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With the objective of simulating wave propagation in the nearshore zone for engineering-
scale applications, a two dimensional (2DV) model based on the Euler–Zakharov equations 
[73,54] is extended to three dimensions (3D). To maintain the flexibility of the approach 
with the goal of applying the model to irregularly shaped domains, the horizontal plane 
is discretized with scattered nodes. The horizontal derivatives are then estimated using 
the Radial Basis Function-Finite Difference (RBF-FD) method, while a spectral approach 
is used in the vertical dimension. A sensitivity analysis examined the robustness of 
the RBF-FD approach as a function of RBF parameters when estimating the derivatives 
of a representative function. For a targeted stencil size between 20 and 30 nodes, 
Piecewise-Smooth (PS) polyharmonic spline (PHS) functions are recommended, avoiding 
the use of Infinitely-Smooth (IS) RBFs, which are less appropriate for the desired 
applications because of their dependence on a shape parameter. Comparisons of simulation 
results to observations from two wave basin experiments show that nonlinear effects 
induced by complex bottom bathymetries are reproduced well by the model with the 
recommended RBF approach, validating the use of this method for 3D simulations of wave 
propagation.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Accurate wave propagation models are required for a wide range of coastal management and engineering applications, 
including the design of coastal structures and the evaluation of coastal risks. In the nearshore zone, nonlinear and dis-
persive effects, characterized by the wave steepness and relative water depth, respectively, can be particularly important. 
The wave steepness ε = kH/2 and relative wave height H/h (where H , k, and h are the characteristic local wave height, 
wave number, and water depth, respectively) increase significantly as waves shoal in shallow water and approach the break-
ing point. The relative water depth μ = kh is often large in deep and intermediate water, or for the shorter waves in 
the sea state, indicating the importance of dispersive effects. Wave propagation models thus need to capture properly 
nonlinear and dispersive effects to simulate accurately offshore and coastal engineering problems. Two-dimensional cross-
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shore (2DV) wave models can be used as a preliminary step in coastal studies, but 3D models are needed to capture 
fully the effects of alongshore bathymetric variations, variable wave incidence, the presence of coastal or harbor struc-
tures, etc.

A wide variety of mathematical models exist to simulate nearshore wave propagation, and Yates and Benoit [74] and 
Benoit et al. [12] chose to develop a 2DV fully nonlinear and dispersive potential flow model based on the Euler–Zakharov 
equations as a compromise between accuracy, mathematical complexity, and computational time. A variety of other ap-
proaches exist, and recent non-exhaustive reviews are summarized by Raoult et al. [54] and Gouin et al. [41], for example. 
The chosen approach, based on fully nonlinear potential flow (FNPF) theory, requires solving the Laplace boundary value 
problem (BVP), which is implemented numerically in the model using a spectral approach in the vertical direction [59]
and finite difference schemes in the horizontal direction. The nonlinear and dispersive capacities of the 2DV version of the 
model were demonstrated in Yates and Benoit [74,73] and Raoult et al. [54]. The accuracy of a similar approach using the 
Chebyshev–Tau method in the vertical and a Fourier collocation method in the horizontal was demonstrated in Christiansen 
et al. [17].

Extending 2DV modeling approaches to 3D increases significantly the number of numerical challenges to overcome, 
including but not limited to the computational time, domain geometry, and boundary condition specification or far-field 
representation. Therefore, a variety of different numerical approaches have been used to solve the 3D FNPF problem by 
reducing the dimension of the problem (e.g. boundary element [56,42,30,52] or High-Order Spectral (HOS) methods [21,22]), 
discretizing the whole domain but taking local derivatives only (e.g. finite element [71] or finite difference schemes [24]), or 
searching for fast numerical methods for solving the Laplace problem (e.g. integral equations [40] or coupled modes [11]), 
each approach having its own advantages and disadvantages.

A number of 3D Numerical Wave Tanks (NWTs) have been developed using high-order Boundary Element Methods (BEM) 
[56,42,30,52], which are an efficient and accurate approach for solving the Laplace BVP by reducing the dimensionality of 
the discretized problem. However, standard BEM techniques yield nonsymmetric and fully populated matrices that require 
fast solution methods (e.g. fast multipole algorithm [53]) or advanced numerical implementations (e.g. pre-corrected Fast 
Fourier Transform methods [72]) to avoid becoming computationally prohibitively expensive to solve. This is especially the 
case for simulating irregular nonlinear waves that span a wide range of wavelengths, thus requiring fine grids.

In the literature, two other methods have been used to extend 2DV approaches to 3D with Finite Element Methods (FEM) 
(e.g. 2DV [70] to 3D [71]) or finite difference schemes (e.g. 2DV [13] to 3D [24]). These approaches require discretizing the 
entire fluid domain, but the only non-zero elements in the coefficient matrix are the neighboring points (with the number of 
points depending on the chosen order of the numerical scheme). While the full 3D Laplace problem still must be solved at 
each time step, recent work has improved the numerical efficiency of such codes (e.g. using preconditioned defect correction 
methods in 2DV [17] or in 3D in the OceanWave3D code [23]) that may then be used for coastal and offshore engineering 
applications.

Another even more computationally efficient approach uses the HOS method (e.g. Dommermuth and Yue [20], West et 
al. [63], Craig and Sulem [19]), which is based on a Taylor series expansion of the velocity potential about a reference water 
level (often the mean water line). This approach was originally developed for unbounded domains and then for finite depth 
cases, with periodic lateral boundary conditions. Ducrozet et al. [21,22] developed an open-source model, HOS-ocean, which 
is an extension of this method to take into account the generation and propagation of regular and irregular, multidirectional 
waves. Recently, HOS-ocean was also extended to simulate wave propagation over variable bottom bathymetries by Gouin et 
al. [41].

Additional approaches for solving the BVP include a fast Laplace equation solver using integral equations and an iterative 
solution procedure that converges rapidly (in 2DV [18] and then 3D [40]), or a fully dispersive coupled-mode model (in 2DV 
[10] and then 3D [11]).

Here, the objective is to extend the two dimensional model developed by Yates and Benoit [73] and Raoult et al. [54]
to three dimensions, maintaining the efficient and accurate spectral approach used in the vertical. The 2DV code used finite 
difference schemes to estimate horizontal derivatives. This approach is still applicable in two horizontal dimensions for 
simple domain geometries that can be discretized by regular meshes. However, the model cannot then be applied easily 
to complex domains. Therefore, to overcome these limitations, a meshless approach based on Radial Basis Functions (RBF) 
is implemented in the code and tested to propagate highly nonlinear and dispersive waves. The RBF method has been 
used extensively in other fields of research for a variety of physical and engineering problems, including, for example, 
diffusion [61,16], radiative transport [50], combustion [48], shallow-water models [77,44], and flow simulations using the 
Navier–Stokes equations [57]. Here, the RBF method is applied to evaluate its capacity to simulate accurately nonlinear wave 
propagation.

This paper presents a brief literature review of RBF methods (Section 2), before describing the mathematical model 
and its numerical implementation in the code (Section 3), focusing on the RBF Finite Difference (RBF-FD) method used to 
estimate the horizontal derivatives. A sensitivity analysis then evaluates the accuracy and stability of the RBF-FD method as a 
function of the RBF parameters for a representative test function (Section 4). These tests help to identify the optimal method 
parameters for simulating waves. Then, the 3D version of the model is validated by simulating two sets of experiments 
conducted in wave basins with variable bathymetries (Section 5). Finally, an analysis of the advantages and disadvantages of 
using the RBF-FD approach to simulate nonlinear wave propagation is summarized, including propositions for future work 
(Section 6).
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Table 1
Summary of commonly used RBFs describing the function, the constraints on the free parameters, and the regu-
larity of the function (PS stands for Piecewise-Smooth and IS for Infinitely-Smooth).

Name (Acronyme) Function ψ(r) Condition Regularity

Polyharmonic Spline (PHS) rm m odd integer PS
Thin Plate Spline (T P S) rm log r m even integer PS
Multiquadric (MQ)

√
r2 + C2 C > 0 IS

Inverse Multiquadric (IMQ) 1√
r2+C2

C > 0 IS

Inverse Quadratic (IQ) 1
r2+C2 C > 0 IS

Gaussian (GA) e−r2/C2
C > 0 IS

2. Brief review of RBF methods

RBFs were first introduced by Hardy [43] for interpolating surfaces. A function f̃ (x) is sought to approximate a given 
function f (x), for which the values f i (i = 1, ..., N) are known for a given set of N data points xi (i = 1, ..., N) using a set 
of basis functions ψi(x) (i = 1, ..., N):

f̃ (x) ≈
N∑

i=1

λi ψi(x), (1)

with x = (x, y). The interpolation coefficients λi are determined by solving the set of linear equations obtained by enforcing 
the interpolation conditions: f̃ (xi) = f i for i = 1 to N . For one-dimensional data, a variety of different basis functions 
(independent of the data points) lead to non-singular linear systems as long as the N data points are distinct (i.e. Fourier and 
polynomials series). However, this property is no longer guaranteed when the problem is extended to two dimensions [66]. 
Hardy [43] proposed using a basis of functions composed of a single radial function ψ(r) centered at each data point: 
ψi(x) = ψ(||x − xi ||) (i = 1, ..., N).

The initial work of Hardy [43] used the multiquadric (MQ) radial function ψ(r) = √
r2 + C2, with r the radial distance 

from the center xi to node x and C a strictly positive shape parameter to obtain a continuously differentiable basis function 
(even when r = 0), where C controls the narrowness of the RBF. A wide variety of radial functions may be used. In a 
study of scattered data interpolation, Franke [39] tested 29 interpolation methods for six different test functions. The results 
showed that MQ functions were among the most accurate, together with inverse multiquadric (IMQ) and thin plate spline 
(TPS) functions (Table 1).

Overall, the RBF method demonstrated good results for spatial interpolation. Therefore the approach was tested further 
for estimating derivatives in domains with scattered nodes. Stead [58] compared the errors obtained in estimating partial 
derivatives when using MQ or weighted least square quadratic approximate interpolants. Since RBF interpolants do not 
have polynomial precision (except when polynomial terms are added), the author recommended using the MQ interpolant 
for surfaces with significant curvature. Later, Kansa [45] was the first to use the MQ function to solve partial differential 
equations (PDEs), namely a Poisson equation, with a collocation method. The coefficients of the RBF approximation of the 
solution are found by solving the linear system obtained by applying the differential operators to the interpolant for the 
interior nodes and boundary conditions to the interpolant for the boundary nodes. The resulting matrix is not symmetric 
and is not proven to be unisolvent. Several improvements to this approach were made, by recovering the symmetry of 
the matrix using Hermite interpolation to modify the basis functions [25], or by imposing both the PDE and the boundary 
conditions at boundary nodes to increase the constraints where errors are larger [27].

Many different functions can be used in the RBF approach, and as shown in the preliminary study by Franke [39], the 
results are sensitive to the choice of function. The most commonly used functions (Table 1) can be broken into two families: 
piecewise-smooth (PS) and infinitely-smooth (IS) functions.

For IS-RBFs (with a shape parameter C ), the interpolation system will not be singular if the scattered nodes are distinct. 
PS-RBFs do not depend on a shape parameter, but they present a singularity at the origin. To ensure the unique solvability 
of the linear system, the interpolant has to be modified by including polynomial terms, requiring additional constraints for 
the linear system to be well-posed. In this case, the non-singularity of the matrix becomes more restrictive since it requires 
that the nodes are not only distinct but are also unisolvent in the appended polynomial space [31].

Global vs. local methods. The RBF method was first introduced as a global method, in which estimates at each node depend 
on all nodes in the domain, leading to a full coefficient matrix. When the matrix becomes too large, it often becomes 
ill-conditioned. The interpolation coefficients (λi , Eq. (1)) become oscillatory with large magnitudes that may lead to a poor 
interpolation because of numerical cancellations. In this case, the size of the matrix can be reduced by considering smaller 
domains using domain decomposition algorithms [8,65,76]. In the limit, one can instead use a local approach by defining 
stencils centered at each node of the domain and including only the Nsten − 1 nearest neighbors (for a total of Nsten nodes 
in each stencil) in the estimation of the function (Eq. (1)). Tolstykh and Shirobokov [60] were the first to consider this 
method to estimate derivatives with a RBF-FD approach, followed shortly by Wright [66] and Shu et al. [57]. Wright and 
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Fornberg [67] improved the accuracy of this method by including a linear combination of derivatives of the function at the 
surrounding nodes. The local method has the advantage of reducing considerably the computational time in comparison to 
the global method, as well as being parallelized easily. The construction of approximate formulas for the derivatives using 
RBF interpolants, also called the RBF-FD method, will be presented in more detail in Section 3.3.

However, even when using local methods, the matrix may become ill-conditioned for IS-RBFs when C → ∞ (i.e. in the 
limit of flat basis functions). Several specific algorithms have been developed to obtain accurate results even for large values 
of C (i.e. Contour Padé [35], RBF-QR [34], RBF-GA [38] or more recently the RBF-RA algorithm [68]). Using a stable algorithm 
not only improves the derivative estimation accuracy by allowing the use of larger values of C , but also makes the choice 
of optimal C less critical. Nevertheless, the algorithms may be difficult to adapt to a specific mathematical model or the 
modified RBFs may have much more complicated expressions.

PS vs. IS functions. The choice of RBF to obtain the most accurate estimates is not straightforward, and some trade-offs must 
be considered when using IS or PS functions. Errors when using either family of functions in the RBF method depend on the 
specific choice of the radial function (e.g. Table 1), the mesh resolution and spacing, and the stencil size Nsten . Two main 
characteristics differentiate these two families of functions: (1) the type of convergence as a function of the node spacing, 
and (2) the dependency on a shape parameter C .

When using global RBF methods, IS-RBFs have spectral convergence, while PS-RBFs have only algebraic convergence, 
which often leads to a preference for IS-RBFs [31]. However, when using local RBF methods (i.e. RBF-FD method), the 
spectral accuracy of IS-RBFs is lost, minimizing their advantage over PS-RBFs with respect to convergence. Additionally, 
stagnation errors exist. One type of PS-RBFs, PHS, require the addition of a polynomial (with M terms) to the interpolant 
to guarantee the unisolvency of the system. The PHS RBFs then have a convergence rate corresponding to the degree of the 
added polynomial. For complex applications, Barnett [3] and Bayona et al. [7] recommended an added polynomial of degree 
such that there are approximately twice as many RBFs as polynomial terms in the interpolant (i.e. Nsten ≈ 2M).

With IS-RBFs, the estimation error depends strongly on the value of the shape parameter C : for small values of C , the 
error is generally high, decreasing with an increase in C . A minimum is often reached for an intermediate value of C = Copt
(called the optimal value of C in the following). When C is increased beyond this optimal value, the error increases and 
large oscillations may be observed as the matrix becomes ill-conditioned. The matrix may already become ill-conditioned 
for values of C smaller than Copt : in this case, the minimal error is just at the limit of ill-conditioning. In the limit of 
C → ∞, Fornberg et al. [37] showed that when the interpolant limit is finite, it tends to a multivariate polynomial. Finding 
Copt is a difficult task. For global methods, there is no existing mathematical theory to determine the optimal choice of C . 
Often, this choice is based on the inter-node spacing for convenience. However, based on a series of tests, Carlson and 
Foley [15] and then Rippa [55] concluded that the optimal value of C depends on the shape of the interpolated function 
and not on the node positions or spacing. When the RBF method is used to interpolate data, the value of C is chosen 
by cross-validation methods. For example, Rippa [55] developed a method based on the minimization of a cost function 
calculated as the error between the interpolant and the desired function. Fasshauer and Zhang [26] adapted this algorithm 
for the resolution of PDEs with RBF pseudospectral methods. For RBF-FD, Bayona et al. [4] derived an expression of the 
estimated error as a function of C , showing that Copt depends on the shape of the function and its derivatives. They 
also showed that it is independent of the node spacing at first order, but can vary with node locations in 2D. Given an 
expression of the estimated error, Bayona et al. [5] proposed an algorithm to find the optimal value of C . However, this 
requires first estimating the derivatives at each point with another less accurate method (since the values of the derivative 
of the function are necessary to compute the error estimates), before re-estimating the derivatives with the RBF-FD method 
and newly obtained optimal value of C .

The selection of an optimal or even “good” value for the shape parameter C can be challenging. Thus, RBFs without 
shape parameters, such as PHS, recently have become more attractive, noting furthermore that they produce relatively 
well-conditioned matrices [4,29].

For more details on RBF methods and numerous application examples, see the recently published book of Fornberg and 
Flyer [31].

3. Model description

3.1. Mathematical model

The fluid domain is delimited in the vertical by the free surface at z = η(x, t) and the bottom at z = −h(x), with the 
vertical axis z pointing upwards and the origin at the still water level. The fluid is accelerated by gravity g . At the free 
surface, the atmospheric pressure is assumed uniform and constant in time (chosen to be 0 by convention), and surface 
tension is neglected. Potential flow theory is adopted by further considering the irrotational flow of an inviscid and homo-
geneous fluid of constant density. The kinematics of the fluid are obtained from the velocity potential �(x, z, t) such that 
v = (u, v, w) = (∇�, �z), where ∇ f ≡ ( fx, f y) is the horizontal gradient operator, and partial derivatives are denoted with 
subscripts.

If the free surface is assumed to be single-valued in x (no overturning waves), the evolutions of η(x, t) and �̃(x, t) ≡
�(x, z = η(x, t), t) are governed by the nonlinear kinematic and dynamic free surface boundary conditions, expressed as 
functions of free surface quantities only [75]:
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ηt = −∇η.∇�̃ + w̃
(

1 + (∇η)2
)

, (2)

�̃t = −gη − 1

2
(∇�̃)2 + 1

2
w̃2

(
1 + (∇η)2

)
, (3)

where w̃(x, t) ≡ �z|z=η(x,t) is the vertical velocity at the free surface.

To integrate these equations in time, w̃ is determined from η and �̃ by solving the Laplace BVP for the velocity potential 
� in the entire domain (Laplace equation) supplemented by the free surface and bottom boundary conditions (BCs):

∇2� + �zz = 0, −h(x) ≤ z ≤ η(x, t), (4)

� = �̃(x, t), z = η(x, t), (5)

∇� · ∇h + �z = 0, z = −h(x). (6)

At the lateral boundaries, periodic, Dirichlet or Neumann BCs are imposed to close the problem.
The Laplace BVP is solved using a spectral approach in the vertical dimension following the work of Tian and Sato [59]. 

The method is described for the case of a single horizontal dimension (i.e. x = x) in Yates and Benoit [73] and Raoult et 
al. [54]. The extension to two horizontal dimensions is quite straightforward, and only the main steps are presented here.

First, a change of the vertical coordinate from z ∈ [−h(x), η(x, t)] to s ∈ [−1, 1] is made to project the time-varying 
domain to a constant height domain extending from the bottom at s = −1 to the free surface at s = +1:

s(x, z, t) = 2z + h−(x, t)

h+(x, t)
, (7)

where h+(x, t) ≡ h(x) + η(x, t) and h−(x, t) ≡ h(x) − η(x, t).
The BVP is then reformulated in the transformed space (x, s) for �(x, z, t) ≡ ϕ(x, s(x, z, t), t).
Second, the vertical variation of the velocity potential is approximated by a linear combination of Chebyshev polynomials 

of the first kind, Tn(s):

ϕ(x, s) ≈
NT∑

n=0

an(x)Tn(s), (8)

where n = 0, 1, 2, ... indicates the order of the polynomial, and NT is the maximum order of the Chebyshev polynomials. 
These polynomials are easy to compute, form an orthogonal basis over the range [−1, 1], and converge rapidly over a large 
domain. Yates and Benoit [73] and Raoult et al. [54] have shown that values of NT smaller than 10 (typically in the range 
[5, 8]) are sufficient to obtain high accuracy for a variety of 2DV nonlinear wave propagation test cases.

The approximation Eq. (8) is then introduced in the BVP, and a Chebyshev–Tau method [14] is applied to eliminate the 
dependence on the vertical coordinate s. The Laplace equation (4) is projected on polynomials T p for p ranging from 0 to 
NT − 2, supplemented by the boundary conditions, Eq. (5) and (6), respectively. For nodes located on a lateral boundary, the 
Laplace equation (4) is replaced, either by a Neumann condition for an impermeable boundary ∇�.nlat = 0 (where nlat is 
the unit normal vector at the lateral wall) or by a Dirichlet condition for wave generation, imposing the velocity potential 
from linear theory (generally supplemented with a relaxation zone). The final set of equations is a linear system for the 
an(x), which depends only on x at a given time:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ap,xx + ap,yy +
NT∑

n=0

C x
pn an,x +

NT∑
n=0

C y
pn an,y +

NT∑
n=0

D pnan = 0 for p = 0, ..NT − 2 (a)

NT∑
n=0

an = �̃(x, t) (b)

h+hx

NT∑
n=0

(−1)nan,x + h+hy

NT∑
n=0

(−1)nan,y +

2 (1 + h2
x + h2

y)

NT∑
n=0

(−1)n−1n2an = 0 (c)

(9)

where

C x
pn = (m0101 B p01n + m1101 B p11n)/m0220, (10)

C y
pn = (m0011 B p01n + m1011 B p11n)/m0220, (11)

D pn = (m0002 B p02n − m1002 B p12n + m2002 B p22n + m0001 B p01n + m1001 B p11n)/m0220. (12)
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The mijkl terms depend only on h+ , h− , and their spatial derivatives (up to order two). The expressions for these terms 
are shown in Appendix A. The B pikn terms are introduced to express the projection of the terms si dk Tn

dsk on the polynomial T p , 
and they can be determined analytically as a function of n and p (see Appendix B). These terms are constant and can be 
computed once at the beginning of each simulation, after NT is chosen.

For each node x, NT + 1 unknown coefficients an in Eq. (8) must be determined. With the RBF-FD method, the horizontal 
spatial derivatives of the an coefficients are approximated as linear combinations of the values in the vicinity of the node 
considered, leading to a set of coupled linear equations.

Once the an(x) coefficients are determined, the vertical velocity at the free surface w̃(x) is obtained readily from:

w̃(x) = �z(x, z = η) = sz ϕs(s = +1) ≈ 2

h+(x)

NT∑
n=1

an(x) n2 (13)

The vertical velocity can then be used to evaluate the right hand side of Eq. (2) and Eq. (3), required by the numerical 
scheme to integrate in time.

3.2. Numerical implementation

A classical, explicit fourth-order Runge Kutta (RK4) scheme with a constant time step is used to integrate Eq. (2) and 
Eq. (3) in time. At each sub-step of the RK4 scheme, the Laplace BVP is solved. The domain is discretized with N P XY
nodes in the horizontal (x, y)-plane, and NT is the maximum order of the Chebyshev polynomials in Eq. (8). Horizontal 
derivatives are approximated with the local RBF-FD method (described in section 3.3) using a stencil consisting of a fixed 
number of neighboring nodes. Therefore, for nodes far from the boundaries, the stencil dimensions are symmetric, while 
they become asymmetric at and near the boundaries. The effect of this asymmetry will be studied further in section 4. The 
RBF-FD method is chosen for its ease of implementation, with an algorithm similar to finite difference methods, and for 
its flexibility with scattered nodes enabling the simulation of complicated domain geometries and the possibility of local 
refinement. The linear system corresponding to the Laplace BVP is composed of N P XY (NT +1) equations for the coefficients 
an(xi), with n = 0, ..., NT and i = 1, ..., N P XY . The associated matrix is sparse, and the system is currently solved using the 
direct solver MUMPS (“MUltifrontal Massively Parallel Solver”, v4.10.0) [1,2], using the default settings.

3.3. RBF-FD method

3.3.1. Theoretical background
Similar to finite difference methods, applying a linear differential operator L to a given function f at x1 is expressed as 

a linear combination of the values of the function f at the nodes in the stencil:

L f (x1) ≈
Nsten∑
i=1

αL
i f (xi). (14)

The stencil is composed of the node itself and its Nsten − 1 nearest neighbors (x2, x3, ..., xNsten
).

The weights αL
i , for i = 1 to Nsten , are determined by requiring the approximation in Eq. (14) to be satisfied by the set 

of radial functions centered at each node of the stencil ψi(x) ≡ ψ(||x − xi ||), i ∈ [1, Nsten]. This leads to the resolution of a 
linear set of Nsten equations for Nsten unknowns, which can be written as:⎡

⎢⎢⎢⎣
ψ(||x1 − x1||) · · · ψ(||xNsten

− x1||)
ψ(||x1 − x2||) · · · ψ(||xNsten

− x2||)
...

...
. . .

...

ψ(||x1 − xNsten
||) · · · ψ(||xNsten

− xNsten
||)

⎤
⎥⎥⎥⎦

⎡
⎢⎣

αL
1
...

αL
Nsten

⎤
⎥⎦ =

⎡
⎢⎣

L ψ(||x − x1||)(x1)
...

L ψ(||x − xNsten
||)(x1)

⎤
⎥⎦ (15)

As mentioned in the introduction, several different forms of RBF ψ(r) can be used (Table 1).
To improve the accuracy of the estimation, especially at the boundaries of the domain [36], the RBF can be supplemented 

with a polynomial of degree l: 
∑M

j=1 b j p j(x), where p j(x)M
j=1 is a basis of polynomials up to degree l in R2 and M = (l+2

2

)
. 

In this case, M additional constraints minimizing the far-field growth must be enforced to close the system:

Nsten∑
i=1

λi p j(xi − x1) = 0 j = 1,2,3..., M. (16)

Finally, the system to be solved to obtain the αL
i coefficients becomes:[

	 P
P T 0

][
α
β

]
=

[
L ψ

L p

]
(17)
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where 	 is the matrix of ψ in the left hand side of Eq. (15), P is a M × Nsten matrix formed by the p j , j = 1, ..., M basis of 
polynomials up to degree l in R2, and β and L p are the M × 1 vectors formed by βi and L pi(x1).

The application of the method depends on the non-singularity of the matrix 
[

	 P
P T 0

]
. The matrix 	 is guaranteed non 

singular for IS-RBFs provided that the nodes are distinct. For PS-RBFs 	 is no longer guaranteed to be nonsingular, and a 
polynomial of degree l must be added to ensure that the system is uniquely solvable [66]. Barnett [3] showed that for PHS 
of the form rm , the degree l of the added polynomial must satisfy l ≥ (m − 1)/2. The addition of a polynomial also requires 
the use of an unisolvent set of nodes [66].

3.3.2. Numerical implementation
The weights αL

i must be calculated at all nodes in the domain for each differential operator L required for the dis-
cretization of the PDEs. In the present model, first and second-order derivatives in the two horizontal dimensions are 
calculated. At each node x of the horizontal mesh, the following steps are carried out. First, the Nsten − 1 nearest neighbors 
of the selected node are identified. The size of the stencil and the degree of the augmented polynomial are defined at the 
beginning of the simulation and are constant for all nodes. Then, the linear system Eq. (17) is solved by completing a LU 
decomposition. The weights are computed once at the beginning of the simulation and are subsequently used to estimate 
all spatial derivatives in the model, including, but not limited to, the free surface elevation η, the free surface potential �̃, 
the water depth h, and the an coefficients.

The implementation of the RBF-FD method is first tested to evaluate its accuracy in approximating spatial derivatives of 
a representative wave function (Section 4), and then it is applied for the simulation of wave tank experiments with variable 
bathymetries (Section 5).

4. Accuracy of the RBF-FD derivative estimates

4.1. Method

A series of tests were conducted to evaluate the capabilities and limitations of the RBF-FD method in estimating first 
and second-order spatial derivatives. These tests evaluate the impact of several parameters such as the RBF type, the value 
of the shape parameter C in the case of IS-RBFs, the degree of the added polynomial, and the stencil size Nsten . Previous 
work (e.g. Franke [39], Stead [58]) has tested different types of RBFs (Table 1) to evaluate the interpolation and derivate 
estimate accuracy. However, these functions were usually chosen arbitrarily, with more or less complex spatial variations. 
When simulating ocean wave propagation, the free surface generally has oscillatory variations, thus a sinusoidal function is 
chosen here as a basic representative model:

f (x, y) = A cos

(
2π

L
(x cos θ + y sin θ)

)
, (18)

where L = 0.5 m is the characteristic length of variation (or wavelength), A is the wave amplitude such that A/L = 0.05, and 
θ = 20° is the direction of wave propagation with respect to the x axis. The domain is defined as 0 ≤ x ≤ 1 m and 0 ≤ y ≤
1 m and is discretized with a regular set of nodes with node spacing 
x = 
y = 0.05 m (= L/100). First and second-order 
derivatives in both horizontal dimensions are estimated with the RBF-FD method and compared to the analytical values 
(denoted L ftheo hereafter). The accuracy of the estimation is evaluated by calculating the normalized averaged error for all 
N nodes in the domain:

RM S Error =
√√√√∑N

i=1 (L f (xi) − L ftheo(xi))
2∑N

i=1 (L ftheo(xi))
2

(19)

Globally, errors are larger closer to the boundaries, and more particularly when the stencil is one-sided in the direction 
of the derivative (i.e. for x = 0 m and x = +1 m for x-derivatives, and y = 0 m and y = +1 m for y-derivatives). Two 
subsets of nodes are then defined, based on the asymmetry of the stencil: the interior nodes with a centered stencil (such 
as node A in Fig. 1) and the boundary nodes with asymmetric or one-sided stencils (such as nodes B and C in Fig. 1). In the 
following, the global averaged error Eq. (19) is shown except when the error behavior differs for the two node sets and is 
analyzed separately.

From the series of tests carried out to study the sensitivity of the method’s accuracy to the chosen parameters, one initial 
question arises: “Which RBF is optimal?”. The values of the other parameters will then depend on this choice. For IS-RBFs, 
which depend on a shape parameter, the accuracy of the method was evaluated as a function of the:

• IS-RBF function: MQ, IMQ, IQ and GA (see Table 1),
• variation of the shape parameter in the range C ∈ [0, 30] m,
• inclusion of an added polynomial up to degree 2, and
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Fig. 1. Example of three stencils of Nsten = 21 nodes, for a node A in the interior of the domain (symmetric stencil), and nodes B and C on or close to the 
boundaries (asymmetric stencil).

• stencil size for Nsten = 5, 13 and 21, corresponding to the optimal thresholds defined by Bayona et al. [4] for regular 
node sets.

For PS-RBFs (not depending on a shape parameter), the accuracy of the method was evaluated as a function of the:

• PS-RBF function: one T P S function ψ(r) = r4 log r to have at least the continuity of the second-order derivatives, and 
two PHS functions ψ(r) = r5 and ψ(r) = r7,

• inclusion of an added polynomial up to degree 5, (in the following, the shorthand form r5 + p3 is used to denote the 
PHS r5 with an added polynomial of degree 3), and

• stencil size in the range Nsten ∈ [9, 56].

4.2. Results

4.2.1. Sensitivity to the shape parameter C
In Fig. 2, the global averaged error for the four IS-RBFs is plotted as a function of the shape parameter C for the 

first-order ( fx, f y) and second-order ( fxx, f yy) derivatives. For IS-RBFs, the derivative estimate accuracy depends strongly 
on C . The four RBFs display the same general behavior as a function of C : large errors for small values of C that decrease 
with an increase in C , and the development of oscillations when C exceeds an unknown threshold (depending on the RBF). 
These oscillations appear when the coefficient matrix (Eq. (17)) becomes ill-conditioned. The optimal value of C for which 
the error is minimum (denoted Copt ) depends on the RBF and derivative estimated, and is therefore not known a priori (as 
previously stated in Section 2). First and second-order derivatives in x reach a minimum for C ≈ 0.42 m, whereas the matrix 
becomes ill-conditioned for the first and second-order derivatives in y before a minimum is observed. It can be inferred 
that the optimal value of C for derivatives in y is larger than for derivatives in x for this particular function and value 
of θ . The choice of the value of C is thus a compromise between optimizing the accuracy of the solution and reaching the 
limit of an ill-conditioned matrix. The accuracy of the estimation could be improved by allowing the shape parameter to 
vary with the RBF center (i.e. Kansa and Carlson [46], Kansa and Hon [47]), which produces larger variations in the matrix 
coefficients, thus reducing the condition number. Bayona et al. [6] developed an algorithm for the RBF-FD method to find 
the Copt for each node, but it is an inefficient approach in the current model since it requires estimating the derivatives 
twice. Finally, Copt depends on the function whose derivatives are estimated, suggesting that different coefficients would 
need to be calculated for each variable. In addition, some variables in the model (η, �̃, ...) are time dependent, requiring 
the coefficients to be a function of time as well. To increase the accuracy, a simpler approach was tested by normalizing the 
stencil, or transforming the local support to a unit circle, following the work of Shu et al. [57]. This was expected to reduce 
the difference in accuracy between interior nodes (with centered stencils) and boundary nodes (with asymmetric stencils), 
allowing the use of larger values of C for nodes with asymmetric stencils. However, tests with normalized stencils did not 
improve significantly the RBF accuracy (results not shown here).

The errors for the three PS-RBFs do not depend on a shape parameter and are therefore constant as a function of C
(Fig. 2). For PS-RBFs, the errors decrease when the degree of r increases, and ψ(r) = r7 produces the smallest errors for 
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Fig. 2. Global errors of the four derivative estimates fx, f y, fxx , and f yy of the test function Eq. (18) for the four IS-RBFs and the three PS-RBFs as a function 
of the shape parameter C (with Nsten = 21 and an added polynomial of degree 0). (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

the four derivatives considered. Overall, PS-RBFs cause smaller errors than IS-RBFs for small values of C . The RBF ψ(r) = r7

produces errors comparable to the minimum errors obtained with the IS-RBFs for f y and f yy , and slightly larger errors 
than what can be reached by the IS-RBFs near Copt . Although the RBF ψ(r) = r7 may not be the optimal choice for the 
presented derivatives, it offers the advantage of not relying on the choice of a shape parameter, whose selection is not a 
straightforward process, as previously mentioned. Finally, since the errors with PHS r5 and r7 are smaller than those with 
r4log(r), only the PHS RBFs will be examined in the following tests.

4.2.2. Sensitivity to the stencil size and added polynomial degree
The dependence of the estimation accuracy on the stencil size (Nsten) and the degree of the added polynomial (l) demon-

strates that the sensitivity is not the same for IS and PS-RBFs.

IS-RBFs. First, focusing on IS-RBFs, Fig. 3 shows the global error for the estimation of fx as a function of C for three values 
of the stencil size, Nsten = 5, 13, and 21. The accuracy of the derivative estimates improves significantly by increasing the 
stencil size from 5 to 13 nodes, and even more by increasing to 21 nodes. However, C must be chosen carefully since 
the range of values of C producing a well-conditioned matrix is reduced. The matrix becomes ill-conditioned for smaller 
values of C when Nsten increases (e.g. C ≈ 0.8 m for Nsten = 13, whereas C ≈ 0.5 m for Nsten = 21). In addition, increasing 
Nsten increases the computational time (tests of regular wave propagation, not shown here, exhibited a computational time 
proportional to N1.36

sten , using a fixed value of N P XY ), so a compromise must be made between the desired accuracy, the 
difficulties in finding an optimal value of C , and the computational time.

The sensitivity of the error to the degree of the added polynomial is then studied by increasing l from 0 to 2 and 
comparing the results to those without an added polynomial. The boundary and interior nodes present different behavior 
as a function of l (Fig. 4). Despite the smaller number of boundary nodes (in comparison with interior nodes), the global 
error (calculated for all nodes, Fig. 4c) is dominated by the boundary errors, therefore presenting the same dependence on 
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Fig. 3. Global error for the estimate of fx for the IMQ RBF as a function of the shape parameter C (with an added polynomial of degree 0) for stencil sizes 
Nsten = 5, 13 and 21.

the shape parameter C . For interior nodes (Fig. 4a), adding higher degree polynomials decreases the error for C < 0.18 m, 
but this improvement is lost for higher values of C . For boundary nodes (Fig. 4b), the errors are reduced significantly with 
the addition of a polynomial and an increase in the degree of the polynomial for C < 0.3 m. Since RBFs are not exact 
approximations of polynomials, it is essential to add at least a constant to the RBF interpolant to be able to estimate 
accurately the derivative of a constant function.

For IS-RBFs, increasing the stencil size improves the accuracy but causes the matrix to become ill-conditioned for smaller 
values of C . The addition of high-order polynomials is only beneficial for small values of C , especially for the boundary 
nodes, in agreement with [36].

PS-RBFs. The addition of a high-order polynomial is essential to guarantee the inversibility of the collocation matrix for 
PHS RBFs. A minimum polynomial degree l is required, which depends on the degree of the PHS function. In addition, the 
maximum degree of the added polynomial is limited by the size of the stencil. To ensure that the problem is well-posed, 
Nsten must be larger than the number of independent monomials constituting the basis of polynomials of the same degree 
as the added polynomial (i.e. [3]). Given these constraints, a series of tests were conducted to study the sensitivity of 
the error estimation of the PHS r5 and r7 to the stencil size (Nsten ∈ [9, 56]) and to the degree of the added polynomial 
(l ∈ [2, 5]).

With regular node sets, the condition on the minimum stencil size for a given degree of added polynomial is not suffi-
cient to ensure the non-singularity of the matrix. The regularity of the node set does not allow the matrix to be unisolvent 
for the polynomial basis [66]. The stencil size thus has to be increased to recover the inversibility of the matrix [3]. With 
an irregular node set, this may not occur.

The results obtained with both PHS (r5 and r7) are compared in Fig. 5 for the first derivative in x. Similar behavior is 
observed for the two PHS, but PHS r7 produces smaller errors for a given degree of the added polynomial. The interior node 
and boundary node errors vary differently as a function of Nsten but in both cases, the errors decrease with an increase 
in the degree of the added polynomial. For an added polynomial with an even degree, the error for the interior nodes is 
weakly dependent on the stencil size Nsten , whereas for an added polynomial with an odd degree, a minimum is obtained 
for any stencil size with a symmetric distribution of nodes. This effect is caused by the regular distribution of the nodes and 
may not be observed with irregularly spaced nodes (for example, for boundary nodes with asymmetric stencils). The same 
trends are observed for the estimation of second-order derivatives, but for the inverse of odd and even added polynomials 
(not shown here). Contrary to the PHS r7, the PHS r5 has the advantage of being used with only a second degree added 
polynomial, thus requiring a smaller Nsten and allowing a reduction in the computational time.

4.2.3. Convergence study as a function of the grid spacing
For IS-RBFs (e.g. IMQ, Fig. 6) the optimal C is generally insensitive to the node spacing (here Copt � 0.4 m). As the 

node spacing decreases, the errors decrease until a certain limit below which the matrix becomes ill-conditioned. Thus C
is generally decreased with the node spacing to keep the condition number of the collocation matrix roughly constant, at 
about 1015 according to Flyer et al. [29]. This causes error saturation and the loss of convergence, which can be restored by 
adding polynomials.

For PHS RBFs, there are no saturation errors, and the convergence rate depends on the degree of the added polynomial l
(∝ 
xl−k+1), where k is the order of the estimated derivative [29]. When the degree of the PHS RBF increases (from r5 to r7), 
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Fig. 4. Errors for the estimate of fx , for the IMQ RBF as a function of the shape parameter C (with Nsten = 21) for added polynomials of degree 0 to 2: 
(a) interior nodes, (b): boundary nodes, and (c) all nodes.

the errors decrease slightly only for low order added polynomials (i.e. l = 3 and 4). The convergence rate is independent of 
the stencil size Nsten (Fig. 7).

These results, concerning error estimation as a function of node refinement for IS-RBFs and PS-RBFs (PHS), are in agree-
ment with the studies of Bayona et al. [4] and Flyer et al. [29].

4.2.4. Summary of the derivative estimate tests
Finally, based on a literature review and a series of tests including, but not limited to those shown here, the use of the 

PHS r7 with an added polynomial of degree 3 and Nsten = 21, appears to be a good compromise for applications similar 
to those presented here. For general applications, determining the optimal shape parameter may be challenging (where the 
derivatives of all variables are estimated with the same coefficients). It is more practical and efficient to use a RBF that 
does not depend on a shape parameter since Copt depends strongly on the estimated derivative and the function itself. 
The PHS r7 is preferred to the PHS r5 because, for the same degree of added polynomial, the PHS r7 tends to produce 
smaller errors. These choices are recommended to minimize the expected errors and stencil size (i.e. computational time) 
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Fig. 5. Errors for the estimate of fx for PHS r5 and r7 as a function of the stencil size Nsten and the degree of the added polynomial (shown in the legend) 
for: (a) interior nodes, (b) boundary nodes, and (c) all nodes.

for the estimation of first and second-order derivatives, and will be used in the subsequent test case simulations. This 
recommendation is derived from a sensitivity study testing a single function. Although there is no formal proof that these 
results can be extended to a wide range of functions, the chosen sinusoidal function is assumed representative of the type 
of functions encountered in real applications, suggesting the generalization of the conclusions concerning the efficiency and 
accuracy of this method for wave propagation simulation models.

5. Validation test cases

The 3D version of the model is validated by comparing simulation results to measurements from two laboratory ex-
periments studying the convergence of regular and irregular waves propagating over two different bathymetric profiles: 
a semi-circular step based on the experiments of Whalin [64], and a submerged shoal based on the experiments of Vincent 
and Briggs [62].
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Fig. 6. Errors for the estimate of fx for IMQ with Nsten = 21 and an added polynomial of degree one as a function of the shape parameter C for five 
different grid spacings (see legend).

Fig. 7. Errors for the estimate of fx for P H S r5 and r7 as a function of the grid spacing (same as in Fig. 6) for (left) different degrees of the added 
polynomial l, and (right) several stencil sizes Nsten .

5.1. Nonlinear wave propagation over a semi-circular step

Whalin [64] performed a series of experiments of regular waves propagating over a semi-circular bottom topography 
that acts as a focusing lens. These experiments were conducted to test the limit of linear and nondiffractive theory in a 
convergence zone, considering non-breaking waves with periods of 1, 2, and 3 s, for three wave heights. The bottom topog-
raphy was designed to produce strong wave convergence along the centerline of the basin and to minimize sidewall effects 
and dissipation by bottom friction. The wave tank was 6.096 m wide and 25.603 m long. In the experiments, regular waves 
were generated with a piston wave maker and propagated from an initial water depth of h0 = 0.4572 m to a shallower 
region of depth h1 = 0.1524 m. The bathymetric profile (Fig. 8) is defined analytically by:

h(x, y) =

⎧⎪⎨
⎪⎩

h0, −20.0 ≤ x ≤ 10.67 − G(y)

h0 + 1
25 (10.67 − G(y) − x), 10.67 − G(y) < x < 18.29 − G(y)

h1, 18.29 − G(y) ≤ x ≤ 35

(20)

with G(y) = √
y(6.096 − y), (h, x and y in m).
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Fig. 8. Bathymetry of the experiments of Whalin [64].

Table 2
Wave characteristics for the four simulations of the experiments of Whalin [64], where the 0 subscript denotes deep water conditions.

Wave condition T (s) A (m) L0 (m) k0h0 k0 A

A 2 0.0075 3.91 0.7347 0.01205
B 2 0.0108 3.91 0.7347 0.01736
C 3 0.0068 6.14 0.4663 0.006936
D 1 0.0195 1.50 1.9157 0.08171

Fig. 9. 3D view of the free surface elevation at the end of the simulation (t = 18T ), obtained with PHS r7 + p3 and Nsten = 21 for wave condition A (T = 2 s, 
A = 0.0075 m and L0 = 3.91 m) of the experiments of Whalin [64].

Four sets of wave conditions were simulated (see Table 2). For wave condition A, the computational domain extends 
from −3.91 m to 32.5 m in the x-direction and from 0 to 6.096 m in the y-direction. The computational domain is longer 
than the physical domain in the x-direction to include a one-wavelength long relaxation zone at the left boundary for wave 
generation and for the absorption of waves reflected from the underwater topography. A three-wavelength long relaxation 
zone is added at the right boundary for wave absorption. Impermeable conditions are applied at the lateral boundaries.

The domain is discretized with N P XY = 137,712 scattered nodes with regular node spacing (
x ≈ 
y ≈ 0.04 m, or 
approximately L/98). Waves are propagated during 36 s (18 periods), with a constant time step 
t = 0.0178 s (≈ T /112) 
and NT = 7.

The free surface profile at the end of the simulation (Fig. 9) shows a quasi-2D behavior with almost no variations in 
the y-direction in the deeper part of the domain (x < 7.5 m). The 3D wave patterns develop in the shallower zone where 
nonlinear effects are important. The convergence of wave energy is caused by a combination of shoaling, diffraction, and 
refraction over the convergent bathymetric profile.

The simulated crest and trough elevation envelopes along the centerline of the tank (y = 3.048 m) show that before the 
foot of the slope, the crest and trough are nearly symmetric with respect to the still water level (Fig. 10). In the shallower 
zone (x > 15 m), the waves are narrower and their amplitudes increase, with deeper troughs and higher crests, breaking the 
horizontal symmetry observed in the deeper part of the domain. The vertical asymmetry of the waves also increases around 
x = 10 m, displaying a steeper wave front. At the maximum of the crest envelope (x ≈ 20 m), the wave has two small lobes 
on each side, a consequence of the increase of the second harmonic amplitude caused by nonlinear effects on the slope.

To examine more closely nonlinear effects and energy transfers between harmonics, a Fourier analysis of the simulated 
wave signal was completed along the centerline of the wave tank (Fig. 11). The model accurately reproduces the spatial 
evolution of the amplitudes of the first three harmonics (frequencies f , 2 f and 3 f ) in comparison to the measurements. 
The amplitude of the second harmonic is slightly underestimated in the deeper part of the domain (for x ≤ 12 m), which 
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Fig. 10. Free surface elevation profile along the centerline of the tank at the end of the simulation t = 18T (black line), for wave condition A (T = 2 s, 
A = 0.0075 m and L0 = 3.91 m) of the experiements of Whalin [64]. The wave envelope indicates the maximum and minimum free surface elevation 
during the simulation (gray lines). The light gray shaded areas (x < 0 m and x > 25 m) indicate the relaxation zones for wave generation and absorption in 
the numerical model.

Fig. 11. Comparison of measured (circles) and simulated spatial evolution of the amplitude of first three harmonics with a regular (solid lines), and 
two irregular (dashed and dotted lines) node distributions (at frequencies f , 2 f , and 3 f ) of the free surface elevation for wave condition A (T = 2 s, 
A = 0.0075 m and L0 = 3.91 m) of the experiments of Whalin [64].

may be related to the linear method used to generate waves in the model. Conversely, in the shallower zone, the second 
harmonic amplitude is slightly overestimated. As mentioned previously, in the convergence region (around x = 20 m), the 
second and third harmonic amplitudes increase due to energy transfers from the first harmonic, and the second harmonic 
amplitude becomes nearly half of the first harmonic amplitude. Despite the energy transfers to higher order harmonics, the 
amplitude of the first harmonic does not decrease as one would expect in the case of an alongshore uniform bathymetric 
profile. According to Whalin [64], along the centerline of the tank, the rate of decrease in amplitude due to nonlinear 
transfers to higher harmonics is compensated by the rate of increase in amplitude due to refraction and shoaling.

To test the sensitivity and flexibility of the model to the computational domain node distribution, the simulation was 
also run using two irregular node sets, one with a homogeneous node spacing (≈ 0.06 m) and the second with node spacing 
varying with the water depth (between ≈ 0.06 m in the shallower part and ≈ 0.1 m in the deeper part). The first irregular 
node distribution was created with the 3D finite element generator Gmsh (gmsh.info) distributed under GNU GPL. A zoom 
of a small part of the domain is shown (Fig. 12) for the irregular (left) and regular (right) node sets. The irregular node set 
distribution is not quasi-uniform, however there were no instability problems. For the second irregular node distribution, 
another node generator [32] enabling easy refinement with the bathymetry and maintaining high regularity at local level 
was used. A repel algorithm, based on Bayona et al. [7], was also applied after the addition of nodes close to the boundary, 
in the deeper part, to ensure simulation stability. The resulting harmonic amplitudes are almost superimposed with those 
obtained with the regular node set for both irregular node sets (Fig. 11).

The sensitivity to the spatial resolution was studied by running seven simulations with regular node spacing (
x = 0.04, 
0.06, 0.075, 0.09, 0.16, 0.24, 0.32 m). The resulting harmonic amplitudes are nearly indistinguishable for 
x ≤ 0.16 m 
(Fig. 13) with normalized root mean square errors less that 1.5%, 4% and 7% for the first three harmonics, respectively. 
For 
x > 0.16 m, larger differences appear for all three harmonics, in particular in the shallow water region over the step 
(x > 15 m). For simulations with 
x ≥ 0.09 m, instabilities sometimes appeared at the boundaries. Therefore, in these 
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Fig. 12. Zooms of the bottom left corner of the domain for (left) irregular (≈ 0.06 m) and (right) regular (≈ 0.04 m) node distributions used to discretize 
the computational domain of the experiments of Whalin [64].

Fig. 13. Comparison of measured (triangles) and simulated (lines) spatial evolution of the amplitude of first three harmonics of the free surface elevation 
(at frequencies f , 2 f , and 3 f ) for regular node distributions with different spatial resolution (
x = 0.04, 0.06, 0.075, 0.09, 0.16, 0.24, 0.32 m) for wave 
condition A (T = 2 s, A = 0.0075 m and L0 = 3.91 m) of the experiments of Whalin [64].

simulations, the internodal distance was decreased near the boundary to ensure stability. To evaluate the computational 
efficiency as a function of the number of nodes discretizing the computational domain (N P XY ), the computation time of 
one iteration is shown for each simulation (Fig. 14). The CPU time is proportional to N P XY 1.76. This is lower than the cost 
of the traditional exact sparse factorization (N P XY 2), which may be due to the use of a multifrontal factorization method in 
the MUMPS solver. This demonstrates the advantages of minimizing N P XY (Fig. 13) while maintaining satisfactory results.

The simulated spatial evolution of the first three harmonics along the centerline of the tank are compared to the ex-
perimental data for the other three wave conditions (Table 2, Fig. 15). For wave condition B (Fig. 15a), corresponding to 
the same wave period as case A but with a larger wave amplitude, nonlinear effects are more important, and the second 
harmonic amplitude is almost two-thirds of the maximum of the first harmonic amplitude. The amplitude of the first har-
monic also decreases slightly around x = 20 m, suggesting that the nonlinear energy transfers to higher frequencies occur at 
a faster rate than the energy convergence from refraction [64]. The results of the simulation of wave condition D (Fig. 15c), 
which is less nonlinear but has more important dispersive effects, are in close agreement with the experiments. The last 
test, wave condition C (Fig. 15b), corresponds to nearly shallow water conditions. The simulation overestimates the first 
harmonic amplitude, but underestimates the second and third harmonic amplitudes. This behavior has been observed in 
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Fig. 14. CPU time per timestep as a function of the number of nodes discretizing the domain for wave condition A (T = 2 s, A = 0.0075 m and L0 = 3.91 m) 
of the experiments of Whalin [64].

Fig. 15. Comparison of the observed (circles) and simulated (solid lines) spatial evolution of the amplitude of first three harmonics (at frequencies f , 2 f , 
and 3 f ) of the free surface elevation for wave conditions B, C and D (see Table 2) of the experiments of Whalin [64].

previous studies using a variety of different numerical models (Madsen and Sørensen [51], Beji and Nadaoka [9], Engsig-
Karup et al. [24], Wu et al. [69], Kazolea et al. [49], Filippini [28]). Kazolea et al. [49] suggested that the differences may be 
caused by the propagation of free reflected waves in the tank and the increased complexity of the case due to the shorter 
evolution distance and the combination of refraction-diffraction and nonlinearities. For case C, the model’s sensitivity to the 
initial wave amplitude or the position and length of the absorption relaxation zone was not able to explain the differences 
between the experimental data and the numerical results.
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Fig. 16. The numerical domain and bathymetry of the experiments of Vincent and Briggs [62], with horizontal and vertical white lines indicating the tran-
sects along which the simulation results and experimental measurements are compared. Hatched zones indicate the wave generation (left) and absorption 
(right) zones used in the numerical model.

5.2. Wave refraction and diffraction over an elliptical shoal

The last test case simulates the propagation of regular and irregular waves over a submerged elliptical mound, reproduc-
ing the experiments of Vincent and Briggs [62]. The aim of the experiments was to investigate the limits of approximating 
irregular wave conditions with monochromatic waves, and they produced a large experimental data set of both monochro-
matic waves and irregular waves with narrow or broad frequency and directional spreading. Two cases are considered 
here: first the regular wave case M1, with T = 1.3 s, L = 2.3 m, and A = 0.0275 m, and then the irregular wave case U 3, 
generated with a JONSWAP spectrum with Hs = 0.0254 m, T p = 1.3 s, and a peak enhancement factor γ = 2.

The experiments were conducted in a directional wave basin that was 35 m wide and 29 m long. The measurement area 
was restricted to a 6.10 m wide by 15.24 m long zone around the elliptical shoal, which had a major axis of 3.96 m and a 
minor axis of 3.05 m, with the center at (x0, y0) = (6.10 m, 13.72 m). The shoal boundary (Fig. 16) is defined by:

S(x, y) =
(

x − x0

3.05

)2

+
(

y − y0

3.96

)2

= 1. (21)

The water depth around the shoal is constant h(x, y) = 0.4572 m (i.e. for S(x, y) > 1), and the water depth over the shoal 
is:

h(x, y) = 0.9144 − 0.7620

√
1 −

(
x − x0

3.81

)2

−
(

y − y0

4.95

)2

. (22)

The minimum water depth above the center of the shoal is therefore hmin = 0.1524 m. In the experiments, waves were 
generated with a directional wave generator, located at x = 0 m. The free surface elevation was measured using an array of 
nine parallel resistive probes placed along nine different transects (five parallel and four perpendicular to the wave maker) 
during nine different experimental runs. In the following, two transects will be studied (Fig. 16): the transversal transect 4 
(x = 12.2 m) and the longitudinal transect along the centerline of the tank, consisting of transects 7 and 9 (y = 13.72 m).

To limit the computational time, the simulated domain is smaller than the experimental wave basin. The numerical 
domain extends from −2.3 m ≤ x ≤ 20.5 m and 3.7 m ≤ y ≤ 23.7 m. Two relaxation zones are added (hatched zones in 
Fig. 16): a one-wavelength long wave generation zone at the left side of the domain, and a two-wavelength long absorption 
zone at the right side of the domain. Impermeable conditions are applied at the lateral boundaries. The domain is discretized 
with regularly spaced nodes with 
x = 
y = 0.075 m, for a total of N P XY = 81,435 nodes.

For the regular wave case M1, waves were generated with an amplitude of A = 0.02325 m, using linear wave theory. 
This value is slightly smaller than the one prescribed to the wave maker in the experiments, but an adjustment of the 
incident wave amplitude was necessary to obtain a comparable average wave height (H = 0.0445 m) at a reference probe 
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Fig. 17. Contour plot of the free surface elevation at the end of the simulation (t ≈ 78T ) for case M1 of Vincent and Briggs [62]. The dotted line indicates 
the limit of the elliptical shoal on the basin’s floor.

located in an unperturbed zone of the domain upstream of the shoal (x = 3.05 m, y = 21.34 m). Waves are propagated 
during approximately 100 s (≈ 78T ), with a constant time step 
t = 0.036 s (≈ T /36), using NT = 5.

The contour plot of the free surface elevation at the end of the simulation, when the periodic steady state is reached, 
shows the wave pattern that developed around the shoal (Fig. 17). The wave height increases behind the shoal (x > 6 m), 
with complex 2D patterns with strong variations extending in both horizontal directions. The convergence zone along the 
centerline of the tank is surrounded by rectilinear zones of almost zero amplitude, looking like a wake. In addition, the crests 
and troughs in the y-direction are modulated with a characteristic length scale of approximately 3 m due to reflections from 
the lateral walls. The use of a computational domain smaller than the experimental one increases the importance of lateral 
reflections and possibly overestimates this effect.

To compare the simulation results to the experimental data, a zero up-crossing analysis of the free surface elevation 
time series is completed to compute the average wave height (Hm) along each transect. To conduct the analysis in the 
same way as for the experiments, a 28-period window of the free surface elevation time series is considered (once steady 
state is reached, from t = 60 to 96.4 s). Wave height profiles along the perpendicular transects show good agreement with 
the experimental data (transect 4, Fig. 18a). The wave height profile presents a maximum at the center, corresponding 
to the center of the shoal (y = 13.72 m), which is more than twice the incident wave height (ratio ≈ 2.03), but is slightly 
underestimated in the simulations. Moving symmetrically away from the center, two minima are reached, with wave heights 
less than half the incident wave height (ratios ≈ 0.21 and 0.43, respectively). Farther from the shoal, the wave height is 
nearly equal to the incident wave height. The simulated wave height profile in the wave propagation direction also agrees 
well with the experimental measurements (transect 7–9, Fig. 18b), with differences slightly larger than those observed 
along transect 4. In particular, the increase in the wave height between x = 4–6 m, and the small local peak around x = 7.5
m are not reproduced by the numerical model. After the shoal (x = 9 m), the simulated wave height profile shows small 
oscillations that may be caused by reflections from the relaxation zone that is not perfectly absorbing.

The experimental measurements vary between different runs. At a data measurement point (x = 12.2 m, y = 13.72 m) in 
two transects, the observed wave height is 0.0975 m and 0.104 m during 2 different runs (along transect 4 and transect 7–9, 
respectively), which is a difference of approximately 6.25%. Although the variability in the measurements at this location 
cannot be extended directly to the other measurement points, it can be used to estimate the order of magnitude of the 
experimental errors and variability.

A harmonic analysis was also performed on the simulated free surface time series along transect 7–9 to show the 
evolution of the first three harmonic amplitudes (Fig. 19). Before the shoal (x < 4 m), the waves are only weakly nonlinear, 
and the second and third harmonic amplitudes increase over the shoal. Over the shoal (x = 6.10 m), the second harmonic 
amplitude is more than half first harmonic amplitude. This effect is likely caused by wave convergence and the narrowing 
of the crest over the shoal (Fig. 17). After the shoal, the amplitude of the first harmonic more than doubles due to wave 
energy convergence induced by refraction. Nonlinearities are not significant after the shoal, although a modulation of the 
amplitude of the second harmonic is clearly observed. Comparison of the simulated and experimental harmonic amplitude 
evolution was not possible because of the lack of availability of the experimental time series.
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Fig. 18. Average wave height along (a) transect 4 and (b) transect 7–9, for case M1 of Vincent and Briggs [62]. The horizontal dashed line indicates the 
incident wave height.

Fig. 19. Simulated spatial evolution of the first three harmonic amplitudes for case M1 of the Vincent and Briggs [62] experiments along transect 7–9 
(y = 13.72 m).

For the irregular wave condition case U 3, the computational domain and numerical parameters remained unchanged, 
except that the maximum order of the Chebyshev polynomial was increased to NT = 7. NT was increased to account for the 
presence of higher frequencies in the wave spectrum and the need to resolve accurately the dispersion relation for these 
frequencies. Waves were propagated during approximately 200 s (≈ 153 T p ). The high frequencies propagate at a lower 
celerity than the peak frequency, hence the transient period is longer than for case M1.

The contour plot of the free surface elevation at the end of the simulation (t ≈ 153 T p ) for case U 3 shows more complex 
and irregular 2D patterns than the regular wave case (Fig. 20), and the convergence zone is less well-defined. The effects of 
reflections from the lateral walls are still visible.

To compare to the experimental data (only available for transect 4), the significant wave height is computed from the free 
surface elevation time series by calculating Hs = 4ση , where ση is the standard deviation of the free surface elevation. Time 
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Fig. 20. Contour plot of the free surface elevation at the end of the simulation (t ≈ 153T p ) for case U 3 of Vincent and Briggs [62]. The dotted line indicates 
the limit of the elliptical shoal on the basin’s floor.

Fig. 21. Significant wave height along transect 4, for the irregular wave case U 3 of the Vincent and Briggs [62] experiments. The horizontal dashed line 
indicates the incident significant wave height.

series of around one hundred wave periods are used for this analysis. The simulated Hs agrees well with the experimental 
observations (Fig. 21). The pattern of the significant wave height profile is similar to the one obtained for the regular wave 
case, with a maximum at the center due to wave convergence induced by the bathymetry (ratio ≈ 1.97).

6. Discussion and conclusions

A meshless approach, based on the RBF-FD method, was chosen for the extension of the 2DV version of a highly nonlinear 
and dispersive potential wave model to 3D domains. This method has the advantage of being both similar to finite difference 
methods and simple to implement, not requiring major adaptations to the structure of the 2DV code.

A series of sensitivity tests of the RBF-FD parameters were conducted to examine the robustness of this approach for 
estimating derivatives of a sinusoidal function. This study demonstrates that accurate results can be obtained with an IS-RBF 
without significant differences between the tested RBFs: MQ, GA, IMQ and IQ (Table 1). However, IS-RBFs depend on a shape 
parameter controlling the accuracy of the approximation, and the optimal value of this shape parameter depends on the 
estimated derivative and the form of the function. To avoid these limitations, it is recommended to use PS-RBFs, which do 
not depend on a shape parameter. The choice of the degree of the PS-RBF, the size of the stencil and the degree of the 
added polynomial is a compromise between the accuracy and computational time. For a targeted stencil size between 20 
and 30 nodes, a PHS function of the form r7 + p3 is recommended.

The application of the 3D version of the model to simulate two different wave basin experiments showed that complex 
free surface wave patterns induced by variable bathymetric profiles and the associated nonlinear effects are well reproduced 
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by the model. The nonlinear and dispersive capabilities of the 3D model validate the use of the RBF-FD method for wave 
propagation in two horizontal directions.

Using the RBF-FD approach allows significant flexibility enabling the use of non-rectangular grids and local node refine-
ment, which is of particular interest for applications to real coastal domains. Simulations of wave condition A of Whalin [64]
experiments for two irregular node distributions show that a refinement following the water depth allows increasing node 
spacing in the deeper part of the domain, thus reducing the number of nodes (from 60,716 to 41,983) and the computational 
time by approximately 30% while maintaining the difference between harmonic amplitudes below about 2.5%.

With the long term objective of applying the model to real and complex nearshore domains, including wave propagation 
near coastal and harbor structures, work remains to be done to improve the robustness of the method and the computational 
efficiency of the numerical model. In some cases, instabilities may occur at or near the boundaries because of derivative 
estimate errors induced by asymmetric stencils at these locations. In the test cases presented here, refining the mesh close 
to the boundary was sufficient to avoid the appearance of instabilities. Another option is to add ghost nodes outside of the 
domain to reduce the one-sidedness of boundary node stencils [3], but the implementation of such a method is not trivial. 
More recently, Bayona et al. [7] showed that the development of instabilities at the boundaries could also be reduced by 
increasing the stencil beyond the threshold: Nsten ≥ 2M . One last method used to stabilize the resolution of PDEs without 
a physical dissipative term (as is the case of the Zakharov equations) is to add a hyper-viscosity operator to the right 
hand-side of the evolution equation to introduce artificially a small amount of dissipation that will dampen spurious high 
frequency oscillations [33].

The extension of the 2DV code to 3D was accompanied by a significant increase in the computational time. The numerical 
efficiency of the 3D version of the model needs to be improved in order to perform simulations with large spatial domains. 
The resolution of the Laplace BVP linear system is the most computationally expensive part of the model, so a parallel 
version of the linear solver is currently used. Further work could include parallelizing the code with a domain decomposition 
approach. Other possibilities to reduce the computational cost are currently being explored, including using time integration 
schemes requiring fewer resolutions of the Laplace BVP (i.e. multi-step predictor-corrector schemes) and/or iterative solvers 
with suitable preconditioners.

Finally, ongoing work also includes the representation of physical processes, including depth-induced wave breaking and 
run-up processes to enable simulating nearshore wave environments. Further validation of the 3D version of the model is 
required, including cases with complex coastlines and variable bathymetries, islands, and coastal structures.
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Appendix A. mi jkl terms in Eq. (10), (11) and (12)

The mijkl terms appearing in Eq. (10), (11) and (12) are terms that only depend on h+ = h + η and h− = h − η and their 
spatial derivatives:

m0220 = h+2

m0101 = 2h+h−
x

m1101 = −2h+h+
x

m0011 = 2h+h−
y

m1011 = −2h+h+
y

m0002 = 4 + (h−
x )2 + (h−

y )2

m1002 = 2 (h−
x h+

x + h−
y h+

y )

m2002 = (h+
x )2 + (h+

y )2

m0001 = −2h−
x h+

x − 2h−
y h+

y + h+h−
xx + h+h−

yy
m1001 = 2(h+

x )2 + 2(h+
y )2 − h+h+

xx − h+h+
yy .

Appendix B. B pikn terms in Eq. (10), (11) and (12)

In Eq. (10), (11) and (12) the notation B pikn is introduced:

B pikn ≡ 〈si dk Tn
k

〉p (23)

ds
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where 〈 f (s)〉p is the inner product of any function f defined on the interval [−1, 1] with a Chebyshev polynomial T p of 
order p such that:

〈 f 〉p ≡ 2

πcp

1∫
−1

f (s)T p(s)
ds√

1 − s2
with

{
c0 = 2
cp = 1 if p ≥ 1

(24)

The following terms have to be estimated: 〈Tn〉p , 〈Tn,s〉p , 〈Tn,ss〉p , 〈s Tn,s〉p , 〈s Tn,ss〉p and 〈s2 Tn,ss〉p . They can be 
determined analytically as a function of n and p using the recurrence relation of the Chebyshev polynomials or from linear 
combinations of previously defined B pikn . Only the final formulas are given below:

〈Tn〉p = B p00n = δpn

〈Tn,s〉p = B p01n = 2
cp

{
n if p = n − 1,n − 3,n − 5, ...

0 otherwise

〈Tn,ss〉p = B p02n = 1
cp

{
n (n2 − p2) if p = n − 2,n − 4,n − 6, ...

0 otherwise

〈s Tn,s〉p = B p11n = ∑n−1
r=0 Br01n

{
1
2 (B p00(r−1) + B p00(r+1)) if r ≥1

B p001 if r = 0

〈s Tn,ss〉p = B p12n = ∑n−2
r=0 Br02n

{
1
2 (B p00(r−1) + B p00(r+1)) if r ≥1

B p001 if r = 0

〈s2 Tn,ss〉p = B p22n = ∑n−2
r=0 Br02n

⎧⎪⎨
⎪⎩

1
4 (B p00(r−2) + 2B p00r + B p00(r+2)) if r ≥2
1
4 (3B p001 + B p003) if r = 1
1
2 (B p000 + B p002) if r = 0
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