assume that |El| = |E|, l = 1, . . . , N , throughout this work.
Figs. 1 and 2 illustrate the EIT forward problem using the CEM. Both figures are computed using synthetic measure-

ment data simulated via a finite element discretization, cf. [18]. The values of the contact impedances are comparable to 
those measured in real-life impedance tomography, cf. [6]. It has been shown experimentally that the CEM can predict EIT 
electrode measurements up to measurement precision, cf. [5,40]. In Fig. 2 notice the peaks of the current density near the 
electrode edges caused by the shunting effect, which lead to severe difficulties in numerical approximations via determin-
istic methods. In fact, the regularity of the potential decreases as the contact impedance tends to zero, cf. [9], which is a 
huge drawback since in practice one typically aims for good contacts, i.e., small contact impedances.

3. The standard random walk on spheres

The random walk on spheres (RWOS) estimator is a classical tool in stochastic numerics for elliptic and parabolic boundary 
value problems, originally designed to solve the Dirichlet problem for the Laplace equation

�v = 0 in D, v = φ on ∂ D, (9)
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see e.g. [31,28,36,37]. For convenience of the reader and to introduce notations let us briefly recall the basic idea. Let 
x0 ∈ D and let dD(x0) denote the radius of the largest sphere entirely contained in D and centered in x0. Then the classical 
Feynman–Kac representation formula, cf. [35], yields

v(x0) = E[v(Wτ (S(x0,dD (x0))))|W0 = x0],
where W is the standard d-dimensional Brownian motion and τ (S(x0, dD(x0))) its first exit time from the sphere 
S(x0, dD(x0)), cf. [19]. As this representation is valid for all points inside the sphere one may use the strong Markov property 
of the Brownian motion to obtain the conditional expectation

v(x0) = E[v(Wτ (S(x1,d(x1))))|W0 = x0, Wτ (S(x0,dD (x0))) = x1].
Due to the isotropy of the Brownian motion the points Wτ (S(x,dD (x))) are uniformly distributed over the sphere S(x, dD(x)), 
i.e., the above procedure defines a time-homogeneous Markov chain {X j} j∈N0 with state space (D, B(D)) and initial distri-
bution given by the Dirac measure δx0 concentrated at x0. The states of this chain can be computed via the relation

X j = X j−1 + R jdD(X j−1), j ≥ 1,

where {R j} j∈N is a sequence of random independent and isotropic unit vectors. For a particular realization of the ran-
dom vector X j we will use the lower case symbol x j(ω), where ω is an elementary element from the probability space 
(
, F , Px0 ) of the Markov chain. We will suppress the ω in our notation if this causes no confusion. It can be shown that 
lim j→∞ X j = X∞ ∈ ∂ D , Px0 -a.s. and the value v(x∞) = φ(x∞) is given by the Dirichlet boundary condition, which yields the 
probabilistic estimator

v̂ : D × 
 →R, v̂(x0,ω) = v(x∞(ω)).

To obtain a practically realizable estimator, one usually introduces an ε-layer

Dε := {x ∈ D : d(x, ∂ D) ≤ ε},
where d(·, ∂ D) denotes the Euclidean distance to the boundary. Let S0(x j, ε) denote the surface of the sphere S(x j, dD(x j))

that belongs to Dε . The probability of x j+1 lying in Dε is then given by

S0(x j, ε)�(d/2)

2πd/2(dD(x j))
d−1

. (10)

In the case of the Dirichlet problem we are interested in the discrete first hitting time, i.e., the index τ (Dε) = inf{ j : x j ∈ Dε}. 
By the spherical mean value theorem we have for all l ∈ N0

E[v(Xl+1)|x1, . . . , xl] = E[v(Xl+1)|xl] = v(xl),

that is, the sequence {v(X j)} j∈N0 is a discrete-time martingale with respect to {X j} j∈N0 and thus by Doob’s optional stopping 
theorem, cf. [19], the stopped chain {v(x0), . . . , v(Xτ (Dε))} is a one as well, implying

E[v̂(x0, ·)|x1, . . . , xl, τ (Dε) ≥ l] = E[v(Xτ (Dε))|xl, τ (Dε) ≥ l] = v(xl).

In particular we have E[v̂(x0, ·)] = v(x0) and thus v̂(x0, ·) is an unbiased estimator for the solution of the Dirichlet problem. 
The corresponding practically realizable estimator is given by

v̂ε(x0, ·) = φ(π∂ D(Xτ (Dε))),

where π∂ D(xτ (Dε)) denotes the normal projection on the boundary ∂ D .
By the law of large numbers, v(x0) may be approximated by simulation of i.i.d. sample paths of the chain 

{X1, . . . , Xτ (Dε)}. Moreover, one can show that the bias of the practically realizable estimator v̂ε(x0, ·) is of order O(ε), 
ε → 0, i.e., for sufficiently small ε there exists a constant C > 0 such that the root mean square error can be estimated by

E

[( 1

M

M∑
m=1

v̂ε(x0,ωm) − v(x0)
)2] ≤ C

(
ε2 + Var[v̂ε(x0, ·)]

M

)
,

cf. [28,37].
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4. The partially reflecting RWOS estimator

Now let us turn to the derivation of the partially reflecting RWOS estimator for the electrode currents J l , l = 1, . . . , N . For 
simplicity of the presentation we restrict ourselves here to the case d = 2, however the generalization to d = 3 is straight-
forward. Throughout this section, we assume for simplicity of the analysis of the proposed estimator that the electrodes 
cover the whole boundary ∂ D , more precisely, we consider the boundary condition (2) with smooth function φ. The case of 
a finite number of discrete electrodes not covering the whole boundary is treated in the subsequent section.

Let us consider the mixed Dirichlet–Robin boundary value problem arising from the anomaly detection problem (4), 
(5), (2) and let us assume for the moment that the constant c in (5) is known. Moreover, we assume that φ is a smooth 
function. Let T ⊂ Tε and let ε be sufficiently small such that the ε-layers do not intersect, i.e., Dε ∩ Tε = ∅. In order to derive 
a probabilistic estimator for the potential u(x) at an arbitrary point x ∈ D\T , we must approximate the partially reflecting 
Brownian motion starting in x with absorption in T . Therefore, let us define a time-homogeneous Markov chain {X j} j∈N0

with state space (D\T ∪{∂}, B∂ (D\T )), where we have adjoined an isolated cemetery point {∂}. This cemetery point captures 
the missing mass, thus accounting for the fact that the chain is neither purely absorbing nor purely reflecting. The lifetime of 
the chain is ζ , that is, X j = ∂ for all j ≥ ζ . By the strong Markov property of the Brownian motion we may use the standard 
RWOS, as long as the chain has not entered any of the ε-layers. Now let xK denote an arbitrary state of the Markov chain 
inside one of the ε-layers Dε or Tε , respectively. If xK ∈ Tε , the chain terminates and we have u(xK ) = c + r0(xK ), where 
r0(x) = O(ε), ε → 0, for all x ∈ Tε . On the other hand, if xK ∈ Dε , the value of u(π∂ D(xK )) is unknown. Without loss of 
generality let us assume that ν(π∂ D (xK )) = e1, where e1 is the unit vector in direction (1, 0)T . We consider a standard 
5-point stencil finite difference approximation with stepsize h > 0 of the Laplacian

�hu(xK + he1) = 1

h2

(
u(xK ) + u(xK + 2he1) + u(xK + h(e1 + e2)) + u(xK + h(e1 − e2)) − 4u(xK + he1)

)
(11)

together with the second order one-sided finite difference approximation of the normal derivative

∇h
νu(xK ) = − 1

2h

(
4u(xK + he1) − 3u(xK ) − u(xK + 2he1)

)
.

If one of the points involved lies outside of D , we reduce h until all the points lie inside. Due to the boundary condition (6)
and the fact that u is harmonic in D\T we obtain thus

u(xK ) + z∇h
νu(xK ) = φ(π∂ D(xK )) + r1(xK ), (12)

where r1(x) =O(h2 + ε/h) for all x ∈ Dε . Now we multiply equation (11) by −2zh2 and equation (12) by 2h and sum them 
up which yields for the value u(xK ) the following expression:

u(xK ) = zRhu(xK )

h + z
+ hφ(π∂ D(xK ))

h + z
+ hr1(xK ), (13)

where

Rhu(xK ) := 1

2

(
u(xK + h(e1 + e2)) + u(xK + h(e1 − e2))

)
.

The key observation is that the expression (13) yields a probabilistic interpretation, namely the first term is the expected 
value of a random variable that takes the values u(xK + h(e1 − e2)) and u(xK + h(e1 + e2)) with equal reflection probability

pr = z

2(h + z)
(14)

and the value 0 with absorption probability

pa = h

h + z
. (15)

We follow the approach pursued in [37] and recast this observation into an inhomogeneous integral equation of the 
second kind:

u(x) =
∫

D\T

u(y)k(x,dy) + F (x), x ∈ D\T , (16)

with the Radon measure

k(x,dy) :=

⎧⎪⎨
⎪⎩

(1 − pa)Ph(e1±e2)(x,dy), x ∈ Dε

0, x ∈ Tε

P (x,dy), else,
D\T
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and inhomogeneity

F (x) :=

⎧⎪⎨
⎪⎩

s(x) + hr1(x), x ∈ Dε

u(π∂T (x)) + r0(x), x ∈ Tε

0, else.∫
B Ph(e1±e2)(x, dy), x ∈ D\T , B ∈ B(D\T ) is the probability transition kernel corresponding to the random reflection in Dε

according to (13), whereas 
∫

B P D\T (x, dy), x ∈ D\T , B ∈ B(D\T ) denotes the probability transition kernel corresponding to 
the standard RWOS in D\T . Finally, the score function of the random walk estimator is given by

s(x) := χDε (x)
hφ(π∂ D(x))

h + z
. (17)

In order to obtain a probabilistic estimator, we define a randomized version of the successive approximation of the 
partial sums of the Neumann series

F (x0) +
∞∑
j=0

K j F (x0),

where K denotes the integral operator in (16). A canonical choice for the probability transition kernel of the underlying 
Markov chain {X j} j∈N0 is obviously given by

P (x, B) :=
∫
B

k(x,dy), x ∈ D\T ∪ {∂}, B ∈ B∂ (D\T ). (18)

Let us denote the probability space of the Markov chain with transition kernel P given by (18) and initial distribution 
X0 ∼ δx0 , x0 ∈ D\T by (
, F , Px0 ) and let Ex0 [·] denote the expectation with respect to the measure Px0 . Then we may 
define the following partially reflecting RWOS estimator for the electrical potential

ǔ : D\T × 
 → R, ǔ(x0,ω) :=
∞∑
j=0

F (x j(ω)) (19)

as well as the corresponding practically realizable estimator

ǔε : D\T × 
 →R, ǔε(x0,ω) :=
∞∑
j=0

s(x j(ω)) + cχTε (xζ−1(ω)). (20)

By the following result, both estimators (19) and (20) are convergent and have uniformly bounded variance.

Theorem 1. Let the boundary condition (2) hold with a smooth function φ . Let the Markov chain {X j} j∈N0 have the transition kernel 
P given by (18) and initial distribution X0 ∼ δx0 , x0 ∈ D\T , then the estimator (19) is convergent and unbiased. Moreover, there exits 
a constant C > 0, independent of x0 , such that

Var[ǔ(x0, ·)] ≤ C ||F ||2
L∞(D\T )

.

Proof. To show that the sequence of successive approximations converges uniformly it is sufficient to prove the existence 
of a positive constant C1 < 1 such that ||K 2||L∞(D\T ) ≤ C1. For x ∈ Dε we have∫

D\T

∫
D\T

k(x,dy)k(y,dz) ≤ max
x∈∂ D

{1 − pa} < 1

and for x ∈ D\(T ∪ Dε ∪ Tε) we may split the integral to obtain∫
D\T

∫
D\(T ∪Dε∪Tε)

P D\T (x,dy)k(y,dz) +
∫

D\T

∫
Dε

P D\T (x,dy)k(y,dz)

≤ 1 − S0(x, ε)

2πd (x)
+ max

x∈∂ D
{1 − pa} S0(x, ε)

2πd (x)
< 1,
D\T D\T
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where we have used formula (10) specialized to the two-dimensional case and domain D\T . The convergence of the se-
quence of successive approximations yields convergence and unbiasedness of the estimator (19).

Now let us write the estimator ǔ(x0, ω) as the sum of local scores given by s j(ω) := F (x j(ω)) for all j < ζ(ω) and 
s j(ω) := 0 for all j ≥ ζ(ω). Obviously it holds that

Var[ǔ(x0, ·)] ≤ Ex0

[( ∞∑
j=0

s j(·)
)2]

.

By convergence of the successive approximations, the lifetime ζ is Px0 -a.s. finite, implying that the series of local scores is 
absolutely convergent in square mean with respect to the probability space (
, F , Px0 ). In particular we may write

Ex0

[( ∞∑
j=0

s j(·)
)2] = 2

∞∑
j=0

∞∑
k= j

Ex0 [s j(·)sk(·)] −
∞∑
j=0

Ex0 [s j(·)2].

By conditioning we obtain for j ≤ k

Ex0 [s j(·)sk(·)] = Ex0 [s j(·)sk(·)| j < ζ ] · Px0( j < ζ)

and a straightforward calculation gives

Ex0 [s j(·)sk(·)] =
∫

(D\T )k

F (x j)F (xk)k(x0,dx1) . . .k(xk−1,dxk) = K j(FKk− j F )(x0).

Summation of these expectations yields

∞∑
j=0

∞∑
k= j

K j(F K k− j F ) =
∞∑
j=0

K j
(

F
∞∑

l=0

K l
t F

)
= (I − K )−1(F (I − K )−1 F )

and

∞∑
j=0

K j F 2 = (I − K )−1 F 2.

Finally we arrive at

Var[ǔ(x0, ·)] ≤ (I − K )−1(2F (I − K )−1 F − F 2)(x0) ≤ C ||F ||2
L∞(D\T )

.

Notice that we have used the fact that by convergence of the successive approximation we may manipulate the Neumann 
series to obtain (I − K )−1 = (I − K 2)−1(I + K ) implying

||(I − K )−1||L∞(D\T ) ≤ C2 = 2(1 − C1)
−1.

We have thus shown the assertion with C = C2(2C2 + 1). �
Let us conclude this section with an estimate for the mean square error of the partially reflecting RWOS estimator.

Theorem 2. Let the boundary condition (2) hold with a smooth function φ . For given ε > 0 there exist a stepsize h > 0 and a constant 
C > 0, such that

E

[( 1

M

M∑
m=1

ǔε(x0,ωm) − u(x0)
)2] ≤ C

(
h4 + Var[ǔε(x0, ·)]

M

)
.

Proof. The mean square error is equal to

E

[( M∑
m=1

ǔε(x0,ωm) −E[
M∑

m=1

ǔε(x0,ωm)]
)2] +

(
E[

M∑
m=1

ǔε(x0,ωm)] − u(x0)
)2

= Var[ǔε(x0, ·)]
M

+
(
E[

M∑
ǔε(x0,ωm)] − u(x0)

)2
,

m=1
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where the first term on the right-hand side is due to the Monte Carlo sampling error and the second term is due to the 
bias of the discretization. As the RWOS simulates the exit position exactly, the bias only comes from the finite difference 
discretization when hitting the boundary. It suffices to consider the case T = ∅, as the variance of the estimator achieves 
its maximum in this case. Note that due to (12), ε ≈ h3 is required to achieve a local bias O(h3). When the boundary is 
hit, the trajectory is absorbed with probability h

h+z and the number of hits of the boundary follows a geometric distribution 
with this probability as parameter. The mean number of hits is thus given by 1 + z

h . Consequently the global bias is of order 
O(zh2). �
5. Approximation of electrode measurements

As we have obtained a convergent partially reflecting RWOS estimator with uniformly bounded variance for the potential, 
we can immediately define an estimator for the electrode currents. Indeed we may write the potential as a sum u = u0 +cu1, 
where u0 and u1 solve auxiliary boundary value problems for the Laplace equation (4) subject to the boundary conditions

u0 = 0 on ∂T , zν · ∇u0|∂ D + f u0|∂ D = g on ∂ D,

respectively,

u1 = 1 on ∂T , zν · ∇u1|∂ D + f u1|∂ D = 0 on ∂ D.

From the boundary condition (6) one obtains

Jl = 1

|E|
∫
El

Ul

z
dσ(x) − 1

|E|
∫
El

u0(x) + cu1(x)

z
dσ(x), l = 1, . . . , N, (21)

and the conservation of charges condition (8) yields

c =
( N∑

l=1

∫
El

Ul − u0(x)

z
dσ(x)

)( N∑
l=1

∫
El

u1(x)

z
dσ(x)

)−1
.

Therefore we define for the integrals 
∫

El

ui(x)
z(x) dσ(x), i = 0, 1 and l = 1, . . . , N , the estimators

ξ̌ ε
l,i(M1, M2) := 1

M2

M2∑
m2=1

1

M1

M1∑
m1=1

η̌ε
i (x0(λm2),ωm1), (22)

using the so-called double randomization principle, cf. [36]. That is, the potential is computed via the partially reflecting RWOS 
estimator and the boundary integrals in (21) are approximated via Monte Carlo sampling as well, using a uniform initial 
distribution X0 ∼ U(El), l = 1, . . . , N . Hence λ denotes an elementary element from the corresponding probability space 
and

η̌ε
i (x0,ω) := |E|

z
ǔε

i (x0,ω), i = 0,1.

Obviously, to estimate the expectation, it would be sufficient to construct only one Markov chain for each realization of λ. 
In practice, however, a splitting technique is usually used, where M2 realizations of λ and then for each of these realizations 
M1 independent Markov chains are constructed. For the optimal choice of M1 and M2 we refer the reader to the book [30]. 
Convergence of the estimator (22) is an immediate consequence of Theorem 1 which yields the following estimator for the 
electrode currents:

J̌ε :=
(

J̌ε1(M1, M2), . . . , J̌εN(M1, M2)
)T

, (23)

where each component J̌ εl (M1, M2) is given by

1

|E|
∫
El

Ul

z
dσ(x) − 1

|E|
(
ξ̌ ε

l,0(M1, M2) + ξ̌ ε
l,1(M1, M2) · čε

)
.

The constant c is approximated by the combined random estimator

čε :=
∑N

l=1

(∫
El

Ul
z dσ(x) − ξ̌ ε

l,0(M1, M2)
)

∑N
l=1 ξ̌ ε

l,1(M1, M2)
.
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Remark 1. Note that in contrast to the idealized boundary condition (2), the right-hand side of (6) presents some dis-
continuities, so that the potential is merely Hölder-continuous, cf. [33,39]. In particular, the fourth order convergence with 
respect to h obtained in Theorem 2 for the idealized boundary condition (2) will be reduced in the case of discrete electrode 
measurements.

6. Variance reduction

In order to reduce the variance of the partially reflecting RWOS estimator, we propose a combined control variates con-
ditional sampling technique. The basic idea of the control variates technique is to employ the known solution of a ‘nearby’ 
problem, see e.g. [14]. We shall exploit here the continuous dependence of the electrode currents on the conductivity. Let 
us thus consider the forward problem for the homogeneous medium with unit conductivity κ ≡ 1 in D and let v denote 
the corresponding solution of the Laplace equation in D , subject to the boundary condition (6). We may proceed as above 
and consider the inhomogeneous integral equation

v(x) =
∫
D

v(y)k̃(x,dy) + F̃ (x), x ∈ D, (24)

with the Radon measure

k̃(x,dy) :=

⎧⎪⎨
⎪⎩

(1 − pa)Ph(e1±e2)(x,dy), x ∈ Dε

P D(x,dy), x ∈ Tε ∪ T

P D\T (x,dy), else,

(25)

and inhomogeneity

F̃ (x) :=
{

s(x) + hr0(x), x ∈ Dε

0, else.

As in the derivation of the partially reflecting RWOS estimator we define a Markov chain {X̃ j} j∈N0 , this time, however, with 
state space (D ∪ {∂}, B∂ (D)) rather than (D\T ∪ {∂}, B∂ (D\T )) and with transition kernel

P̃ (x, B) :=
∫
B

k̃(x,dy), x ∈ D ∪ {∂}, B ∈ B∂ (D), (26)

and initial distribution X̃0 ∼ δx0 . The key idea is that we may use one realization of this Markov chain to compute a 
realization of both, v̌ε(x0, ·), as well as ǔε

i (x0, ·), i = 0, 1. Let us define the practically realizable estimators

η̃ε
i (x0, ·) := |E|

z

(
v(x0) − v̌ε(x0, ·) + ǔε

i (x0, ·)
)
, i = 0,1.

Let ζ̃ denote the lifetime of {X̃ j} j∈N0 , then we obtain for i = 0, 1, the conditional expectations

Ex0 [η̃ε
i (x0, ·)|τ (Tε)] = |E|

z

{
v(x0) − v(xτ (Tε)) + ui(xτ (Tε)) +O(ε), τ (Tε) < ζ̃

v(x0), τ (Tε) > ζ̃ .
(27)

Now we set for i = 0, 1,

η̂ε
i (x0, ·) := Ex0 [η̃ε

i (x0, ·)|τ (Tε)],
and taking the expectation yields for l = 1, . . . , N and i = 0, 1

EU(El)[Ex0(·)[η̂ε
i (x0(·), ·)]] =

∫
El

ui(x0)

z
dσ(x0) +O(ε + h2).

In particular the variance of η̂ε
i (x0, ·) is strictly smaller than the variance of η̃ε

i (x0, ·) since

Var[η̃ε
i (x0, ·)] = Var[η̂ε

i (x0, ·)] +Ex0 [Var[η̃ε
i (x0, ·)|τ (Tε)]].

On top of that, we use v as a control variate. That is, either v is known explicitly, which is the case for certain geometries, 
cf. [10,32], or an approximation of v via a finite element or boundary element method is computed in a pre-computation 
step. In both cases we only need to simulate realizations of the random variable X̃ ˜ and then evaluate (27). In order 
τ (Tε )∧ζ
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to approximate the electrode currents we proceed as above and define for the integrals 
∫

El

ui(x)
z dσ(x), l = 1, . . . , N , i = 0, 1, 

the estimators

ξ̂ ε
l,i(M1, M2) := 1

M2

M2∑
m2=1

1

M1

M1∑
m1=1

η̂ε
i (x0(λm2),ωm1), i = 0,1,

which yields a reduced variance estimator Ĵ ε for the electrode currents if we substitute ξ̌ ε
l,i with ξ̂ ε

l,i in the equations 
defining (23). Pseudocode for the resulting hybrid algorithm is given in Algorithm 1 below.

Algorithm 1 Hybrid algorithm for the computation of the quantity ξ̂ ε
l,i(M1, M2) ≈

∫
El

ui(x)
z dσ(x) for given v (or an approxi-

mation thereof).
Require: M1, M2, v(·)

1: for m2 = 1, . . . , M2 do
2: Draw x ∼ U(El)

3: for m1 = 1, . . . , M1 do
4: Set x0 ← x, τ (Tε) ← inf and j ← 0
5: while x j �= ∂ do
6: if x j ∈ Tε then
7: Set τ (Tε) ← j and x j ← ∂

8: else if x j ∈ Dε then
9: Draw γ ∼ U([0, 1])

10: if γ < pa then
11: Set x j ← ∂

12: else

13: Set x j+1 ←
{

x j + h(e1 − e2) with probability 1/2

x j + h(e1 + e2) with probability 1/2
and j ← j + 1

14: end if
15: else
16: Draw isotropic unit vector R j ; Set x j+1 ← x j + R jdD (x j) and j ← j + 1
17: end if
18: end while

19: Set Am1
l,i ← |E|

z

{
v(x0) − v(π∂T (xτ (Tε ))) + ui(π∂T (xτ (Tε ))), τ (Tε) �= inf

v(x0), else
20: end for
21: Set Bm2

l,i ← 1
M1

∑M1
m1=1 Am1

l,i
22: end for
23: Set ξ̂ ε

l,i(M1, M2) ← 1
M2

∑M2
m2=1 Bm2

l,i

7. Generalizations

7.1. Layered conductivities

More realistic models in breast cancer modeling use layered conductivity models, see, e.g., [21]. Then the forward prob-
lem (1), (5) and (6) is a diffraction problem. Simulation of diffusion processes in piecewise constant media has been studied 
in recent time, see, e.g. [22–25]. The approach we adapt here was first introduced by Lejay and the first author in [22], 
therefore we content ourselves here with a brief description. For the sake of simplicity we assume that D is divided in two 
subdomains D1 and D2 := D\D1 such that D1 ⊂ D and T ⊂ D1. The interface � := ∂ D1 is assumed to be smooth and the 
conductivities in D1 and D2 will be denoted κ1 and κ2, respectively. We proceed similarly to the derivation of the partially 
reflecting RWOS estimator, i.e., we use a finite difference approximation in the interface layer �ε

h2�hu(xK + he1) = −h∇h
νu(xK ) + u(xK ) − Rhu(xK ), (28)

where we have assumed without loss of generality that ν(π�(xK )) = e1. The solution u of the diffraction problem is smooth 
in both subdomains D1\T and D2, continuous on � and satisfies a transmission condition, i.e., the limit

lim
h→0

κ2(u(π�(xK ) + he1) − u(π�(xK )) + κ1(u(π�(xK ) − he1) − u(π�(xK )))

h

vanishes. Let us introduce two parameters h1, h2 > 0, both of order O(h), such that this transmission condition may be 
written in the form

κ2∇h2
ν u(π�(xK )) = κ1∇−h1

ν u(π�(xK )) +O(κ2h2 + κ1h2).
2 1



424 S. Maire, M. Simon / Journal of Computational Physics 303 (2015) 413–430
In D\D1 we obtain using the standard 5-point stencil
κ2h2

2�
h2 u(xK + h2e1) = O(κ2h3

2)

and in D1 we have similarly

κ1h2
1�

−h1 u(xK − h1e1) = O(κ1h3
1).

Inserting those equations into (28) yields

κ2u(xK ) − κ2h2∇h2
ν u(xK ) − κ2 Rh2 u(xK ) = O(κ2h3

2) (29)

and, respectively,

κ1u(xK ) − κ1h1∇−h1
ν u(xK ) − κ1 R−h1 u(xK ) = O(κ1h3

1). (30)

Multiplying (29) by h1 and (30) by h2 and summing them up, one obtains

u(xK ) = κ2h1

κ2h1 + κ1h2
Rh2 u(xK ) + κ1h2

κ2h1 + κ1h2
R−h1 u(xK ) + r3(xK ), (31)

where r3(xK ) = O(κ2h2
2h1 + κ1h2

1h2 + ε) as h1, h2, ε → 0. As in the case of the partially reflecting RWOS estimator, ex-
pression (31) yields a probabilistic interpretation and thus a probabilistic estimator. By the strong Markov property of the 
partially reflecting Brownian motion one can couple this estimator accounting for the behavior at the interface � with the 
partially reflecting RWOS estimator. The resulting estimator may be analyzed in the same manner as described above for 
the partially reflecting RWOS estimator with constant background conductivity.

7.1.1. Choice of the parameters
We write equation (31) in the generic form

u(xK ) = pRh2 u(xK ) + (1 − p)R−h1 u(xK ) + r3(xK ),

where p ∈ (0, 1). There are at least three natural choices of the parameters h1 and h2, namely

(i) h = κ2h1 = κ1h2, then p = 1 − p = 1
2 ,

(ii) h = h1 = h2, then p = κ2
κ2+κ1

, 1 − p = κ1
κ2+κ1

,

(iii) h1 = h√
κ2

, h2 = h√
κ1

, then p =
√

κ2√
κ1+√

κ2
, 1 − p =

√
κ1√

κ1+√
κ2

.

Notice that the first choice is related to the kinetic scheme obtained in [25], where the direction which was originally 
chosen uniformly in (0, 2π) is replaced by a discrete random variable taking only 4 values. In (ii) the probabilities to go to 
one side of the interface correspond to those in [29]. Finally (iii) may be seen as a generalization of the one-dimensional 
scheme based on simulation of the skew Brownian motion in [22].

In our numerical examples, we will also have to deal with other types of boundary conditions and with multiple inter-
faces. Consequently, we chose method (ii) for all our tests to deal more easily with the constraints on the step h in order 
not to cross interfaces when replacing the motion.

7.2. Random parameters

In many practical situations the electrode currents depend on some random parameter μ, for instance due to random 
contact impedances, see e.g. [20]. In uncertainty quantification one is usually interested in calculating the expectation and 
the covariance of the random current measurements with respect to the law of this parameter. Computing these quantities 
in an efficient manner is also crucial in the Bayesian modeling error approach, cf. [17], where the statistical properties 
of modeling and discretization errors are estimated beforehand and subsequently used in the numerical solution of the 
inverse problem. As the underlying probability spaces are usually high-dimensional, uncertainty quantification suffers from 
the curse of dimensionality so that for many practical applications crude Monte Carlo sampling is still the method of choice. 
That is, one samples an ensemble of realizations of the random parameter and solves the deterministic boundary value 
problem for each realization by a deterministic method such as a finite element or boundary element method. However, the 
burden in terms of computation time of this procedure is likely to be prohibitive.

In the framework presented here, this difficulty can be overcome naturally by using the double randomization principle, 
cf. [36], which yields the relations

E
μ[ Jl(μ)] = E

μ[E(ω,λ)[ Ĵ l(ω,λ,μ)|μ]] = E
ω,λ,μ[ Ĵ l(ω,λ,μ)]

Covλ[ Jl(·) Jm(·)] = E
(ω1,ω2,λ1,λ2,μ)[ Ĵ l(ω1, λ1,μ) Ĵm(ω2, λ2,μ)].

Here ω1, ω2 and λ1, λ2, respectively, are conditionally independent trajectories constructed for a fixed realization of μ.
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Fig. 3. The benchmark setting modeling a breast geometry with 8 electrodes and a layered conductivity. The electrodes are numbered clockwise.

We note that in this case, the approximation of the mean value of the solution to the partial differential equation with a 
stochastic coefficient can be computed without extra cost compared to the computation for the deterministic problem. This 
is a huge advantage over common deterministic methods, where the numerical approximation of the solution to an elliptic 
boundary value problem is required for each draw corresponding to a realization of the random medium.

8. Numerical tests

Our numerical tests were performed using a circular model, i.e., D is the planar unit circle, see Fig. 3. Such a geometry 
can be seen as a 2D slice taken from a realistic geometry model representing the targeted breast cancer detection setting; it 
may indeed serve as an appropriate model for certain mammography systems, cf., e.g., [3,11]. We chose a circular inclusion 
of radius r centered at the origin. In this case the constant on the boundary of the inclusion must be equal to zero for 
symmetry reasons. We used 8 electrodes, each of width 0.1. An alternating voltage pattern was imposed, i.e., U j = (−1) j , 
j = 1, . . . , 8. For the computation of the electrode currents, we used the double randomization principle, that is, the starting 
point of each trajectory was picked uniformly at random on one of the electrodes. Although the variance of the estimator 
clearly depends on the choice of the number M2, we did not attempt to optimize this choice but rather set M2 = 100. For 
more information on how to optimize these choices, we refer the reader to the monograph [30].

The numerical scheme was implemented in Fortran and parallelized via OpenMP. The test cases were run on a work-
station with 4 AMD Opteron 8 core CPUs. Pseudo random numbers were generated with an implementation of L’Ecuyers’s 
parallel MRG32k3a random number generator. The reference solution was computed using finite element routines from the 
EIDORS package, cf. [41].

8.1. Unit background conductivity

8.1.1. Idealized measurement model
To verify the theoretical result of Theorem 2 numerically, let us first study the idealized measurement model assuming 

that measurements can be taken on the whole boundary. In our experiment, we considered the Robin boundary condition

z∇u|∂ D + u|∂ D = cos(4θ),

where θ denotes the polar angle. In order to analyze the global bias of the partially reflecting RWOS estimator, we computed 
the bias Bz1 , Bz2 of the practically realizable estimator (20) at a single point x = (0.99361, 0.11286) for two different values 
of the contact impedance z, namely

z1 := 0.5, z2 := 0.1

and 5 different values of h chosen equidistantly from the interval [0.08, 0.2]. The reference values for a centered circular 
inclusion of radius r = 0.3 were computed using a very fine discretization by linear finite elements, cf. [41]; we found 
u(x) ≈ 0.299 and u(x) ≈ 0.642, respectively. In Fig. 4, we plot for each contact impedance the bias corresponding to the 
approximations obtained by the new estimator using 106 simulations and the different stepsizes in a logarithmic scale 
together with the corresponding least-square fits. We obtained an estimated order of convergence (EOC) of 2.05 and 2.07 for 
z1 and z2, respectively. Moreover, as one would expect from the proof of Theorem 2, the bias increased, when z increased.
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Fig. 4. Idealized measurement model: The logarithm of the bias is plotted against the logarithm of the stepsize; solid lines show the corresponding 
least-squares fits.

Fig. 5. Discrete electrode measurements: Finite element discretization and the reference solution within the domain D for an alternating voltage pattern.

8.1.2. Discrete electrode measurements
Bias estimation In this experiment, we computed for the direct method (that is, the method without variance reduction) 
the bias Bzi , i = 1, 2, of the electrode current through the electrode E3 centered at (1, 0) for 5 different values of h chosen 
equidistantly from the interval [0.04, 0.2].

Again, the reference values for a centered circular inclusion of radius r = 0.3 were computed using a very fine dis-
cretization by linear finite elements, see Fig. 5. In Fig. 6, we plot for each contact impedance the bias corresponding to 
the approximations obtained by the new estimator using 106 simulations and the different stepsizes in a logarithmic scale 
together with the corresponding least-square fits. We obtained an EOC of 1.76 and 1.62 for z1 and z2, respectively. As one 
would expect from Remark 1, the EOC is reduced compared to the idealized measurement model.

Variance reduction Next, we investigated the efficiency of the variance reduction method proposed in Section 6. The control 
variate, i.e., the electrode current corresponding to the problem without inclusion was precomputed using a finite element 
discretization using the mesh plotted in Fig. 5. Table 1 shows the experimental results for the test problem described in the 
previous paragraph with contact impedance z2 and an inclusion centered at the origin with different radii.
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Fig. 6. Discrete electrode measurements: The logarithm of the bias is plotted against the logarithm of the stepsize; solid lines show the corresponding 
least-squares fits.

Table 1
Variance reduction: Approximations of the reference electrode current J ref

3 via the direct method J̌ε3 and via the 
method with variance reduction Ĵε3 together with the corresponding standard deviations.

r J ref
3 J̌ε3 σ̌ ε

3 Ĵε3 σ̂ ε
3

0.9 0.976 0.974 0.445 0.974 0.161
0.8 0.902 0.896 0.517 0.904 0.098
0.7 0.874 0.868 0.612 0.876 0.054
0.5 0.864 0.872 0.681 0.865 0.015
0.3 0.862 0.871 0.751 0.862 0.001

Table 2
Efficiency of the methods (unit background): The direct method, the method with variance reduction based on FEM, 
the RWOS and the UWOS, respectively.

r CDir CFE C (1)
RW C (2)

RW C (10)
RW C (1)

UW C (2)
UW C (10)

UW

0.9 0.74 0.78 16.7 16.2 19.5 5.5 4.1 3.7
0.8 2.0 0.21 14.2 12.5 12.3 6.1 4.0 2.5
0.7 3.4 0.07 13.0 9.9 8.4 6.0 3.9 1.9
0.5 6.6 3.0E−3 9.1 7.2 4.8 5.9 3.5 1.3
0.3 10.1 4.5E−5 7.2 4.8 2.9 5.5 2.9 0.9

The reference values J ref
3 for the different radii of the inclusion were computed using a very fine discretization by linear 

finite elements; all simulations were performed using 106 Monte Carlo simulations with stepsize h = 0.004 and ε = 10−6. 
We computed approximations of the electrode current denoted J̌ ε3 and its standard deviation σ̌ ε

3 for the direct method, 
respectively Ĵ ε3 and σ̂ ε

3 for the method with variance reduction.
As one would expect, the standard deviation increases when r decreases for the direct method. For the method with 

variance reduction, the standard deviation decreases when r decreases because the problem gets ‘closer’ to the one without 
inclusion which is used as control variate. This means in particular that the efficiency of the method with variance reduction 
increases as the size of the inclusion decreases which is particular interesting with regard to the inverse problem.

Subsequently, we investigated the efficiency of our approximation methods, as well as different variants thereof, based 
on the quantity C given by the variance multiplied by the computational time which is a standard criterion for Monte Carlo 
methods. Note that for the variants of the method with variance reduction, which shall be described below, we did not 
include the computational time required to solve the problem without inclusion as this is a precomputation which can be 
done once and for all. The results for the direct method, the method with variance reduction based on FEM, the RWOS and 
the UWOS, respectively, are shown in Table 2. The latter methods use the RWOS, respectively the UWOS instead of the FEM 
to compute the solution on the inclusion. For these methods, the superscript in the notation denotes the number of sample 
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Fig. 7. Discrete electrode measurements and layered background conductivity: The logarithm of the bias is plotted against the logarithm of the stepsize; 
solid lines show the corresponding least-squares fits.

Table 3
Efficiency of the methods (layered background): The direct method, the method with variance reduction based on 
FEM, the RWOS and the UWOS, respectively.

r CDir CFE C (1)
RW C (2)

RW C (10)
RW C (1)

UW C (2)
UW C (10)

UW

0.8 4 0.27 49 45 43 44 40 38
0.7 8 0.09 45 39 34 41 34 31
0.6 12 0.03 42 33 27 38 29 24
0.5 17 8E−3 31 25 20 30 23 17
0.3 28 9E−5 29 22 15 28 20 12

paths used for this computation. We see that the method with variance reduction based on FEM is more efficient than the 
other variants and that its efficiency increases as r increases.

8.2. Discrete electrode measurements and layered background conductivity

Now let us turn to the more realistic case of a layered background conductivity. In this experiment, we considered a 
domain D which is separated into two areas with diffusion coefficient κ1 for all points (x, y) such that 

√
x2 + y2 ≥ R and 

with diffusion coefficient κ2 elsewhere outside the inclusion, see Fig. 3. We chose κ1 = 1.5, κ2 = 1 and R = 0.9.

8.2.1. Bias estimation
We computed the bias Bzi , i = 1, 2, of the electrode current through the electrode E3 centered at (1, 0) for 5 different 

values of h chosen equidistantly in the interval [0.02, 0.1]. As in the previous experiments, the reference values for a 
centered circular inclusion of radius r = 0.3 were computed using a very fine discretization by linear finite elements. In 
Fig. 7, we plot the bias corresponding to the approximations obtained by the direct method using 106 simulations in a 
logarithmic scale together with the corresponding least-square fits.

We obtained an EOC of 1.80 and 1.86 for z1 and z2, respectively. In analogy to the observation in Remark 1, the 
discontinuity of the conductivity leads to a merely Hölder-continuous so that the EOC is slightly smaller than two.

8.2.2. Variance reduction
Next, as in the previous experiment, we investigated the efficiency of the variance reduction method proposed in Sec-

tion 6. The control variate, i.e., the electrode current corresponding to the problem without inclusion was precomputed 
using a finite element discretization. As in the previous experiment, we investigated the efficiency of our approximation 
methods as well as different variants thereof, based on the quantity C given by the variance multiplied by the computa-
tional time. The results for the direct method, the method with variance reduction based on FEM, the RWOS and the UWOS, 
respectively, are shown in Table 3. The latter methods use the RWOS, respectively the UWOS instead of the FEM to compute 
the solution on the inclusion. For these methods, the superscript in the notation denotes the number of sample paths used 
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for this computation. Note the increase of the values of C compared to the previous method for the direct method. This can 
be explained by an increase of the computational times due to the time spent by the trajectory near the interface. Moreover, 
we see that the variance reduction method based on FE is still highly efficient and clearly superior to the direct method.

9. Summary and future work

The complete electrode model is the most realistic model to approximate real electrode measurements in electrical 
impedance tomography. We have given a probabilistic interpretation of the corresponding electrode currents taking into 
account both the mixed boundary condition and the possibly discontinuous diffusion coefficient. Then, we have proposed a 
Monte Carlo method based an a novel partially reflecting RWOS estimator to compute these currents in an embarrassingly 
parallel manner. This method involves the RWOS algorithm inside subdomains where the diffusion coefficient is constant 
and replacement techniques motivated by finite difference discretization to deal with mixed boundary conditions as well as 
transmission conditions. The global bias of the corresponding algorithm is analyzed both theoretically and experimentally. 
Moreover the variance of the new estimator is studied and subsequently considerably reduced via a control variate condi-
tional sampling technique. Indeed, it is this variance reduction which makes the resulting hybrid method such an interesting 
alternative to standard deterministic methods, even for two-dimensional problems.

In future work, we intend to use the new Monte Carlo method in the framework of Bayesian statistical inverse problems. 
We expect that the inherent parallelism of our method, combined with the wide availability of multi- and many-core com-
puting hardware, will enable the efficient treatment of three-dimensional problems which would be prohibitively expensive 
in terms of computation time with a non-parallelized deterministic forward solver.
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