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In this paper we construct high order finite volume schemes on networks of hyperbolic 
conservation laws with coupling conditions involving ODEs. We consider two generalized 
Riemann solvers at the junction, one of Toro–Castro type and a solver of Harten, Enquist, 
Osher, Chakravarthy type. The ODE is treated with a Taylor method or an explicit 
Runge–Kutta scheme, respectively. Both resulting high order methods conserve quantities 
exactly if the conservation is part of the coupling conditions. Furthermore we present a 
technique to incorporate lumped parameter models, which arise from simplifying parts of 
a network. The high order convergence and the robust capturing of shocks are investigated 
numerically in several test cases.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Networks of hyperbolic PDEs arise from the modeling of many different problems, e.g. water and wastewater networks 
[1–3], gas pipelines [4–6], traffic flow [7,8], simulation of blood flow [9–11] or cell migration [12]. The description of such 
networks is based on one dimensional conservation laws along the edges and suitable coupling conditions at the nodes. The 
simplest type of coupling uses a set of algebraic relations routing the flow between the arcs of the network. In many of 
the above applications further coupling conditions arise in which an ODE is located in the junction e.g. buffers [13], storage 
tanks, manholes [4,3,2] or the heart [9]. A wide class of such coupling also occurs when so called lumped parameter models 
are applied to parts of the network [9–11,4]. These models arise from simplification of the flow on the edges in regions 
where a coarser modeling can be afforded.

In all these applications fast and accurate numerical methods are needed. For the one dimensional flow along the edges 
a big variety of classical solvers for hyperbolic conservation laws is available [14,15]. Especially numerical methods of high 
order accuracy, e.g. WENO, ADER and DG schemes [16,14,17], achieve remarkably accurate solutions relative to their com-
putational costs. For the application on networks however mainly first order schemes have been developed. Recently, high 
order Riemann solvers for purely algebraic coupling conditions of TC and DET type were presented in [18] and [19] respec-
tively.
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Fig. 1. Edge orientation convention.

In the present article we introduce two approaches to high order methods for vertices that can involve ODEs in addition 
to algebraic coupling conditions. The first method follows the Toro–Castro approach of [20,18]. After solving a classical first 
order coupling problem linear coupling conditions for the temporal derivatives of the states at the junction are considered. 
The ODE is incorporated into this procedure by inserting the full Taylor-expansion of its solution into the coupling condi-
tions. The second method adapts the Harten, Enquist, Osher, Chakravarthy approach [20], which solves a series of classical 
nonlinear Riemann problems. These problems are considered at the supporting points in time of an explicit Runge Kutta 
scheme, which is used for the discretization of the ODE. In the context of this solver we investigate an efficient high order 
solver for lumped parameter models. Here we aim to exploit the underlying network structure for the numerical method.

This paper is organized as follows: First we formulate the problem, specify the coupling conditions and define the 
generalized Riemann problem at a junction. In section 3 we recall the first order solver for such a coupling problem. The 
high order method of Toro–Castro type is presented in Section 4, the HEOC type solver in section 5. Based on these we 
describe a modification suited to networks including lumped parameter models. Finally we present convergence studies and 
several numerical examples in section 7 to show the quality of the schemes presented.

2. Formulation of the problem and coupling conditions

A Network N = (E, V) consists of a set of edges E = {E1, . . . , Eñ} which connect the vertices of the set V = {V 1, . . . , Vm̃}. 
On each edge Ei , i = 1, . . . , ̃n the quantities ui(x, t) ∈R

di are governed by a hyperbolic conservation law of the form

∂t ui + ∂x f i(ui) = 0 , (1)

with the flux function f i :Rdi → R
di , time t ∈R

+ and location x ∈ [0, Li].
In the following we consider a single vertex V and assume all edges to be oriented outwards, as depicted in Fig. 1. 

Starting from this setup, networks of arbitrary shape can be easily constructed by elementary transformations, e.g. [1,21]. To 
improve readability we drop the index j for all quantities at the junction, i.e. we denote the state of the ODE in the vertex 
by w = w j , and the spatial dependencies of the ui s, which are evaluated at x = 0.

At the vertex V we now assume a coupling of mixed algebraic-ODE type, i.e.

�(u1(t), . . . , un(t), w) = 0 ,

ẇ = F (u1(t), . . . , un(t), w) , (2)

ui(t) = ui(0, t) .

The algebraic coupling conditions are given by the function � :⊗n
i=1 R

di × R
l → R

c for n connected edges and the ODE 
is defined by the flux F : ⊗n

i=1 R
di × R

l → R
l . Coupling conditions of that type arise from the modeling of e.g. storage 

components as manholes [3] or reservoirs [22], queues [23,24], as well as from representing parts of complicated networks 
by so called lumped parameter models [10,11,4].

In order to keep the number of coupling conditions constant, the eigenvalues of the Jacobians ∇ui f i λi
l , l = 1, . . . , di

need to be bounded away from zero for all states considered

λi
1 ≤ . . . ≤ λi

di
, |λi

l | > ε̃ > 0 ∀l = 1, . . . ,di . (3)

To ensure that the correct number of coupling conditions is provided and that the problem is well posed [25], we require:

det
(
∇u1�(u1

g, . . . , un
g, w0)R+,1| . . . |∇un�(u1

g, . . . , un
g, w0)R+,n

)
�= 0 , (4)

where R+,i =
[

ri
di−ci+1| . . . |ri

di

]
denotes the matrix of all eigenvectors of ∇ui f i which belong to positive eigenvalues.

ci = #{λi
j|λi

j > 0} (5)

denotes the number of positive eigenvalues on edge i and c = ∑n
i=1 ci defines the total number of coupling conditions 

prescribed by �.
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3. The generalized Riemann problem at a junction

One central building block for the construction of schemes in the ADER framework is the generalized Riemann problem. 
In order to develop similar high order methods for networks, a detailed understanding of the generalized Riemann problem 
at the junction is required. If additionally an ODE is located at the node, we aim to split the problem into two separate 
ones. On the PDE side we are looking for high order approximations to the Godunov states at the boundaries of the PDE 
domains, while simultaneously evolving the ODE in the vertex over one time step.

In the following we will discuss two variants to tackle this problem. The first is based on the classical ADER approach of 
Toro–Castro accompanied by a Taylor method for the ODE. The second one utilizes a Harten, Enquist, Osher, Chakravarthy 
solver for the PDE and a Runge–Kutta scheme for the ODE.

Definition 1. Generalized Riemann problem of order k at a junction:
Consider a algebraic-ODE type coupling (2) of n edges governed by (1). We call such a coupling situation with given initial 
state of the ODE w0 and polynomial Riemann data ui(x, 0) of order k a Generalized Riemann problem of order k at the 
junction

�(u1(t), . . . , un(t), w(t)) = 0 ,

ẇ = F (u1(t), . . . , un(t), w(t)),

ui(t) = ui(0, t)

ui(x,0) =
k−1∑
l=0

pi
l
xl

l!
w(0) = w0 .

Analogously to the classical Riemann problem, the states at the left boundary of the coupled edges ui
g(t) =

limτ→0+ ui(0, t + τ ) are called Godunov states.

3.1. Solving the classical Riemann problem at the junction

Before considering the generalized Riemann problem we investigate the classical Riemann problem at a junction with an 
ODE, i.e. the setup of Definition 1 with k = 1

�(u1(t), . . . , un(t), w(t)) = 0 , ẇ = F (u1(t), . . . , un(t), w(t)),

ui(t) = ui(0, t) ui(x,0) = pi
0

w(0) = w0 .

In the case without ODE, the Godunov states are constant in time, i.e. ui
g (t) ≡ ui

g(0) ∀t ≥ 0. Due to the presence of the 
ODE the state in the junction can vary over time and thus also the Godunov states ui

g(t) change. However for solving the 
classical Riemann problem we are only interested in the states at t → 0+.

Since the solution of the ODE is continuous in time [25] we have limt→0+ w(t) = w0. Knowing the initial state of the 
ODE, the problem at t = 0+ reduces to a classical Riemann problem at a junction. This we can solve with the help of the 
so called Lax Curves [18,26].

Solving such a classical Riemann problem at a junction is equivalent to finding a set of states that fulfill the algebraic 
part of the coupling conditions while being possible Godunov states accessible from the Riemann data on each edge. In 
order to be such an accessible state they have to lie on the concatenated Lax curves anchored in the right states ui

r = pi
0

[26]:

Li
g(ξ

i
1, . . . , ξ

i
ci
, ui

r) = Ldi−ci+1(ξ
i
1, ·) ◦ . . . ◦ Li

di
(ξ i

ci
, ui

r) ,

where the number of curves and free parameters ci is given by (5). The operator ◦ denotes the concatenation in the last 
variable, i.e for two functions g and h

g(ξ1, . . . , ξl, ·) ◦ h(ξl+1, . . . , ξm, x) = g(ξ1, . . . , ξl,h(ξl+1, . . . , ξm, x)) .

Therefore we have to solve the equations

�
(

L1
g(ξ

1, u1
r ), L2

g(ξ
2, u2

r ), . . . , Ln
g(ξ

n, un
r ), w0

)
= 0 (6)
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for the unknowns ξ i = (ξ i
1, . . . , ξ

i
ci
). The local solvability of this system for states close to ur is assured by condition (4) [26]. 

Once the parameters ξ i are known, the Godunov states can be determined by evaluating the concatenated Lax curves

ui
g(0) = Li

g(ξ
i, ui

r) .

Thus the complete set of states at the junction at t = 0+ is given by {u1
g(0), . . . , un

g(0), w0}.

4. Generalized Riemann solver of Toro–Castro type

In the ADER framework the Toro–Castro approach provides a procedure to construct a polynomial in time approximating 
the solution of the generalized Riemann problem at the considered interface. This is achieved by splitting up the problem 
into one classical nonlinear Riemann problem and k − 1 linearized Riemann problems for the temporal derivatives of the 
Godunov states. An extension of this procedure to junctions without ODEs was presented in [18].

Let a generalized Riemann problem at an ODE junction be given as in Definition 1. As a first step we solve the zero-th 
order classical Riemann problem as described in section 3.1 using the zero order data, i.e. ui

r = pi
0. Note that once the states 

at t = 0+ are known, we can directly evaluate the ODE ẇ(0) = F (u1
g(0), . . . , un

g(0), w(0)), which already provides some 
information about the development of w(t).

In a second step we aim to compute the temporal derivatives of the involved states. As in the classical ADER framework, 
we obtain governing equations for the derivatives by differentiating the conservation laws with respect to t and obtain

∂t(∂
k
t ui) + ∇ f i(ui

g)∂x(∂
k
t ui) + ‘sources’ = 0 k = 1, . . . ,kmax . (7)

The term ‘sources’ encompasses everything that only depends on derivatives of degree k and less. As mentioned in [14]
these terms can be ignored for determining the derivatives of the Godunov states. Thus governing equations for the temporal 
derivatives become linear hyperbolic systems. Therefore the corresponding Lax curves are linear as well. The concatenated 
Lax curves to a Riemann problem with ∂k

t ui
r as states on the right hand side have the short form

Li,k
g (ξ i, ur) = ∂k

t ui
r + R+,iξ i

k , R+,i =
[

ri
di−ci+1| . . . |ri

di

]
, (8)

where ri
j denotes the eigenvector corresponding to the j-th eigenvalue λi

j of ∇ f i(ui
g). Note that (3) still holds as the 

Jacobian is the same as in the Riemann problem of order zero.
In order to obtain the coupling conditions for the temporal derivatives, we differentiate � with respect to time. The first 

order derivative of � reads

d

dt
�(u1

g, . . . , un
g, w) = 0

⇒
n∑

l=1

∇ul
g
�(u1

g, . . . , un
g, w)∂t ul

g + ∇w�(u1
g, . . . , un

g, w)∂t w = 0 ,

where all quantities are evaluated at t = 0 and ui
g denotes the Godunov state at x = 0 on edge i. By inserting the ODE 

∂t w = F (u1
g, . . . , un

g, w) we obtain

∇u�(u1
g, . . . , un

g, w)∂t ug + ∇w�(u1
g, . . . , un

g, w)F (u1
g, . . . , un

g, w) = 0

∇u�(u1
g, . . . , un

g, w)∂t u + �1(u1
g, . . . , un

g, w) = 0 . (9)

The function �1 only depends on states at t = 0 and not on any temporal derivative. Thus we have a linear system governing 
the temporal derivatives of the Godunov states at the junction. Here and in the following we assume the coupling conditions 
� to be sufficiently differentiable, otherwise we consider the usage of high order schemes not appropriate.

For the derivatives of orders k ≥ 2 additional terms arise, which we summarize as �̃k

∇u�(u1
g, . . . , un

g, w)∂k
t ug + �̃k(ug, ∂t ug, . . . , ∂

k−1
t ug, w, ∂t w, . . . , ∂k

t w) = 0 .

Note that these lower order terms can not be dropped as in the classical ADER framework, i.e. equation (7), since we can 
not expect that it acts delayed in any form. It is easy to see that �̃k only depends on lower order derivatives of ug but still 
on all k derivatives of w . The derivatives of the ODE state w can be expressed using the ODE

∂k
t w = ∂k−1

t F (u1
g(t), . . . , un

g(t), w)

= 	(u1
g, ∂t u1

g, . . . , ∂
k−1
t u1

g, . . . , un
g, ∂t un

g, . . . , ∂
k−1
t un

g, w, ∂t w, . . . , ∂k−1
t w) .

(10)

Thus we end up with a linear equation for ∂k
t ug which only requires derivatives of lower order than k

∇u�(u1
g, . . . , un

g, w)∂k
t ug + �k(ug, ∂t ug, . . . , ∂

k−1
t ug, w, ∂t w, . . . , ∂k−1

t w) = 0 . (11)
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Finally we can use this expression to obtain all the temporal derivatives of ug iteratively, by starting with the first order 
equation (9) and successively solving (11) in increasing order of k.

To solve each of these systems (11), we proceed as in the zero-th order case. The temporal derivatives of ug are governed 
by a linear conservation law (7) and coupled by a set of linear coupling conditions (11). Thus we insert the concatenated 
linear Lax curves (8) with the free parameter ξ i

k

n∑
i=1

∇ui �(u1
g, . . . , un

g, w)
(

R+,iξ i
k + ∂k

t ui
r

)
+ �k = 0

⇒
n∑

i=1

∇ui �(u1
g, . . . , un

g, w)R+,iξ i
k +

n∑
i=1

∇ui �(u1
g, . . . , un

g, w)∂k
t ui

r + �k = 0 .

By introducing the notations

ai = ∇ui �(u1
g, . . . , un

g, w)R+,i , A = (a1|a2| . . . |an) ,

ξk = (
ξ1

k ξ2
k . . . ξn

k

)T
, ∂k

t ur = (
∂k

t u1
r ∂k

t u2
r . . . ∂k

t un
r

)T
,

this linear system can be written as

Aξk + ∇u�(u1
g, . . . , un

g, w)∂k
t ur + �k = 0 . (12)

The matrix A is exactly the one in (4) considered for the well-posedness of the coupling conditions. Since we have det A �= 0, 
we can solve for the unknowns ξk

ξk = A−1
(
−∇u�(u1

g, . . . , un
g, w)∂k

t ur − �k

)
.

In order to evaluate this expression, the temporal derivatives of the states within the edges ∂k
t ur are needed. Analogous to 

the classical ADER approach we start with a WENO reconstruction of the spatial initial data. Since we are at the boundary 
of a domain, we have to use an one-sided reconstruction of type [27] to obtain spatial derivatives ∂k

x ur at the junction. The 
use of characteristic decomposition in the polynomial reconstruction step is necessary, at the boundary as well as in the 
interior of the domain, to limit Gibbs oscillations around discontinuities. The spatial derivatives of the data are transformed 
into temporal derivatives ∂k

t ur using the Cauchy–Kowalewski or Lax–Wendroff procedure [14,27].
Note that carrying out the Cauchy–Kowalewski procedure on the basis of the zero-th order Godunov state is not strictly 

necessary, but does not cause any additional computational costs either. It is however necessary to make the scheme revert 
to the classical Toro–Titarev ADER scheme for one on one coupling, as we showed in [18]. Once the values of ξk are 
determined, we can evaluate the Lax curves (8) to obtain the temporal derivatives of the Godunov states ∂k

t ug . With these 
we can directly build a polynomial approximation of ug(t) at the interfaces of the junction.

An approximation to the states of the ODE can now be constructed easily. Since for the computation of ∂k
t ug we already 

determined all the derivatives of w using equation (10), we just combine these to a Taylor series approximating w(t).
The scheme derived from the Toro–Castro type solver for the generalized Riemann problem at the junction with ODE 

can be summarized as follows:

1. Obtain GRP data at the junction via one-sided polynomial reconstruction.
2. Solve the zero-th order Riemann problem at the junction, as described in section 3.1.
3. Apply the Cauchy–Kowalewski procedure to obtain temporal polynomials as input data.
4. Solve the generalized Riemann problem at the junction, as described above.
5. Approximate the fluxes across cell interfaces at the junction using the temporal derivatives of the Godunov states.
6. Update the state w in the junction by applying a Taylor scheme of order k.
7. Fill the ghost cells at the junction if needed.
8. Run a high order finite volume scheme e.g. ADER to compute the fluxes across interior cell interfaces.

A detailed description how to fill the ghost cells, if needed, is given in [18].
At this point we note that the above procedure requires, besides the Cauchy–Kowalevsky procedure, the derivatives up 

to order k of the ODE as well as those of the coupling conditions.

5. Generalized Riemann solver at an ODE junction Harten, Enquist, Osher, Chakravarthy type

A popular alternative to the Toro–Castro approach for solving generalized Riemann problems is the Harten, Enquist, 
Osher, Chakravarthy solver [20]. Instead of solving the linear governing equations for the derivatives, it uses several classical 
Riemann problems at different points in time to achieve a high order approximation of the flux, see Fig. 2 for a schematic 
representation of the technique. Here we present a HEOC type solver for junctions, which is accompanied by a Runge–Kutta 
scheme for the ODE.
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Fig. 2. HEOC schematic.

First we fix a quadrature rule according to the desired order of the scheme. Then the spatial data on each side of the 
interface is flipped into the time domain using the Cauchy–Kowalevsky procedure. These polynomials can be evaluated at 
the supporting points of the given quadrature rule, such that a series of classical Riemann problems arises. Their solutions 
serve as approximation of the states at the interface at these points in time. This information can be inserted into the 
quadrature rule to obtain a high order approximation of the fluxes at the interface.

In the following we adapt this approach to generalized Riemann problems at junctions with ODEs. Before considering 
the fluxes of the PDE, we start with the numerical method for the ODE. Here we choose an explicit Runge–Kutta scheme 
which is at least accurate of order k. Usually the coefficients of RK-schemes are given in form of a Butcher array

B̄ =
(

c̄ Ā

b̄

)
,

such that for an ODE ẇ = F (t, w) the update formula reads

wn+1 = yn + 
t
s∑

j=1

b̄ jk j , ki = F (tn + c̄i
t, wn + 
t
i−1∑
j=1

āi jk j) . (13)

At this point we note that each RK-scheme of order k naturally provides a quadrature formula of order k with the supporting 
points ci
t , such that


t∫
0

F̃ (τ )dτ = 
t
s∑

j=1

b̄ j F̃ (tn + c̄i
t) +O(
tk+1) .

In the following we will use exactly these intermediate time levels tl = cl
t to set up the HEOC coupling procedure. The spa-
tial data obtained by a one-sided polynomial reconstruction is transformed into temporal data via the Cauchy–Kowalevsky 
procedure. Thus for each connected edge we obtain a temporal polynomial of the form

ui
r(t) =

kmax−1∑
l=0

pi,time
l

tl

l!
as input data for the generalized Riemann problem at the junction. With these values available, we now aim to solve the 
classical Riemann problems at the time levels tl

�(u1
g(tl), . . . , un

g(tl), w(tl)) = 0 . (14)

In order to apply the technique of section 3.1 we have to provide some approximation for the value of w(tl). This is naturally 
provided by the RK-scheme as in the second formula of (13)

wl = w0 + 
t
l−1∑
i=1

āl,iki . (15)
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As in the classical RK methods, the value wl is not necessarily an approximation of very high order, but chosen in 
such a way that in the final update the desired order is obtained. Note that for the evaluation of the stages ki =
F (ti, u1

g(ti), . . . , un
g(ti), wi) i = 1, . . . , l − 1 values of wi and ug(ti) are needed. But since we have chosen an explicit RK-

scheme, only data from the previous l − 1 stages is used.
Inserting (15) into (14) we obtain

�(u1
g(tl), . . . , un

g(tl), wl) = 0

and can solve this classical Riemann problem for the Godunov states at tl .
Once all Riemann problems are solved successively, we can compose the solutions to determine the fluxes of the conser-

vation laws and to update the ODE

f i
− 1

2
=

k∑
l=1

b̄l f i(ui
g(tl)) , w(t + 
t) = w(t) + 
t

k∑
l=1

b̄lkl . (16)

The coefficients bl in both formulas are those of the RK-scheme (13) and the stages kl have been already computed for the 
formula (15).

5.1. Ghost cell filling

Dealing with interior interfaces in close proximity to the boundary requires additional work for very high orders. The 
conventional way, restricting WENO reconstruction to stencils that only contain interior cells [28], not only fails to handle 
shocks emerging from the vertices, but also hurts the order of convergence for smooth data due to the asymmetric stencils. 
We therefore use the following technique to fill ghost cells. Starting with the Riemann data 

(
ur ∂xur . . . ∂k

x ur
)T

we 
replace the zero-th order data by the Godunov state obtained in the coupling procedure and fill k ghost cells by integrating 
the resulting polynomial. 

(
ug ∂xur . . . ∂k

x ur
)T

In case of smooth data, this extrapolation provides the ghost cell infor-
mation WENO reconstruction requires, whereas in case of an emerging shock, WENO reconstruction discards the ghost cell 
data anyways.

5.2. Complete scheme

The complete scheme can be summarized as

1. Obtain GRP data at the junction via one-sided polynomial reconstruction.
2. Apply the Cauchy–Kowalewski procedure to obtain temporal polynomials as input data.
3. Solve the classical Riemann problems as described in section 3.1 at the times tl as described above.
4. Approximate the fluxes across cell interfaces at the junction using the Godunov states at the time levels tl .
5. Update the state w in the junction by applying the RK-scheme of order k.
6. Use the extrapolation method described above to fill k ghost cells.
7. Run a high order finite volume scheme to compute the fluxes across interior cell interfaces.

One advantage of this approach is that neither the derivatives of the coupling conditions nor those of the ODE are 
needed. Thus the only symbolic manipulation necessary is the CK procedure, which is required for ADERs scheme inside 
the domain anyway. Furthermore we can solve the ODE with some classical RK-scheme, which is helpful especially for 
complicated or large ODEs e.g. those that arise from lumped parameter models.

The main disadvantage of this approach is the higher computational costs, since several nonlinear Riemann problems 
have to be solved instead of just one nonlinear and a couple of linear ones.

5.3. Conservation of quantities

In many applications and their corresponding models some quantities are conserved in the complete network, e.g. the 
total mass [24,2,6,10]. This is not only established via the conservation laws on the edges, but also due to a careful choice 
of the coupling conditions and the ODE in the junction.

Since the conservation is guaranteed to be exact in the interior of the edges by the numerical scheme, it is desirable 
that also the coupling procedure is conservative. The first order junction solver in section 3.1 is conservative, since the same 
Godunov states are used in the coupling conditions as well as for the computation of the fluxes across the interfaces. If 
the ODE is updated by an explicit Euler scheme, its update relies on the same values as the coupling condition. Clearly at 
the junction the conservation is only guaranteed up to the precision of the numerical method used to solve the nonlinear 
system arising from the coupling conditions.

In case of no ODE in the junction it has been proven in [18] that the Toro–Castro approach also conserves the selected 
quantities. This proof can be easily modified such that it fits the current setting. We just have to take care that the ODE is 
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updated with exactly the same numerical values as those arising in the coupling procedure. Therefore it is mandatory to 
use a Taylor scheme for the ODE.

For the HEOC approach at any intermediate time level tl a classical Riemann Problem at a junction is considered. If 
now some quantity is conserved in the underlying system, at each of these Riemann problems the fluxes of the resulting 
Godunov states and the flux of the ODE balance exactly. Since we choose the identical b̄l s for the flux integration and the 
RK-scheme (16), this also holds for the final updates in the PDEs and the ODE.

5.4. Source-terms

In many applications the conservation law (1) is replaced by a balance law via introducing source terms. These usually 
do not affect the coupling procedure [2]. If we have a numerical scheme at hand that is capable to treat the source terms 
properly and include the sources into the Cauchy–Kowalevsky-procedure, all the above methods can be applied. Since the 
lower order terms in (7) are dropped, the sources do neither change the Lax curves nor the governing equations of the 
higher order derivatives.

6. Lumped parameter models

In many real world applications the dimensions of the network exceed the affordable computational effort, e.g. capillaries 
in the circulatory system. At the same time a detailed description of the flow is only needed in certain areas of the network. 
Therefore it is often convenient to describe some parts of the network by simpler models. A wide class of such reduced 
models are the so called lumped parameter models, which are used to describe e.g. the human circulatory system [10,11]
or gas networks [4].

In this section we explain a process to construct high order schemes for hybrid models of networks containing hyperbolic 
conservation laws and lumped parameter models. To have access to such a process in an algorithmic framework is especially 
of interest in the context of dynamical switching between highly resolved and reduced models [4].

Consider one edge in the network of length L with a conservation law

∂t u(t, x) + ∂x ( f (u(t, x))) = 0 .

Following ideas of the approach proposed in [11], a lumped parameter model is obtained by averaging over the whole 
spatial domain, i.e.

∂t

⎛
⎜⎜⎜⎜⎜⎝

1

L

L∫
0

u(t, x)dx

︸ ︷︷ ︸
=:U

⎞
⎟⎟⎟⎟⎟⎠+ 1

L

⎡
⎢⎢⎣ f (u(t, L)︸ ︷︷ ︸

=:U r
g

) − f (u(t,0)︸ ︷︷ ︸
=:Ul

g

)

⎤
⎥⎥⎦= 0 (17)

⇒ U ′ = F (U , Ul
g, U r

g) .

The state along the edge is described by the averaged state U . As in the first order update of the classical Godunov method, 
the fluxes at the ends of the interval are evaluated with the Godunov states, which result from the Riemann problem of 
the inner state U and some respective outer states or a coupling procedure. Here no additional linearization of the PDE is 
considered, as it is not relevant for the computational effort of the scheme. The usage of the Godunov states follows the 
ideas proposed in [11].

The averaged state U is governed by a simple ODE with the unknown Godunov states at the left and right boundary 
Ul

g and U r
g . If such an edge is connected to a node in the network, these values will be determined when solving the 

associated coupling conditions. The coupling procedure from section 3.1 remains unchanged by the averaging process and 
the Lax curve are anchored at the inner state U . This implies, if complete sections of the network are simplified to lumped 
parameter models in the above manner, that the PDEs are not coupled to a simple ODE but to a differential algebraic 
equation (DAE). The components of the lumped region can be summarized as follows

w ′ = F (w, ug)
ODE part, originates from lumped edges and ODE parts al-
ready present in vertices, (18)

�(ug, w) = 0 Algebraic constraints stem from the coupling conditions of 
the vertices, (19)

ug − L(w, ξ) = 0 Lax curve condition to connect the Godunov states with the 
internal states.

Note that here w contains the averaged states of all lumped edges in a connected area and all possible ODE states in the 
junctions of this region.

From a numerical point of view the algebraic constraints (19) do enforce the usage of an appropriate solver of DAEs in 
the junction, e.g. modified RK schemes [29]. In the following however we want to present a technique to construct a high 
order solver using the underlying network structure of the LPM.
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Since the lumped areas might be very large or vary in time, due to switching between the models, we base the following 
procedure on the HEOC approach. As in section 5 we first apply polynomial reconstruction to obtain spatial data on the 
PDE-edges. For each vertex in the lumped parts of the network we solve the following zero-th order coupling problem as 
(6)

�(u1
g, . . . , ui

g, w0) = 0 with ui
r =

{
pi

0 edge is equipped with a PDE

U i
0 edge model is lumped

.

This yields the Godunov states on the PDE edges at t = 0, which are used to flip the data into time by Cauchy–Kowalevsky 
procedure, providing polynomials ui,time(t). We repeat this step for each stage l of the RK-scheme in the HEOC approach 
and for each vertex in the lumped network, i.e. we solve the zero-th order coupling problem at tl = cl
t ,

�(u1
g, . . . , ui

g, wl) = 0 with ui
r =

{
ui,time(tl) If the edge in question is a PDE

U i
l if the edge in question is lumped

.

The states U i
l are known from the previous stage of the RK-scheme and the new ones are obtained by

U i
l+1 = U0 + 
t

l∑
i

āl+1,ik
U
i , w j

l+1 = w0 + 
t
l∑
i

āl+1,ik
w
i ,

where kU
i and kw

i are the components of the intermediate values ki for the lumped edges or the ODEs in the junctions 
respectively.

With this procedure we can keep the full network structure, such that we can easily select any part of this network and 
switch between the simplified and the more accurate model. The scheme can be summarized by the following steps

1. Obtain GRP data at the junction via one-sided polynomial reconstruction.
2. Solve the zero-th order Riemann problem at the junction, as described in section 3.1.
3. Apply the Cauchy–Kowalewski procedure to obtain temporal polynomials as input data.
4. Compute each stage of the RK-scheme as described above.
5. Approximate the fluxes across cell interfaces at the junction using the Godunov states at the time levels tl .
6. Update the state w in the junction by applying the RK-scheme of order k.
7. Run a high order finite volume scheme to compute the fluxes across interior cell interfaces.

Note that if a special solver for ODE networks is available it might be incorporated into each stage of the RK-scheme at 
step 4.

6.1. Source-terms in lumped parameter models

Source terms can be treated in a straightforward way, since they do not affect the coupling procedure. Only when 
particular steady states should be preserved, the averaging process in (17) has to be adapted accordingly. In case of a 
balance law we obtain

∂t u(t, x) + ∂x ( f (u(t, x))) = S(u(t, x))

⇒ ∂t U + 1

L

[
f (U r

g) − f (Ul
g)
]

= 1

L

L∫
0

S(u(t, x)) ≈ S̃(U )

For example in the case of the shallow water equations (21) many well-balanced numerical schemes have been developed 
in order to incorporate the bottom elevation in a suitable manner e.g. [30–32]. In this particular situation the approximation 
made to obtain S̃ reads as

1

L

L∫
0

−gh∂xb ≈ −gh̄
b(L) − b(0)

L
, (20)

where h denotes the water level, h̄ the averaged water lever, b the bottom elevation and g the gravitational acceleration.
As illustrated in Fig. 3a, an independent treatment of flux and source can not lead to a method preserving steady states. 

Therefore we have to apply a reconstruction technique to the values U , which follows the bottom topography. This so called 
hydrostatic reconstruction [31] is a well known tool in this context. In the LPM the bottom term is linear due to (20), 
therefore hydrostatic reconstruction is a linear modification of the values to be used as Riemann data
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Fig. 3. Problems arising from naive lumping.

hl = h̄ + b (L) − b (0)

2
, hr = h̄ − b (L) − b (0)

2
,

to balance the data. Using this modification ensures that any lake at rest state in a LPM is again interpreted as lake at 
rest at the boundaries of the LPM as shown in Fig. 3a. Thus, whenever bottom elevation is considered, we will apply the 
hydrostatic reconstruction on lumped edges in order to capture the ‘lake at rest’ correctly.

A further detail concerning this particular steady state is also depicted in Fig. 3b. If an initial condition for the PDE model 
is provided on the network, the initial conditions of the lumped parameter model are obtained by the averaging process in 
(17). Since in (20) the bottom elevation is linearized, possible errors have to be compensated in the initial values of U . In 
the following we will just add the missing amount of water artificially to the initial states of the LPM model by modifying 
the reconstruction to

U = 1

L

L∫
0

u(x)dx +
⎛
⎝1

L

L∫
0

b(x)dx − 1

2
(b(L) + b(0))

⎞
⎠ .

7. Numerical examples

In this section we investigate the above presented numerical methods in different test cases. As conservation law along 
the edges we choose the shallow water equations

∂th + ∂xq = 0

∂tq + ∂x

(
q2

h
+ 1

2
gh2

)
= 0 .

(21)

h denotes the depth of the water and q is the discharge in x direction. g = 9.81 is the gravitational acceleration.
As coupling conditions in the junctions we consider two different sets of equations. The first one is the so called ‘equal 

heights’ coupling, which reads for n connected edges

n∑
i=1

qi = 0 ,

h1 − hi = 0 2 ≤ i ≤ n .

(22)

The first equation states the conservation of mass at the junction. The remaining n − 1 equations force all heights at the 
junction to be at the same level.

The second set of coupling conditions involve an ODE at the junction.

ḣm = Q m

Am

Q̇ m = g Am

hm

(
1

2g

q2
1

h2
1

+ h1 −
(

1

2g

Q 2
m

A2
m

+ hm

))
. (23)
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Fig. 4. Split circle network.

Fig. 5. Initial data and solution for the convergence studies 7.1 and 7.2.

The two states are the vertical water level in the tank hm and the discharge Q m flowing into the volume. The constant 
Am is the horizontal cross sectional area of the storage tank. It is important that this model is always accompanied by the 
following set of coupling conditions

n∑
i=1

qi + Q m = 0 ,

1

2g

q2
1

h2
1

+ h1 −
(

1

2g

q2
i

h2
i

+ hi

)
= 0 2 ≤ i ≤ n .

(24)

The first equation again ensures the conservation of total mass in the coupled system. The following n −1 equations state the 
equality of the so called hydraulic heads or energy levels. As this name indicates these conditions provide the conservation 
of the total energy at the junction in case of smooth solutions [6,2]. The total energy in the coupled system is conserved 
due to equation (23) in the storage model [2]. Here we further note that (23) does not depend on the choice of the related 
edge since all hydraulic heads coincide. Note that the coupling conditions (24) can also be used if no manhole is present as 
proposed in [33].

In the following convergence studies, we use a simple network consisting of three edges and two nodes, as shown in 
Fig. 4. All edges are of the same length L = 25 and in both nodes a storage tank with Am = 1 is placed. The initial data used 
for convergence studies needs not only to be smooth along the edges, but also has to satisfy the coupling conditions and its 
temporal derivatives up to the order of the schemes to be investigated. In the following we choose lake at rest like states 
at the junctions and a sufficiently smooth transition between their two water levels. This can be achieved by qi(x, 0) = 0
i = 1, 2, 3 and polynomial states of degree 15 for hi which are determined by the constraints

hi(0,0) = 2 , ∂k
x hi(0,0) = 0 , hi(L,0) = 3 , ∂k

x hi(L,0) = 0 , k = 1, . . . ,7 .

The initial states of the ODEs are also at rest, i.e. w1(0) = (2, 0)T and w2(0) = (3, 0)T .
Fig. 5a shows the initial and final data on the edges and Fig. 5b shows the states of the ODEs in the manhole nodes for 

t ∈ [0, 2.4].
The reference solution is always computed using the scheme to be tested at maximal order, i.e. 8, on a grid resolved 

twice as fine as the highest resolution investigated, i.e. 800 cells per edge.
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Fig. 6. Convergence study 7.1: Splitcircle TT solver in L1 and L∞ norm for the edges, ‖ · ‖2 norm for the ODEs.

In all numerical examples the time step 
t is synchronized in the complete network according to a CFL number 0.95. 
In all test cases involving ODEs, the time step proposed by the PDEs was small enough to produce stable and accurate 
approximations of the ODEs.

7.1. Convergence study Toro–Castro

The first convergence tests we perform for the Toro–Castro solver which is described in section 4. In Fig. 6 the L1 and 
the L∞-error at t = 2.4 are plotted against the reciprocal of the cell width 
x. Furthermore the errors of the final states of 
the ODEs at t = 2.4 are shown in ‖ · ‖2 norm

Additionally for selected orders k the errors and rates of convergence are given in Table 1.
All numerical solutions converge with the expected order.

7.2. Convergence study Harten, Enquist, Osher, Chakravarthy

For the HEOC-coupling procedure we repeat the same test for schemes up to order k = 8. The L1 and L∞ errors for the 
PDEs and the ‖ · ‖2-errors of the ODEs are shown in Fig. 7. The precise values and the corresponding convergence rates are 
presented in Table 2.

The errors are within the same range as those of the Toro–Castro method and all solutions converge with the predicted 
order.

7.3. Convergence study lumped parameter model

The final convergence test addresses lumped parameter models. Therefore we consider a network consisting of six edges 
and four vertices as depicted in Fig. 8. In the two junctions V 2 and V 4 equal height coupling is applied, while in V 1 and V 3
two manholes with Am = 1 are located. The lumping of section 6 is applied to the whole network except E1, i.e. the green 
colored region.

As initial conditions we choose water at rest qi(x, 0) ≡ 0 i = 1, . . . , 6 with the constant water level hi(x, 0) ≡ 0, i =
2, . . . , 6, except for the first edge. There we take as data a polynomial of degree 16 such that
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Table 1
Convergence study 7.1: Convergence rates splitcircle with TT solver.

k = 2 k = 4 k = 5 k = 6 k = 8

PDE L1 norm

N L1 O L1 L1 O L1 L1 O L1 L1 O L1 L1 O L1

12 8.28e−01 2.21e−01 1.47e−01 1.63e−01 3.22e−01
25 1.97e−01 1.96 1.44e−02 3.72 7.06e−03 4.14 6.02e−03 4.49 5.80e−03 5.47
50 5.51e−02 1.84 9.32e−04 3.95 4.34e−04 4.02 2.37e−04 4.67 1.02e−04 5.83
100 1.44e−02 1.94 5.71e−05 4.03 1.52e−05 4.83 3.81e−06 5.96 1.72e−06 5.89
200 3.79e−03 1.92 2.94e−06 4.28 3.94e−07 5.27 6.56e−08 5.86 1.29e−08 7.06
400 9.61e−04 1.98 1.82e−07 4.02 0.00e+00 Inf 1.15e−08 2.51 1.05e−08 0.30

PDE L∞ norm

N L∞ O L∞ L∞ O L∞ L∞ O L∞ L∞ O L∞ L∞ O L∞

12 7.07e−02 5.20e−02 2.27e−02 1.69e−02 6.43e−02
25 2.20e−02 1.59 2.26e−03 4.27 1.59e−03 3.62 1.64e−03 3.17 1.70e−03 4.95
50 1.06e−02 1.06 2.89e−04 2.97 2.77e−04 2.52 1.38e−04 3.57 3.85e−05 5.47
100 3.59e−03 1.56 5.12e−05 2.50 1.21e−05 4.52 3.42e−06 5.34 2.23e−06 4.11
200 1.01e−03 1.83 2.06e−06 4.64 4.08e−07 4.89 8.36e−08 5.35 1.42e−08 7.29
400 2.58e−04 1.96 1.43e−07 3.85 0.00e+00 Inf 1.14e−08 2.87 1.05e−08 0.44

ODE ‖ · ‖2 norm
N ‖ · ‖2 O ‖·‖2 ‖ · ‖2 O ‖·‖2 ‖ · ‖2 O ‖·‖2 ‖ · ‖2 O ‖·‖2 ‖ · ‖2 O ‖·‖2

9 4.05e−02 7.71e−02 7.52e−02 5.46e−02 4.23e−02
17 7.02e−03 2.76 2.31e−03 5.51 2.72e−03 5.22 3.17e−03 4.47 6.61e−04 6.54
33 3.69e−03 0.97 5.69e−04 2.11 6.22e−04 2.23 3.40e−04 3.36 3.13e−05 4.60
64 1.05e−03 1.89 8.38e−05 2.89 2.74e−05 4.71 1.23e−06 8.49 3.99e−06 3.11
120 2.73e−04 2.15 6.70e−06 4.02 3.95e−07 6.74 2.62e−07 2.46 1.26e−08 9.16
237 6.92e−05 2.02 4.26e−07 4.05 4.08e−09 6.72 4.83e−09 5.87 3.67e−10 5.19

Fig. 7. Convergence study 7.2. Errors plotted against resolution.
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Table 2
Convergence study 7.2: Convergence rates Splitcircle HEOC solver.

k = 2 k = 4 k = 5 k = 6 k = 8

PDE L1 norm

N L1 O L1 L1 O L1 L1 O L1 L1 O L1 L1 O L1

12 4.93e−01 1.28e−01 1.27e−01 1.63e−01 1.77e−01
25 1.55e−01 1.58 4.45e−03 4.57 1.20e−03 6.36 4.94e−04 7.90 5.85e−04 7.78
50 3.51e−02 2.14 3.04e−04 3.87 2.96e−05 5.33 7.38e−06 6.07 1.00e−06 9.19
100 8.78e−03 2.00 2.10e−05 3.85 9.59e−07 4.95 6.69e−08 6.78 4.28e−09 7.87
200 2.22e−03 1.99 1.31e−06 4.01 2.91e−08 5.04 8.21e−10 6.35 4.63e−11 6.53
400 5.58e−04 1.99 8.29e−08 3.98 9.80e−10 4.89 1.19e−11 6.11 3.02e−10 −2.70

PDE L∞ norm

N L∞ O L∞ L∞ O L∞ L∞ O L∞ L∞ O L∞ L∞ O L∞

12 5.12e−02 1.34e−02 1.09e−02 1.47e−02 1.80e−02
25 2.12e−02 1.20 5.31e−04 4.39 2.12e−04 5.37 1.75e−04 6.04 2.40e−04 5.89
50 5.25e−03 2.02 3.33e−05 3.99 4.00e−06 5.73 2.31e−06 6.24 2.08e−07 10.17
100 1.20e−03 2.13 2.85e−06 3.55 1.76e−07 4.51 2.79e−08 6.37 1.53e−09 7.09
200 2.82e−04 2.09 1.90e−07 3.91 5.94e−09 4.89 2.36e−10 6.89 2.62e−11 5.87
400 6.81e−05 2.05 1.23e−08 3.94 2.10e−10 4.82 4.49e−12 5.72 3.81e−10 −3.86

ODE ‖ · ‖2 norm
N ‖ · ‖2 O ‖·‖2 ‖ · ‖2 O ‖·‖2 ‖ · ‖2 O ‖·‖2 ‖ · ‖2 O ‖·‖2 ‖ · ‖2 O ‖·‖2

9 4.04e−02 7.28e−03 1.16e−02 1.16e−02 4.98e−03
17 1.10e−02 2.05 2.90e−04 5.07 3.22e−04 5.63 1.22e−04 7.15 7.63e−05 6.57
33 5.61e−03 1.01 6.30e−06 5.77 8.61e−06 5.46 6.12e−06 4.52 7.63e−06 3.47
64 1.53e−03 1.96 2.16e−06 1.61 3.35e−07 4.90 4.02e−07 4.11 5.43e−08 7.47
120 3.76e−04 2.23 3.67e−07 2.82 1.14e−08 5.38 1.40e−09 9.00 1.28e−10 9.63
237 9.16e−05 2.07 2.61e−08 3.88 3.18e−10 5.26 8.68e−12 7.47 2.05e−10 −0.70

Fig. 8. Diamond network. The blue vertices V 1 and V 3 are energy conserving manholes, i.e. ODE vertices, the rest algebraic equal height coupling vertices. 
The green area is lumped resulting in a network of one remaining Edge E1 and an LPM vertex with a state of 14 components. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

h1(0,0) = 5 , h1(
L

2
,0) = 5.3 , h1(L,0) = 5 ,

∂k
x h1(0,0) = 0 , ∀k = 1, . . . ,7 , ∂k

x h1(L,0) = 0 , ∀k = 1, . . . ,7 ,

hold. In Fig. 9 initial data and solutions are shown. For edge E1 only the solution at t = 0 and t = 7 are plotted, whereas 
the states of all ODEs are shown on the full time interval [0, 7].

The error plots are shown in Fig. 10, with the corresponding data in Table 3. The solutions in all components involved 
converge with the designed order.

7.4. Capturing of shock waves

In regions of smooth states the advantages of higher order methods are clearly indicated by the order of convergence. 
This does not hold for discontinuous solutions. In the following example we want to investigate the stability and accuracy 
of high order methods near shock waves.
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Fig. 9. Convergence study Diamond LPM 7.3, initial data and solutions: From top to bottom: PDE initial data on E1 , ODE components of height type and 
ODE components of impulse type.

Fig. 10. Convergence study diamond LPM 7.3, L1 and L∞ norm for the edge, ‖ · ‖2 norm for the ODE.
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Table 3
Convergence study diamond LPM 7.3: convergence rates.

k = 2 k = 4 k = 5 k = 6 k = 8

PDE L1 norm

N L1 O L1 L1 O L1 L1 O L1 L1 O L1 L1 O L1

12 1.97e−01 5.05e−02 3.20e−02 2.19e−02 4.29e−01
25 8.28e−02 1.18 1.58e−03 4.72 6.50e−04 5.31 5.85e−04 4.94 1.11e−03 8.12
50 2.74e−02 1.59 4.01e−05 5.30 1.92e−05 5.08 3.94e−06 7.21 3.22e−06 8.43
100 7.24e−03 1.92 2.94e−06 3.77 3.19e−07 5.91 4.35e−08 6.50 3.85e−09 9.71
200 1.77e−03 2.04 1.89e−07 3.96 7.31e−09 5.45 5.62e−10 6.27 1.58e−11 7.93
400 4.46e−04 1.98 1.22e−08 3.96 2.48e−10 4.88 7.01e−12 6.32 2.50e−12 2.66

PDE L∞ norm

N L∞ O L∞ L∞ O L∞ L∞ O L∞ L∞ O L∞ L∞ O L∞

12 1.77e−02 4.14e−03 2.23e−03 1.69e−03 2.64e−02
25 1.14e−02 0.60 2.25e−04 3.97 6.91e−05 4.73 9.74e−05 3.89 8.27e−05 7.86
50 5.43e−03 1.07 6.65e−06 5.08 3.01e−06 4.52 5.27e−07 7.53 5.36e−07 7.27
100 1.54e−03 1.82 4.94e−07 3.75 5.42e−08 5.79 9.63e−09 5.77 8.02e−10 9.38
200 5.31e−04 1.54 3.18e−08 3.96 1.18e−09 5.53 1.23e−10 6.29 3.55e−12 7.82
400 1.78e−04 1.57 1.91e−09 4.06 8.37e−11 3.81 1.25e−12 6.62 3.63e−13 3.29

ODE ‖ · ‖2 norm
N ‖ · ‖2 O ‖·‖2 ‖ · ‖2 O ‖·‖2 ‖ · ‖2 O ‖·‖2 ‖ · ‖2 O ‖·‖2 ‖ · ‖2 O ‖·‖2

29 2.10e−02 1.03e−04 1.38e−04 1.11e−04 2.23e−03
57 4.93e−03 2.14 4.03e−06 4.80 1.74e−06 6.48 4.16e−07 8.27 4.72e−06 9.11
108 1.22e−03 2.18 3.00e−07 4.07 1.42e−08 7.52 2.01e−09 8.34 1.23e−09 12.91
213 3.01e−04 2.06 2.21e−08 3.84 1.82e−10 6.42 5.10e−11 5.41 4.41e−12 8.29
425 7.48e−05 2.02 1.46e−09 3.93 2.13e−11 3.10 4.84e−13 6.74 9.91e−14 5.50
845 1.86e−05 2.02 9.27e−11 4.01 5.46e−13 5.33 2.51e−14 4.31 2.57e−14 1.96

Fig. 11. Modified splitcircle.

Therefore we consider a modified split circle network as depicted in Fig. 11. In all the nodes the coupling conditions for 
a storage tank with Am = 1 are applied. As initial conditions we choose the constant water levels With the following initial 
data:

h1(x,0) = h2(x,0) = h4(x,0) = 5 , h3(x,0) = 6

and qi(x, 0) ≡ 0 i = 1, . . . , 4. Using this setup instead of reusing the normal split circle with Riemann initial data ensures a 
Riemann problem at the junction without the interference of intermediary states.

We show results obtained with the TC variant of the solver and omit those obtained with the HEOC type solver since 
they are indistinguishable. The evolution of the states in the ODE of vertex V 1 is depicted in Fig. 12. When zooming in, we 
can see that the 6-th order scheme on the coarse grid of 50 cells is closer to the reference solution computed on a grid 
of 200 cells compared to the first order scheme. Even though the initial data is non-smooth, which reduces the order of 
convergence to one, the solution benefits from the high order treatment.

In Fig. 13 the solutions along edges E1 and E2 are shown. We observe that the shock emerging from the vertex profits 
greatly in sharpness from a higher order scheme as well. At t = 4 the shock emerging from V 2 into E4 after passing through 
E1 and E2 is shown in Fig. 14. Again the solution of the 6-th order scheme is much better than its first order counterpart.

7.5. Shocks and lumped parameter models

In this test we consider a larger network of 32 edges and 24 nodes. As shown in Fig. 15, the network is of a tree 
like structure, inspired by the human circulatory system e.g. [9]. The first four edges E1, E2, E3, E4 and the last four 
E29, E30, E31, E32 have a length of L = 25, for all remaining edges we choose L = 2.5. In the nodes equal height cou-
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Fig. 12. Schock investigation 7.4: Solution of the ODE in V 1 over time.

Fig. 13. Schock investigation 7.4: Solution of the PDE, computed using ADER-TC, on E1/E2 at t = 2.

pling conditions (22) are used. In order to investigate the influence of parameter lumping on the solution we model the 
lower half of the network by an ODE as described in Section 6. The computation is performed using the HEOC type solver 
presented in Section 6.

As initial conditions we choose water at rest on all edges. On E1 we impose the following Riemann Problem

h1(0, x) =
{

3 x < 18.5

2 else
q1(0, x) = 0 ,

whereas the remaining edges continue these constant states

u2(0, x) ≡ (3,0)T , ui(0, x) ≡ (2,0)T ∀i ≥ 3 .
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Fig. 14. Schock investigation 7.4: Solution of the PDE, computed using ADER-TC, on E4 at t = 4.

Fig. 15. Split and join network with lumping of the green area. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

Due to the symmetric nature of this setting and without applying the lumping to the lower part of the network, the solution 
in some branches of the network coincide. In this case we have the following identities

u3 = u4 ,

u5 = u6 = u7 = u8 ,

u9 = u10 = u11 = u12 = u13 = u14 = u15 = u16 ,

u17 = u18 = u19 = u20 = u21 = u22 = u23 = u24 ,

u25 = u26 = u27 = u28 ,

u29 = u30 .
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Fig. 16. Shocks and LPM 7.5: Height components of the LPM model over time compared to the averaged solution of the full PDE simulation. From top to 
bottom: E8, E16, E24 and E28.

Fig. 17. Shocks and LPM 7.5: Impulse components of the LPM model over time compared to the averaged solution of the full PDE simulation. From top to 
bottom: E8, E16, E24 and E28.
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Fig. 18. Shocks and LPM 7.5: Solution on E29 after the LPM vertex compared to the reference solution on E30.

Fig. 19. Well balanced LPM 7.6: H on E1.

Therefore it suffices to look at one edge of each group and we can directly compare the solutions of the lumped part of the 
network to its PDE counterparts.

In Fig. 16 we show the heights H in the LPM vertex and the averaged heights on a corresponding edge located on the 
upper half of the network. Analogously the momentum components can be seen in Fig. 17.

Due to the very coarse spatial resolution the states of the LPM model can not resolve the incoming shock wave accurately. 
Despite this strong diffusion caused by the model, the ODE captures the general behavior of the flow.

The correct capturing of the wave speed can be observed in Fig. 18. Here the solution on the edges E29 are shown in 
black (k = 1) and blue (k = 6) as well as the reference solution (k = 6) on E30. This provides a comparison between the 
shock wave, that has passed the lumped branch of the network and wave transported by the PDE model. The second wave 
emerging from the left boundary can only be seen clearly in the reference solution. It is caused by wave interactions in the 
edges left of E30 and can not be seen in the solution on E29 since the area left of E29 is the LPM. Clearly the solution of the 
PDE model can resolve much finer structures.
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Fig. 20. Well balanced LPM 7.6: q on E1.

7.6. Sources in lumped parameter models

To demonstrate the necessity of hydrostatic reconstruction in LPM models, we simulate the following initial value prob-
lem consisting of shallow water equations on a split circle network with bottom elevation. E2 and the two vertices are 
turned into a LPM. We use bottom profiles of linear, polynomial and trigonometrical type:

b1(x) = 0.3
x

25
b2(x) = 0.3

(
x

25
+
(

x

25
− 1

2

)2

− 1

4

)
b3(x) = 0.3

( x

25
+ sin(π

x

25
)
)

H1(x) = 3 + 1[ 1
4 25, 3

4 25](x) H2(x) ≡ 3 H3(x) ≡ 3

ρ1(x) = H1(x) − b1(x) ρ2(x) = H2(x) − b2(x) ρ3(x) = H3(x) − b3(x)

The results of the simulations, obtained using the HEOC type solver, are given in Fig. 19, which shows the absolute water 
level H = h +b, and in Fig. 20, which shows the impulse q. Solutions obtained using hydrostatic reconstruction are drawn as 
solid lines, whereas solutions obtained without hydrostatic reconstruction are drawn in the same color but as dashed lines 
and are additionally marked with ‘nhr’ in the legend. The solutions on the PDE edges are shown at t = 0.3, the state of the 
ODE over the complete time interval. In the interior of the domain we can observe the asymptotically well-balancedness 
of ADER schemes as reported in [20]. The slightly stronger oscillations next to the ODE-vertices are caused by the coupling 
between the well-balanced ODEs in the vertex and the merely asymptotically well-balanced PDEs on the edges. The big 
oscillations however are avoided as expected.

8. Conclusion

High order GRP solvers for ODE vertices and LPM models of Toro–Castro and Harten, Enquist, Osher, Chakravarthy type 
are introduced in this work. Extensive tests showed that they indeed exhibit the high order of convergence they were 
designed for. Numerical examples showed that these technique can indeed be used to build very accurate and stable nu-
merical methods for networks of conservation laws including vertices with ODEs and lumped parameter models. Especially 
the solver of Harten, Enquist, Osher, Chakravarthy type is a vast improvement in terms of applicability over the Toro–Castro 
approach introduced in [18].
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