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Highlights

• The present method can learn both linear and nonlinear correlations between the low- and high-fidelity data dynamically without any
prior knowledge on the relation between the low- and high-fidelity data.

• The present method can infer the quantities of interest based on a few scattered data.
• The present method can identify the unknown parameters in the PDEs.
• The present method can be applied to very high-dimensional function approximations as well as inverse PDE problems.
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Abstract

Currently the training of neural networks relies on data of comparable accuracy
but in real applications only a very small set of high-fidelity data is available while
inexpensive lower fidelity data may be plentiful. We propose a new composite neural
network (NN) that can be trained based on multi-fidelity data. It is comprised of
three NNs, with the first NN trained using the low-fidelity data and coupled to two
high-fidelity NNs, one with activation functions and another one without, in order
to discover and exploit nonlinear and linear correlations, respectively, between the
low-fidelity and the high-fidelity data. We first demonstrate the accuracy of the
new multi-fidelity NN for approximating some standard benchmark functions but
also a 20-dimensional function that is not easy to approximate with other methods,
e.g. Gaussian process regression. Subsequently, we extend the recently developed
physics-informed neural networks (PINNs) to be trained with multi-fidelity data sets
(MPINNs). MPINNs contain four fully-connected neural networks, where the first
one approximates the low-fidelity data, while the second and third construct the
correlation between the low- and high-fidelity data and produce the multi-fidelity
approximation, which is then used in the last NN that encodes the partial differential
equations (PDEs). Specifically, by decomposing the correlation into a linear and
nonlinear part, the present model is capable of learning both the linear and complex
nonlinear correlations between the low- and high-fidelity data adaptively. By training
the MPINNs, we can: (1) obtain the correlation between the low- and high-fidelity
data, (2) infer the quantities of interest based on a few scattered data, and (3) identify
the unknown parameters in the PDEs. In particular, we employ the MPINNs to learn
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the hydraulic conductivity field for unsaturated flows as well as the reactive models
for reactive transport. The results demonstrate that MPINNs can achieve relatively
high accuracy based on a very small set of high-fidelity data. Despite the relatively
low dimension and limited number of fidelities (two-fidelity levels) for the benchmark
problems in the present study, the proposed model can be readily extended to very
high-dimensional regression and classification problems involving multi-fidelity data.

Keywords: multi-fidelity, physics-informed neural networks, adversarial data,
porous media, reactive transport

1. Introduction1

The recent rapid developments in deep learning have also influenced the com-2

putational modeling of physical systems, e.g. in geosciences and engineering [1–5].3

Generally, large numbers of high-fidelity data sets are required for optimization of4

complex physical systems, which may lead to computationally prohibitive costs. On5

the other hand, inadequate high-fidelity data result in inaccurate approximations6

and possibly erroneous designs. Multi-fidelity modeling has been shown to be both7

efficient and effective in achieving high accuracy in diverse applications by leveraging8

both the low- and high-fidelity data [6–9]. In the framework of multi-fidelity model-9

ing, we assume that accurate but expensive high-fidelity data are scarce, while the10

cheaper and less accurate low-fidelity data are abundant. An example is the use of a11

few experimental measurements, which are hard to obtain, combined with synthetic12

data obtained from running a computational model. In many cases, the low-fidelity13

data can supply useful information on the trends for high-fidelity data, hence multi-14

fidelity modeling can greatly enhance prediction accuracy based on a small set of15

high-fidelity data in comparison to the single-fidelity modeling [6, 10, 11].16

The construction of cross-correlation between the low- and high-fidelity data is17

crucial in multi-fidelity methods. Several methods have been developed to estimate18

such correlations, such as the response surface models [12, 13], polynomial chaos19

expansion [14, 15], Gaussian process regression (GPR) [7, 9, 10, 16], artificial neural20

networks [17], and moving least squares [18, 19]. Interested readers can refer to [20]21

for a comprehensive review of these methods. Among all the existing methods, the22

Gaussian process regression in combination with the linear autoregressive scheme has23

drawn much attention in a wide range of applications [9, 21]. For instance, Babaee et24

al. applied this approach for the mixed convection to propose an improved correla-25

tion for heat transfer, which outperforms existing empirical correlation [21]. We note26

that GPR with a linear autoregressive scheme can only capture the linear correlation27

between the low- and high-fidelity data. Perdikaris et al. then extended the method28
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in [6] to enable it of learning complex nonlinear correlations [10]; this has been suc-29

cessfully employed to estimate the hydraulic conductivity based on the multi-fidelity30

data for pressure head in subsurface flows [22]. Although great progress has already31

been made, the multi-fidelity approaches based on GPR still have some limitations,32

e.g., approximations of discontinuous functions [8], high-dimensional problems [10],33

and inverse problems with strong nonlinearities (i.e., nonlinear partial differential34

equations) [9]. In addition, optimization for GPR is quite difficult to implement.35

Therefore, multi-fidelity approaches which can overcome these drawbacks are ur-36

gently needed.37

Deep neural networks can easily handle problems with almost any nonlineari-38

ties at both low- and high-dimensions. In addition, the recently proposed physics-39

informed neural networks (PINNs) have shown expressive power for learning the40

unknown parameters or functions in inverse PDE problems with nonlinearities [23].41

Examples of successful applications of PINNs include (1) learning the velocity and42

pressure fields based on partial observations of spatial-temporal visualizations of a43

passive scalar, i.e., solute concentration [24], and (2) estimation of the unknown con-44

stitutive relationship in the nonlinear diffusion equation for unsaturated flows [25].45

Despite the expressive power of PINNs, it has been documented that a large set of46

high-fidelity data is required for identifying the unknown parameters in nonlinear47

PDEs. To leverage the merits of deep neural networks (DNNs) and the concept of48

multi-fidelity modeling, we propose to develop multi-fidelity DNNs and multi-fidelity49

PINNs (MPINNs), which are expected to have the following attractive features: (1)50

they can learn both the linear and nonlinear correlations adaptively; (2) they are51

suitable for high-dimensional problems; (3) they can handle inverse problems with52

strong nonlinearities; and (4) they are easy to implement, as we demonstrate in the53

present work.54

The rest of the paper is organized as follows: the key concepts of multi-fidelity55

DNNs and MPINNs are presented in Sec. 2, while results for function approximation56

and inverse PDE problems are shown in Sec. 3. Finally, a summary for this work is57

given in Sec. 4. In the Appendix we include a basic review of the embedding theory.58

2. Multi-fidelity Deep Neural Networks and MPINNs59

The key starting point in multi-fidelity modeling is to discover and exploit the
relation between low- and high-fidelity data [20]. A widely used comprehensive cor-
relation is expressed as

yH = ρ(x)yL + δ(x), (1)
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where yL and yH are, respectively [20], the low- and high-fidelity data, ρ(x) is the
multiplicative correlation surrogate, and δ(x) is the additive correlation surrogate. It
is clear that multi-fidelity models based on this relation are only capable of handling
linear correlations between the two-fidelity data. However, there exist many inter-
esting cases that go beyond the linear correlation in Eq. (1) [10]. For instance, the
correlation for the low-fidelity experimental data and the high-fidelity direct numeri-
cal simulations in the mixed convection flows past a cylinder is nonlinear [10, 21]. In
order to capture the nonlinear correlation, we put forth a generalized autoregressive
scheme, which is expressed as

yH = F (yL) + δ(x), (2)

where F (.) is an unknown (linear/nonlinear) function that maps the low-fidelity data
to the high-fidelity level. We can further write Eq. (2) as

yH = F(x, yL). (3)

To explore the linear/nonlinear correlation adaptively, we then decompose F(.) into
two parts, i.e., the linear and nonlinear parts, which are expressed as

F = Fl + Fnl, (4)

where Fl and Fnl denote the linear and nonlinear terms in F , respectively. Now, we
construct the correlation as

yH = Fl(x, yL) + Fnl(x, yL). (5)

60

The architecture of the proposed multi-fidelity DNN and MPINN is illustrated
in Fig. 1, which is composed of four fully-connected neural networks. The first one
NN L(xL, θ) is employed to approximate the low-fidelity data, while the second and
third NNs (NNHi

(x, yL, β, γi), i = 1, 2) are for approximating the correlation for the
low- and high-fidelity data; the last NN (NN fe) is induced by encoding the governing
equations, e.g. the partial differential equations (PDEs). In addition, Fl = NNH1 ,
and Fnl = NNH2 ; θ, β, and γi, i = 1, 2 are unknown parameters of the NNs, which
can be learned by minimizing the following loss function:

MSE = MSEyL +MSEyH +MSEfe + λ
∑

β2
i , (6)
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Figure 1: Schematic of the multi-fidelity DNN and MPINN. The left box (blue nodes) represents
the low-fidelity DNN NNL(x, θ) connected to the box with green dots representing two high fidelity
DNNs, NNHi

(x, yL, γi) (i = 1, 2). In the case of MPINN, the combined output of the two high-
fidelity DNNs is input to an additional PDE-induced DNN. Here ∂Φ =

[
∂t, ∂x, ∂y, ∂

2
x, ∂

2
y , ...

]
yH

denotes symbolically the last DNN that has a very complicated graph and its structure is determined
by the specific PDE considered.

where

MSEyL =
1

NyL

NyL∑
i=1

(|y∗L − yL|2 + |∇y∗L −∇yL|2
)
, (7)

MSEyH =
1

NyH

NyH∑
i=1

(|y∗H − yH |2
)
, (8)

MSEfe =
1

Nf

Nf∑
i=1

(|f ∗
e − fe|2

)
. (9)

Here, ψ (ψ = y∗L, y
∗
H , and f ∗

e ) denote the outputs of the NN L, NNH , and NN fe , β61

is any weight in NN L and NNH2 , and λ is the L2 regularization rates for β. The L262

regularization has been widely adopted to prevent overfitting [26, 27], which is also63

used here to reduce the overfitting in both NN L and NNH2 . In addition, we can64

also penalize ∇yL if the gradient of the low-fidelity data is available, which helps the65

approximation of yL. It is worth mentioning that the boundary/initial conditions66

for fe can also be added into the loss function, in a similar fashion as in the standard67

PINNs introduced in detail in [23] so we do not elaborate on this issue here. In the68

present study, the loss function is optimized using the L-BFGS method together with69
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Xavier’s initialization method, while the hyperbolic tangent function is employed as70

the activation function in NN L and NNH2 . We note that no activation function is71

included in NNH1 due to the fact that it is used to approximate the linear part of72

F .73

Finally, the rationale behind the linear/nonlinear decomposition in Eq. (5) is74

explained in detail here. In general, one has no prior knowledge on the correlation75

between the low- and high-fidelity data, which needs to be learned based on the given76

data. For a nonlinear correlation case, the training loss for the NNH2 can be much77

smaller than that of NNH1 , which makes the present approach favor the nonlinear78

correlation. While for the linear correlation case, the training losses for the NNH179

and NNH2 can be comparable if no regularization is included in the NNH2 . By80

incorporating the regularization for NNH2 , the multi-fidelity DNN tends towards81

the linear correlation between the low- and high-fidelity data. Therefore, the present82

multi-fidelity framework can explore the linear/nonlinear correlation adaptively. To83

demonstrate the effectiveness of the present approach, we include both NNH1 and84

NNH2 in all the following test cases.85

3. Results and Discussion86

Next we present several tests of the multi-fidelity DNN as well as the MPINN, the87

latter in the context of two inverse PDE problems related to geophysical applications.88

3.1. Function approximation89

We first demonstrate the effectiveness of this multi-fidelity modeling in approxi-90

mating both continuous and discontinuous functions based on both linear and com-91

plicated nonlinear correlations between the low- and high-fidelity data.92

3.1.1. Continuous function with linear correlation93

We first consider a pedagogical example of approximating an one-dimensional
function based on data from two levels of fidelities. The low- and high-fidelity data
are generated from:

yL(x) = A(6x− 2)2 sin(12x− 4) +B(x− 0.5) + C, x ∈ [0, 1] (10)

yH(x) = (6x− 2)2 sin(12x− 4), (11)

where yH is linear with yL, and A = 0.5, B = 10, C = -5. As shown in Fig. 2(a), the94

training data at the low- and high-fidelity level are xL = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,95

0.7, 0.8, 0.9, 1} and xH = {0, 0.4, 0.6, 1}, respectively.96
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Figure 2: Approximation of a continuous function from multi-fidelity data with linear correlation.
(a) Training data at low- (11 data points) and high-fidelity levels (4 data points). (b) Predictions
from DNN using high-fidelity data only; also included are the results of Kriging. (c) Predictions
from the multi-fidelity DNN (Red dashed line), multi-fidelity DNN without NNH1

(Blue dotted
line), and Co-Kriging [7]) (Magenta dash-dotted line). (d) The Red dashed line in the (x, yL, yH)
plane represents Eq. (5) (on top of the exact Black solid line) and the Red dashed line in the
(yL, yH) plane represents the correlation discovered between the high- and low-fidelity data (yH =
2.007yL − 19.963x + 20.007 + Δ, where Δ is the nonlinear part, which is close to zero here); the
Blue solid line is the exact correlation (yH = 2yL − 20x+ 20).

7



We first try to predict the true function using the high-fidelity data only. For97

this case, we only need to keep NNH2 (Fig. 1). In addition, the input for NNH298

becomes x because no low-fidelity data are available. Here 4 hidden layers and 2099

neurons per layer are adopted in NNH2 and no regularization is used. The learning100

rate is set as 0.001. As we can see in Fig. 2(b), the present model provides inaccurate101

predictions due to the lack of sufficient high-fidelity data. Furthermore, we also plot102

the predictive posterior means of the Kriging [7], which is noted to be similar as103

the results from the NNH2 . Keeping the high-fidelity data fixed, we try to improve104

the accuracy of prediction by adding low-fidelity data (Fig. 2(a)). In this case, the105

last DNN for the PDE is discarded. Here 2 hidden layers and 20 neurons per layer106

are used in NN L, while 2 hidden layers with 10 neurons per layer are employed for107

NNH2 , and no hidden layer is used in NNH1 (The size of NNH1 is kept identical108

in all of the following cases). The regularization rate is set to λ = 10−2 with a109

learning rate 0.001. As shown in Fig. 2(c), the present model provides accurate110

predictions for the high-fidelity profile. In addition, the prediction using the Co-111

Kriging is displayed in Fig. 2(c) [7]. We see that the learned profiles from these two112

methods are similar, while the result from the present model is slightly better than113

the Co-Kriging, which can be seen in the inset of Fig. 2(c). Finally, the estimated114

correlation is illustrated in Fig. 2(d), which also agrees quite well with the exact115

result. Unlike the Co-Kriging/GPR, no prior knowledge on the correlation between116

the low- and high-fidelity data is needed in the multi-fidelity DNN, indicating that117

the present model can learn the correlation dynamically based on the given data.118

To demonstrate the effectiveness of the decomposition of the linear and nonlinear119

correlations between the low- and high-fidelity data, we further plot the predictions120

using the multi-fidelity DNN without the NNH1 in Fig. 2(c). As observed, the121

predicted high-fidelity profile shows little agreement with the exact solution. It is122

reasonable that the DNN with nonlinear activation functions can hardly approxi-123

mate the linear correlation based on such scarce high-fidelity data, but it can be124

significantly improved (red dashed line in Fig. 2(c)) by incorporating the NNH1 in125

the multi-fidelity DNN.126

The size of the neural network (e.g., depth and width) has a strong effect on
the predictive accuracy [23], which is also investigated here. Since we have sufficient
low-fidelity data, it is easy to find an appropriate size for NN L to approximate the
low-fidelity function. Therefore, the particular focus is put on the size of NNH2 due
to the fact that the few high-fidelity data may yield overfitting. Note that since the
correlation between the low- and high-fidelity data is relatively simple, there is no
need to set the NNH2 to have a large size. Hence, we limit the ranges of the depth
(i.e., l) and width (i.e., w) as: l ∈ [1, 4] and w ∈ [2, 32], respectively. Considering that
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a random initialization is utilized, we perform ten runs for each case with different
depth and width. The mean and standard deviation for the relative L2 errors defined
as

E =
1

N

n=N∑
n=1

√∑
j(y

∗
j − yj)2∑
y2j

, σ =

√∑n=N
n=1 (En − E)2

N
, (12)

are used to quantify the effect of the size of the NNH2 . In Eq. (12), E is the mean127

relative L2 errors, n is the index of each run, N is the total number of runs (N = 10),128

j is the index for each sample data points, En is the relative L2 error for the n− th129

run, and the definitions of y∗ and y are the same as those in Sec. 1. As shown130

in Table 1, the computational errors for NNH2 with different depth and width are131

almost the same. In addition, the standard deviation for the relative L2 errors are not132

presented because they are less than 10−5 for each case. All these results demonstrate133

the robustness of the multi-fidelity DNNs. To reduce the computational cost as well134

and retain the accuracy, a good choice for the size of NNH2 may be l ∈ [1, 2] and135

w ∈ [4, 20] in low dimensions.136

Table 1: Mean relative L2(×10−3) for NNs with different sizes.

Depth
Width

4 8 16 32

1 3.1 3.0 4.6 2.9
2 3.4 3.0 3.0 3.1
3 3.1 3.1 3.1 3.0
4 3.0 3.0 3.0 3.0

3.1.2. Discontinuous function with linear correlation137

As mentioned in [8], the approximation of a discontinuous function using GPR
is challenging due to the continuous kernel employed. We then proceed to test the
capability of the present model for approximating discontinuous functions. The low-
and high-fidelity data are generated by the following “Forrester” functions with jump
[8]:

yL(x) =

{
0.5(6x− 2)2 sin(12x− 4) + 10(x− 0.5)− 5, 0 ≤ x ≤ 0.5,

3 + 0.5(6x− 2)2 sin(12x− 4) + 10(x− 0.5)− 5, 0.5 < x ≤ 1,
(13)
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and

yH(x) =

{
2yL(x)− 20x+ 20, 0 ≤ x ≤ 0.5,

4 + 2yL(x)− 20x+ 20, 0.5 < x ≤ 1.
(14)

As illustrated in Fig. 3(a), 38 and 5 sampling data points are employed as the138

training data at the low- and high-fidelity level, respectively. The learning rate is139

again set as 0.001 for all test cases here. Similarly, we employ the NNH2 (l × w =140

4× 20) to predict the high-fidelity values on the basis of the given high-fidelity data141

only, but the corresponding prediction is not good (Fig. 3(b)). However, using the142

multi-fidelity data, the present model can provide quite accurate predictions for the143

high-fidelity profile (Fig. 3(c)). Remarkably, the multi-fidelity DNN can capture the144

discontinuity at x = 0.5 at the high-fidelity level quite well even though no data are145

available in the range 0.4 < x < 0.6. This is reasonable because the low- and high-146

fidelity data share the same trend as 0.4 < x < 0.6, yielding the correct predictions of147

the high-fidelity values in this zone. Furthermore, the learned correlation is displayed148

in Fig. 3(d), which shows only slight differences from the exact correlation.149

3.1.3. Continuous function with nonlinear correlation150

To test the present model for capturing complicated nonlinear correlations be-
tween the low- and high-fidelity data, we further consider the following case [10]:

yL(x) = sin(8πx), x ∈ [0, 1], (15)

yH(x) = (x−
√
2)y2L(x). (16)

Here, we employ 51 and 14 data points (uniformly distributed) for low- and high-151

fidelity, respectively, as the training data, (Fig. 4(a)). The learning rate for all test152

cases is still 0.001. As before, the NNH2 (l × w = 4 × 20) cannot provide accurate153

predictions for the high-fidelity values using only the few high-fidelity data points154

as displayed in Fig. 4(b). We then test the performance of the multi-fidelity DNN155

based on the multi-fidelity training data. Four hidden layers and 20 neurons per156

layer are used in NN L, and 2 hidden layers with 10 neurons per layer are utilized157

for NNH2 . Again, the predicted profile from the present model agrees well with the158

exact profile at the high-fidelity level, as shown in Fig. 4(c). It is interesting to find159

that the multi-fidelity DNN can still provide accurate predictions for the high-fidelity160

profile even though the trend for the low-fidelity data is opposite to that of the high-161

fidelity data, e.g., 0 < x < 0.2, a case of adversarial type of data. In addition, the162

learned correlation between the low- and high-fidelity data agrees well with the exact163

one as illustrated in Fig. 4(d), indicating that the multi-fidelity DNN is capable of164

discovering the non-trivial underlying correlation on the basis of training data.165
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Figure 3: Approximation of a discontinuous function from multi-fidelity data with linear cor-
relation. (a) Training data at low- (38 data points) and high-fidelity levels (5 data points). (b)
Predictions from DNN using high-fidelity data only (Red dash line); also included is the exact curve
(Black solid line). (c) Predictions from multi-fidelity DNN for high-fidelity (Red dash line). (d)
The Red dashed line in the (x, yL, yH) plane represents Eq. (5) (on top of the exact Black solid
line) and the Red dashed line in the (yL, yH) plane represents the correlation discovered between
the high- and low-fidelity data; the Blue line is the exact correlation.
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Figure 4: Approximation of a continuous function from multi-fidelity data with nonlinear correla-
tion. (a) Training data at low- (51 data points) and high-fidelity levels (14 data points). Black solid
line: High-fidelity values, Black dashed line: Low-fidelity values, Red cross: High-fidelity training
data, Blue circle: Low-fidelity training data. (b) Predictions from high-fidelity DNN (Red dashed
line); Black solid line: Exact values. (c) Predictions from multi-fidelity DNN for high-fidelity (Red
dash line). (d) The Red dashed line in (x, yL, yH) represents Eq. (5) (on top of the exact Black
solid line) and the Red dashed line in (yL, yH) represents the correlation discovered between the
high- and low-fidelity data; the Blue line is the exact correlation.
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3.1.4. Phase-shifted oscillations166

For more complicated correlations between the low- and high-fidelity data, we can
easily extend the multi-fidelity DNN based on the “embedding theory” to enhance
the capability for learning more complex correlations [28] (For more details on the
embedding theory, refer to Appendix A). Here, we consider the following low-/high-
fidelity functions with phase errors [28]:

yH(x) = x2 + sin2(8πx+ π/10), (17)

yL(x) = sin(8πx). (18)

We can further write yH in terms of yL as

yH = x2 + (yL cos(π/10) + y
(1)
L sin(π/10)/(8π))2, (19)

where y
(1)
L denotes the first derivatives of yL. The relation between the low- and high-167

fidelity data is displayed in Fig. 5(a), which is rather complicated. The performance168

of the multi-fidelity DNN for this case will be tested next. To approximate the169

high-fidelity function, we select 51 and 16 uniformly distributed sample points as the170

training data for low- and high-fidelity values, respectively (Fig. 5(b)). The selected171

learning rate for all test cases is 0.001. Here, we test two types of inputs for NNH2 ,172

i.e., [x, yL(x)] (Method I), and [x, yL(x), yL(x−τ)] (Method II) (τ is the delay). Four173

hidden layers and 20 neurons per layer are used in NN L, and 2 hidden layers with174

10 neurons per layer are utilized for NNH2 . As shown in Fig. 5, it is interesting to175

find that Method II provides accurate predictions for the high-fidelity values (Fig.176

5(d)), while Method I fails (Fig. 5(c)). As mentioned in [28], the term yL(x − τ)177

can be viewed as an implicit approximation for y
(1)
L , which enables Method II to178

capture the correlation in Eq. (19) based only on a small number of high-fidelity179

data points. However, given that no information on y
(1)
L is available in Method I, the180

present datasets are insufficient to obtain the correct correlation.181

3.1.5. 20-dimensional function approximation182

In principle, the new multi-fidelity DNN can approximate any high-dimensional
function so here we take a modest size so that is not computationally expensive
to train the DNN. Specifically, we generate the low- and high-fidelity data for a
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Figure 5: Approximation of continuous function from multi-fidelity data with phase-shifted os-
cillations and highly-nonlinear correlation: (a) Correlation among x, yL, and yH . The Blue line
represents the projection in the (yL, yH) plane. (b) Training data for yL and yH . Black solid line:
Exact high-fidelity values; Black dashed line: Exact low-fidelity values; Red cross: High-fidelity
training data; Blue circle: Low-fidelity training data. (c) Predictions from Method I (without time-
delay) (Red dashed line). (d) Predictions from Method II (with time-delay) (Red dashed line). The
learned optimal value for τ is 4.49× 10−2.
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Figure 6: Approximations of the 20-dimensional function (learning rate: 0.001). (a) Single-fidelity
predictions from high-fidelity data. NNH2 → 4 × 160 with 5000 randomly selected high-fidelity
data, and 10000 test data at random locations. (b) Multi-fidelity DNN predictions. NNL → 4×128,
NNH2

→ 2 × 64 with 30000 and 5000 randomly selected low-/high-fidelity data, and 10000 test
data at random locations.

20-dimensional function from the following equations: [29]

yH(x) = (x1 − 1)2 +
20∑
i=2

(
2x2

i − xi−1

)2
, xi ∈ [−3, 3], i = 1, 2, ..., 20, (20)

yL(x) = 0.8yH(x)−
19∑
i=1

0.4xixi+1 − 50. (21)

As shown in Fig. 6(a), using only the available high-fidelity data does not lead to183

an accurate function approximation but using the multi-fidelity DNN approach gives184

excellent results as shown in Fig. 6(b).185

In summary, in this section we have demonstrated using different data sets and186

correlations that multi-fidelity DNNs can adaptively learn the underlying correlation187

between the low- and high-fidelity data from the given datasets without any prior188

assumption on the correlation. In addition, they can be applied to high-dimensional189

cases, hence outperforming GPR [10]. Finally, the present framework can be easily190

extended based on the embedding theory to non-functional correlations, which en-191

ables multi-fidelity DNNs to learn more complicated nonlinear correlations induced192

by phase errors of the low-fidelity data (adversarial data).193
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3.2. Inverse PDE problems with nonlinearities194

In this section, we will apply the multi-fidelity PINNs (MPINNs) to two inverse195

PDE problems with nonlinearities, specifically, unsaturated flows and reactive trans-196

port in porous media, which have extensive applications in various fields, such as197

contaminant transport in soil, CO2 sequestration, and oil recovery. We assume that198

the hydraulic conductivity is first estimated based on scarce high-fidelity measure-199

ments of the pressure head. Subsequently, the reactive models are further learned200

given a small set of high-fidelity observations of the solute concentration.201

3.2.1. Learning the hydraulic conductivity for nonlinear unsaturated flows202

Unsaturated flows play an important role in the ground-subsurface water interac-
tion zone [30, 31]. Here we consider a steady unsaturated flow in an one-dimensional
(1D) column with a variable water content, which can be described by the following
equation as

∂x (K(h)∂xh) = 0. (22)

We consider two types of boundary conditions, i.e., (1) constant flux at the inlet and
constant pressure head at the outlet, q = −K∂xh = q0, x = 0; h = h1, x = Lx

(Case I), and (2) constant pressure head at both the inlet and outlet, h = h0, x =
0; h = h1, x = Lx (Case II). Here Lx = 200cm is the length of the column, h is the
pressure head, h0 and h1 are, respectively, the pressure head at the inlet and outlet,
q represents the flux, and q0 is the flux at the inlet, which is a constant. In addition,
K(h) denotes the pressure-dependent hydraulic conductivity, which is expressed as

K(h) = KsS
1/2
e

[
1− (1− S1/m

e )m
]2
, (23)

where Ks is the saturated hydraulic conductivity, and Se is the effective saturation
that is a function of h. It is noted that several models have been developed to
characterize Se but among them, the van Genuchten model is the most widely used
[32], which reads as follows:

Se =
1

(1 + |α0h|n)m , m = 1− 1/n. (24)

In Eq. (24), α0 is related to the inverse of the air entry suction, and m repre-203

sents a measure of the pore-size distribution. To obtain the velocity field for later204

applications, we should first obtain the distribution of K(h). Unfortunately, both205

parameters depend on the geometry of porous medium and are difficult to measure206

directly. We note that the pressure head can be measured more easily in comparison207

to α0 and m. Therefore, we assume that partial measurements of h are available208
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without the direct measurements of α0 and m. The objective is to estimate α0 and209

m based on the observations of h. Then, we can compute the distribution of K(h)210

according to Eqs. (23) and (24).211

The loam is selected as a representative case here, for which the empirical ranges212

of α0 and m are: α0(cm
−1) ∈ [0.015, 0.057] and m ∈ [0.31, 0.40] [33]. In addition,213

Ks = 1.04cm/hr. To obtain the training data for neural networks, two types of214

numerical simulations are conducted to generate the low- and high-fidelity data using215

the bvp4c in Matlab (uniform lattice with δx = 1/15cm). For high-fidelity data, the216

exact values for α0 and m are assumed to be 0.036 cm−1 and 0.36. The high-217

fidelity simulations are then conducted using the exact values of α0 and m. Different218

initial guesses for α0 and m are employed in the low-fidelity simulations. Specifically,219

ten uniformly distributed pairs i.e., (α0,m) in the range (0.015, 0.31)− (0.057, 0.40)220

are adopted in the low-fidelity simulations. For all cases, 31 uniformly distributed221

sampling data at the low-fidelity level are served as the training data, 2 sampling222

points are employed as the training data for high-fidelity, and 400 randomly sampled223

points are used to measure the MSEfe . In addition, a smaller learning rate, i.e.,224

10−4 is employed for all test cases in this section.225

We first consider the flow with constant flux inlet. The flux at the inlet and
the pressure at the outlet are set as q0 = 0.01cm/y and h1 = −20cm, respectively.
Equation (22) is added into the last neural network in MPINNs. We first employ
the numerical results for α0 = 0.055 and m = 0.4 as the low-fidelity data. As shown
in Fig. 7(d), the prediction for hydraulic conductivity is different from the exact
solution. According to Darcy’s law, we can rewrite Eq. (22) as

q(x) = −K∂xh, ∂xq(x) = 0. (25)

Considering that q = q0 at the inlet is a constant, we can then obtain the following
equation

q(x) = −K∂xh = q0, (26)

which actually is the mass conservation at each cross section. We then employ Eq.226

(26) instead of Eq. (22) in the MPINNs, and the results improve greatly (Fig. 7(d)).227

We proceed to study this case in some more detail. We perform the single-fidelity228

modeling (SF) based on the high-fidelity data. We use two hidden layers with 20229

neurons per layer in NNH2 , in which the hyperbolic tangent function is employed as230

the activation function. The learned pressure head and the hydraulic conductivity231

are shown in Figs. 8(a)-8(b). We observe that both the learned h and K(h) disagree232

with the exact results. We then switch to multi-fidelity modeling. Two hidden layers233
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Figure 7: Predictions for unsaturated flow in porous media using the differential (Eq. (22)) and
integral formulations (Eq. (26)) with constant flux at the inlet and constant pressure head at the
outlet. (a) Training data for pressure head. (b) Low- and high-fidelity hydraulic conductivity. (c)
Predicted pressure head using MPINNs training with multi-fidelity data. Method I: Differential
formulation, Method II: Integral formulation. (d) Predicted hydraulic conductivity using MPINNs
training with multi-fidelity data. Method I: Differential formulation, Method II: Integral formula-
tion.
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Figure 8: Predictions for unsaturated flow in porous media using the integral formulation (Eq.
(26)) with constant flux at the inlet and constant pressure head at the outlet. (a) Predicted pressure
head using PINNs training with high-fidelity data only. (b) Predicted hydraulic conductivity using
PINNs training with high-fidelity data only. (c) Predicted pressure head using MPINNs with multi-
fidelity data. (d) Predicted hydraulic conductivity using using MPINNs with multi-fidelity data.
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Figure 9: Predictions for unsaturated flow in porous media using the integral formulation (Eq.
(26)) with constant pressure head at the inlet and outlet. (a) Training data for pressure head.
Low-fidelity data is computed with α0 = 0.015 and m = 0.31. (b) Low- and high-fidelity hydraulic
conductivity. Low-fidelity hydraulic conductivity is computed with α0 = 0.015 and m = 0.31. (c)
Predicted pressure head using PINNs training with high-fidelity data only. (d) Predicted hydraulic
conductivity using PINNs training with high-fidelity data only. (e) Predicted pressure head using
MPINNs with multi-fidelity data. (f) Predicted hydraulic conductivity using using MPINNs with
multi-fidelity data.
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and 10 neurons per layer are used in NN L, and two hidden layers with 10 neurons234

per layer are utilized for NNH2 . The predicted pressure head as well as the hydraulic235

conductivity (average value from ten runs with different initial guesses) agree quite236

well with the exact values (Figs. 8(c)-8(d)). For Case II, we set the pressure head at237

the inlet and outlet as h0 = −3cm and h1 = −10cm. We also assume that the flux238

at the inlet is known, thus Eq. (26) can also be employed instead of Eq. (22) in the239

MPINNs. The training data are illustrated in Fig. 9(a). The size of the NNs here240

is kept the same as that used in Case I. We observe that results for the present case241

(Figs. 9(c)-9(f)) are quite similar with those in Case I.242

Finally, the mean values of α0 as well as the m for different initial guesses are243

shown in Table 2, which indicates that the MPINNs can significantly improve the244

prediction accuracy as compared to the estimations based on the high-fidelity only245

(SF in Table 2).246

Table 2: PINN and MPINN predictions for hydraulic conductivity.

α0(cm
−1) σ(α0) m σ(m)

SF (Case I) 0.0438 - 0.359 -
MF (Case I) 0.0344 0.0027 0.347 0.0178
SF (Case II) 0.0440 - 0.377 -
MF (Case II) 0.0337 7.91× 10−4 0.349 0.0037

Exact 0.036 - 0.36 -

3.2.2. Estimation of reaction models for reactive transport247

We further consider a single irreversible chemical reaction in a 1D soil column
with a length of 5m, which is similar as the case in [5] and can be expressed as

arA → B, (27)

where A, and B are different solute. The above reactive transport can be described
by the following advection-dispersion-reaction equation as

∂t(ψCi) + q∂xCi = ψD∂2
xCi − ψvikf,rC

ar
A , (i = A,B), (28)

where Ci (mol/L) is the concentration of any solute, q is the Darcy velocity, ψ is the
porosity, D is the dispersion coefficient, kf,r denotes the chemical reaction rate, ar
is the order of the chemical reaction, both of which are difficult to measure directly,
and vi is the stoichiometric coefficient with vA = ar, and vB = −1. Here, we assume
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Figure 10: Schematic of the space-time domain and the locations of the high-fidelity data for
modeling reactive transport. (a) Case I: Data are collected at t = 0.5 and 1 years. (b) Case II:
Data are collected at t = 0.25 and 0.75 years.

that the following parameters are known: ψ = 0.4, q = 0.5m/y, and D = 10−8m/s2.
The initial and boundary conditions imposed on the solute are expressed as

CA(x, 0) = CB(x, 0) = 0, (29)

CA(0, t) = 1, CB(0, t) = 0, (30)

∂xCi(x, t)|x=lx = 0. (31)

The objective here is to learn the effective chemical reaction rate as well as the248

reaction order based on partial observations of the concentration field CA(x, t).249

We perform lattice Boltzmann simulations [34, 35] to obtain the training data250

since we have no experimental data. Consider that vA is a constant, we define an251

effective reaction rate as kf = vAkf,r for simplicity. The exact effective reaction252

rate and reaction order are assumed to be kf = 1.577/y and ar = 2, respectively.253

Numerical simulations with the exact kf and ar are then conducted to obtain the254

high-fidelity data. In simulations, a uniform lattice is employed, i.e., lx = 400δx,255

where δx = 0.0125m is the space step, and δt = 6.67×10−4y is the time step size. We256

assume that the sensors for concentration are located at x = {0.625, 1.25, 2.5, 3.75}m.257

In addition, we assume that the data are collected from the sensors once half a year.258

In particular, we employ two different datasets (Fig. 10), i.e., (1) t = 0.5 and 1 years259

(Case I), and (2) t = 0.25 and 0.75 years. Schematics of the training data points for260

the two cases we consider are shown in Fig. 10(a) and Fig. 10(b).261
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Next, we describe how we obtain the low-fidelity data. In realistic applications,262

the pure chemical reaction rate (without porous media) between different solute e.g.,263

A and B are known, which can be served as the initial guess for kf . Here we assume264

that the initial guess for the chemical reaction rate and reaction order vary from265

0.75kf/ar to 1.25kf/ar. To study the effect of the initial guess ((kf,0, ar0)) on the266

predictions, we conduct the low-fidelity numerical simulations based on ten uniformly267

distributed pairs in [0.75kf , 0.75ar]−[1.25kf , 1.25ar] using the same grid size and time268

step as the high-fidelity simulations. Here kf,0 and ar0 represent the initial guesses269

for kf and ar. The learning rate employed in this section is also 10−4. In addition,270

30,000 randomly sampled points are employed to measure the MSEfe .271

The results of predictions using PINNs (with the hyperbolic tangent activation272

function) trained on high-fidelity data are shown in Fig. 11(a) and Fig. 11(c) for273

the two cases we consider, and corresponding results using MPINNs are shown in274

Fig. 11(b) and Fig. 11(d). The estimated mean and standard deviation for kf275

and ar are displayed in Table 3, which are much better than the results from single-276

fidelity modelings. We also note that the standard deviations are rather small, which277

demonstrates the robustness of the MPINNs.278

Table 3: PINN and MPINN predictions for reactive transport.

kf (/y) σ(kf ) ar σ(ar)
SF (Case I) 0.441 - 0.558 -
MF (Case I) 1.414 7.45× 10−3 1.790 9.44× 10−3

SF (Case II) 1.224 - 1.516 -
MF (Case II) 1.557 2.14× 10−2 1.960 2.57× 10−2

Exact 1.577 - 2 -

4. Conclusion279

In this work we presented a new composite deep neural network that learns from280

multi-fidelity data, i.e. a small set of high-fidelity data and a larger set of inexpensive281

low-fidelity data. This scenario is prevalent in many cases for modeling physical and282

biological systems and we expect that the new DNN will provide solutions to many283

current bottlenecks where availability of large data sets of high-fidelity is simply not284

possible but either low-fidelity data from inexpensive sensors or other modalities or285

even simulated data can be readily obtained. Moreover, we extended the concept286

of physics-informed neural networks (PINNs) that use a single-fidelity data to train287

to the multi-fidelity case and MPINNs. Specifically, MPINNs are composed of four288
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Figure 11: Predicted concentration field. (a) Case I: Relative errors (absolute value) using a PINN
trained on high-fidelity data only. NNH2

→ 4 × 20. (b) Case I: Mean relative errors (absolute
value) using a MPINN trained on multi-fidelity data. Initial guesses: ten uniformly distributed
pairs in [0.75kf , 0.75a] − [1.25kf , 1.25a]. The concentration fields plotted are the mean values for
ten runs with different initial guesses. NNL → 2×10, NNH2 → 2×10. (c) Case II: Relative errors
(absolute value) using a PINN trained on high-fidelity data only. NNH2 → 4 × 20. (d) Case II:
Mean relative errors (absolute value) using a MPINN trained on multi-fidelity data. NNL → 2×10,
NNH2

→ 2× 10.
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fully connected neural networks: the fist neural network approximates the low-fidelity289

data, while the second and third NNs are for constructing the correlations between290

the low- and high-fidelity data, and the last NN encodes the PDEs that describe291

the corresponding physical problems. The two sub-networks included in the high-292

fidelity network are employed to approximate the linear and nonlinear parts of the293

correlations, respectively. Training the two sub-networks enables the MPINNs to294

learn the correlation based on the training data without any prior assumption on the295

relation between the low- and high-fidelity data.296

MPINNs have the following attractive features: (1) Owing to the expressible297

capability of function approximation of the NNs, multi-fidelity NNs are able to ap-298

proximate both continuous and discontinuous functions in high dimensions; (2) Due299

to the fact that NNs can handle almost any kind of nonlinearities, MPINNs are300

effective for identification of unknown parameters or functions in inverse problems301

described by nonlinear PDEs.302

We first tested the new multi-fidelity DNN in approximating continuous and303

discontinuous functions with linear and nonlinear correlations. Our results demon-304

strated that the present model can adaptively learn the correlations between the305

low- and high-fidelity data based on the training data of variable fidelity. In addi-306

tion, this model can easily be extended based on the embedding theory to learn more307

complicated nonlinear and non-functional correlations. We then tested MPINNs on308

inverse PDE problems, namely, in estimating the hydraulic conductivity for unsatu-309

rated flows as well as the reaction models in reactive transport in porous media. We310

found that the proposed new MPINN can identify the unknown parameters or even311

functions with high accuracy using very few high-fidelity data, which is promising312

in reducing the high experimental cost for collecting high-fidelity data. Finally, we313

point out that MPINNs can also be employed for high-dimensional problems as well314

as problems with multiple fidelities, i.e. more than two fidelities.315
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Appendix A. Data-driven manifold embeddings321

To learn more complicated non-linear correlation between the low- and high-322

fidelity data, we can further link the multi-fidelity DNNs with the embedding theory323
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[28]. According to the weak Whitney embedding theorem [36], any continuous func-324

tion from an n-dimensional manifold to an m-dimensional manifold may be approx-325

imated by a smooth embedding with m > 2n. Using this theorem, Taken’s theorem326

[37] further points out that the m embedding dimensions can be composed of m dif-327

ferent observations of the system state variables or m time delays for a single scalar328

observable.329

Now we will introduce the applications of the two theorems in multi-fidelity
modelings. We assume that both yL and yH are smooth functions. Suppose that
yL, yL(x− τ), ..., yL(x− (m−1)τ) (τ is the time delay) and a small number of (x, yH)
are available, we can then express yH in the following form

yH(x) = F(x, yL(x), yL(x− iτ)), i = 1, ...,m− 1. (A.1)

By using this formulation, we can construct more complicate correlation than Eq. (2).330

To link the multi-fidelity DNN with the embedding theory, we can extend the inputs331

for NNH,i to higher dimensions, i.e., [x, yL(x)] → [x, yL(x), yL(x− τ), yL(x− 2τ), ...,332

yL(x−(m−1)τ)], which enables the multi-fidelity DNN to discover more complicated333

underlying correlations between the low- and high-fidelity data.334

Note that the selection of optimal value for the time delay τ is important in335

embedding theory [38–40], on which numerous studies have been carried out [38].336

However, most of the existing methods for determining the optimal value of τ appear337

to be problem-dependent [38]. Recently, Dhir et al. proposed a Bayesian delay338

embedding method, where τ is robustly learned from the training data by employing339

the variational autoencoder [40]. In the present study, the value of τ is also learned340

by optimizing the NNs rather than setting it as constant as in the original work341

presented in Ref. [28].342
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