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Highlights

• Automatic generation of interpolation operators for non-collocated couplings of meshes within a general summation-by-parts framework.
• A method-of-lines approach for moving meshes with a sliding interface.
• Issues of stability, conservation, minimal errors and computational efficiency are addressed.
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Abstract

We present a methodology for automatic generation and optimization of in-
terpolation operators for the coupling of general non-collocated and/or mov-
ing numerical interfaces. The discrete equations are solved in a method-
of-lines fashion by assuming volume preserving mesh motions. Interface in-
terpolation errors are minimized effectively in a global least-squares sense,
while satisfying strict stability conditions. The proposed automatic interface
procedure is both more versatile and more accurate compared to previous
techniques. We apply the new method to interfaces between hybrid meshes
undergoing relative rigid body motion, demonstrating the stability, conser-
vation and superior accuracy.

1. Introduction

Inner product preserving (IPP), also known as summation-by-parts (SBP)
preserving, interpolation and projection operators have recently emerged as
a robust and versatile tool in the design and analysis of interface couplings
for non-collocated and hybrid meshes [1, 2, 3, 4, 5, 6, 7]. In [7], the present
authors developed a unified theory for the stability and accuracy of IPP
interpolation for both structured and unstructured meshes.

Despite these recent advances in IPP interface techniques, significant lim-
itations still remain. Firstly, order reduction in accuracy is an issue for finely
resolved calculations [7]. For diffusion dominated problems, this issue was



partly resolved in [8] by constructing two different sets of interpolation op-
erators, but it is still unsolved for advection dominated problems. Secondly,
some types of meshes remain more difficult to handle than others with the
existing techniques. Examples of this include general unstructured meshes,
but also the presence sliding motion between subdomains with structured
meshes. The challenges are not only, or perhaps even primarily, of theoretical
nature, but practical in the sense that interpolation operators must be gen-
erated for general mesh configurations. Finally, to the best of our knowledge,
free-stream preservation and conservation has not yet been demonstrated on
curved interfaces with an SBP approach.

In this paper we develop a comprehensive methodology for the generation
and optimization of interpolation operators between stationary and sliding
subdomains. The primary target is to automate the procedure as much as
possible for general combinations of meshes and discretization methods. To
this end, interpolation errors are minimized in a global least-squares sense,
and stability can be ensured by satisfying IPP relations [1, 2, 3, 6, 7]. For in-
terface meshes which are either stationary or undergoing rigid body motions,
free-stream preservation and discrete conservation can also be achieved with
the IPP automatic procedure.

The new global optimization procedure is highly versatile and can be
applied to more or less arbitrary combinations of meshes and discretization
methods of SBP type. However, the computational cost of optimization can
be significant on a 3D mesh. As long as the mesh interface is stationary,
this is not a serious problem since interpolation operators only have to be
generated once. To reduce the computational cost for sliding interfaces, we
also consider a modification to the new procedure by relaxing the IPP re-
lations. Without compromising stability, this modification ensures that the
algorithmic complexity is not more than linear with respect to the number
of interface nodes, regardless of the number of space dimensions.

The paper is outlined as follows. In section 2 we propose a method-of-lines
SBP approach for domains which move according to a volume preserving
coordinate mapping. In section 3 we extend the SBP theory from [7] to
moving and sliding mesh interfaces. The theory is presented for general
meshes and SBP methods, and all derivations which are specific to either
structured or unstructured methods are given in appendices. With the theory
in place, we outline an optimization procedure for the automatic generation
of interpolation operators for any given mesh interface in section 4. In section
5 we demonstrate with numerical examples the superior performance of the
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new automatic methodology. Finally, in section 6, conclusions are drawn.

2. The continuous model problem

To keep the presentation short and to the point, we consider geometries
in 2D, and make explicit references to 3D only where necessary. We start by
considering the scalar advection model problem,

ut + aux + buy = 0, (x, y) ∈ Ω(t), (1)

where a and b are constants, and where subscripts denote partial derivatives.
To describe the time-dependent motion of Ω, we let the functions x(t) and
y(t) denote a coordinate mapping following this motion. In particular, we
let the coordinate velocity be described by the functions,

dx

dt
= ẋ(t, x, y),

dy

dt
= ẏ(t, x, y). (2)

In the reference frame of Ω, the solution u = u(t, x(t), y(t)) has the total
(substantive) time derivative

du

dt
= ut + ẋux + ẏuy, (3)

where ut is the partial time derivative of u. Equation (1) thus becomes,

du

dt
− ẋux − ẏuy + aux + buy = 0. (4)

For any smooth test function φ, we can now derive, see Appendix A, the
following integral identity from equation (4),

d

dt

(∫
Ω

φu dV

)
=

∫
Ω

(
dφ

dt
+ (a− ẋ)φx + (b− ẏ)φy

)
u dV −

∮
∂Ω

λφu dS,

(5)
where

λ = (a− ẋ)nx + (b− ẏ)ny, (6)

and (nx, ny)
T is the outward pointing normal to Ω. The function λ above

is of fundamental importance since it controls the amount of boundary flux
related to the quantity φu.
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Two special cases of the general identity (5) are of particular interest.
Firstly, an energy rate is obtained by inserting φ = u and using (4),

d

dt

(∫
Ω

u2 dV

)
= −

∮
∂Ω

λu2 dS. (7)

Similarly, for φ = 1 a conservation law is obtained,

d

dt

(∫
Ω

u dV

)
= −

∮
∂Ω

λu dS. (8)

Equations (7) and (8) are fundamental properties of the problem that we will
mimic in the discrete approximation of (4).

2.1. Parametric representation of λ

In the upcoming discrete analysis, a parametric representation of subdo-
main boundaries in space will be used. Thus, at a given point in time, let
s ∈ [0, 1] denote the normalized distance along some smooth segment of ∂Ω,
and consider the coordinates x = x(s), y = y(s) as functions of this param-
eter. The tangent is then given by (xs, ys)

T , and, if s is positively oriented
towards the domain, the outward pointing unit normal (nx, ny)

T is given by
the explicit formulas,

nx = J−1ys, ny = −J−1xs, J =
√

x2
s + y2s . (9)

Applying (9) to the definition of λ in (6) now yields

λ = J−1((a− ẋ)ys − (b− ẏ)xs). (10)

If instead the orientation of s is negative with respect to Ω, the signs in (10)
are switched. The form (10) can now easily be discretized by application of
an operator approximating ∂/∂s.

2.2. Volume preserving motion

High order SBP discretizations of finite difference type for moving and
deforming meshes were previously considered on fully discrete form in [9]. In
this work we consider discretizations of method-of-lines type for simplicity.
As we shall find, this requires a constant discrete L2 norm, and hence we will
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consider volume preserving coordinate mappings, i.e. such that the discrete
mesh is not deforming. We thus postulate that,

d

dt

(∫
ΔΩ

dV

)
= 0, (11)

for all subsets ΔΩ of Ω. Satisfying this relation discretely will later allow
for a method-of-lines approach to solve (4), without the need to address dis-
crete geometric conservation. The volume preserving assumption simplifies
the analysis by decoupling the spatial and temporal parts of discretization.
However, the methodology presented in this paper can be extended to de-
forming meshes as well, for example in combination with the techniques used
in [9].

3. SBP operators

As a general convention of notation, we shall use boldface letters to denote
discrete parameters corresponding to x, y, ẋ, ẏ, xs, ys, nx, ny, λ and J . The
discrete values, which can be either exact or approximated, are inserted in
diagonal matrices. Upper case letters will be used if all nodes in a subdomain
are being considered, while lower case letters will denote the same quantity
restricted to a subdomain boundary.

We extend the general SBP framework outlined in [7] to also include cases
where the domain is moving. We thus seek a discrete approximation of (4)
on a single computational domain of the form,

dU

dt
+ P−1QU = P−1ETP (λu− λ̂u), (12)

where U is the vector of discrete solution values, and P is a diagonal matrix
containing discrete integration weights. Depending on the type of method,
these can either be control volumes or some type of higher order quadrature
weights. Similarly, P contains integration weights along the domain bound-
ary, while E is a so-called restriction operator from the computational domain
to the boundary, i.e. u = EU is the boundary restriction of the solution.
Furthermore, λ̂u is a numerical flux, where λ = (aI − ẋ)nx + (bI − ẏ)ny

corresponds to the continuous function λ in (6). Building on the volume
preserving coordinate mapping (11), we only consider the case where P is
independent of time. This restriction can be motivated for both structured
and unstructured operators, see Appendix B.
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The discrete operator in (12) satisfies an SBP property of the form,

Q+QT = ETPλE. (13)

Detailed examples of discrete operators satisfying this general form of SBP
property are given in Appendix B. A discrete analogue of (5) can now be
obtained by multiplying (12) with ΦTP from the left, where Φ is any discrete
test function, and applying (13). We find, since P is time-independent,

d

dt
(ΦTPU) = UTP

(
d

dt
Φ+ P−1QΦ

)
− φTP λ̂u, φ = EΦ. (14)

Since the focus in this paper is on interface couplings, we restrict the
analysis to a subdomain boundary which forms an interface together with
a neighbouring subdomain. The situation is illustrated in Figure 1, where

PL

PR

IL2R

IR2L

nL

nR

UL UR

uL

uR

Figure 1: Illustration of interface coupling between two general meshes.

two general meshes are connected through a common interface. Using in-
terpolation operators, we define λ̂u in the following way on the two sides,
respectively,

λ̂uL =
λLuL + IR2L(−λRuR)

2
+ σ

P−1L IT
L2RPR|λR|(IL2RuL − uR)

2

λ̂uR =
λRuR + λRIL2RuL

2
+ σ

|λR|(uR − IL2RuL)

2
,

(15)
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where PL and PR denote the two boundary integration operators, and σ ≥ 0
is a parameter controlling the strength of interface dissipation. Note that
both of the dissipation terms in (15) include the same difference between the
solution to the right of the interface with the corresponding interpolated value
from the left. This is a design choice based on the coarseness of the mesh;
since ΩR is defined as the finer of the two meshes in Figure 1, the bandwidth
of the product P−1L IT

L2RPR|λR|IL2R in (15) is minimized. If instead the mesh
on ΩL is the more fine one, (15) can be modified accordingly. (A more
symmetric looking form of (15) can be obtained by using a weighted sum of
differences obtained from interpolating in both directions.)

Inserted into (14), the fluxes in (15) yield the terms,

φT
LPLλ̂uL =

[
φT

LPL(λLuL)− φT
LPL(IR2LλRuR) + σ(IL2RφL)

TPR|λR|(IL2RuL − uR)
]
/2

φT
RPRλ̂uR =

[
φT

RPR(λRuR) + φT
RPR(λRIL2RuL) + σφT

RPR|λR|(uR − IL2RuL)
]
/2.

(16)

Remark 1. Eq. (15) is a simplification of a more general form of fluxes
considered in [7]. The latter was designed to include a broader class of IPP
formulations, such as the so-called mortar and glue grid techniques [2, 6].
For the purpose of this work however, the form (15) is sufficient to facilitate
couplings between arbitrary types of SBP operators.

The IPP relations for the interpolation operators in (15) reads [1, 7],

PLIR2L = IT
L2RPR. (17)

This property ensures that inner products induced by PL and PR are pre-
served in the following sense,

vT
LPL(IR2LvR) = vT

RPR(IL2RvL), (18)

for general vectors vL and vR.

3.1. Stability

In (14) we first consider the case Φ = U, and use (12). This yields the
following discrete version of (7),

d

dt
(UTPU) = uTP

(
λu− 2λ̂u

)
, (19)
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valid for both the left and the right domain. When summing over the two
domains, the interface treatment should yield a non-positive contribution for
stability. From (16) we have,

uT
LPL(λLuL − 2λ̂uL) = uT

LPLIR2L(λRuR)− σ(IL2RuL)
TPR|λR|(IL2RuL − uR)

uT
RPR(λRuR − 2λ̂uR) = −uT

RPRλRIL2RuL − σuT
RPR|λR|(uR − IL2RuL).

Since PR is a diagonal matrix, it commutes with λR. Summing over the two
domains, we can thus write,

d

dt
(UT

LPLUL +UT
RPRUR) = uT

LPLIR2L(λRuR)− (λRuR)
TPRIL2RuL

− σ(IL2RuL − uR)
TPR|λR|(IL2RuL − uR),

and we have now proven the following result.

Proposition 1. Assume that the operators in (15) at all times satisfy

uT
LPLIR2L(λRuR) = (λRuR)

TPRIL2RuL. (20)

Then stability follows, and the energy rate becomes,

d

dt
(UT

LPLUL +UT
RPRUR) = −σ(IL2RuL − uR)

TPR|λR|(IL2RuL − uR),

which is non-positive for σ ≥ 0.

Remark 2. For IPP operators, the stability condition (20) is always satisfied
due to (18).

Remark 3. By using an automatic procedure to generate new operators IL2R

and IR2L in each discrete time step, (20) can be enforced even without the
assumption of IPP. This requires that uL and uR are used as inputs to the
procedure, and hence the resulting operators will depend on the discrete so-
lution. This approach makes the interface treatment non-linear in a weak
sense. We will not elaborate further on aspects of this non-linear type of
treatment, but rather deal with that in the next paper.

For stability, we shall later consider both the IPP and the non IPP ap-
proach as discussed in the two remarks above.
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3.2. Conservation and free-stream preservation

Next we consider Φ = 1 in (14), where 1 is a vector with the constant
value 1 everywhere. This yields a discrete version of (8) given by,

d

dt

(
1TPU

)
= UTQ1 − 1TP λ̂u = −1TP λ̂u. (21)

In the last step above we have assumed that the numerical scheme excluding
boundary and interface conditions is free-stream preserving, i.e.

Q1 = 0. (22)

For a conservative interface treatment, we require that the remaining
right hand side of (21) from the two domains add to zero, i.e.

d

dt

(
1T
LPLUL + 1T

RPRUR

)
= −(1T

LPLλ̂uL + 1T
RPRλ̂uR) = 0. (23)

From (16) we get, using the IPP property (17),

1T
LPLλ̂uL =

[
(λL1L)

TPLuL − (IL2R1L)
TPR(λRuR) + σ(IL2R1L)

TPR|λR|(IL2RuL − uR)
]
/2

1T
RPRλ̂uR =

[
1T
RPR(λRuR) + (IR2LλR1R)

TPLuL + σ1T
RPR|λR|(uR − IL2RuL)

]
/2.

Hence, (23) becomes,

1T
LPLλ̂uL + 1T

RPRλ̂uR =
[
(λL1L + IR2LλR1R)

TPLuL + (−IL2R1L + 1R)
TPR(λRuR)

+σ(IL2R1L − 1R)
TPR|λR|(IL2RuL − uR)

]
/2.

For conservation to hold at the interface, we thus need,

IL2R1L = 1R, IR2LλR1R = −λL1L. (24)

Note that if (24) holds, then inserting uL = 1L and uR = 1R into (15) yields

λ̂uL = λLuL and λ̂uR = λRuR. Together with (22), equation (24) thus
ensures that the scheme (12) is free-stream preserving.

We have proven

Proposition 2. The fluxes in (15) yield a conservative scheme (23) if both
the IPP property (17) and the free-stream preserving properties (22) and (24)
hold.
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Remark 4. With a non-linear automatic procedure, it is possible to satisfy
(23) even without the assumption of IPP, see also Remark 3 on the stability
of such procedures. Directly from (16) and assuming free-stream preservation
as before, the following condition is sufficient for satisfying (23),

1T
LPL(λLuL)− 1T

LPL(IR2LλRuR) + 1T
RPR(λRuR) + 1T

RPR(λRIL2RuL) = 0.

However, in order to avoid a possible abuse of terminology we abstain from
referring to this non IPP (and thus non-linear) approach as being conserva-
tive, regardless of whether (23) holds or not.

The question still remains whether or not IPP interpolation operators can
be constructed in such a way that the free-stream preserving conditions (24)
are satisfied. The following Lemma provides a necessary condition.

Lemma 1. For IPP (17) interpolation operators to satisfy the free-stream
preserving property (24), it is necessary that the norms PL and PR satisfy,

1T
LPLλL1L + 1T

RPRλR1R = 0. (25)

Proof. We first multiply the second condition in (24) with 1T
LPL from the

left,
1T
LPLIR2LλR1R = −1T

LPLλL1L.

Using the IPP property (17), this yields,

(IL2R1L)
TPRλR1R = −1T

LPLλL1L.

By inserting the first condition in (24) into the above, (25) follows.

Note that (25) is a discrete version of the continuous relation (due to the
opposite sign of λ on the two sides),∮

∂ΩL

λ dS +

∮
∂ΩR

λ dS = 0,

where only the interface contributions to these integrals are considered.
Even though a general proof is not yet available, (25) is according to

our experience not only necessary but also sufficient to facilitate generation
of IPP operators satisfying (24) with an automatic procedure. Thus, free-
stream preservation reduces to the problem of defining SBP operators P−1L QL

and P−1R QR such that (25) is satisfied. To address this issue, we shall first
need to parametrize the interface as in section 2.1.
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3.3. Parametrization

As discussed in section 2.1, it is often practical to consider a one-dimensional
parametric representation of the interface. Let J contain discrete values of
the the stretching factor J in (9). An integration operator over the discrete
space corresponding to s ∈ [0, 1] can then easily be defined as,

P̂ = J−1P. (26)

For structured methods on SBP form, P̂ in (26) is by construction always
associated with an SBP operator in one dimension [7]. This is however not
necessary in order to define an operator P̂ in this way, e.g. starting with an
unstructured method.

Once a pair of accurate interpolation operators ÎL2R and ÎR2L have been
generated for the parametrized space, we can then apply the formulas,

IL2R = J
−1/2
R ÎL2RJ

1/2
L , IR2L = J

−1/2
L ÎR2LJ

1/2
R , (27)

to obtain the operators appearing in the scheme (15). It was shown in [7]
that the IPP property (17) is preserved after applying (27). In other words,
if ÎL2R and ÎR2L are IPP with respect to P̂L and P̂R, then IL2R and IR2L are
automatically IPP with respect to PL and PR. The different notation used
in physical and parametrized space is illustrated in Figure 2.

PL P̂LPR P̂R

y

x

s

IL2R

IR2L

ÎL2R

ÎR2L

Figure 2: Integration and interpolation operators in physical and parametrized space.
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Remark 5. The procedure described above is a simplified version of a similar
approach used in [7], where the parametrization was only considered on the
sides of an interface where structured methods were employed. The advantage
with this procedure is that (27) applies to interfaces between arbitrary meshes.

Before moving on to formulate a strategy on how to generate the operators
ÎL2R and ÎR2L on a general mesh, we briefly discuss how the parametrization
can be utilized to satisfy condition (25) in Lemma 1. One way to ensure that
(25) always holds is so guarantee that on both sides of the equality sign we
have the same exact continuous integral of λ. To achieve this property using
general classes of SBP operators however, it is necessary to restrict the types
of admissible mesh motions to only include rigid body motions. Thus, let

ẋ = ā− ωy, ẏ = b̄+ ωx, (28)

describe a general combination of rotation and translation, where ω, ā and b̄
may depend on time but not on x or y. With this restriction, (10) becomes,

λ = J−1
[
(a− ā+ ωy)ys − (b− b̄− ωx)xs

]
,

which we can also write as

λ = J−1
[
(a− ā)y − (b− b̄)x+ ω(x2 + y2)/2

]
s
.

Let’s now assume that the corresponding discrete variable can be written on
either of the two forms,

λ = J−1Diag
[
((a− ā)I + ωy)Ds(y1)− ((b− b̄)I − ωx)Ds(x1)

]
(29)

λ = J−1Diag
[
Ds((a− ā)y − (b− b̄)x+ ω(x2 + y2)/2)1

]
, (30)

where Ds = P̂−1Qs is an SBP operator in one dimension, approximating the
s-derivative. Recall that 1 is a vector with the constant value 1 everywhere,
while λ, J, x and y are diagonal matrices. In Appendix C we show that
(29) applies for unstructured methods, and (30) for structured methods.

Depending on if we consider the whole subdomain boundary forming a
closed curve or only a single smooth segment, one of the following periodic
or non-periodic SBP formulas apply,

Qs +QT
s = 0, Qs +QT

s = Diag ([−1, 0, . . . , 0, 1]) .
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The one-dimensional operator is also free-stream preserving, i.e.

Qs1 = 0.

Starting from (29) and using (26), we now get,

1TPλ1 = [(a− ā)1+ ω(y1)]T Qs(y1)−
[
(b− b̄)1− ω(x1)

]T
Qs(x1).

For a periodic Qs, the SBP and free-stream preserving properties lead to a
vanishing right-hand-side above, and in the non-periodic SBP case we get,

1TPλ1 =
[
(a− ā)y − (b− b̄)x+ ω(x2 + y2)/2

]1
s=0

.

Since the parameter s has the opposite sign on the two sides of an interface,
(25) now follows. The same result can be shown in a similar fashion for (30).
We have thus shown that both (29) and (30) automatically leads to (25).

4. Interpolation operator construction

The theoretical part of this paper is now complete, and the remaining
issue is the practical construction of interpolation operators ÎL2R and ÎR2L

for a given mesh. We will consider and compare two different approaches to
achieve stability; either by satisfying the IPP relations (17), or alternatively
by explicitly enforcing the identity (20). The differences between the two can
summarized as follows. For the IPP approach, discrete conservation follows
directly from free-stream preservation due to Lemma 2, and we recall that
free-stream preservation is possible for any mesh undergoing relative rigid
body motion. The non IPP approach (i.e. enforcing (20) explicitly) is on the
other hand more computationally efficient, which will become an especially
important consideration for moving 3D meshes. Due to the nonlinear nature
of the non IPP treatment, we have chosen in this paper not to consider the
issue of conservation for this case.

4.1. Notation

As a first step in the automatic generation procedure, the number and
positions of non-zero interpolation coefficients are assigned. Let NL and NR

be the number of interface nodes on the two sides. To avoid confusion, we
will consistently use the symbol i to denote an index between the values 1
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and NR, and j for an index between 1 and NL. With this convention, we
denote the non-zero coefficients on each row of the two operators with,

(ÎL2R)ij = αij, i = 1, . . . , NR, j = js(i), . . . , je(i)

(ÎR2L)ji = βji, j = 1, . . . , NL, i = is(j), . . . , ie(j).

With NL = 5, NR = 4, a simple example of this could e.g. be given by,

ÎL2R =

⎛
⎜⎜⎝
α11 α12

α21 α22 α23

α33 α34 α35

α44 α45

⎞
⎟⎟⎠ , ÎR2L =

⎛
⎜⎜⎜⎜⎝
β11 β12

β21 β22

β32 β33

β43 β44

β54 β55

⎞
⎟⎟⎟⎟⎠ .

In coefficient form, the IPP property (17) reads,

βji = (P̂R)iiαij/(P̂L)jj. (31)

Note that this requires the non-zero structure of ÎR2L to be the same as that
of ÎT

L2R, as in the example above.
To simplify the notation below, we also list all coefficients on each row of

ÎL2R and ÎR2L in the separate vectors,

αi =

⎛
⎜⎝αi,js(i)

...
αi,je(i)

⎞
⎟⎠ , βj =

⎛
⎜⎝βj,is(j)

...
βj,ie(j)

⎞
⎟⎠ , (32)

for i = 1, . . . , NR and j = 1 . . . , NL. In the example above, we now have

α1 =

(
α11

α12

)
, α2 =

⎛
⎝α21

α22

α23

⎞
⎠ , α3 =

⎛
⎝α33

α34

α35

⎞
⎠ , α4 =

(
α44

α45

)
,

and

β1 =

(
β11

β12

)
, β2 =

(
β21

β22

)
, β3 =

(
β32

β33

)
, β4 =

(
β43

β44

)
, β5 =

(
β54

β55

)
.

Accounting for the scalings in (27), the free-stream preserving conditions in
(24) become,

fTi αi = 1, gT
j βj = (λL)j, f i =

⎛
⎜⎝fi,js(i)

...
fi,je(i)

⎞
⎟⎠ , gj =

⎛
⎜⎝gj,is(j)

...
gj,ie(j)

⎞
⎟⎠ , (33)
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where
fi,j = (J

−1/2
R )i(J

1/2
L )j, gj,i = (J

−1/2
L )j(J

1/2
R )i(λR)i.

Finally, we also define a pair of vectors containing all the non-zero coef-
ficients in ÎL2R and ÎR2L,

α =

⎛
⎜⎝ α1

...
αNR

⎞
⎟⎠ , β =

⎛
⎜⎝ β1

...
βNL

⎞
⎟⎠ . (34)

With the necessary notation in place, we are now ready to consider the
problem of optimizing the interpolation coefficients in the general case.

4.2. Optimization procedure 1: the IPP case

Consider using ÎL2R and ÎR2L to interpolate an arbitrary smooth function
φ(s) of the interface parameter s. Let sL and sR be vectors containing the
nodal values of s on the mesh interface. We define ΦL = φ(sL), ΦR = φ(sR),
containing the exact values of φ. For each row in the two operators, we now
apply Taylor’s formula to write the interpolation errors as,

(ÎL2RΦL −ΦR)i = φ((sR)i)

⎛
⎝ je(i)∑

j=js(i)

αij − 1

⎞
⎠+

∞∑
p=1

φ(p)((sR)i)

p!

⎛
⎝ je(i)∑

j=js(i)

αij((sL)j − (sR)i)
p

⎞
⎠

(ÎR2LΦR −ΦL)j = φ((sL)j)

⎛
⎝ ie(j)∑

i=is(j)

βji − 1

⎞
⎠+

∞∑
p=1

φ(p)((sL)j)

p!

⎛
⎝ ie(j)∑

i=is(j)

βji((sR)i − (sL)j)
p

⎞
⎠ .

Instead of forcing leading order error terms to be zero to machine precision,
a more stable procedure is obtained by minimizing all coefficients in the two
expansions simultaneously in a least-squares sense. For some large enough
cut-off value p̃, we thus consider the least-squares error function,

E =

NR∑
i=1

⎡
⎣
⎛
⎝ je(i)∑

j=js(i)

αij − 1

⎞
⎠

2

+

p̃∑
p=1

1

p!

⎛
⎝ je(i)∑

j=js(i)

αij((sL)j − (sR)i)
p

⎞
⎠

2 ⎤
⎦

+

NL∑
j=1

⎡
⎣
⎛
⎝ ie(j)∑

i=is(j)

βji − 1

⎞
⎠

2

+

p̃∑
p=1

1

p!

⎛
⎝ ie(j)∑

i=is(j)

βji((sR)i − (sL)j)
p

⎞
⎠

2 ⎤
⎦ .

(35)
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Note that if p̃ is large, we are not aiming for a particular order of accuracy,
but rather to minimize the total error for a given mesh. This specific choice
of objective function could be interpreted as assuming all φ(p) being of similar
magnitude with respect to p. Other choices could be obtained by scaling the
terms in (35) differently, e.g. by explicitly optimizing for a specific, non-unit,
frequency component.

Using the notation introduced previously in (32), we can also write (35)
as,

E =

NR∑
i=1

‖Aiαi − ai‖2 +
NL∑
j=1

‖Bjβj − bj‖2,

where

Ai =

⎛
⎜⎜⎜⎝

1 . . . 1
(sL)js(i) − (sR)i . . . (sL)je(i) − (sR)i

...
...

1
p̃!
((sL)js(i) − (sR)i)

p̃ . . . 1
p̃!
((sL)je(i) − (sR)i)

p̃

⎞
⎟⎟⎟⎠ , ai =

⎛
⎜⎜⎜⎝
1
0
...
0

⎞
⎟⎟⎟⎠

and,

Bj =

⎛
⎜⎜⎜⎝

1 . . . 1
(sR)is(j) − (sL)j . . . (sR)ie(j) − (sL)j

...
...

1
p̃!
((sR)is(j) − (sR)j)

p̃ . . . 1
p̃!
((sL)ie(j) − (sR)j)

p̃

⎞
⎟⎟⎟⎠ , bj =

⎛
⎜⎜⎜⎝
1
0
...
0

⎞
⎟⎟⎟⎠ .

Recall that αi and βi contain the non-zero interpolation coefficients on each
row of the two operators.

After adding a regularization term to E , as well as enforcing free-stream
preservation (33) with a penalty term, we obtain the objective function,

F =

NR∑
i=1

‖Miαi −mi‖2 +
NL∑
j=1

‖Njβj − nj‖2, (36)

where

Mi =

⎛
⎝ Ai

γ1I
γ2f

T
i

⎞
⎠ , mi =

⎛
⎝ai

0
γ2

⎞
⎠ , Nj =

⎛
⎝ Bj

γ1I
γ2g

T
i

⎞
⎠ , n̂j =

⎛
⎝ bj

0
γ2(λL)j

⎞
⎠ .
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The regularization parameter γ1 has the dual purpose of making the opti-
mization problem sufficiently well-conditioned, as well as to limit the stiffness
of the resulting operators. With a proper tuning of γ1, the largest magni-
tude of coefficients in α and β should be approximately unity. Increasing
γ1 too far beyond this point could adversely affect the optimal value of (35).
Thus, some care is needed for tuning this parameter, but we expect that this
step would be possible to automate, given the need. Furthermore, as long as
the necessary condition (25) for free-stream preservation is satisfied, a large
enough γ2 should enforce (33) to machine precision [10]. Strictly speaking,
this requires the total set of equality constraints (31) and (24) to have full
rank (see e.g. [10] for a proof of this). Even though we can not prove full
rank in the general case, our experience indicates that it is highly unlikely
to encounter that. If free-stream preservation is not deemed to be required
for a given application, γ2 can be set to be zero.

For the generation of IPP operators, we finally consider the regularized,
constrained least-squares problem,

minimize F
subject to (31),

(37)

where F is defined in (36).

4.3. Optimization procedure 2: the non IPP case

For simulations with a stationary mesh, the optimization problem (37)
only has to be solved once. In this case the computational cost is not a critical
consideration. However, if the mesh is changing continuously in time, new
interpolation operators must be generated at arbitrary points in time as a
part of the time integration process. In this case, it is essential to limit the
complexity of the optimization problem as much as possible.

Note that the objective function in (36) has the block diagonal form,

F = ‖Mα−m‖2 + ‖Nβ − n‖2, (38)

where α and β are defined in (34), and

M =

⎛
⎜⎝M1

. . .

MNR

⎞
⎟⎠ , m =

⎛
⎜⎝ m1

...
mNR

⎞
⎟⎠ , N =

⎛
⎜⎝N1

. . .

NNL

⎞
⎟⎠ , n =

⎛
⎜⎝ n1

...
nNL

⎞
⎟⎠ .
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Again, recall that each block corresponds to a single row in ÎL2R and ÎR2L

respectively.
The IPP condition (31) introduces dependencies between the rows in

ÎL2R and the columns in ÎR2L, and vice versa. Hence, after substituting (31)
into (38), the block diagonal structure is lost. For a 1D interface, this is
not a major concern since the resulting matrices still have finite bandwidth.
However, by extension to interfaces in two or more space dimensions, even the
finite bandwidth structure will be lost. As a consequence, for 3D calculations
the cost of solving (37) is not proportional to the number of nodes in the
interface mesh.

To reduce the cost of optimization for a 3D moving mesh, we consider
a modification of the optimization procedure above based on relaxing the
IPP property. We recall from Proposition 1 that, for stability, it is enough
to satisfy (20). The IPP property is just one particular way of doing that.
Without IPP, (20) can instead be enforced directly provided that the solution
components uL and uR are used as a part of the procedure, see Remark 3.
While it would also be possible to satisfy the conservation constraint (23) in
the same way, see Remark 4, we are not sure if there are any benefits of doing
so for an already non-linear interface treatment. Hence, we only consider the
stability constraint (20) below.

After applying the scalings in (26) and (27), (20) becomes,

(P̂LJ
1/2
L uL)

T ÎR2L(J
1/2
R λRuR) = (P̂RJ

1/2
R λRuR)

T ÎL2R(J
1/2
L uL).

In terms of the interpolation coefficients, this yields,

NR∑
i=1

NL∑
j=1

cijαij =

NR∑
i=1

NL∑
j=1

djiβji,

where

cij = (P̂LJ
1/2
L uL)i(J

1/2
R λRuR)j, dji = (P̂RJ

1/2
R λRuR)j(J

1/2
L uL)i.

On vector form, this can be written as,

cTα = dTβ, (39)

where the elements in c and d are listed in the same order as the correspond-
ing elements in α and β, see (34).
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By ensuring stability through (39), instead of (37) we can now solve the
fully unconstrained problem,

minimize F + γ2
3‖cTα− dTβ‖22, (40)

where γ3 is penalty parameter of sufficient magnitude to enforce (39) to
machine precision. In our experience, the three user defined parameters
in (40) (i.e. γ1 and γ2 and γ3) only needs to be tuned once (at t = 0) for
optimal performance (in terms of accuracy, conditioning and stiffness) during
a simulation with a moving or sliding interface.

Consider again the block diagonal form of F in (38). Assuming that
(40) is sufficiently well conditioned for a unique solution to exist, then this
solution is given by the set of normal equations,

(ATA+ γ2
3wwT

)(α
β

)
= AT

(
m
n

)
, (41)

where

A =

(M
N
)
, w =

(
c
−d

)
.

Solving (41) now only requires the inversion of the block diagonal symmetric
matrix ATA. The Sherman-Morrison formula for a rank 1 updated system
yields,(

α
β

)
=

(
(ATA)−1 − γ2

3(ATA)−1(wwT )(ATA)−1)
1 + γ2

3w
T (ATA)−1w

)
AT

(
m
n

)
. (42)

Finally, (42) can be computed in a stable way by first QR-factorizing the
blocks in A, followed by one or a few levels of iterative refinement, see [11].

Remark 6. Due to the block diagonal structure of the unconstrained opti-
mization problem, the computational complexity associated with (42) is linear
with respect to the number of blocks in A, i.e. to the number of nodes on the
mesh interface. Most importantly, this remains the case for extensions of the
optimization procedure to any number of space dimensions.

5. Numerical results

We first investigate the accuracy and computational cost of the new IPP
(37) and non IPP (42) global optimization procedures.
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5.1. Optimization: 1D interface

We start with the simple mesh configuration shown in Figure 3, where
two Cartesian grids are connected to each other. The left and right grid
spacings are kept at a ratio of 9 to 16, and we use P̂L and P̂R from a pair of
SBP finite difference operators of fourth order accuracy in the interior, see
e.g. [12].

P̂L

P̂R

s

ÎL2R

ÎR2L

Figure 3: Interface between two structured Cartesian grids.

We compare the accuracy of operators obtained with the new automatic
algorithms to the IPP so-called glue grid method of [2]. For the case NL = 33,
NR = 19, the non-zero pattern of the operator ÎL2R obtained with this
method is given by,

ÎL2R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The non-zero pattern of ÎR2L follows from (31) since the method is IPP. Even
though a smaller operator bandwidth than this would be feasible, for the sake
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of comparison we apply the new automatic procedure using the same non-
zero pattern. In Figure 4 we show the convergence results in L2 norm for

0 0.2 0.4 0.6 0.8 1
s

-1

-0.5

0

0.5

1

102 103 104

NL

10-10

10-5

100

||e
||

IPP, no optim
IPP, bndy optim
IPP, global optim
non IPP, global optim
slope = 2.5
slope = 4

Figure 4: L2 convergence for a continuous test function.

the test function φ(s) = sin(3π
2
(s+ 1

6
)). We have used four different methods

to construct the interpolation operators with the given non-zero patterns.
Firstly we have used the basic glue grid technique which does not employ
any least-squares error optimization. Secondly, we have kept the same rows
in the interior from the glue grid operator, but optimized the boundary rows
as in [1, 7]. Finally, we have applied the global optimization algorithms (37)
and (42), where as we recall the former is IPP and the latter is not.

Even though in the asymptotic limit the convergence rate drops from 3
to 2.5 in all of the three IPP cases, as proven in [7], we find that optimizing
the boundary coefficients reduces error levels by more than an order of mag-
nitude compared to no optimization. In addition, the global optimization
(37) results in almost a further order of magnitude improvement. Even more
accurate is the non IPP global optimization approach, showing fourth order
asymptotic convergence. We conclude from this that the approach of opti-
mizing all coefficients simultaneously is clearly a superior way of reducing
interpolation errors compared to the previous IPP techniques. Even though
the non IPP algorithm was developed with the specific goal of reducing cost
of 3D calculations, it is also clearly the most accurate one.
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5.2. Optimization: 2D interface

In three dimensions, the requirements of computing power and memory
become significantly different for the two global optimization approaches.
Recall that the non IPP procedure of section 4.3 has a linear complexity
with respect to the number of interface nodes. This is true for any number
of dimensions, but the same can not be expected for the IPP procedure. To
demonstrate the difference in computational cost for the two approaches, we
consider the 2D Cartesian grid interface as illustrated in Figure 5. To save
computational cost, we use a more limited non-zero pattern than previously.
In one coordinate direction, we use a non-zero pattern to ÎL2R of the form,

P̂L

P̂R

s2

s1

ÎL2R

ÎR2L

Figure 5: 2D interface between structured Cartesian grids.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and this structure is extended to 2D in a tensor product fashion. As before,
the pattern of ÎR2L is given by the transpose of this. Recall that all coeffi-
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cients in the 2D interpolation operators are considered as free parameters in
the optimization procedures.

To assess the computational efficiency, we have compared the amount of
fill-in required to factorize the least-squares normal equations with the two
approaches, and the results are shown to the right in Figure 6. Here we
have used the multifrontal SuiteSparseQR [13] package to compute the QR
factorizations. The non IPP algorithm scales quadratically with the number
of nodes in one coordinate direction, as expected. The IPP algorithm instead
scales approximately with log(NL)N

2
L. Even though this is lower than the

complexity of N3
L associated with explicit time stepping on a 3D domain, the

large proportionality factor associated with the IPP optimization procedure
means that this cost can probably not be ignored if the mesh is non stationary.
To the left in Figure 6 we also compare the L2 errors obtained in the 2D
interface case. Just as for 1D interfaces, the non IPP approach appears to
be the more accurate one. For the grid parameters considered here, the IPP
case has not yet reached the asymptotic order of convergence.
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Figure 6: Left: convergence for a 2D interface using global optimization approaches. Right:
number of non-zero coefficients in the normal equation factorization.

5.3. A sliding grid calculation

To demonstrate the performance of the automatic interpolation procedure
for sliding grid calculations, we consider the time-dependent block geometry
shown in Figure 7. An interior circular domain is here surrounded by four ro-
tating curvilinear domains. The circular domain is discretized with a second
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Figure 7: A sliding interface model involving four rotating curvilinear subdomains.
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Figure 8: Mesh realization of the sliding block configuration in Figure 7. Left: t = 0,
right: t = 1.

order accurate nodal finite volume method [14, 15], and the curvilinear do-
mains using SBP finite difference operators with sixth order accuracy in the
interior [12]. By dividing the outer domain into four blocks, we demonstrate
the capability to deal with multi-block interfaces. One mesh realization is
shown in Figure 8 at t = 0 and t = 1. The number of nodes on the interface
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is here NR = 176 on the unstructured side, and N1 = N2 = N3 = N4 = 17
on the structured side.
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Figure 9: Non-zero structure of IL2R for the meshes in Figure 8.

We let the finite difference blocks rotate counterclockwise around the
origin as illustrated in Figure 8, with a speed of 1 radian per time unit. A
curvilinear transformation from the unit square is given by,

x = ξcos(ϕ0 + t+ η), y = ξsin(ϕ0 + t+ η),

where ϕ0 is given by 0, π/2, π and 3π/2 for the four curvilinear blocks,
respectively. This transformation satisfies (28), allowing for conservative
interpolation schemes, see Appendix C. We define ΩR = ΩFV, and ΩL =
ΩFD1 ∪ ΩFD2 ∪ ΩFD3 ∪ ΩFD4 . The interface integration operators are then
defined by,

PR = PFV , PL =

⎛
⎜⎜⎝
PFD1

PFD2

PFD3

PFD4

⎞
⎟⎟⎠ ,

and we define the continuous interface parameter as s = ±ϕ/2π, where ϕ is
the angle in radians along the interface.
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Next, we fill each row in the interpolation operators ÎL2R and ÎR2L with
a suitable number of non-zero coefficients. In general, this number can be
chosen based on experience for a given type of mesh, where the goal is to
make interpolation errors small compared to other discretization errors in
the scheme. Figure 9 shows the resulting non-zero pattern for the operator
ÎR2L at τ = 0 and τ = 1 respectively, and the non-zero pattern of ÎL2R

is again given by the transpose. On the y−axis are the interface nodes on
the stationary unstructured domain, and on the x−axis the nodes on the
moving, curvilinear side of the interface. The block boundaries in Figure 8
are highlighted with vertical dotted lines in Figure 9. As a part of the time
integration process, we use either the IPP algorithm (37) or the non IPP (42)
algorithm to generate the interpolation coefficients.

5.4. Accuracy

Consider an exact solution to (1) with a = b = 1, given by a Gaussian
pulse that propagates through the domain,

u = e(x+
√
2−t)2+(y+

√
2−t)2 .

Since the interpolation operators can be generated at arbitrary points in
time, there is no lower restriction on the time step size. We thus choose the
time step sizes to be small enough so that spatial errors are dominating. The
initial solution as well as absolute error levels for different times using the
non IPP algorithm (42) are plotted in Figure 10. Each of the curvilinear
blocks are discretized with 73 × 155 grid points. The finite volume domain
has 1024 interface points along the whole circumference, which gives a 16 to
9 ratio in the number of nodes at the interface. Disturbances introduced at
the interface are small compared to the cumulative error from propagating
the pulse across the unstructured domain.

Convergence as a function of the number of interface nodes is shown in
Figure 11, also comparing with the IPP algorithm (37). The small impact on
solution accuracy from the interface already observed in Figure 10 is further
confirmed by the second order convergence observed in both maximum and
L2 norms. In this case, there is a relatively small difference between the two
approaches.

5.5. Free-stream preservation

For a large enough value of the parameter γ2, both the IPP (37) and
the non IPP (42) version of the automatic interface algorithm yields a free-
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Figure 10: Initial solution and absolute errors at t = 1, t = 2 and t = 2.5.

stream preserving scheme. For the IPP version, discrete conservation follows
as direct consequence of this due to Lemma 2, whereas we do not consider
the property of conservation for the non IPP version. In Figure 12 we demon-
strate for the IPP approach that free-stream preservation and hence conser-
vation holds to machine precision. To the left, we also compare this result to
the corresponding one with γ2 = 0 in (37), i.e. without explicitly enforcing
free-stream preservation.

6. Conclusions

An automatic methodology was developed for the generation and opti-
mization of interpolation operators within the SBP framework of numerical
methods. Based on solving a linear least-squares optimization problem, the
new algorithms allow for completely general meshes while at the same time
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Figure 11: Convergence at t = 1 as a function of interface nodes on the unstructured side.

Figure 12: Free-stream solution at t = 2.5 for a non-conservative (left figure) and a
conservative (right figure) interface treatment.

being highly effective at minimizing interpolation errors. To achieve stabil-
ity, we have considered both an IPP and a non IPP approach. Both of these
demonstrate superior accuracy compared to previous techniques. In particu-
lar, for 3D meshes the non IPP approach is both cheaper and more accurate
than the IPP one, which makes it ideal for calculations with moving or slid-
ing interfaces. Stability and free-stream preservation is achieved by both
methods, but discrete conservation is unclear for the non IPP approach, due
to the nonlinear nature of the coupling.
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[15] M. Svärd, J. Nordström, Stability of finite volume approximations for
the Laplacian operator on quadrilateral and triangular grids, Applied
Numerical Mathematics 51 (2004) 101–125.

[16] G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Con-
vective Transport Processes, Cambridge University Press, 2007.
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Appendix A. Derivation of continuous integral identity

To see that (5) holds, we multiply (1) with a smooth function φ, integrate
over Ω, ∫

Ω

φut dV +

∫
Ω

φ(aux + buy) dV = 0, (A.1)

and apply the product rule to the first term,∫
Ω

φut dV =

∫
Ω

(φu)t dV −
∫
Ω

φtu dV. (A.2)

The first term on the right hand side of (A.2) can be written out using
Reynold’s transport theorem (see e.g. [16]),∫

Ω

(φu)t dV =
d

dt

(∫
Ω

φu dV

)
−

∮
∂Ω

φu(ẋnx + ẏny) dS. (A.3)

The second term in (A.1) can be written, using integration-by-parts,∫
Ω

φ(aux + buy) dV =

∮
∂Ω

φu(anx + bny) dS −
∫
Ω

(aφx + bφy)u dV. (A.4)

After inserting equations (A.2), (A.3) and (A.4) into (A.1) and rearranging
the terms, we get the form (5).

Appendix B. SBP operators

Appendix B.1. General unstructured form

We first assume that SBP operators in space Dx = P−1Qx and Dy =
P−1Qy are available, such that

Qx +QT
x = ETPnxE, Qy +QT

y = ETPnyE. (B.1)

For example, if the finite volume method is used, then P contains the con-
trol volumes, and is hence time-independent for coordinate transformations
where the control volumes are unchanged. In general, both unstructured
and structured curvilinear operators can be expressed in this way, see [7]. As
before, in (B.1) we only consider a single smooth segment of the boundary
forming an interface with a neighbouring subdomain.
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Next, consider the case φ = u = 1 in (5),

d

dt

(∫
Ω

dV

)
= −

∮
∂Ω

λ dS = −
∫
Ω

((a− ẋ)x+(b− ẏ)y) dV =

∫
Ω

(ẋx+ ẏy) dV,

where in the second step we have applied the divergence theorem. Note that
ẋx and ẏy denote partial derivatives of the coordinate velocity functions in
(2). The same relation above of course also applies to smaller subsets of Ω.
For a volume preserving transformation, we thus have

ẋx + ẏy = 0. (B.2)

In the equation (4), we can now write,

ẋux + ẏuy = (ẋu)x + (ẏu)y. (B.3)

Using the spatial operators already introduced, we define the following split
form discrete approximation of the terms in (4),

P−1Q = −1

2

(
ẊDx +DxẊ+ ẎDy +DyẎ

)
+ aDx + bDy. (B.4)

This yields, using (B.1),

Q+QT = −(ETPnxEẊ+ ETPnyEẎ) + aETPnxE + bETPnxE. (B.5)

Since each row in E is unique and only contains a single non-zero entry with
the value 1, we have EET = I, and ETE is a diagonal matrix with the value
1 inserted in the positions corresponding to the boundary [7]. Hence ETE
commutes with the diagonal matrix Ẋ. Using this, we can write,

ETPnxEẊ = ETPnx(EET )EẊ = ETPnxE(ETE)Ẋ

= ETPnxEẊ(ETE) = ETPnxẋE,
(B.6)

where ẋ = EẊET is simply the restriction of Ẋ to the boundary. After
repeating the same procedure for the second term in (B.5), the SBP property
(13) follows.
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Appendix B.2. Structured operators

Even though the operator in (B.4) can be based on any form of SBP op-
erators in space, in order to achieve free-stream preservation for structured
methods on curvilinear domains, we will need to be more careful when defin-
ing Q. Consider a bijective curvilinear transformation from Ω(t) to the unit
square (ξ, η) ∈ Ω̂ = [0, 1]2. We can then write u = u(t, ξ(t, x, y), η(t, x, y)),
and the substantive derivative du/dt can now bee seen as the time derivative
expressed in the reference space Ω̂. The chain rule thus yields,

ut =
du

dt
+ ξtuξ + ηtuη.

In terms of the notation used in (4) and throughout the rest of this paper,
comparing this form of the chain rule to (3) now yields,

ẋux + ẏuy =
du

dt
− ut = −(ξtuξ + ηtuη). (B.7)

For a volume preserving transformation, geometric conservation (see e.g. eq.
(9) in [17]) states,

(J ξt)ξ + (J ηt)η = 0,

where J is the Jacobian determinant of the transformation, which is constant
in time. We can thus equivalently write (B.7) as,

ẋux + ẏuy = −J −1J (ξtuξ + ηtuη) = −J −1((J ξtu)ξ + (J ηtu)η). (B.8)

For future reference, the following metric relations are routinely utilized to
compute the terms in (B.8) numerically.

J ξt = −ẋyη + ẏxη J ηt = ẋyξ − ẏxξ. (B.9)

To approximate (B.8) discretely, we start out from 1D SBP operators
Dξ = P−1ξ Qξ and Dη = P−1η Qη, and use them to define corresponding two-

dimensional operators Dξ = P̂−1Qξ and Dη = P̂−1Qη in a tensor product
fashion,

P̂ = Pξ ⊗ Pη, Qξ = Qξ ⊗ Pη, Dη = Pξ ⊗Qη.

Any type of one-dimensional SBP operators can be extended to two or more
dimension in this way. Using a split between the two forms of ẋux + ẏuy in
(B.8), we approximate the problem (4) using the operator,

P−1Q =
1

2
J −1((J ξt)Dξ +Dξ(J ξt) + (J ηt)Dη +Dη(J ηt)) + aDx + bDy,

(B.10)
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together with P = J P̂ . Note that P defined in this way is trivially time-
independent for a volume preserving mesh motion, due to the constant Ja-
cobian determinant. The spatial operator aDx + bDy = P−1(aQx + bQy) is
given by,

aDx + bDy =
1

2
J −1(DξÂ+ ÂDξ +DηB̂+ B̂Dη),

where
Â = aYη − bXη, B̂ = −aYξ + bXξ.

and which satisfies the SBP property [7],

a(Qx +QT
x ) + b(Qy +QT

y ) = aETPnxE + bETPnyE.

From (B.10) we now have,

Q+QT = ET P̂ n̂ξE(J ξ̇)+ET P̂ n̂ηE(J η̇)+aETPnxE+bETPnyE. (B.11)

In exactly the same way as (B.6) previously, the first two terms on the right
hand side above can be written as,

ET P̂ n̂ξE(J ξ̇) + ET P̂ n̂ηE(J η̇) = ET P̂ n̂ξ(EJ ξ̇ET )E + ET P̂ n̂η(EJ η̇ET )E

= ET P̂ n̂ξ(−ẋyη + ẏxη)E + ET P̂ n̂η(ẋyξ − ẏxξ)E,

where in the last step we have used the metric relations (B.9). At the north
and south boundaries to Ω̂ we have n̂ξ = ±1 and n̂η = 0, and a parametriza-
tion with positive orientation is there given by s = ∓η. At the east and west
boundaries, we similarly have n̂ξ = 0, n̂η = ±1 and s = ±ξ. Continuing the
analysis, we get,

ET P̂ n̂ξE(J ξ̇) + ET P̂ n̂ηE(J η̇) = ET P̂ (−ẋys + ẏxs)E

= −ETJP̂ (ẋnx + ẏny)E,

where JP̂ = P is the discrete integration operator along the physical domain
boundary. In the last step we have used (9). Inserting this into (B.11) finally
yields,

Q+QT = ETP (−ẋnx − ẏny + anx + bny)E = ETPλE, (B.12)

which is exactly the SBP property (13).
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Appendix C. Free-stream preservation

In this section we investigate the free-stream preserving properties of the
SBP operators introduced in the previous section, assuming rigid body mesh
motions (28). Recall that either of the two forms of λ in (29) and (30) is
sufficient for generating free-stream preserving IPP interpolation operators
with an automatic approach.

Appendix C.1. Structured methods

For rigid body motions (28), the metric relations (B.9) simplify into

J ξt =
[−āy + b̄x+ ω(x2 + y2)/2

]
η

J ηt =
[
āy − b̄x− ω(x2 + y2)/2

]
ξ
.

(C.1)
On the discrete side, we correspondingly define

J ξt = Diag(Dη

[−āY + b̄X+ (X2 +Y2)/2
]
1)

J ηt = Diag(Dξ

[
āY − b̄X− (X2 +Y2)/2

]
1).

(C.2)

With this definition, λ in (B.12) has exactly the form (30).
Now assume that the reference grid operators are consistent, i.e.

Qξ1 = 0, Qη1 = 0.

For the first part of the operator in (B.10), we then have,

J −1((J ξt)Qξ +Qξ(J ξt) + (J ηt)Qη +Qη(J ηt))1 = J −1(Qξ(J ξt) +Qη(J ηt))1

= P(Dξ(J ξt) +Dη(J ηt))1.

Now, since DξDη = DηDξ due to the tensor product structure, inserting (C.2)
into the above yields

(Dξ(J ξt) +Dη(J ηt))1 = (DξDη

[−āY + b̄X+ ω(X2 +Y2)/2
]

+DηDξ

[
āY − b̄X− ω(X2 +Y2)/2

])
1 = 0.

Similar results can easily be derived for Dx and Dy as well, showing that the
SBP operator in (B.10) is free-stream preserving (22).
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Appendix C.2. The unstructured finite volume method

The standard nodal finite volume method yields operators Dx = P−1Qx

and Dy = P−1Qy which can be shown to satisfy [14],

Qx +QT
x = −ETΔyE, Qy +QT

y = ETΔxE, (C.3)

where in the interior we have

Δxi = xi+1/2 − xi−1/2 =
xi+1 − xi−1

2
.

If we consider the whole boundary forming a closed curve, periodic boundary
closures apply,

Δx1 =
x2−xN

2
, ΔxN = x1−xN−1

2
.

If we on the other hand consider just one smooth segment of the boundary,
then

Δx1 =
x2−x1

2
, ΔxN = xN−xN−1

2
,

and corresponding formulas of course also apply to Δy. It follows that Δx =
Diag(Qsx1), Δy = Diag(Qsy1), where the periodic and non-periodic version
of the 1D SBP operator Qs is respectively,

Qs =

⎛
⎜⎜⎜⎜⎜⎝

0 1
2

−1
2−1

2
0 1

2
. . . . . . . . .

−1
2

0 1
2

1
2

−1
2

0

⎞
⎟⎟⎟⎟⎟⎠ , Qs =

⎛
⎜⎜⎜⎜⎜⎝

−1
2

1
2−1

2
0 1

2
. . . . . . . . .

−1
2

0 1
2−1

2
1
2

⎞
⎟⎟⎟⎟⎟⎠ .

Next we define the parametrized integration operator as P̂ = Δs =
Diag(Qss), where s contains the nodal values of the parameter s. We now
have Δx = P̂xs, Δy = P̂ys, where

xs = Diag(P̂−1Qsx1), ys = Diag(P̂−1Qsy1).

Further, we can rewrite P̂ into,

P̂ = Δs =

√
Δx2 +Δy2√
Δx2 +Δy2

Δs =

√
Δx2 +Δy2√

(Δx
Δs

)2 + (Δy
Δs

)2
=

√
Δx2 +Δy2√
x2
s + y2

s

.
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This yields,

Δx = P̂xs = PJ−1xs, Δy = P̂xs = PJ−1ys, (C.4)

where
P =

√
Δx2 +Δy2, J =

√
x2
s + y2

s .

The SBP operator definition (B.4) for a rigid body motion (28) together with
(C.3) and (C.4) now leads to the form (29).

To see that the global operator P−1Q is in itself free-stream preserving,
note that the finite volume method yields operators in space satisfying

Qx1 = 0, Qy1 = 0.

This yields, again for (B.4) with (28),

Q1 = Qy(x1)−Qx(y1),

and we state without proof that this expression is always zero with the finite
volume method.
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