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In this paper, we introduce a new extended version of the shallow-water equations 
with surface tension which may be decomposed into a hyperbolic part and a second 
order derivative part which is skew-symmetric with respect to the L2 scalar product. 
This reformulation allows for large gradients of fluid height simulations using a splitting 
method. This result is a generalization of the results published by Noble and Vila (2016) 
[24] and by Bresch et al. (2016) [3] which are restricted to quadratic forms of the capillary 
energy respectively in the one dimensional and two dimensional setting. This is also an 
improvement of the results by J. Lallement, P. Villedieu et al. published in Lallement et al. 
(2018) [22] where the augmented version is not skew-symmetric with respect to the L2

scalar product. Based on this new formulation, we propose a new numerical scheme and 
perform a nonlinear stability analysis. Various numerical simulations of the shallow water 
equations are presented to show differences between quadratic (w.r.t. the gradient of the 
height) and general surface tension energy when high gradients of the fluid height occur.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider compressible Euler type equations with capillarity (such as the shallow-water system with 
surface tension), in the two-dimensional setting, issued from Hamiltonian formulation in the spirit of P. Casal and H. Gouin 
([6]) (see also D. Serre [29]). There exists a large body of literature on various numerical techniques for simulating the 
shallow-water equations without capillarity terms for a variety of applications, such as discontinuous Galerkin methods 
(e.g., Giraldo [13], Giraldo et al. [15], Eskilsson and Sherwin [10], Nair et al. [26], Xing et al. [30], Blaise and St-Cyr [2]), 
in addition to spectral methods (e.g., Giraldo and Warburton [16], Giraldo [14]), and purely Lagrangian approaches (e.g., 
Frank and Reich [11], Capecelatro [7]). When dispersive effect is included, everything change and numerous attempts have 
been conducted to try to get rid spurious currents (also known as parasitic currents) generated at the free surface due 
to the presence of the third-order term coming from the capillarity quantity. Augmented versions have been proposed to 
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decrease the level of derivative in the system but with not enough properties to allow to design an efficient numerical 
method to compute for instance large gradient of density. This is the objective of our paper to propose an appropriate 
extended formulation which allows an appropriate splitting method. To be more precise, let us define the internal energy E
as follows

E (h, p) = �(h) + σ (h)Ecap (‖p‖) (1)

with h the density of the fluid (or the fluid height if we consider the shallow-water system), p = ∇h and �(h) the pressure 
contribution and σ(h)Ecap(‖p‖) the capillarity energy (note that s �→ �(s), s �→ σ(s) and s �→ Ecap(s) are three given positive 
scalar functions). We consider the following system{

∂th + div (hu) = 0 (i)

∂t (hu) + div (hu ⊗ u) + ∇ P = −div
(∇h ⊗ ∇p E

) + ∇ (
hdiv

(∇p E
))

(ii)
(2)

which is obtained as the Euler-Lagrange equation related to the total energy (sum of the kinetic h|u|2/2 and internal energy 
E(h, p) given by (1)) under the conservation of mass constraint with u the fluid velocity vector field and P the pressure law 
given by

P (h, p) := h ∂h E(h, p) − E(h, p) = π(h) − (
σ(h) − hσ ′(h)

)
Ecap(‖p‖), (3)

where

π(h)

h2
=

(
�(s)

s

)′∣∣∣
s=h

. (4)

In all the paper long, we will do the following hypothesis:

• s �→ Ecap(s), s �→ �(s) and s �→ σ(s) are assumed to be positive,
• Ecap invertible from R+ to R+ with Ecap(0) = 0,
• π ′(h) > 0 so that � is strictly convex as soon as h > 0.

System (1)–(4) is supplemented with the initial data

h|t=0 = h0, hu|t=0 = m0. (5)

In this context, System (1)–(5) admits an additional energy conservation law which reads

∂t

(
1

2
h ‖u‖2 + E

)
+ div

((
1

2
h ‖u‖2 + E + P

)
u
)

− div
(
div

(∇p E
)

hu
) + div

(
div (hu)∇p E

) = 0. (6)

Remark. For specific choices of the capillary energy, we note that the system (2) reduces to classical models of the fluid 
mechanics literature like

• The Euler-Korteweg isothermal system when:

E (h,∇h) = �(h) + 1

2
σ (h)‖∇h‖2

where h is the density and σ(h) is the capillary coefficient.
• The shallow-water type system for thin film flows both:
• In the quadratic capillary case

E (h,∇h) = h2

2
+ 1

2
σ‖∇h‖2 with h the height of the fluid and σ is constant

• In the fully nonlinear capillary case:

E (h,∇h) = h2

2
+ σ

√
1 − ‖∇h‖2 with h the height of the fluid and σ is constant

Note that the fully nonlinear case admits the following two asymptotics

E(h,∇h) = h2/2 + σ‖∇h‖2/2 + o‖∇h‖→0 (‖∇h‖)
and

E(h,∇h) = h2/2 + σ‖∇h‖ + o‖∇h‖→∞ (‖∇h‖)
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It is a hard problem to propose a discretization of System (1)–(5) that is compatible with the energy equation (6) and 
this is the objective of our paper. The main issue is that one cannot adapt the proof of the energy estimate (6) derived 
from (2) at a discretized level due to the presence of high-order derivatives associated to the capillarity energy (1). The 
readers interested in understanding the mathematical and numerical difficulties are referred to [25] and important refer-
ences cited therein. The strategy first consists in performing a reduction of order in spatial derivatives and in introducing an 
alternative system (called augmented system) which contains lower order derivatives. It consists secondly in checking that 
the augmented system may be decomposed into two parts: A conservative hyperbolic part and a second order derivatives 
part which is skew-symmetric with respect to the L2 scalar product. Such system is really adapted to discretization com-
patible with the energy: it is obtained by taking L2 scalar products with respect to the new unknowns. This strategy was 
applied successfully in the context of Euler-Korteweg isothermal system for numerical purposes when the internal energy is 
quadratic with respect to ∇h: see [24] in the one dimensional case and [3] in the two dimensional case. In both cases, the 
augmented version is obtained by introducing an auxiliary velocity v which is proportional to ∇h and admits an additional 
skew-symmetric structure with respect to the L2 scalar product which makes the proof of energy estimates and the design 
of compatible numerical scheme easier. However, this approach was not extended to more general internal energy (1). This 
is the objective of the paper to define the appropriate unknowns in order to get an appropriate augmented system for 
numerical purposes.

Note that there exist several interesting papers developing augmented systems such as [12] and [17] for symmetric form 
for capillarity fluids with a capillarity energy E(h, ∇h) or multi-gradient fluids with a capillarity energy E(h, ∇h, · · · , ∇nh). 
See also recently [8] for the defocusing Schrödinger equation which is linked to the quantum-Euler system (E(h, p) =
�(h) + σ‖p‖2/h where σ is constant) through the Madelung transform and some numerical simulation.

It is interesting to note that the augmented system in [12] and [17] is related to the unknowns (h, u, ∇h, · · · , ∇nh). In 
[21], the authors developed a similar augmented version in order to deal with internal capillarity energies (1) for numerical 
purposes namely:⎧⎪⎨

⎪⎩
∂th + div (hu) = 0 (i)

∂t(hu) + div (hu ⊗ u) + ∇ P + div
(

p ⊗ ∇p Etot
) = ∇ (

hdiv
(∇p Etot

))
(ii)

∂tp + ∇ (
ptu

) = −∇ (h div (u)) (iii)

(7)

where Etot = h|u|2/2 + E(h, p). However, in the 2-dimensional setting, the assumption curl p = 0 has to be made to show 
the conservation of the total energy and therefore it has to be satisfied initially: The interested reader is referred to pages 
166–168. This constraint is not satisfied at the discretized level and it creates instabilities.

Remark. In order to avoid such a constraint which is hardly guaranteed in the discrete case, one could use instead the 
following modified formulation⎧⎪⎨

⎪⎩
∂th + div (hu) = 0 (i)

∂t(hu) + div (hu ⊗ u) + ∇ P + div
(

p ⊗ ∇p Etot
) − (

(∇p)t − (∇p)
)∇p Etot = ∇ (

hdiv
(∇p Etot

))
(ii)

∂tp + ∇ (
ptu

) = −∇ (hdiv (u)) (iii)

for which it is easy to prove the conservation of the total energy

∂t (Etot) + div (u (Etot + π)) = (
div

(
h(ut∇)(∇p Etot)

) − div(h(∇p Et
tot∇)u)

)
−div

(
u(pt∇p Etot − (

σ − hσ ′)Ecap)
)

for any smooth solution of the above system without assuming the curl free assumption on p. However, this formula-
tion introduces non-conservative terms in the left-hand side of the momentum equation and it is then hard to satisfy for 
conservation of momentum and energy at the discrete level.

In our paper, defining an appropriate velocity field v instead of p, we are able to design an appropriate augmented 
version which may be decomposed as the sum of a conservative hyperbolic part and a skew-symmetric second order 
differential operator for the L2 scalar product. The system is solved in the variables (h, u, v) and if regularity occurs we 
recover the expression of v in terms of h, p and ‖p‖. The important property is that the energy conservation law may be 
satisfied easily at the discretized level using the particular structure of our augmented system. The particular form allows 
also an efficient splitting method allowing to simulate complex situations like large gradients of fluid height.

In the small gradient limit, this formulation is equivalent to the one derived by D. Bresch, F. Couderc, P. Noble and J.-P. 
Vila in [3]. Our formulation is valid for any internal energy in the form E(h, p) = �(h) + σ(h)Ecap(‖p‖). When specified 
to Ecap(q) = √

1 + q2 − 1, we see that in the high gradient limit, Ecap(q) ∼q→∞ |q| which is a capillary term found usually 
in two fluids systems. We thus expect our approach to be useful in the context of bi-fluid flows. Note also that our paper 
could be also of practical interest to deal with generalization of Euler-Korteweg system: see [20] and [18] for discussions on 
compressible Korteweg type systems.
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We rely on the new augmented system to propose a numerical scheme which is energetically stable and extends what 
was done in [3] and [24]. Note that skew-symmetric augmented versions of the capillary shallow water equations in the L2

scalar product are also useful from a theoretical point of view: see e.g. [5] for the proof of existence of dissipative solutions 
to the Euler-Korteweg isothermal system. Our present work will be the starting point to improve the work by Lallement 
and Villedieu (see [21] and [22]) related to disjunction term for triple point simulations: see [4].

The paper is divided in three parts: The first part introduces the augmented version with full surface tension and discuss 
its connection with the system derived in [3]. In the second part, we propose a numerical scheme satisfying energy stability. 
Finally, we present numerical illustrations based on our numerical scheme showing the importance of considering our 
augmented system with the full surface tension.

2. Augmented version

Extending ideas from [24] in the one dimensional case, an augmented formulation of the shallow water equations (2)
with Ecap (‖∇h‖) = σ

2 ‖∇h‖2 was proposed in [3] in the two dimensional setting: it is a second order system of PDEs 
which may be decomposed in two parts: A conservative hyperbolic part and a second order derivatives part which is skew 
symmetric with respect to the L2 scalar product. The additional quantity in [3] was given by w = ∇φ(h) with φ′(h) =√

σ(h)/h: it is thus colinear to ∇h.
The main objective here is to consider a more general internal capillarity energy namely (1). We now introduce our 

new formulation of (2) which is valid in the fully decoupled case and provides a dual formulation of capillary terms which 
ensures a straightforward consistent energy balance. To this end we introduce an additional unknown, denoted v , which is 
colinear to ∇h and satisfies

1

2
h ‖v‖2 = σ (h)Ecap (‖∇h‖)

where q = ‖p‖ = ‖∇h‖. To do so, we define v as

v = α(q2)

√
σ(h)

h
p (8)

where the function α : s �→ α(s) is given by

α(s) =
√

2Ecap
(√

s
)

s
.

Remark. Note that using the definition v , we have the following relations

‖v‖2 = α2(‖p‖2)‖p‖2 σ

h
,

1

2
α2(q2)q2 σ(h) = σ(h)Ecap (q) .

Remark. Note that v has the dimension of a velocity and transforms the capillary energy into some kinetic energy. This 
interpretation of the capillary energy in terms of kinetic energy in our augmented system defined below motivates surely 
the robustness of our results.

Let us now write a system related to the unknowns (h, u, v) where v is given by (8) with p = ∇h. This will provide a 
system which combines a first order conservative and hyperbolic part on (h, u, v) together with a second order part which 
has a skew-symmetric structure (for the L2 scalar product). More precisely, we have the following result.

Lemma 2.1. i) Let

U =
⎛
⎝ h

hu
hv

⎞
⎠ , F (U ) =

⎛
⎝ hu

hu ⊗ u + π (h) Id
hv ⊗ u

⎞
⎠ (9)

where Id is the d × d identity matrix and

M = M(h,v)(U)

with, for all U1 = (h1, h1u1, h1v1)
t ,



D. Bresch et al. / Journal of Computational Physics 419 (2020) 109670 5
M(h,v)(U1) =
⎛
⎝ 0

div
(
h∇( f (h, v)v1)

t
) − ∇(g(h, v)t v1)

− f (h, v)div
(
h∇ut

1

) − g(h, v)div u1

⎞
⎠ (10)

where f (h, v) is a symmetric tensor and g (h, v) a vector field given by

f (h, v) =
√

σ(h)
√

h

(
2

α′(q2)h

α(q2)2σ(h)
v ⊗ v + α(q2)Id

)

g (h, v) =
((

σ ′(h)h

2σ(h)
+ 1

2

)
+ 2

α′(q2)

α(q2)
q2

)
hv

and

α(q2) =
√

2Ecap (q)

q
with q = E−1

cap

(
h‖v‖2

2σ(h)

)
.

The augmented system reads

∂t U + div (F (U )) = M . (11)

ii) If (h, u, v) is regular enough then it also satisfies the following energy balance

∂t

(
1

2
h ‖u‖2 + E

)
+ div

(
u (

1

2
h ‖u‖2 + E + π)

)
(12)

= (
div

(
hut∇t( f (h, v)t v)

) − div(h∇u f (h, v)v)
) − div

(
u( f (h, v)t v)

)
where E = �(h) + h‖v‖2/2.

iii) If (h, u) is regular enough and the initial velocity v0 satisfies

v0 = α(‖∇h0‖2)

√
σ(h0)

h0
∇h0

then v satisfies also

v = α(‖∇h‖2)

√
σ(h)

h
∇h

and (h, u) solves the original equations with the full surface tension term given by (2)–(3).

3. Energetically stable numerical scheme

The augmented formulation (11) in Lemma 2.1 reads

∂t U + div (F (U )) = M

with definitions (9) and (10) of U , F and M . The first order part of the augmented formulation in the left-hand side is the 
classical Euler barotropic model with an additional transport equation. It admits an additional conservation law related to 
the total energy:

Etot = ‖hu‖2

2h
+ �(h) + ‖hv‖2

2h
,

whereas the entropy variable is

(∇U Etot)
t = V t =

(
−1

2

(
‖u‖2 + ‖v‖2

)
+ �′ (h) , ut, vt

)
.

This total energy is the total energy of the shallow-water equations with surface tension whereas the potential energy 
associated to surface tension is transformed into kinetic energy associated to the artificial velocity v. The full system admits 
also an energy equation:

∂t Etot + div (u (Etot + π (h))) = V t M

= div
(
hut∇(∇p E)

) − div
(
h(∇p E)t∇u

)
−div

(
u

(
pt∇p E − (

σ − hσ ′)Ecap (q)
))
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Fig. 1. Notations for cell K.

with the right-hand side in conservation form. One of the aim of this paper is to design a numerical scheme that is free 
from a CFL condition associated to surface tension. For that purpose, we follow the strategy in [3] and introduce an IMplicit-
EXplicit strategy where the hyperbolic step is explicit in time whereas the step associated to surface tension is implicit in 
time. The spatial discretization is based on an entropy dissipative scheme for the first order part whereas we mimic the 
skew symmetric structure found at the continuous level to discretize the right hand side M. We prove that this strategy is 
energetically stable in the case of periodic boundary conditions.

3.1. IMplicit - EXplicit formulation

Following [3], we consider the following IMplicit-EXplicit time discretization: the hyperbolic step is explicit

U n+1/2 − U n

�t
+ div

(
F

(
U n)) = 0 (13)

and the capillary skew symmetric second order step

U n+1 − U n+1/2

�t
= Mn+1 (14)

with

Mn+1 =
⎛
⎝ 0

div
(
hn+1∇( f (hn+1, vn+1/2)vn+1)t

) − ∇(g(hn+1, vn+1/2)t vn+1)

− f (hn+1, vn+1/2)div
(
hn+1∇(un+1)t

) − g(hn+1, vn+1/2)div un+1

⎞
⎠ .

The second step is not fully implicit: instead it is semi-implicit so that the problem to solve for (vn+1, un+1) is linear. This 
does not affect the order of the time discretization since the time splitting is already first order in time. Let us now consider 
the spatial discretization. We will use a generic Finite Volume context. We introduce a spatial discretization of ∇ and div
operators with finite volume methods. For that purpose, we denote K a cell of the mesh Td , e ∈ ∂K an edge of K and Ke a 
neighbouring cell of K: see Fig. 1 for an illustration. We use a classical entropy satisfying scheme of numerical flux

Gn
e,K = G

(
Un

K ,Un
Ke

,ne,K
)

where ne,K is the outward normal to the cell K (of measure mK ) at the edge e (of measure me). We denote UK the average 
of the vector U on the cell K. The hyperbolic step then reads

Un+1/2
K = Un

K − �t

mK

∑
e∈∂ K

meGn
e,K (15)

and we assume that it is entropy dissipative in the sense that it satisfies the following discrete Entropy inequality

Etot

(
Un+1/2

K

)
≤ Etot

(
Un

K

) − �t

mK

∑
e∈∂ K

me Hn
e,K (16)

where Hn
e,K is the entropy numerical flux associated with Gn

e,K . In the particular case of Euler Barotropic equations such 
numerical schemes exist and satisfy this inequality provided a hyperbolic CFL condition of the type

max
�t

me
∥∥∇U F

(
Un

K

)∥∥ < a < 1 (17)

K mK
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is satisfied for some a > 0. Moreover, under a similar CFL condition, the positivity of the fluid h is preserved and the total 
energy Etot (U) is strictly convex: this will be a useful property to prove entropy stability for numerical schemes. The second 
step is

Un+1
K = Un+1/2

K + �t Mn+1
K (18)

with

Mn+1
K =

⎛
⎜⎜⎜⎜⎝

0

−∇3,�

(
g(hn+1

K , vn+1/2
K )t vn+1

K

)
+ div1,�

(
hn+1

K ∇1,�

(
f (hn+1

K , vn+1/2
K )vn+1

K

)T
)

−g(hn+1
K , vn+1/2

K )div3,�

(
un+1

K

)
− f (hn+1

K , vn+1/2
K )div1,�

(
hn+1

K ∇1,�

(
un+1

K

)T
)

⎞
⎟⎟⎟⎟⎠ (19)

where ∇3,� , div1,� , ∇T
1,� , div3,� are linear discrete operators approximating the corresponding ones in the definition of the 

operator M and that will be defined hereafter. In particular div3,� shall be chosen as the dual discrete operator of ∇3,� in 
the following sense:

(a,∇3,� (ϕ))Td = − (
div3,� (a) ,ϕ

)
Td

(20)

for any smooth function ϕ and a defined on the mesh Td where we have used the discrete scalar product below

(a,b)Td =
∑
K∈Td

mk〈aK ,bK 〉Rd .

One possible choice is taking the classical approximation of flux in the finite volume context which leads to

div3,� (a) = 1

mK

∑
e∈∂ K

me
1

2

(
aKe + aK

)
.ne,K = 1

2mK

∑
e∈∂ K

meaKe .ne,K

and the corresponding (weak) approximation of ∇3,� (ϕ)

∇3,� (ϕ) = 1

2mK

∑
e∈∂ K

me
1

2

(
ϕK

mKe

mK
− ϕKe

)
ne,K .

In the context of finite difference approximations, we may consider the discrete analogue of the div operator

div3,� (a)i j = ax
i+1, j − ax

i−1, j

2�x
+ ay

i, j+1 − ay
i, j−1

2�y
(21)

which leads to

∇3,� (ϕ)i j = ϕi+1, j − ϕi−1, j

2�x
nx + ϕi, j+1 − ϕi, j−1

2�y
ny . (22)

Remark 3.1. In the case of general finite volume discretization on any mesh, the question of finding consistent second order 
operators is not so simple and requires some refined tools such as renormalisation or ad hoc discrete gradient (see e.g.
[1,23,19]).

In the next section, we focus on the definition of the discrete divergence and gradients operators div1,� and ∇1,� so as 
to ensure the energy stability.

3.2. Energy stability of first order schemes

Let us now analyse the stability properties of the above scheme. The hyperbolic step is entropy stable in the sense that∑
K

Etot

(
Un+1/2

K

)
mK ≤

∑
K

Etot
(
Un

K

)
mK ,

since it is a direct consequence of entropy inequality (16). Let us now focus on the “capillary time step” and the definition 
of div1,� and ∇1,� . In order to get more compact form of discrete operators, let us define(

∂x,1� (m)
)

i+1/2, j = mi+1, j−mi, j
�x ,

(
∂0

x,1� (p)
)

i, j
= pi+1/2, j−pi−1/2, j

�x ,
(
∂00

x,1� (m)
)

i, j
= mi+1, j−mi−1, j

2�x ,(
∂y,1� (m)

)
i, j+1/2 = mi, j+1−mi, j

�y ,
(
∂0

y,1� (p)
)

= pi, j+1/2−pi, j−1/2
�y ,

(
∂00

y,1� (m)
)

= mi, j+1−mi, j−1
2�y

(23)
i, j i, j
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div1,�

(
h∇1,�mT

)
=

⎛
⎝

(
∂0

x,1�

(
h∂x,1�mx

)) +
(
∂00

y,1�

(
h∂00

x,1�my
))

(
∂00

x,1�

(
h∂00

y,1�mx
))

+
(
∂0

y,1�

(
h∂y,1�my

))
⎞
⎠ (24)

We thus have the following property:

Lemma 3.2. Let us suppose that div1,�

(
h∇1,�mT

)
is defined as (24): Then we have(

u,div1,�

(
h∇1,�mT

))
Td

=
(

m,div1,�

(
h∇1,�uT

))
Td

(25)

where

(a,b)Td
=

∑
i, j

�y�x〈ai j,bi j〉Rd .

Proof of Lemma 3.2. Thanks to definitions (23)–(24) we have

(
∂0

x,1�

(
h∂x,1�mx))

i, j
= 1

(�x)2

(
hi+1/2, j

(
mx

i+1, j − mx
i, j

)
− hi−1/2, j

(
mx

i, j − mx
i−1, j

))
(
∂00

y,1�

(
h∂00

x,1�my
))

i, j
= 1

4�y�x

(
hi, j+1

(
my

i+1, j+1 − my
i−1, j+1

)
− hi, j−1

(
my

i+1, j−1 − my
i−1, j−1

))
(
∂00

x,1�

(
h∂00

y,1�mx
))

i, j
= 1

4�y�x

(
hi+1, j

(
mx

i+1, j+1 − mx
i+1, j−1

)
− hi−1, j

(
mx

i−1, j+1 − mx
i−1, j−1

))
(
∂0

y,1�

(
h∂y,1�my))

i, j
= 1

(�y)2

(
hi, j+1/2

(
my

i, j+1 − my
i, j

)
− hi, j−1/2

(
my

i, j − my
i, j−1

))
where we take

hi+1/2, j = 1

2

(
hi+1, j + hi, j

)
, hi, j+1/2 = 1

2

(
hi, j+1 + hi, j

)
.

It follows(
u,div

(
h∇mT

))
Td

=
∑

�y�xux
i, j

1

(�x)2

(
hi+1/2, j

(
mx

i+1, j − mx
i, j

)
− hi−1/2, j

(
mx

i, j − mx
i−1, j

))

+
∑

�y�x

(
ux

i, j
1

4�y�x

(
hi, j+1

(
my

i+1, j+1 − my
i−1, j+1

)
− hi, j−1

(
my

i+1, j−1 − my
i−1, j−1

)))

+
∑

�y�x
1

4�y�x
u y

i, j

(
hi+1, j

(
mx

i+1, j+1 − mx
i+1, j−1

)
− hi−1, j

(
mx

i−1, j+1 − mx
i−1, j−1

))

+
∑

�y�x
1

(�y)2
u y

i, j

(
hi, j+1/2

(
my

i, j+1 − my
i, j

)
− hi, j−1/2

(
my

i, j − my
i, j−1

))
.

We compute successively

∑ �y�x

(�x)2
ux

i, j

(
hi+1/2, j

(
mx

i+1, j − mx
i, j

)
− hi−1/2, j

(
mx

i, j − mx
i−1, j

))

=
∑ �y�x

(�x)2

((
ux

i−1, jhi−1/2, jm
x
i, j − ux

i, jhi+1/2, jm
x
i, j

)
−

(
ux

i, jhi−1/2, jm
x
i, j − ux

i+1, jhi+1/2, jm
x
i, j

))

=
∑ �y�x

(�x)2
mx

i, j

((
ux

i+1, j − ux
i, j

)
hi+1/2, j −

(
ux

i, j − ux
i−1, j

)
hi−1/2, j

)

=
∑ �y�x

(�x)2
mx

i, j

(
hi+1/2, j

(
∂x,1�ux)

i+1/2, j − hi−1/2, j
(
∂x,1�ux)

i−1/2, j

)
=

∑
�y�xmx

i, j∂
0
x,1�

(
h

(
∂x,1�ux))

i, j

and
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∑ �y�x

4�y�x
ux

i, j

(
hi, j+1

(
my

i+1, j+1 − my
i−1, j+1

)
− hi, j−1

(
my

i+1, j−1 − my
i−1, j−1

))

=
∑ �y�x

4�y�x

(
ux

i, jhi, j+1my
i+1, j+1 − ux

i, jhi, j+1my
i−1, j+1 − ux

i, jhi, j−1my
i+1, j−1 + ux

i, jhi, j−1my
i−1, j−1

)

=
∑ �y�x

4�y�x
my

i, j

(
ux

i−1, j−1hi−1, j − ux
i+1, j−1hi+1, j − ux

i−1, j+1hi−1, j + ux
i+1, j+1hi+1, j

)

=
∑ �y�x

4�y�x
my

i, j

((
ux

i+1, j+1 − ux
i+1, j−1

)
hi+1, j −

(
ux

i−1, j+1 − ux
i−1, j−1

)
hi−1, j

)
=

∑
�y�xmy

i, j

(
∂00

y,1�

(
h∂00

x,1�ux
))

i, j
.

So that with∑ �y�x
4�y�x u y

i, j

(
hi+1, j

(
mx

i+1, j+1 − mx
i+1, j−1

)
− hi−1, j

(
mx

i−1, j+1 − mx
i−1, j−1

))
= ∑

�y�xmx
i, j

(
∂00

y,1�

(
h∂00

y,1�u y
))

i, j

and ∑
�y�x 1

(�y)2 u y
i, j

(
hi, j+1/2

(
my

i, j+1 − my
i, j

)
− hi, j−1/2

(
my

i, j − my
i, j−1

))
= ∑

�y�xmy
i, j∂

0
y,1�

(
h

(
∂y,1�u y

))
i, j .

We get finally

(
u,div1,�

(
h∇1,�mT

))
Td

=
⎛
⎝m,

⎛
⎝

(
∂0

x,1�

(
h∂x,1�ux

)) +
(
∂00

y,1�

(
h∂00

x,1�u y
))

(
∂00

x,1�

(
h∂y,1�ux

)) +
(
∂0

y,1�

(
h∂y,1�u y

))
⎞
⎠

⎞
⎠

= (
m,div1,�

(
h∇1,�uT

))
Td

. �
Proposition 3.3. Let us suppose that div1,�

(
h∇1,�mT

)
satisfies identity (25) of Lemma 3.2, then the capillary step

Un+1
K = Un+1/2

K + �t Mn+1
K

admits a unique solution which satisfies an energy inequality:∑
K

Etot

(
Un+1

K

)
mK ≤

∑
K

Etot

(
Un+1/2

K

)
mK . (26)

Proof of Proposition 3.3. Let us first prove that the system (18) admits a unique solution. Indeed, one can write Mn+1
K =

M(hn+1, vn+1/2)(Un+1
K ) and M(hn+1, vn+1/2) satisfies

(U,M(hn+1, vn+1/2)(U))Td = 0 for all U

from which we deduce that M(hn+1, vn+1/2) is a skew-symmetric matrix for the scalar product ( . , . )Td . Thus its eigenvalues 
are purely imaginary and Id − �t M(hn+1, vn+1/2) is invertible. Now, thanks to identity (18) and the convexity of Etot (the 
fluid height h is assumed h > 0):

Etot

(
Un+1

K

)
≤ Etot

(
Un+1/2

K

)
− �t ∇U Etot

(
Un+1

K

)T
Mn+1

K .

Denote f n+1/2 = f (h
n+1

K , vn+1/2
K ), gn+1/2 = g(hn+1

K , vn+1/2
K ) and D E := ∑

K ∇U Etot

(
Un+1

K

)T
Mn+1

K mK .

R = −
(

un+1
K ,∇3,�

(
gn+1/2 vn+1

K

))
Td

−
(

gn+1/2 vn+1
K ,div3,�

(
un+1

K

))
Td

and

D =
(

un+1
K ,div1,�

(
hn+1

K ∇1,�

(
f n+1/2 vn+1

K

)T
))

Td

−
(

div1,�

(
hn+1

K ∇1�(un+1
K )T

)
, f n+1/2 vn+1

K

)
Td

We easily get that D E = R + D . As a consequence of definition (20), we get directly R = 0, and, as a consequence of 
Lemma 3.2, we get D = 0. It follows that∑

Etot

(
Un+1

K

)
mK ≤

∑
Etot

(
Un+1/2

K

)
mK . �
K K
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We thus have proved the following stability result.

Proposition 3.4. Consider the scheme (15)–(18)–(19) with discretization (24) of capillary terms, then provided a CFL condition of the 
type (17) is satisfied, the fluid height h is positive and the scheme satisfies energy stability∑

K

Etot

(
Un+1

K

)
mK ≤

∑
K

Etot
(
Un

K

)
mK .

This stability result can be extended to a more general numerical framework and other time discretizations. By taking 
discrete dual operators with similar rules as (20) namely(

w,div1,� (T )
)

T = − (∇1,�w,T
)

Td

We thus get

D =
(

un+1
K ,div1,�

(
hn+1

K ∇1,�

(
f n+1/2 vn+1

K

)T
))

Td

−
(

div1,�

(
hn+1

K ∇1�(un+1
K )T

)
, f n+1/2 vn+1

K

)
Td

= −
(

∇1,�un+1
K ,hn+1

K ∇1,�

(
f n+1/2 vn+1

K

)T
)

Td

−
(

div1,�

(
hn+1

K ∇1�(un+1
K )T

)
, f n+1/2 vn+1

K

)
Td

= −
(
∇1,�

(
f n+1/2 vn+1

K

)
,hn+1

K ∇1,�(un+1
K )T

)
Td

−
(

div1,�

(
h

n+1∇t
1�un+1

K

)
, f n+1/2 vn+1

K

)
Td

=
(

f n+1/2 vn+1
K ,div1,�

(
hn+1

K ∇1�(un+1
K )T

))
Td

−
(

div1,�

(
hn+1

K ∇1�(un+1
K )T

)
, f n+1/2 vn+1

K

)
Td

= 0

Condition (25) of Lemma 3.2 is valid and also insures energy stability result of Proposition 3.3.

One could also consider alternative time discretization like the fully implicit scheme for the capillary step:

Un+1) = Un+1/2 + �t M
(
hn+1,Un+1) (Un+1) (27)

This system could be solved through an iterative scheme:

Un+1,p+1 = Un+1/2 + �t M
(
hn+1,Un+1,p)

(Un+1,p+1), Un+1,0 = Un+1/2. (28)

The linear system (28) admits a unique solution which, moreover, satisfies the energy estimate∑
K

Etot

(
Un+1,p

K

)
mK ≤

∑
K

Etot

(
Un+1/2

K

)
mK , ∀p ≥ 0.

If �t is small enough so that ‖δt M(hn+1
K , vn+1/2

K )‖ < 1, the sequence (Un+1,p
K )p∈N converges to Un+1

K which, in turn, 
satisfies∑

K

Etot

(
Un+1

K

)
mK ≤

∑
K

Etot

(
Un+1/2

K

)
mK ≤

∑
K

Etot
(
Un

K

)
mK .

As a result, the IMplicit-EXplicit scheme build on a time discretization with explicit steps for the hyperbolic part and 
implicit steps for the capillary part are entropy stable. This provides a method to design higher order in time IMplicit-
EXplicit schemes which are build on fully implicit time discretizations.

4. Numerical simulations

We present in this section various numerical simulations to illustrate the benefits of the proposed extended model. 
The new extended system composed by a conservative hyperbolic part and a second order derivative part which is skew 
symmetric for the L2 scalar product is crucial to develop an appropriate splitting method.

We are able to carry out extremely fast simulations of capillary wave propagation in comparison to direct numerical 
simulations of the original Navier-Stokes equations (DNS). On the one hand, this is due to the vertical integration along 
the fluid height which reduces the dimension of the problem and withdraw the initial free surface problem. On the other 
hand, the implicit treatment of surface tension removes the classical restrictive capillary time step, empirically based to the 
fastest “eligible” wave speed whose wavelength is the grid size. We will illustrate both the overall stability of the numerical 
method and the interest of considering the full surface tension source term.
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Global energy dissipation will be shown on time discretizations that are first order accurate. The time discretization is 
of IMplicit-EXplicit type: for the hyperbolic part, an explicit Euler time-stepping scheme has been used, associated with a 
Rusanov flux,

Gn
e,K = G

(
Un

e,K ,Un
e,Ke

,ne,K
) =

F
(

Un
e,K

)
+ F

(
Un

e,Ke

)
2

− max
K ,Ke

(∣∣u.ne,K
∣∣ + √

grh
) Un

e,Ke
− Un

e,K

2
,

using the rotational invariance and considering second-order in space MUSCL reconstructions denoted by Un
e,K and Un

e,Ke
of 

the primitive variables (without limitation as very smooth solution will be considered here) whereas an implicit Euler time-
stepping scheme is used for the capillary step, by considering a simpler linearized resolution of the initial fully nonlinear 
problem of coupled equations. While other reconstruction method are possible and can lead to higher order accuracy, the 
MUSCL method is a second order method that is easy to implement and has the advantage to be suitable with structured 
and unstructured mesh. The model has been coded on an unstructured environment, and it is planned to run simulations 
with it once we have solved the discrete duality problem in such context.

It should be noted that a global second-order solver can be derived by considering an appropriate IMEX time-stepping 
scheme to combine the explicit and implicit steps but this strategy is costly as it requires to solve the full nonlinear 
problem, that can be achieved using Newton-like method or simply iterating on the linearized version of the initial full 
nonlinear problem of coupled equations until convergence.

4.1. Numerical set up

We consider a rectangular domain [0, lx] × [
0, l y

]
divided into nx × ny cells considering uniform discretization steps �x

and �y respectively in each direction. In a Finite Volume framework, the hi, j and ui, j discrete unknowns are associated 
classically to the mean of respectively a scalar field h and a vector field u over the appropriate cell. In order to avoid any 
specific treatment of boundary conditions, we have only considered periodic boundary conditions.

We have carried out numerical simulations of the augmented version of the shallow water equations in two situations: 
the quadratic capillary case and the fully nonlinear capillary case. In the quadratic case, the system (9)–(10) is written with,

E (h,∇h) = gr
h

2
+ 1

2

σ

ρ
‖∇h‖2, (29)

meaning,

Ecap (q) = 1

2
q2, κ (h) = σ

ρ
, α

(
q2

)
= 1,

and

f (h, v) = √
h

√
σ

ρ
Id, g (h, v) = hv

2
,

where gr , σ and ρ are respectively the constant gravity acceleration, the surface tension coefficient and the constant density 
of the flow. In the fully nonlinear capillary case, the system (9)–(10) is defined with,

E (h,∇h) = gr
h

2
+ σ

ρ
(

√
1 + ‖∇h‖2 − 1), (30)

meaning,

Ecap (q) =
√

1 + q2 − 1, κ (h) = σ

ρ
, α

(
q2

)
= √

2

(
1 +

√
1 + q2

)−1/2

,

and

f (h, v) = √
h

(
1 + ρh

4σ
‖v‖2

)−1/2
(

Id −
(

1 + ρh

2σ
‖v‖2

)−1 ρh

4σ
v ⊗ v

)
, g (h, v) = hv

2

(
1 + ρh

2σ
‖v‖2

)−1

.

We recall that the expression of v as a function of α and κ is given in Equation (8).

4.2. One-dimensional simulation with Gaussian initial data

We consider a one-dimensional Gaussian-shaped deformation of the free surface of a water layer, as illustrated in Fig. 2. 
This deformation produces both gravity and capillary waves whose relative influence is measured by the Eötvös number, 
also called Bond number,
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Fig. 2. One-dimensional sketch of the Gaussian deformation of a layer of water where b is the full width at tenth of maximum (FWTM).

Table 1
Physical parameters for 
the simulations.

σ = 0.0728 N m−1

ρ = 1000 kg m−3

ν = 10−6 m2 s−1

gr = 9.81 m s−2

Eo = Bo = ρgrh2

σ
, (31)

as long as the shape of the Gaussian is close to the shape of a drop, i.e. its curve peak height is comparable to its width. 
We set physical parameters to the conventional values for water at room temperature and are summarized in Table 1.
The initial Gaussian-shaped deformation of the water layer parametrizes the initial surface elevation as,

h(x, t = 0) = h0 + h1e
− x2

2 (b/b0)
2
, (32)

with b0 = 4.29193 allowing to consider approximately the full width at tenth of maximum as the length b represented in 
the Fig. 2. As the Eötvös number Eq. (31) is set to 1, such that gravity and capillary waves are generated in the same time 
order, this gives a water deformation peak elevation h1 = 2.725 mm. The layer of water elevation at rest is set to h0 = h1
whereas the full width at tenth of maximum is set to b = 1.5 h1. The computational domain is set to [−50 mm,50 mm] and 
the simulation time to 5 ms in order to produce significant waves in order to compare the results with the two models with 
respectively a linearized capillary contribution and a full nonlinear capillary contribution. Finally, the initial velocity is set 
to zero and the auxiliary variable v is initialized through the formulas according to the two models considered. In practice, 
it is not needed to compute exactly ∇h, a simple discretization using a classic centred scheme for example is sufficient and 
used here in practice.

It is presented in Fig. 3 the very fine resolved results for the water height h, the velocity u and the auxiliary velocity v
considering the two proposed models. For the physical parameters ans space scaling chosen, there is a significant difference 
between the two models since the gradient of the water height ∇h is sufficiently large to observe such a behaviour. The 
computation of the relative difference between the water height of each model shows an approximate maximal difference 
of 14%. This is not only due to the difference in the capillary wave amplitude, but also to an important phase shift.

The computational simulation time being 5 ms, it can also be observed that the capillary waves phase velocity are much 
larger than the fluid velocity. This can be easily explained by studying the dispersion relation, developed around a layer 
with a height h0 and a zero velocity, giving a wave speed,

c ≈ u ±
√

grh0 + h0σ

ρ
k2, (33)

where k denotes the wave number of a plane wave. The ratio between the capillary wave speed and gravity wave speed 
is then approximately equal to 

√
σ/grρ 2π/λ ≈ 0.017/λ, where λ is the characteristic wavelength of the surface elevation. 

As the Fourier transform of an initial Gaussian-shaped deformation is again a Gaussian, there are wavelengths as small as 
the machine accuracy allows to capture. Thus, for plane waves with a wavelength of 0.17 mm, the capillary wave speed is 
100 times faster than the gravity wave speed. This is the reason why we have chosen a CFL number based on the maximal 
absolute eigenvalue of the hyperbolic Jacobian matrix at an arbitrary value of 0.01 in order to capture the propagation of 
the capillary waves. Whereas proposed numerical discretization allows to work with higher CFL numbers close to 1 due to 
the implicit resolution of the source terms modelling the full contribution of the surface tension, the induced larger time 
steps imply a numerical time capturing low pass filter regarding the capillary waves. Another numerical viewpoint of using 
CFL numbers close to 1 is that the induced linear system resolution becomes more difficult due to a growing condition 
number of the resulted matrix with larger time steps. In other words, the numerical resolution is computationally more 
expensive whereas less physical phenomenon of the capillary action is captured.
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Fig. 3. Very fine (51200 cells) resolved numerical simulations of capillary-gravity waves considering a one-dimensional Gaussian-shaped deformation of 
a layer of water using the proposed augmented shallow-water model Eq. (9)–(10) and formulas Eq. (29)–(30). Only a window of the real computational 
domain is plotted since the simulations are symmetric around zero and the waves not significant far away from zero; (top-left) Water height h; (top-right) 
Relative difference between the two water heights; (bottom-left) Velocity u; (bottom-right) Auxiliary velocity v . (For interpretation of the colours in the 
figures, the reader is referred to the web version of this article.)

A convergence study has been made for these same parameters, considering different grid resolution in space, with a 
CFL number fixed to 0.01. The complete results for the water elevation h, the fluid velocity u and the auxiliary velocity v
and for the first grid sizes of 100, 200 and 400 points for are given in Fig. 4, for the linearized capillary contribution version 
of the model as well as the full capillary contribution version, in order to materialize the numerical solution quality. The 
relative error for the water height h in the L2 norm has been plotted in Fig. 5, computed at the end of the simulation given 
a previous reference solution computed with 51200 points. This has been made with both first and second order schemes 
in space (without and with MUSCL reconstructions, with no limitation as the solution is very smooth). The benefit of the 
MUSCL reconstruction can be clearly noticed, especially as soon as the meshes are of medium size, when the characteristic 
wavelength is meshed by more than approximately 10 points. However, an asymptotic convergence of 1 should be found 
increasing mesh grid sizes due to the use of a first order time-stepping scheme. But the finest mesh used of 6400 points is 
not yet fine enough to find it. It is validating partially the choice to use a simple split explicit/implicit Euler time-stepping 
scheme rather than a more sophisticated IMEX time-stepping method. Indeed, an IMEX time-stepping scheme at second 
order requires more than ten times of computational time in the present case, due to the mandatory resolution of the full 
nonlinear problem, knowing that the consistency error in space is predominant over the error in time.

The relative error for the auxiliary velocity v in the L2 norm as a function of the grid size has been plotted in Fig. 6, 
comparatively to the velocity vr recomputed from h and its gradient ∇h for the same grid size. The purpose is to check if 
the velocity field v once advected in time is still the one that carries the capillary energy as defined by the Eq. (8). And 
we can verify that this is the case as it naturally converges with the grid size as the numerical consistency errors and the 
residual error in the linear system resolution deviate v from the “right” solution. But even for very coarse meshes, the 
relative error is relatively low and of course even more with MUSCL reconstructions. Also note that the relative error is 
slightly more important when the full nonlinear capillary contribution version is used.

The amount of energy dissipation in percents as a function of the grid size is shown in Fig. 7. We recall that the energy 
is strictly dissipated at each time step as it has been demonstrated previously. It can be verified that this is indeed the case 
in practice by looking at Fig. 8. The energy can be interpreted as an L2 norm with the advantage to check in one measure all 
the contributions in the numerical system, rather than to check separately the convergence in a chosen norm for the water 
height h and the two velocities u and v . For very coarse meshes, representing few points in the characteristic wavelength, 
see Fig. 4, approximately 10% of energy dissipation is found, which is relatively acceptable with regard to the grid resolution 
used. Using MUSCL reconstruction for finer meshes, an extra rate of convergence greater than 2 is reached before falling to 
the theoretical asymptotic rate of 1 for very fine meshes. Whereas, without MUSCL reconstructions, the convergence rate 
begin at a value lower than 1, giving quickly significant differences, before reaching asymptotically the same theoretical 
convergence rate of 1 for very fine meshes. It gives finally an important order of magnitude difference of approximately 2 
when the characteristic wavelength is sufficiently meshed with more than 10 points.
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Fig. 4. Same simulations as for Fig. 3, but for the first grid sizes considered in order to materialize the numerical solution quality with a growing number of 
discretization points in the characteristic wavelength; (left) with the linearized capillary contribution; (right) with the full nonlinear capillary contribution.

Fig. 5. Relative error for the water height h in the L2 norm as a function of the grid size, computed at the end of the simulation given a reference solution 
href computed with 51200 points; (left) with the linearized capillary contribution; (right) with the full nonlinear capillary contribution.

4.3. Two-dimensional simulations with Gaussian initial data

A two-dimensional version of the same previous problem (4.2) is now considered. The initial Gaussian-shaped deforma-
tion of a layer of water is materialised initialising the water elevation by,

h(x, y, t = 0) = h0 + h1e
− x2 + y2

2 (b/b0)
2

(34)
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Fig. 6. Relative error for the auxiliary velocity v in the L2 norm as a function of the grid size, comparatively to the velocity vr recomputed from h and its 
gradient ∇h for the same grid size; (left) with the linearized capillary contribution; (right) with the full nonlinear capillary contribution.

Fig. 7. Amount of energy dissipation in percents as a function of the grid size, computed at the end of the simulation following the formula E = gh2/2 +
h ‖u‖2 /2 + h ‖v‖2 /2; (left) with the linearized capillary contribution; (right) with the full nonlinear capillary contribution.

Fig. 8. Evolution in time of the energy for the first grid sizes considered; (left) with the linearized capillary contribution; (right) with the full nonlinear 
capillary contribution.

The physical parameters are the same as ones summarised in the Table 1, as well as the space scaling with an Eẗvös 
number again chosen to 1, giving a layer of water deformation elevation h1 = h0 = 2.725 mm, and a full width at tenth 
of maximum again fixed to b = 1.5 h1. The computational domain is set to [−50 mm,50 mm]2 and the simulation time to 
5 ms.

It can be observed in Fig. 9 the axisymmetric propagation of capillary-gravity waves using the proposed augmented 
shallow-water model Eq. (9)–(10) with formulas Eq. (29)–(30). The initial peak collapse on his own weight and generate 
a train of capillary waves. The difference between the two models for the water height h is plotted in Fig. 10. It can be 
observed a maximum difference of 3%. If the same phenomena as in the one-dimensional case can be observed, the initial 
chosen shape of the Gaussian deformation of the water layer gives lower differences since axisymmetry reduces the capillary 
waves speed difference and the phase shift generated.

The two-dimensional version behaves like the one-dimensional one, as it can be seen in Fig. 11 and in Fig. 12. In the 
same way, the relative error for the auxiliary velocity magnitude ‖v‖ comparatively to the recomputed one ‖vr‖ converges 
with the grid size, and is relatively low even for coarse meshes, with a lower error using MUSCL reconstructions. In addition, 
it is also shown in Fig. 10 a map of the absolute difference showing no particular region with a big peak. The amounts of 
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Fig. 9. Numerical simulations of capillary-gravity waves considering a two-dimensional Gaussian-shaped deformation of a layer of water, using the proposed 
augmented model with parameters Eq. (29)–(30) and a 1600 ×1600 cells grid; (up) with the linearized capillary contribution; (down) with the full nonlinear 
capillary contribution.

Fig. 10. Same simulation as for the Fig. 9 with half of the domain in each direction; (left) relative difference between the water height for the two models; 
(right) absolute difference between the auxiliary velocity magnitude ‖v‖ and the velocity magnitude ‖vr‖ recomputed from h and its gradient ∇h for the 
same grid size.

energy dissipation are only slightly higher than for the one-dimensional case. Again, the MUSCL reconstructions provide 
an extra rate of convergence near 2 for medium grid sizes before falling asymptotically to the theoretical rate of 1, which 
finally gives approximately two orders of magnitude of difference if not using it.

This validates the application of the proposed augmented shallow water model Eq. (9)–(10) for both one- and two-
dimensional cases, with very similar numerical convergence behaviour.
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Fig. 11. Relative error for the auxiliary velocity magnitude ‖v‖ in the L2 norm as a function of the grid size, comparatively to the same velocity magnitude 
‖vr‖ recomputed from h and its gradient ∇h for the same grid size; (left) with the linearized capillary contribution; (right) with the full nonlinear capillary 
contribution.

Fig. 12. Amount of energy dissipation in percents as a function of the grid size, computed at the end of the simulation following the formula E = gh2/2 +
h ‖u‖2 /2 + h ‖v‖2 /2; (left) with the linearized capillary contribution; (right) with the full nonlinear capillary contribution.

4.4. Liquid film falling on a vertical wall

The purpose is now to apply our extended shallow water model with surface tension to a more realistic case of simula-
tion of a liquid film falling on a vertical wall. We are able to compare the resulting numerical solutions with the solutions 
computed from the Auto07p software ([9]). The model used is the one developed by G. Richard et al. [27] written here in 
non-dimensional form,

∂th + ∂x (hu) = 0

∂t (hu) + ∂x

(
hu2 + 2

225
λ2h5 + h2 cos θ

2Fr2

)
= 1

Re

(
λh − 3u

h

)
+ 9

2Re
∂x (h∂xu) + 1

We
h∂xK

(35)

where K is the curvature, and its expression is ∂xxh in the linearized case and ∂x

(
∂xh/

√
1 + ∂xh2

)
in the full nonlinear 

case. Scales are the film thickness hN and the Nusselt speed uN = gh2
N sin θ

/
(3ν). Dimensionless numbers are the Reynolds 

number Re = hN uN /ν = gh3
N sin θ

/(
3ν2

)
, the Froude number Fr = uN /

√
ghN , the Weber number We = ρhN u2

N

/
σ and 

λ = Re sin θ / Fr2 = 3. The Kapitza dimensionless number Ka = (σ /ρ) (g sin θ)−1/3 ν−4/3 can be added such that Ka =
Re4/3Fr2/3We−1.

We have constructed solitary wave solutions to (35) using the Auto07p software with the constraint of a constant 
averaged thickness 〈h〉 = 1 (see Fig. 13). The system of partial differential equations simplifies into ordinary differential 
equations in the moving frame of reference ξ = x − ct , where c refers to the phase speed of the waves. Travelling wave 
solutions to (35) correspond to limit cycles of the resulting autonomous dynamical system in a phase space of dimension 
three spanned by the thickness h and its first and second derivatives. Limit cycles are found by continuation starting from 
a Hopf bifurcation of a fixed point corresponding to the uniform-film solution h = 1. Solitary waves are next obtained by 
increasing the period of the limit cycles. The parameters retained are a vertical wall θ = π/2, a Reynolds number Re = 80, 
a Kapitza number Ka = 1000 and a length L = 400 hN . The liquid corresponds to ν = 0.9310 10−6 m2.s−1, ρ = 994.3 kg and 
σ = 0.019322 N.m−1 and the gravitational acceleration to g = 9.81 m.s−2. The Nusselt film thickness is hN = 0.27659 mm so 
that the length of the numerical domain is L = 110.636 mm. The grid comprises 8000 mesh points with spatial adaptation. 
The spatial discretization uses the method of orthogonal collocation using piecewise polynomials with four collocation 
points per mesh intervals (2000 mesh intervals). The collocation points are placed to equidistribute the local discretization 
error in the three-dimensional phase space, which ensures refinement of the mesh at locations of steep gradients. Auto07p
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Fig. 13. Liquid film falling on a vertical wall at Re = 80 and Ka = 1000; (top) Complete solutions computed with the Auto07p software; (bottom) Compar-
ison between the numerical solutions (one point per ten considering 25600 cells) and the solution computed with the Auto07p software with a focus on 
the capillary ripples; (left) with linearized curvature K in (35); (right) with full nonlinear curvature K in (35).

uses a predictor-corrector algorithm based on a Keller’s pseudo-arc length continuation method that enables to detect 
bifurcations and folds. Details of the algorithm can be found online at http://indy.cs .concordia .ca /auto/. Convergence was 
checked by varying the error tolerances and the number of mesh cells.

Numerical simulations have been carried out using the extended shallow water model system (9)–(10) defined in exactly 
the same way as in (29)–(30). The only differences are a different pressure term in the hyperbolic system changing the 
Rusanov flux and the introduction of additional source terms treated implicitly simply introducing them in the original linear 
system arising from the surface tension treatment. A periodic boundary condition and an initial sinusoidal deformation of 
the film liquid at rest, taking care to a constant mass flow rate, are prescribed. As we are only interested in whether the 
model is capable of reproducing the solutions given by the Auto07p software, only simulations with a very fine mesh size 
of 25600 cells are presented here. We can observe an almost perfect agreement between the solutions validating the good 
behaviour of the proposed extended model regarding a produced exact solution from the resolution of ordinary differential 
equations. It is not presented here but the liquid film deformations are perfectly stable in time.

5. Conclusion and perspectives

In this paper, we have introduced a new extended version of the shallow water equations with surface tension which may 
be decomposed in two parts: a conservative hyperbolic part and a second order derivative part which is skew-symmetric 
with respect to the L2 scalar product. This extended form is suitable for an appropriate splitting method which allows for 
large gradients of fluid height. The formulation is valid for any nonlinear form of the capillary energy as a functional of 
‖∇h‖. In the case of deep gradient of the free surface the new formulation make possible to deal with complete nonlinear 
capillary models.

The formulation allows to deal with the capillary terms as a semi-linear skew symmetric problem, and thus associate a 
semi implicit resolution of the capillary terms, relaxing the time step restriction �t < Ch2 in the original formulation [24]
and [3] which are restricted to quadratic forms of the capillary energy. We expect that this property (semi linear implicit 
treatment of capillary terms) will ensure some robustness and will be successful in the extension of this methodology to 
wetting problems as in the work of J. Lallement, P. Trontin, C. Laurent and P. Villedieu published in [22] where ad hoc 
extension with some disjunction pressure are proposed. We recently developed various 3 or 4 equations models (see [28]), 
for thin film models which are extension of the Korteweg system introduced here. We expect that our formalism also apply 
to such systems. Nevertheless the question of non-linear stability remains to study. In such case the natural extension of 
our proofs relies on entropy estimate (related to the so called enstrophy introduced in [28]).

Finally it will be interesting to study possible applications to the solution of Benney type equations obtained as relaxed 
system of the Shallow water system with friction source terms such as those studied in [27]. This reads, starting from a 
simplified 2D version,

http://indy.cs.concordia.ca/auto/
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{
∂th + div (hu) = 0 (i)

∂t (hu) + div (hu ⊗ u) + ∇ P = 1
εRe

(
λh − 3u

h

)
− div

(∇h ⊗ ∇p E
) + ∇ (

hdiv
(∇p E

))
(ii)

gives after relaxation when ε → 0

u = λ
h2

3
− ε

h

3
Re

(
−h2div

(
λ

h3

3

)
+ div

(
hλ

h2

3
⊗ λ

h2

3

)
+ ∇ P + div

(∇h ⊗ ∇p E
) − ∇ (

hdiv
(∇p E

)))
and

∂th + div (hu) = 0.

6. Appendix

In this section, we present the proof of Lemma 2.1.

Part i) and iii) Equation satisfied by v . Let us first recall that v = α(q2)

√
σ(h)

h ∇h and therefore

hv = α(q2)
√

σ(h)h3/2 ∇h

h
:= α(q2)G(h)a,

with G(h) = √
σ(h)h3/2 and a = ∇(log(h)). In order to write an evolution equation on hv , the first step is to calculate 

evolution equations on a, G(h) and α(q2). For that purpose, we consider the mass conservation law written as

∂th + ut∇h + h div(u) = 0. (36)

By dividing (36) by h and differentiating with respect to xi, i = 1, 2, one finds

∂ta + ∇(ut a) + ∇(div(u)) = 0. (37)

By multiplying (36) by G ′(h), one finds

∂t G(h) + ut∇G(h) = −hG ′(h)div(u), G ′(h) = σ ′(h)h3/2

2
√

σ(h)
+ 3

2

√
σ(h)h. (38)

From (36), we find that ∇h satisfies

∂t∇h + (ut∇)∇h = −div(h∇ut) − ∇h divu. (39)

The derivatives of q = ‖∇h‖ are given by

q ∂tq = (∇h)t∂t∇h, q ∂iq = (∇h)t∂i∇h, i = 1,2.

This allows to calculate the equation on α(q2). Indeed, we can write:

∂tα(q2) + ut∇α(q2) = α′(q2)
(
∂tq

2 + (ut∇)q2
)

= 2α′(q2)(∇h)t (
∂t∇h + (ut∇)∇h

)
By substituting the value of ∂t∇h given by (39) into the former equation, one finds

∂tα(q2) + ut∇α(q2) = −2α′(q2)
(
(∇h)t div(h∇ut) + q2divu

)
. (40)

Finally, by using the fact that hv = α(q2)G(h)a, one finds that the advective term div(hv ⊗ u) is given by

div
(
α(q2)G(h)a ⊗ u

)
= α(q2)G(h)

(
(ut∇)a + div(u)a

) + ((ut∇)(α(q2)G(h)))a.

We can now calculate the equation satisfied by v using formula (37)–(40). More precisely we have

∂t(hv) + div(hv ⊗ u) = ∂t

(
α(q2)G(h)a

)
+ div

(
α(q2)G(h)a ⊗ u

)
= α(q2)G(h)

(
(∂t + ut∇)a + div(u)a

) +
(
(∂t + ut∇)(α(q2)G(h))

)
a

= α(q2)G(h)
(
(ut∇)a + div(u)a − ∇(ut a + div(u))

)
−

(
α(q2)hG ′(h)div(u) + 2G(h)α′(q2)((∇h)t div(h∇ut) + div(u)q2)

)
a

= α(q2)G(h)
(
(ut∇)a − ∇(ut a + div(u))

)
−

(
(

hG ′(h) − 1)div(u) + 2α′(q2)

2
((∇h)t div(h∇ut) + div(u)q2)

)
hv.
G(h) α(q )
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Note that we have the relation

α(q2)G(h)
(
(ut∇)a − ∇(ut a + div(u))

) = −α(q2)G(h)

h
div(h∇ut)

and therefore, by using the relation h v = α(q2) G(h) a, one finds

∂t(hv) + div(hv ⊗ u) = −div(u)

(
hG ′(h)

G(h)
− 1 + 2α′(q2)q2

α(q2)

)
hv

−2α′(q2)

α(q2)

(
h2v

α(q2)G(h)

)t

div(h∇ut)hv − α(q2)G(h)

h
div(h∇ut).

= −div(u)

(
hG ′(h)

G(h)
− 1 + 2α′(q2)q2

α(q2)

)
hv

−
(

2α′(q2)

α(q2)2

h3

G(h)
v ⊗ v + α(q2)G(h)

h
Id

)
div(h∇ut).

This yields the conclusion on the evolution of hv .

Equation satisfied by u. Let us first note that

p = v

α(q2)

√
σ(h)

h

and therefore

∇p E = σ(h)
(
α(q2)2 + 2α(q2)α′(q2)‖p‖2

)
p =

√
σ(h)

√
h

(
α(q2) + 2α′(q2)q2

)
v

Next, we expand f (h, v)v and g(h, v) · v . First, one has

f (h, v)v = √
σ(h)

√
h

(
2

α′(q2)h

α(q2)2σ(h)
‖v‖2 + α(q2)

)
v = √

σ(h)
√

h
(

2α′q2 + α
)

v = ∇p E.

Now we observe that

p · ∇p E =
(

2α′(q2)q2 + α(q2)
)
α(q2)q2σ(h).

This yields

g (h, v) · v =
((

σ ′(h)h

2σ(h)
+ 1

2

)
+ 2

α′(q2)

α(q2)
q2

)
h‖v‖2

=
((

σ ′(h)h

2σ(h)
+ 1

2

)
α(q2) + 2α′(q2)q2

)
α(q2)q2σ(h)

=
(

2α′(q2)q2 + α(q2)
)
α(q2)q2σ(h) −

(
1 − σ ′(h)h

σ(h)

)
1

2
(α(q2))2q2σ(h)

and thus

g (h, v) · v = pt∇p E − (
σ(h) − hσ ′(h)

)
Ecap (q) .

Note that the momentum conservation equation of (2) can be written as:

∂t (hu) + div (hu ⊗ u) + ∇π = −div
(∇h ⊗ ∇p E

) + ∇ (
hdiv

(∇p E
)) + ∇ ((

σ(h) − hσ ′(h)
)
Ecap (‖∇h‖)) .

We now remark that

div
(
h∇( f (h, v)v)t) − ∇(g(h, v) · v) = div

(
h∇(∇p E)t) − ∇ (

pt∇p E − (
σ(h) − hσ ′(h)

)
Ecap (q)

)
.

Then, by taking p = ∇h, we obtain

div
(
h∇(∇p E)t

) − ∇ (
pt∇p E

) = div
(
h∇(∇p E)t

) − ∇ (
(∇h)t∇p E

)
= −div

(∇h ⊗ ∇ E
) + ∇ (

hdiv
(∇ E

))

p p
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and consequently the right-hand side of the momentum equation in the augmented system is:

div
(
h∇( f (h, v)v)t) − ∇(g(h, v)t v) = −div

(∇h ⊗ ∇p E
) + ∇ (

hdiv
(∇p E

)) + ∇ ((
σ(h) − hσ ′(h)

)
Ecap (‖∇h‖))

and the momentum equation in the original system is satisfied, which gives the conclusion on u for i).

Note that if (h, u) is regular enough and the initial velocity v0 satisfies

v0 = α(‖∇h0‖2)

√
σ(h0)

h0
∇h0

then v satisfies also (8) and (h, u) solves the original system.

Part ii). Recall that

Etot(U ) = 1

2h

(
‖hu‖2 + ‖hv‖2

)
+ �(h)

where U is given by (9) and(
�

h

)′
= π

h2 .

Let us consider the augmented system written as

∂t U + div (F (U )) = M (41)

with the first order part given by

U =
⎛
⎝ h

hu
hv

⎞
⎠ , F (U ) =

⎛
⎝ hu

hu ⊗ u + π (h) Id
hv ⊗ u

⎞
⎠

whereas the capillary term on the right hand side of (41) is given by

M =
⎛
⎝ 0

div
(
h∇( f (h, v)v)t

) − ∇(g(h, v)t v)

− f (h, v)div
(
h∇ut

) − g(h, v)div u

⎞
⎠ .

Note that the left-hand side of (41) is conservative and hyperbolic and the right-hand site is skew-symmetric for the 
L2 scalar product. This property is really important to allow an appropriate splitting method which preserves the energy 
conservation at the discrete level.

The entropy variable V for the first order part of (41) is given by

V t = (∇U Etot)
t =

(
−1

2

(
‖u‖2 + ‖v‖2

)
+ �′(h), ut, vt

)
.

The energy equation is thus

∂t Etot + div(u (Etot + π)) = (∇U Etot)
t M

= utdiv
(
h∇( f (h, v)v)t) − ut∇(g(h, v)t v)

−vt f (h, v)div
(
h∇ut) − vt g(h, v)div (u)

= utdiv
(
h∇( f (h, v)v)t) − ( f (h, v)v)tdiv

(
h∇ut)

−div
(
u g(h, v)t v

)
= div

(
h(ut∇)( f (h, v)v)

) − div
(
h

(
( f (h, v)v)t∇)

u
) − div

(
u g(h, v)t v

)
.

Recall that f (h, v) · v = ∇p Etot and g (h, v) · v = pt∇p Etot − (
σ − hσ ′)Ecap (q) and therefore

∂t (Etot) + div (u (Etot + π)) = (
div

(
h(ut∇)(∇p Etot)

) − div(h(∇p Et
tot∇)u)

)
−div

(
u(pt∇p Etot − (

σ − hσ ′)Ecap)
)
.

By choosing p = ∇h, we easily verify that
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(
div

(
h(ut∇)(∇p Etot)

) − div(h(∇p Et
tot∇)u)

) − div
(
u pt∇p Etot

)
= (

div
(
h(ut∇)(∇p Etot)

) − div(h(∇p Et
tot∇)u)

) − div
(
u(∇h)t∇p Etot

)
= div

(
hdiv

(∇p Etot
)

u
) − div

(
div (hu)∇p Etot

)
.

Then we get

∂t (Etot) + div
(
u

(
Etot + π − (

σ − hσ ′)Ecap
)) = div

(
hdiv

(∇p Etot
)

u
) − div

(
div (hu)∇p Etot

)
which is exactly the formulation (6) of the Energy balance of the original system.
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