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We consider the numerical integration of moving boundary problems with the curve-
shortening property, such as the mean curvature flow and Hele-Shaw flow. We propose 
a fully discrete curve-shortening polygonal evolution law. The proposed evolution law is 
fully implicit, and the key to the derivation is to devise the definitions of tangent and 
normal vectors and tangential and normal velocities at each vertex in an implicit manner. 
Numerical experiments show that the proposed method allows the use of relatively large 
time step sizes and also captures the area-preserving or dissipative property in good 
accuracy.
© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In this paper, we are concerned with the numerical integration of a smooth Jordan curve �t for t ∈ [0, ∞) which evolves 
in the plane. By using its S1 parameterization xt = xt(u) (u ∈ [0, 1]), the motion of �t is described by

∂t xt = vtnt + wttt, t > 0, (1.1)

where tt and nt respectively represent the unit tangent and unit outward normal vectors of �t , and vt and wt are the 
normal and tangential velocities. Both �t and xt are called a curve. A problem regarding the evolution of the curve �t is 
called a moving boundary problem. Most planar curves have their characteristics in terms of the length and enclosed area, 
which are defined by

L[�t] :=
∫
�t

ds, A[�t] :=
∫
�t

dx, (1.2)

respectively, where � = �[�] denotes the interior simply-connected region bounded by �. We, in particular, focus on prob-
lems whose length decreases monotonically. This property is called the curve-shortening property. Such a problem can be 
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seen as a gradient flow of the length functional L[�t ] with respect to some underlying space. We further restrict our at-
tention to problems that do not generate any topological changes. Typical examples include the mean curvature flow [1], 
area-preserving mean curvature flow [2], and Hele-Shaw flow [3]. We note that it was proved in [4,2,5,6] that the first two 
examples do not allow any topological changes during the evolution, and numerical observations suggested that the same 
property holds for the Hele-Shaw flow [7].

One approach to computing the evolution law (1.1) is to approximate the boundary by a polygonal or polynomial curve 
to find a semi-discrete evolution law, and then to integrate it by applying a numerical integrator such as a Runge–Kutta 
method (see, e.g. [8,9]). These approaches are often called direct approaches, and these would be preferred for problems 
without any topological changes. Note that if a flow of interest admits topological changes, indirect approaches, such as the 
phase-field method and the level set method, would be preferred [10,11], but such cases are out of the scope of the present 
paper. There are mainly two difficulties for direct approaches: distributions of vertices and time step size restriction.

• In the continuous scenarios, the tangential velocity wt does not affect the shape of the evolving curve �t [12]. It only 
affects the parameterization of the curve �t . However, the tangential velocity plays a crucial role in discrete settings. 
For example, if we set the discrete tangential velocities to 0, there could be portions where a distribution of vertices is 
dense or sparse, which could make it difficult to solve the problem over long times.

• General-purpose methods such as explicit Runge–Kutta methods cannot inherit the curve-shortening property, which 
could lead to unstable or non-physical behavior. To avoid these scenarios, we are usually forced to use sufficiently small 
time step sizes. In most cases, the time step size must be of O(N−2), where N denotes the number of vertices.

The first difficulty can be overcome by setting the discrete tangential velocities carefully. The asymptotic uniform dis-
tribution method, which arranges the vertices uniformly, and the curvature adjusted method, which arranges the vertices 
densely where the absolute value of the curvature is large, are practically useful (see, e.g. [13–20]).

In this paper, we shall focus on the second difficulty. To compute the moving boundary problems stably with relatively 
large time step sizes, we employ the idea of geometric numerical integration [21]. Namely, we intend to derive a fully 
discrete evolution law that guarantees the curve-shortening property independently of the time step sizes. To achieve this 
goal, we consider applying the so-called discrete gradient method [22–28] to (1.1) (see also its extensions to partial differ-
ential equations [29–34]). The method has been developed to derive energy-dissipative schemes for gradient systems and 
energy-preserving schemes for Hamiltonian systems. However, the method usually requires a concrete expression of gradi-
ent systems. Though the moving boundary problems have concrete expressions as gradient systems, these depend on the 
underlying spaces and could be complicated. Moreover, taking the tangential velocities into account further complicates the 
derivation of the intended evolution law.

In this paper, we show that the intended curve-shortening fully discrete evolution law can be systematically constructed 
independently of the underlying space even if the concrete expression as a gradient system is not specified. The derived 
evolution law is curve-shortening independently of the discrete tangential velocities, which indicates that the tangential 
velocities can be defined in view of the aforementioned asymptotic uniform distribution method or curvature adjusted 
method. We note that it seems impossible to derive a fully discrete evolution law that inherits both the curve-shortening 
and area-preserving (or dissipative) properties simultaneously. Discussions for area-preserving or dissipative evolution laws 
are given in Appendix A, where canonical Runga–Kutta methods play an essential role.

The contents of this paper are as follows. In Section 2, we give a general description of the moving boundary problem 
(1.1), show fundamental properties for the length and enclosed area and provide several examples. In Section 3, we discretize 
the moving boundary problem in space, where the smooth curve xt of the original problem is discretized by using a 
polygonal curve. In Section 4, which is the main section, we describe the intended fully discrete evolution law. Numerical 
experiments are given in Section 5, and concluding remarks are given in Section 6.

2. Moving boundary problems

This section reviews some fundamental properties of the moving boundary problem (1.1) and shows several examples.

2.1. Fundamental properties of moving boundary problems

For a smooth curve �t with S1 parameterization xt = xt(u) (u ∈ [0, 1]), the unit tangent vector tt and the unit outward 
normal vector nt are respectively defined by

tt = ∂s(xt )xt = ∂uxt

|∂uxt | , nt = − Jtt . (2.1)

Here, ∂s(x) denotes the differential operator with respect to the arclength parameter of the curve x, and J is the rotation 
matrix of angle π/2:

∂s(x)F := 1
∂uF, J =

(
0 −1
1 0

)
. (2.2)
|∂ux|

2
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Here and hereafter, in this section, the symbol F represents a general function defined on a suitable curve. We note that, 
as already mentioned in Section 1, the normal velocity vt is essential in the formulation (1.1) because it determines the 
dynamics of the curve �t and the tangential velocity wt only affects the parameterization of the curve �t [12].

The following theorem characterizes how the length and enclosed area (1.2) evolve under the evolution law (1.1).

Theorem 2.1 (See, e.g. [35,36]). For the smooth Jordan curve �t that evolves according to the evolution law (1.1), it follows that

∂tL[�t] =
∫
�t

κt vt ds, ∂tA[�t] =
∫
�t

vt ds, (2.3)

where κt denotes the curvature of �t in −nt direction.

We here sketch the proof because mimicking the proof plays an important role when discretizing the evolution law (1.1).

Proof. First, we consider the length. A direct calculation yields that

∂tL[�t] =
1∫

0

∂t |∂uxt |du =
1∫

0

∂uxt

|∂uxt | · ∂t∂uxt du = −
1∫

0

∂u

(
∂uxt

|∂uxt |
)

· ∂t xt du.

The definitions of the unit tangent and unit outward normal vectors (2.1) and the Frenet formulae ∂s(xt )t
t = −κtnt and 

∂s(xt )n
t = κttt imply that

∂u

(
∂uxt

|∂uxt |
)

= ∂utt = −κt |∂uxt |nt . (2.4)

Hence we obtain

∂tL[�t] =
1∫

0

κt |∂uxt |nt · (vtnt + wttt)du =
∫
�t

κt vt ds.

Next, we consider the enclosed area. Using the Frenet formulae, we have

∂t |∂uxt | = ∂uxt

|∂uxt | · ∂t∂uxt = tt · ∂u(vtnt + wttt) = |∂uxt |tt · (∂s(xt )vtnt + vt∂s(xt )n
t + ∂s(xt )wttt + wt∂s(xt )t

t)

= (κt vt + ∂s(xt )wt)|∂uxt |. (2.5)

A similar computation shows that

∂ttt = −∂t |∂uxt |
|∂uxt | ∂uxt + ∂t∂uxt

|∂uxt | = − ∂uxt

|∂uxt | (κ
t vt + ∂s(xt )wt) + ∂s(xt )(vtnt + wttt)

= (∂s(xt )vt − κt wt)nt .

Rotating this by angle −π/2 gives

∂tnt = −(∂s(xt )vt − κt wt)tt . (2.6)

Using (2.5) and (2.6), we obtain

∂tA[�t] = 1

2

1∫
0

∂t(xt · nt |∂uxt |)du = 1

2

1∫
0

[
(∂t xt · nt + xt · ∂tnt)|∂uxt | + xt · nt∂t |∂uxt |] du

= 1

2

∫
�t

[
vt − (∂s(xt )vt − κt wt)xt · tt + (κt vt + ∂s(xt )wt)xt · nt] ds.

The proof is completed by performing integration by parts:∫
�t

∂s(xt )vt xt · tt ds = −
∫
�t

vt(∂s(xt )x
t · tt + xt · ∂s(xt )t

t)ds = −
∫
�t

vt(1 − κt xt · nt)ds,

∫
t

∂s(xt )wt xt · nt ds = −
∫

t

wt(∂s(xt )x
t · nt + xt · ∂s(xt )n

t)ds = −
∫

t

wtκt xt · tt ds. �

� � �

3
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The relation (2.4) can be interpreted in such a way that the most left-hand side determines the curvature and the unit 
outward normal vector simultaneously. This viewpoint will be essential in discretizing the evolution law (1.1).

2.2. Examples

We give three examples: the mean curvature flow, area-preserving mean curvature flow and Hele-Shaw flow. They differ 
in the definition of the normal velocity vt . For all cases, the length functional decays monotonically, which is called the 
curve-shortening property. The enclosed area is decreasing for the mean curvature flow, while it is preserving for the latter 
two flows.

Example 2.2 (Mean curvature flow). The mean curvature flow is the simplest moving boundary problem, which was originally 
proposed in [1] to describe an ideal grain boundary motion in two dimensions. This flow can also be understood as a model 
of the motion of a super elastic rubber band, with a small mass in a viscous medium [2]. The velocity of the mean curvature 
flow is given by

vt = −κt, t > 0.

Substituting this expression into the relations (2.3), we obtain the curve-shortening property:

∂tL[�t] = −
∫
�t

(κt)2 ds < 0

and the area-dissipative property:

∂tA[�t] = −
∫
�t

κt ds = −2π < 0. (2.7)

It is also well known that any smooth Jordan curve which evolves according to the mean curvature flow becomes convex in 
a finite time [6] and further shrinks to a point [4].

From the first relation in (2.3), the curvature κt can be understood as the first variation of the length functional. Thus 
the mean curvature flow is the L2 gradient flow of the length functional on the space of smooth planar curves.

Example 2.3 (Area-preserving mean curvature flow). The area-preserving mean curvature flow, which is a model of a super 
elastic rubber band surrounding an incompressible fluid, is a modification of the mean curvature flow with the area-
preservation constraint [2]. The normal velocity of this flow is given by

vt = −κt + 〈κt〉�t , t > 0,

where 〈F〉� denotes the average of a function F on a curve �:

〈F〉� = 1

L[�]
∫
�

F ds.

For this flow, we have the curve-shortening property:

∂tL[�t] =
∫
�t

κt(−κt + 〈κt〉�t )ds = −
∫
�t

(κt)2 ds + 1

L[�t]

⎛
⎝ ∫

�t

κt ds

⎞
⎠

2

= 1

L[�t]

⎛
⎜⎝
⎛
⎝ ∫

�t

κt ds

⎞
⎠

2

−
∫
�t

12 ds

∫
�t

(κt)2 ds

⎞
⎟⎠≤ 0

and the area-preserving property:

∂tA[�t] =
∫
�t

(−κt + 〈κt〉�t
)

ds = 0,

where the Cauchy–Schwarz inequality is used. The area-preserving mean curvature flow is the L2 gradient flow of the length 
functional along curves which enclose a fixed area.
4
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Example 2.4 (Hele-Shaw flow). The Hele-Shaw flow, which was originally studied by experiments in [3], describes the motion 
of viscous fluid in a quasi-two-dimensional space. The normal velocity of this flow is given by

vt = −∇pt · nt, t > 0, (2.8)

where pt is the solution to the Laplace equation{	pt = 0 in �t , t > 0,

pt = σκt on �t , t > 0.
(2.9)

Here, σ denotes the surface tension coefficient (see [37,38] for details). It readily follows from (2.3), (2.8) and (2.9) that the 
Hele-Shaw flow satisfies the curve-shortening property:

∂tL[�t] = − 1

σ

∫
�t

pt∇pt · nt ds = − 1

σ

∫
�t

∇ · (pt∇pt)dx = − 1

σ

∫
�t

|∇pt |2 dx ≤ 0

and the area-preserving property:

∂tA[�t] = −
∫
�t

∇pt · nt ds = −
∫
�t

∇ · ∇pt dx = 0.

The Hele-Shaw flow can be regarded as the Im(��t ) gradient flow of the length functional on the space of functions of 
which the integral on the curve is equal to 0 (see, e.g. [36,39] for details). Here, �� denotes the Dirichlet-to-Neumann 
operator associated with a curve �.

3. Semi-discrete polygonal moving boundary problems

In this section, we discretize the moving boundary problem (1.1) in space. The discretization is based on [7,20]. Below we 
give definitions of discrete tangent vectors, discrete outward normal vectors, discrete curvatures, discrete tangential veloci-
ties and discrete normal velocities. Although the contents of this section are not new, we give the details as preliminaries 
to Section 4.

3.1. Semi-discrete evolution law

Let �t be an N-sided polygonal Jordan curve:

�t =
N⋃

i=1

�t
i , �t

i = (X t
i−1, X t

i ) := {(1 − λ)X t
i−1 + λX t

i | λ ∈ (0,1)},

where X t
i ∈ R2 denotes the coordinate of the ith vertex of �t . Here and hereafter, for quantities {Fi}N

i=1 associated with 
an N-sided polygonal Jordan curve, we adopt the periodic notation: we always assume that Fi := Fi mod N (in particular, 
F0 := FN and FN+1 := F1). Moreover, we also denote a polygonal curve � as �(X) whenever we want to emphasize that the 
vertices of � are {X i}N

i=1.
Let us consider a semi-discrete evolution law of the form

∂t X t
i = V t

i N t
i + W t

i T t
i , i = 1,2, . . . , N, t > 0, (3.1)

where T t
i and N t

i respectively represent the unit tangent and unit outward normal vectors of �t at the vertex Xt
i . Definitions 

of N t
i , T t

i , V t
i and W t

i are given in the subsequent subsections.
In what follows, we use lower case letters for functions or quantities on edges. For example, the unit tangent and unit 

outward normal vectors on the ith edge are denoted by tt
i and nt

i , respectively.

3.2. Definitions of the unit tangent vector, unit outward normal vector and curvature

In this subsection, we give definitions of several quantities that appear in the semi-discrete evolution law (3.1). Given 
the vertices {X t

i }N
i=1, the unit tangent vectors {tt

i }N
i=1 and unit outward normal vectors {nt

i }N
i=1 on edges are defined straight-

forwardly. Using {tt
i }N

i=1 and {nt
i }N

i=1, we define unit tangent vectors {T t
i }N

i=1 and unit outward normal vectors {T t
i }N

i=1 on 
vertices. Though the velocities {vt

i }N
i=1 on edges need to be set for each problem, we give the relation between the veloc-

ities {V t
i }N

i=1 on vertices and {vt
i }N

i=1 on edges. Furthermore, we define the curvatures {κt
i }N

i=1 on edges. After giving these 
definitions, we show a discrete analogue of Theorem 2.1.
5
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X i−1

X i

X i+1

T i
N i

ϕi

θi

− π
2

ni

t i

ni+1

t i+1

Fig. 1. Definitions of the unit tangent and unit outward normal vectors at vertices.

We introduce a discrete version of the differential operator (2.2). The difference operator ∂�,i that operates on a quantity 
{Fi}N

i=1 on vertices is defined by

∂�,iF := Fi − Fi−1

ri
, i = 1,2, . . . , N,

where ri = |X i − X i−1| denotes the length of the ith edge �i . Then, the unit tangent vector tt
i and the unit outward normal 

vector nt
i on the ith edge are defined straightforwardly by

tt
i = ∂�t ,i X t, nt

i = − Jtt
i , i = 1,2, . . . , N.

We next introduce the average operator av�,i that operates on a quantity {fi}N
i=1 on edges. This operator is defined by

av�,i f = fi + fi+1

2 cos(ϕi/2)
, i = 1,2, . . . , N,

where ϕi = θi+1 − θi , and θi denotes the ith tangent angle of �: t i = (cos θi, sin θi)
T (see Fig. 1). Using the average operator, 

we define the unit tangent vector T t
i and the unit outward normal vector N t

i at the ith vertex X t
i by

T t
i := av�t ,i tt =

(
cos(θ t

i + ϕt
i /2)

sin(θ t
i + ϕt

i /2)

)
, N t

i := − J T t
i , i = 1,2, . . . , N.

For more details, see, e.g. [7]. We readily obtain the following lemma.

Lemma 3.1. We have

tt
i = cos(ϕt

i /2)T t
i + sin(ϕt

i /2)N t
i , tt

i+1 = cos(ϕt
i /2)T t

i − sin(ϕt
i /2)N t

i ,

nt
i = − sin(ϕt

i /2)T t
i + cos(ϕt

i /2)N t
i , nt

i+1 = sin(ϕt
i /2)T t

i + cos(ϕt
i /2)N t

i .

Below, we define a discrete curvature κt
i and show how the length and enclosed area evolve. The length L[�] of a 

polygonal curve � is naturally defined by

L[�] =
N∑

i=1

ri .

It follows from the semi-discrete evolution law (3.1) and Lemma 3.1 that

∂tL[�t] =
N∑

i=1

∂trt
i =

N∑
i=1

∂�t ,i X t · ∂t(X t
i − X t

i−1) =
N∑

i=1

(tt
i − tt

i+1) · (V t
i N t

i + W t
i T t

i ) = 2
N∑

i=1

sin
ϕt

i

2
V t

i .

If we define the relation between the normal velocities on edges and vertices by

V t
i = av�t ,i vt, i = 1,2, . . . , N, (3.2)

the time derivative of the length can be expressed as
6
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∂tL[�t] = 2
N∑

i=1

sin
ϕt

i

2
av�t ,i vt =

N∑
i=1

tan(ϕt
i /2) + tan(ϕt

i−1/2)

rt
i

vt
i r

t
i .

Comparing this expression with the first relation in (2.3), we define a discrete curvature κt
i on the ith edge �t

i by

κt
i := tan(ϕt

i /2) + tan(ϕt
i−1/2)

rt
i

, i = 1,2, . . . , N. (3.3)

The next theorem, which is a discrete analogue of Theorem 2.1, characterizes the evolution of the length and enclosed area 
in terms of the discrete curvature and normal velocity.

Theorem 3.2. For the polygonal curve �t that evolves according to the semi-discrete evolution law (3.1), it follows that

∂tL[�t] =
N∑

i=1

κt
i vt

i r
t
i , ∂tA[�t] =

N∑
i=1

vt
i r

t
i + errA[�t ],

where �t represents the polygonal region bounded by �t , and the error term errA[�t ] is given by

errA[�t ] =
N∑

i=1

(
W t

i sin
ϕt

i

2
− vt

i+1 − vt
i

2

)
rt

i+1 − rt
i

2
.

Proof. The relation for the length L[�t ] is an immediate consequence of the definition of the discrete curvature (3.3). The 
relation for the enclosed area A[�t ] first appeared in [7, Proposition 4] without proof; therefore, we give its proof.

The enclosed area A[�] can be expressed as

A[�] =
∫
�

dx = 1

2

N∑
i=1

(X i · ni)ri = 1

2

N∑
i=1

J X i−1 · X i .

Thus, using the semi-discrete evolution law (3.1), Lemma 3.1 and the definition of V t
i (3.2), we have

∂tA[�t] = 1

2

N∑
i=1

(
J∂t X t

i−1 · X t
i + J X t

i−1 · ∂t X t
i

)= 1

2

N∑
i=1

J (X t
i−1 − X t

i+1) · ∂t X t
i

= 1

2

N∑
i=1

(rt
i+1nt

i+1 + rt
i nt

i ) · (V t
i N t

i + W t
i T t

i ) = 1

4

N∑
i=1

(vt
i + vt

i+1)(r
t
i + rt

i+1) +
N∑

i=1

W t
i sin

ϕt
i

2

rt
i+1 − rt

i

2

=
N∑

i=1

vt
i r

t
i +

N∑
i=1

(
W t

i sin
ϕt

i

2
− vt

i+1 − vt
i

2

)
rt

i+1 − rt
i

2
. � (3.4)

It is hoped that the error term errA[�t ] is as close as possible to 0. We will explain in the next subsection that the term 
can be controlled by manipulating the tangential velocity.

Remark 3.3. Note that the tangent and normal vectors on vertices were defined by T t
i = av�t ,i tt and N t

i = av�t ,i nt , respec-

tively. The definitions are also understood in the following way. The normal vector N t
i is parallel to tt

i −tt
i+1, and the tangent 

vector T t
i is defined so that it is perpendicular to N t

i .

3.3. Tangential velocity for semi-discrete moving boundary problem

As explained in Section 1, there exist several approaches to setting appropriate discrete tangential velocities. Among 
them, we here employ the asymptotic uniform distribution method [20], which defines discrete tangential velocities so that 
the arrangement of the vertices is made uniform as t → ∞.

Given real numbers ηi (i = 1, . . . , N) satisfying 
∑N

i=1 ηi = 0 and given function f t(N) satisfying limt→∞ f t(N) = ∞, we 
require that the curve �t satisfies

rt
i − L[�t]

N
= ηi exp(− f t(N)), i = 1,2, . . . , N. (3.5)

Differentiating (3.5) gives
7
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∂trt
i − ∂tL[�t]

N
=
(
L[�t]

N
− rt

i

)
ωt(N), (3.6)

where ωt(N) = ∂t f t(N), and we call ωt(N) a relaxation parameter. On the other hand, under the semi-discrete evolution 
law (3.1) the time derivative of the length of the ith edge is calculated to be

∂trt
i = ∂�t ,i X t · ∂t(X t

i − X t
i−1) = V t

i sin
ϕt

i

2
+ V t

i−1 sin
ϕt

i−1

2
+ W t

i cos
ϕt

i

2
− W t

i−1 cos
ϕt

i−1

2
. (3.7)

In order for (3.6) and (3.7) to be compatible,

W t
i cos

ϕt
i

2
− W t

i−1 cos
ϕt

i−1

2
= −V t

i sin
ϕt

i

2
− V t

i−1 sin
ϕt

i−1

2
+ ∂tL[�t]

N
+
(
L[�t]

N
− rt

i

)
ωt(N) (3.8)

must be satisfied for i = 2, 3, . . . , N . Here, because summing up the condition (3.8) for i = 2, 3, . . . , N gives the same condi-
tion for i = 1, it is sufficient to consider i = 2, 3, . . . , N . The asymptotic uniform distribution method defines the tangential 
velocities so that they satisfy the condition (3.8), but we note that the tangential velocities {W t

i }N
i=1 are still underdeter-

mined under the condition (3.8) for i = 2, 3, . . . , N . To determine the tangential velocities {W t
i }N

i=1 uniquely, we need to 
impose an additional condition. For example, requiring 

∑N
i=1 W t

i (r
t
i + rt

i+1)/2 = 0 gives the tangential velocities {W t
i }N

i=1
explicitly:

W t
1 = −

∑N
i=2 �t

i (r
t
i + rt

i+1)/(2 cos(ϕt
i /2))

cos(ϕt
1/2)

∑N
i=1(r

t
i + rt

i+1)/(2 cos(ϕt
i /2))

, W t
i = �t

i + W t
1 cos(ϕt

1/2)

cos(ϕt
i /2)

, i = 2,3, . . . , N,

where

�t
i =

i∑
l=2

ψ t
i , ψ t

i = −V t
i sin

ϕt
i

2
− V t

i−1 sin
ϕt

i−1

2
+ ∂tL[�t]

N
+
(
L[�t]

N
− rt

i

)
ωt(N), i = 2,3, . . . , N.

The asymptotic uniform distribution method makes the positions of the vertices uniform as t → ∞. In particular, if the 
position of the initial vertices {X0

i }N
i=1 is uniform, that is, r0

i ≡L[�0]/N holds for all i, then the method keeps the uniformity 
along the time evolution: rt

i ≡ L[�t]/N holds for all i and all t . The following is an immediate consequence of the above 
discussion, and can be seen as a discrete analogue of Theorem 2.1.

Corollary 3.4. Suppose that the initial vertices are allocated uniformly, i.e. r0
i = const. and that the tangential velocities {W t

i }N
i=1 are 

set such that they satisfy (3.8). Then, for the polygonal curve �t that evolves according to the semi-discrete evolution law (3.1), it follows 
that

∂tL[�t] =
N∑

i=1

κt
i vt

i r
t
i , ∂tA[�t] =

N∑
i=1

vt
i r

t
i .

3.4. Examples

We consider discretizing the mean curvature flow, area-preserving mean curvature flow and Hele-Shaw flow. In this 
subsection, we suppose that the initial vertices are arranged uniformly and that the tangential velocities are set based on 
the asymptotic uniform distribution method. Note that for each problem, specifying the normal velocity on edges determines 
the dynamics of the semi-discrete flow.

Example 3.5 (Semi-discrete polygonal mean curvature flow). The normal velocity of the semi-discrete polygonal mean curvature 
flow is given by

vt
i = −κt

i , i = 1,2, . . . , N, t > 0.

We then have the curve-shortening property:

∂tL[�t] = −
N∑

i=1

(κt
i )

2rt
i < 0.

Moreover, we have

∂tA[�t] = −2
N∑

tan
ϕt

i

2
. (3.9)
i=1

8
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We note that 
∑N

i=1 tan(ϕt
i /2) −π = O(N−2) as N → ∞ since tan(ϕt

i /2) −ϕt
i /2 = O(N−3), and thus ∂tA[�t] + 2π = O(N−2). 

Therefore, (3.9) can be regarded as a discrete counterpart of (2.7).

Example 3.6 (Semi-discrete polygonal area-preserving mean curvature flow). The normal velocity of the semi-discrete polygonal 
area-preserving mean curvature flow is given by

vt
i = −κt

i + 〈κt〉�t , i = 1,2, . . . , N, t > 0,

where 〈f〉� denotes the average of {fi}N
i=1 along the curve �:

〈f〉� = 1

L[�]
N∑

i=1

firi .

We then have the curve-shortening property:

∂tL[�t] =
N∑

i=1

κt
i

(−κt
i + 〈κt〉�t

)
rt

i = −
N∑

i=1

(κt
i )

2rt
i + 1

L[�t]

(
N∑

i=1

κt
i rt

i

)2

= 1

L[�t]

⎡
⎣−

N∑
i=1

rt
i

N∑
i=1

(κt
i )

2rt
i +
(

N∑
i=1

κt
i rt

i

)2⎤⎦≤ 0

and the area-preserving property:

∂tA[�t] =
N∑

i=1

(−κt
i + 〈κt〉�t

)
rt

i = 0.

Example 3.7 (Semi-discrete polygonal Hele-Shaw flow). The normal velocity of the semi-discrete polygonal Hele-Shaw flow is 
given by

vt
i = −∇pt · nt

i , i = 1,2, . . . , N, t > 0,

where pt is the solution to the Laplace equation:

⎧⎪⎨
⎪⎩

	pt = 0 in �t ,

pt = σκt
i on �t

i , i = 1,2, . . . , N ,

∇pt · nt
i ≡ cosnt. on �t

i , i = 1,2, . . . , N .

We then have the curve-shortening property:

∂tL[�t] = − 1

σ

N∑
i=1

pt |�t
i
∇pt |�t

i
· nt

i r
t
i = − 1

σ

∫
�t

pt∇pt · nt ds = − 1

σ

∫
�t

∇ · (pt∇pt)dx = − 1

σ

∫
�t

|∇pt |2 dx ≤ 0

and the area-preserving property:

∂tA[�t] = −
N∑

i=1

∇pt |�t
i
· nt

i r
t
i = −

∫
�t

∇pt · nt ds = −
∫
�t

∇ · ∇pt dx = 0,

where nt :=∑N
i=1 nt

iχ�t
i
, and χ�i denotes the characteristic function of �i .

4. Fully discrete polygonal moving boundary problems

In this section, we derive a fully discrete evolution law that inherits the curve-shortening property for the moving 
boundary problem (1.1).
9
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4.1. Fully discrete evolution law

Let us consider a fully discrete evolution law of the form

Xn+1
i − Xn

i

�tn
= V i(�

n+1,�n)N i(�
n+1,�n) + W i(�

n+1,�n)T i(�
n+1,�n), i = 1,2, . . . , N, n = 0,1, . . . , (4.1)

where �tn is the time step size and �n denotes the polygonal curve at the nth time step t = tn . Note that the vectors 
T i(�

n+1, �n) and N i(�
n+1, �n) and velocities V i(�

n+1, �n) and W i(�
n+1, �n) depend on both �n and �n+1, and their defi-

nitions will be given in the subsequent subsections.

4.2. Definitions of the unit tangent vector, unit outward normal vector and curvature

To simplify the notation, we simply omit the superscript n + 1 and use the hat instead of the superscript n. The time 
step size is simply denoted by �t . The evolution law (4.1) is then expressed as

X i − X̂ i

�t
= V i(�, �̂)N i(�, �̂) + W i(�, �̂)T i(�, �̂), i = 1,2, . . . , N,

where

� =
N⋃

i=1

�i, �i = (X i−1, X i), �̂ =
N⋃

i=1

�̂i, �̂i = (X̂ i−1, X̂ i).

In this subsection, we define the unit tangent vector T i(�, �̂), unit outward normal vector N i(�, �̂), normal velocity V i(�, �̂)

and curvature.

4.2.1. Unit tangent vector and unit outward normal vector
The length of the ith edge of the polygonal curve � is denoted by ri , i.e.

ri = |X i − X i−1|, r̂i = |X̂ i − X̂ i−1|, i = 1,2, . . . , N.

The unit tangent vectors t i on �i and t̂ i on �̂i are defined straightforwardly by

t i = ∂�,i X, t̂ i = ∂
�̂,i X̂, i = 1,2, . . . , N.

We then have

L[�] −L[�̂]
�t

=
N∑

i=1

ri − r̂i

�t
=

N∑
i=1

rit i + r̂i t̂ i

ri + r̂i
· (X i − X i−1) − (X̂ i − X̂ i−1)

�t

= −
N∑

i=1

(
ri+1t i+1 + r̂i+1t̂ i+1

ri+1 + r̂i+1
− rit i + r̂i t̂ i

ri + r̂i

)
· X i − X̂ i

�t

= −
N∑

i=1

(
∂
�,�̂,i+1 X − ∂

�,�̂,i X
)

· X i − X̂ i

�t
, (4.2)

where X i := (X i + X̂ i)/2, and ∂
�,�̂,i denotes the difference operator associated with two curves � and �̂:

∂
�,�̂,iF = Fi − Fi−1

(ri + r̂i)/2
, i = 1,2, . . . , N.

This operator operates on a function on vertices.
Below, we define T i = T i(�, �̂) and N i = N i(�, �̂). We note that ∂

�,�̂,i X , which can be regarded as a tangent vector 
on the ith edge, is not necessarily a unit vector; thus it is not straightforward to define T i and N i . In contrast to the 
time-continuous cases discussed in Section 3, we start by defining N i . Recall that in Section 3 the normal vector N t

i can 
be understood in such a way that it is parallel to tt

i − tt
i+1 (Remark 3.3). Motivated by this interpretation, we define N i by 

requiring it to be parallel to ∂
�,�̂,i+1 X − ∂

�,�̂,i X :

N i = N i(�, �̂) =

⎧⎪⎨
⎪⎩

− sgnϕ i

∂
�,�̂,i+1 X − ∂

�,�̂,i X

|∂
�,�̂,i+1 X − ∂

�,�̂,i X | if ϕ i �= 0,

− Jt if ϕ = 0,
i i

10
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where ϕ i denotes the signed angle between two adjacent edges �i and �i+1. The unit tangent vector T i = T i(�, �̂) is 
defined such that it is perpendicular to N i : T i = J N i .

Using N i and T i , we can represent ∂
�,�̂,i+1 X − ∂

�,�̂,i X as follows:

∂
�,�̂,i+1 X − ∂

�,�̂,i X = F i N i + Gi T i,

where

F i =

⎧⎪⎨
⎪⎩

−|∂
�,�̂,i+1 X − ∂

�,�̂,i X |
sgnϕ i

if ϕ i �= 0,

0 if ϕ i = 0,

Gi =

⎧⎪⎪⎨
⎪⎪⎩

0 if ϕ i �= 0 ∨
(
ϕ i = 0 ∧ |∂

�,�̂,i+1 X | = |∂
�,�̂,i X |

)
,

|∂
�,�̂,i+1 X − ∂

�,�̂,i X | if ϕ i = 0 ∧ |∂
�,�̂,i+1 X | > |∂

�,�̂,i X |,
−|∂

�,�̂,i+1 X − ∂
�,�̂,i X | if ϕ i = 0 ∧ |∂

�,�̂,i+1 X | < |∂
�,�̂,i X |.

Note that the case ϕ i = 0 seldom occurs. By using F i and Gi , the calculation of (L[�] −L[�̂])/�t in (4.2) further proceeds 
as follows:

L[�] −L[�̂]
�t

= −
N∑

i=1

(F i N i + Gi T i) · (V i N i + W i T i) = −
N∑

i=1

F i V i −
N∑

i=1

Gi W i . (4.3)

4.2.2. Normal velocity and curvature
Let us consider the normal velocities {V i}N

i=1 on vertices and the curvatures {κ i}N
i=1 on edges. We start by representing 

N i as a linear combination of ni and ni+1, where ni = − Jt i . If ϕ i �= 0, ni and ni+1 are linearly independent. Thus the 
representation N i = αini + β ini+1 is uniquely determined, where αi and β i are the unique solutions to the linear system{

N i · ni = αi + (ni · ni+1)β i,

N i · ni+1 = (ni · ni+1)αi + β i .

If ϕ i = 0, then ni = ni+1 holds, and there are infinitely many possible candidates for the expression. In order for the two 
cases ϕ i �= 0 and ϕ i = 0 to be consistent, we employ the following one:

N i = αini + β ini+1, αi = ri

ri + ri+1
, β i = ri+1

ri + ri+1
,

where ri = |X i − X i−1|. Using the above coefficients αi and β i , we define the normal velocity on the ith edge by

V i = αi vi + β i vi+1, i = 1,2, . . . , N.

Substituting this expression into (4.3), we obtain

L[�] −L[�̂]
�t

= −
N∑

i=1

F i(αi vi + β i vi+1) −
N∑

i=1

Gi W i = −
N∑

i=1

(F iαi + F i−1β i−1)vi −
N∑

i=1

Gi W i

= −
N∑

i=1

(
F iαi + F i−1β i−1

ri

)
viri −

N∑
i=1

Gi W i .

If the term − 
∑N

i=1 Gi W i is negligible, the above relation can be regarded as a discrete analogue of the first relation in (2.3). 
Defining the discrete curvature κ i on �i by

κ i = − F iαi + F i−1β i−1

ri
, i = 1,2, . . . , N,

we have

L[�] −L[�̂]
�t

=
N∑

i=1

κ i viri −
N∑

i=1

Gi W i . (4.4)

Note that as the limit �t ↓ 0, we obtain the definitions of the unit tangent vector T i , unit outward normal vector N i , and 
discrete curvature κi which were defined in Section 3.
11
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4.3. Tangential velocity

We need to define tangential velocities to perform long-time stable numerical computation. The following discussion is 
based on the asymptotic uniform distribution method, which was reviewed in Section 3.3.

We discretize the requirement (3.6) in time to obtain the following system:

ri − r̂i

�t
− 1

N

L[�] −L[�̂]
�t

=
(
L[�]

N
− ri

)
ω, i = 1,2, . . . , N. (4.5)

On the other hand, under the fully discrete evolution law (4.1), the change in the length of each edge is calculated to be

ri − r̂i

�t
= ri

(ri + r̂i)/2

(
(t i · N i)V i − (t i · N i−1)V i−1

+(t i · T i)W i − (t i · T i−1)W i−1

)
. (4.6)

In order for (4.5) and (4.6) to be compatible,

ri(t i · T i)

(ri + r̂i)/2
W i − ri(t i · T i−1)

(ri + r̂i)/2
W i−1 = − ri(t i · N i)

(ri + r̂i)/2
V i + ri(t i · N i−1)

(ri + r̂i)/2
V i−1

+ 1

N

L[�] −L[�̂]
�t

+
(
L[�]

N
− ri

)
ω (4.7)

must be satisfied for i = 2, 3, . . . , N .
Since {W i}N

i=1 are still underdetermined, we need to add an additional condition. In view of (4.4), the zero weighted 
average condition

N∑
i=1

Gi W i = 0

may be a candidate because this condition eliminates the second term of (4.4). However, this condition makes sense only 
when there exists at least one index i such that Gi �= 0, which rarely happens. We instead consider the simple zero average 
condition:

N∑
i=1

W ir
∗
i = 0, r∗

i = ri + ri+1

2
. (4.8)

We shall employ this condition in Section 5.

Remark 4.1. The relation (4.5) can be rewritten as

ri − L[�]
N

= 1

1 + �tω

(
r̂i − L[�̂]

N

)
. (4.9)

This implies that if the distribution of the initial vertices is uniform (r0
i ≡ L[�0]/N for all i), then the asymptotic uniform 

distribution method keeps the distribution uniform. Even if r̂i �= L[�̂]/N , the distribution tends to be uniform as the nu-
merical integration proceeds (i.e. rn

i → L[�n]/N as n → ∞). The relation (4.9) also indicates that the relaxation parameter 
should be set sufficiently large so that the convergence is quick.

The following is an immediate consequence of the above discussion, which can be seen as a fully discrete counterpart of 
Theorem 2.1.

Theorem 4.2. Suppose that the initial vertices are allocated uniformly, i.e. r0
i = const. and that the tangential velocities {W n

i }N
i=1 are 

set such that they satisfy (4.7). Then, for the polygonal curve �n that evolves according to the fully discrete evolution law (4.1), it follows 
that

L[�n+1] −L[�n]
�tn

=
N∑

i=1

κ
n+1/2
i vn+1/2

i rn+1/2
i

as long as Gi = 0 for all i, where we denote κ i , vi , and ri by κn+1/2 , vn+1/2 , and rn+1/2 , respectively.
i i i

12
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4.4. Examples

We apply the proposed discretization method to the mean curvature flow, area-preserving mean curvature flow and 
Hele-Shaw flow. Note that for each problem, specifying the averaged normal velocity on edges determines the dynamics of 
the fully discrete flow.

Example 4.3 (Fully discrete polygonal mean curvature flow). The normal velocity of the fully discrete polygonal mean curvature 
flow is given by

vn+1/2
i = −κ

n+1/2
i , i = 1,2, . . . , N, n = 0,1, . . .

Then, we have the curve-shortening property:

L[�n+1] −L[�n]
�tn

= −
N∑

i=1

(κ
n+1/2
i )2rn+1/2

i < 0.

Example 4.4 (Fully discrete polygonal area-preserving mean curvature flow). The normal velocity of the fully discrete polygonal 
area-preserving mean curvature flow is given by

vn+1/2
i = −κ

n+1/2
i + 〈κn+1/2〉�n+1/2 , i = 1,2, . . . , N, n = 0,1, . . . .

Then, we have the curve-shortening property:

L[�n+1] −L[�n]
�tn

=
N∑

i=1

κ
n+1/2
i

(
−κ

n+1/2
i + 〈κn+1/2〉�n+1/2

)
rn+1/2

i

= −
N∑

i=1

(κ
n+1/2
i )2rn+1/2

i + 1

L[�n+1/2]

(
N∑

i=1

κ
n+1/2
i rn+1/2

i

)2

= 1

L[�n+1/2]

⎡
⎣−

N∑
i=1

rn+1/2
i

N∑
i=1

(κ
n+1/2
i )2rn+1/2

i +
(

N∑
i=1

κ
n+1/2
i rn+1/2

i

)2⎤⎦≤ 0.

Example 4.5 (Fully discrete polygonal Hele-Shaw flow). The normal velocity of the fully discrete polygonal Hele-Shaw flow is 
given by

vn+1/2
i = −∇pn+1/2 · nn+1/2

i , i = 1,2, . . . , N, n = 0,1, . . . ,

where pn+1/2 is the solution to the Laplace equation⎧⎪⎪⎨
⎪⎪⎩

	pn+1/2 = 0 in �n+1/2,

pn+1/2 = σκ
n+1/2
i on �

n+1/2
i , i = 1,2, . . . , N ,

∇pn+1/2 · nn+1/2
i ≡ const. on �

n+1/2
i , i = 1,2, . . . , N .

(4.10)

Then, we have the curve-shortening property:

L[�n+1] −L[�n]
�tn

= − 1

σ

N∑
i=1

pn+1/2|
�

n+1/2
i

∇pn+1/2|
�

n+1/2
i

· nn+1/2
i rn+1/2

i = − 1

σ

∫
�n+1/2

pn+1/2∇pn+1/2 · nn+1/2 ds

= − 1

σ

∫
�n+1/2

∇ · (pn+1/2∇pn+1/2)dx = − 1

σ

∫
�n+1/2

|∇pn+1/2|2 dx ≤ 0,

where nn+1/2 :=∑N
i=1 nn+1/2

i χ
�

n+1/2
i

.

Remark 4.6. The proposed fully discrete evolution law does not inherit the area-preservation/dissipation property exactly. 
The behavior of the enclosed area will be checked numerically in Section 5. A fully discrete polygonal evolution law that 
inherits the property will be given in Appendix A.
13
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5. Numerical experiments

5.1. Results

We give several numerical experiments to illustrate the qualitative behavior of the proposed fully discrete evolution law. 
All were carried out by using Julia 1.1.0 on a machine with 3.1 GHz Intel Core i5, 16 GB memory, OS X 10.14.5. Nonlinear 
equations are solved by nlsolve1 with residual tolerance 10−8.

Computation of tangential velocity
In Section 4.3, we have developed the asymptotic uniform distribution method. We employ the method with the simple 

zero average condition (4.8). The initial vertices are arranged uniformly.

Time step size
We use adaptive time step sizes. Since all the target problems are gradient flows of the length functional on some space, 

the time step size should be smaller than the time derivative of the length functional so that the discrete flow captures key 
dynamics of the original moving boundary problem. Based on this idea, we control the time step size by the formula

�tn+1 := min

{
τ ,

(
L[�n+1] −L[�n]

�tn

)−2
}

, n = 0,1, . . . ,

�t0 := min

⎧⎨
⎩τ ,

(
N∑

i=1

(κ0
i )2r0

i

)−2
⎫⎬
⎭ ,

where κ0
i is the discrete curvature of the initial curve �0 defined in (3.3) (see [40]: for more details). Note that a general-

purpose explicit time integrator, such as the Runge–Kutta method, requires sufficiently small time step sizes as mentioned 
in Section 1. Thus the above formula makes sense only for a numerical integrator that allows relatively large time step sizes.

Initial curve and parameters
The initial curve is set to

x1(t) = 0.5a1(t), x2(t) = 0.54a3(t), t ∈ [0,1], (5.1)

where

a1(t) = 1.8 cos(2πt), a2(t) = 0.2 + sin(πt) sin(6πt) sin(2a1(t)),

a3(t) = 0.5 sin(2πt) + sin a1(t) + a2(t) sin(2πt), t ∈ [0,1].
We set N vertices X̃

0
i = ( X̃0

i,1, X̃
0
i,2)

T to

X̃0
i,1 = x1(i/N), X̃0

i,2 = x2(i/N), i = 1,2, . . . , N. (5.2)

Since the distribution of the vertices is not uniform, we modify them by performing the asymptotic uniform distribution 
method with all the normal velocities being equal to 0 until the vertices are arranged uniformly. The resulted vertices, 
denoted by X0

i , are used as the initial curve. Fig. 2 compares X0 with X̃
0

. It is observed that the initial vertices after 
performing the asymptotic uniform distribution method slant a little from the original curve; however, this does not be a 
matter in a practical situation.

The number N of vertices, the parameter τ , and the relaxation parameter ω are respectively set to 50, 0.01, and 10N/�tn

for all numerical experiments.

Example 5.1 (Mean curvature flow). Our first example is the mean curvature flow (see Examples 2.2, 3.5, and 4.3). It is well 
known that the solution curve to the mean curvature flow becomes convex in finite time and shrinks to a point with 
converging to a circle [4,6]. Fig. 3 shows the evolution of the flow and the behavior of the length and enclosed area. It 
is observed that the curve converges to a circle, and the size becomes small as time passes. The length monotonically 
decreases. Further, the area-dissipation property is also captured well: the area decreases at an almost constant rate. Fig. 4
shows the time step sizes selected during the numerical integration. Our preliminary experiments suggested that the time 
step sizes should be smaller than 0.1N−2 (= 4.0 × 10−5 in our problem setting) for the Runge–Kutta method. In comparison 
with the Runge–Kutta method, larger step sizes are selected for the proposed evolution law.

1 The function nlsolve is a typical nonlinear solver in Julia.
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(a) original arrangement X̃
0
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(b) initial arrangement X0

Fig. 2. Arrangements of the initial vertices. The solid lines represent the original initial curve defined by (5.1). The circles represent the positions of the 
original vertices defined by (5.2) in (a) and the ones of the vertices after performing the asymptotic uniform distribution method in (b).

Fig. 3. Results of numerical experiments of the mean curvature flow: (a) the time evolution of the polygonal curve; (b) the time evolution of the length 
(solid line) and enclosed area (broken line).

Example 5.2. The next example is the area-preserving mean curvature flow (see Examples 2.3, 3.6, and 4.4). Theoretically, 
the solution curve converges to a circle, but does not converge to a point due to the area-preservation [2]. Fig. 5 shows the 
numerical results, from which the expected behavior is observed. We note that the enclosed area is almost constant. Fig. 6
shows the time step sizes selected during the numerical integration. In comparison with the previous example for the mean 
curvature flow (Fig. 4), much larger step sizes are selected.

Example 5.3. Our final example is the Hele-Shaw flow (see Examples 2.4, 3.7, and 4.5). To solve the potential problem (the 
Laplace equation) (4.10), we employ the method of fundamental solutions (MFS) [7]. Briefly speaking, we approximate a 
function pn+1/2 by a linear combination of the fundamental solution E(x) = (2π)−1 log |x| of the Laplace operator:
15
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Fig. 4. Time step sizes used for the mean curvature flow.

Fig. 5. Results of numerical experiments of the area-preserving mean curvature flow: (a) the time evolution of the polygonal curve; (b) the time evolution 
of the length (solid line) and enclosed area (broken line).

pn+1/2(x) ≈ Pn+1/2(x) := Q n+1/2
0 +

N∑
j=1

Q n+1/2
j E(x − yn+1/2

j ),

where {yn+1/2
j }N

j=1 are the singular points suitably chosen from R2 \ �
n+1/2

. The coefficients {Q n+1/2
j }N

j=0 are determined 

by the collocation method. More precisely, we use the points Xn+1/2
i,mid = (Xn+1/2

i + Xn+1/2
i−1 )/2 as the collocation points, and 

solve the following collocation equations:

Pn+1/2(Xn+1/2
i,mid ) = σκ

n+1/2
i , i = 1,2, . . . , N.

Our numerical results are depicted in Fig. 7. The solution curve converges to a circle. The length monotonically decreases, 
and the area-preserving property is also captured well. Fig. 8 shows the time step sizes selected during the numerical 
integration. The selected step sizes reach τ = 0.01 soon after the numerical integration begins.

5.2. Discussion

The above numerical experiments confirm that the proposed method performs well. For the remainder of this section, 
we focus on the mean curvature flow and explore properties of the proposed method.
16
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Fig. 6. Time step sizes used for the area-preserving mean curvature flow.

Fig. 7. Results of numerical experiments of the Hele-Shaw flow: (a) the time evolution of the polygonal curve; (b) the time evolution of the length (solid 
line) and enclosed area (broken line).

Comparison with the Runge–Kutta method
We check the correctness of the proposed method. To this end, we compare the numerical solution of the proposed 

method with the reference solution obtained by the usual fourth-order Runge–Kutta method with much smaller time step 
size applied to the semi-discrete polygonal mean curvature flow (Example 3.5). The time step size for the proposed method 
is adaptively controlled as done in the previous subsection, while the uniform step size �t = 0.1N−2 is employed for 
the Runge–Kutta method, where N = 50. Both results are displayed in Fig. 9, from which we observe that the asymptotic 
behavior of our method is consistent with that of the Runge–Kutta method.

Robustness
We check the robustness of the proposed method with respect to the time step size. We here consider the uniform time 

step size and set it to �t = 0.01, which is much bigger than the step size selected by the adaptive method. The results 
for both the proposed method and the Runge–Kutta method are shown in Fig. 10, from which we observe a significant 
difference. From the right figure (b), we see that the Runge–Kutta method is unstable even in a single time stepping (the 
dotted curve represents the numerical solution after one step). In contrast, the left figure (a), which is almost consistent 
with the previous computations, indicates that the proposed method performs better for a longer time interval. We may 
conclude that the proposed method is more robust than the Runge–Kutta method. However, the proposed method may 
produce a wrong solution if the computation proceeds with this step size to later times. Indeed, as shown in Fig. 11, the 
17
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Fig. 8. Time step sizes used for the Hele-Shaw flow.
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(b) Runge–Kutta method

Fig. 9. Comparison between our method and the Runge–Kutta method for the mean curvature flow: (a) our method (the time step size is controlled 
adaptively); (b) the Runge–Kutta method (�t = 0.1N−2).

numerical solution becomes unstable if we continue the numerical computation from the final state in Fig. 10(a). Therefore, 
we recommend using the adaptive method.

On initial arrangements
Recall that, as shown in Fig. 2, arranging the polygon’s vertices that approximate the initial curve uniformly makes the 

initial distribution slightly different from the original curve. Below, we check if the rearrangement is mandatory. The results 
without the rearrangement are shown in Fig. 12. We compare them with those with the rearrangement (see Fig. 9). It is 
observed that the results with and without the arrangement are almost identical (for both the proposed method and the 
Runge–Kutta method). Therefore, it is not indispensable to make the initial distribution uniform. However, an undesired 
behavior may occur when, for example, the shape of the initial curve is complicated. For such a case, the rearrangement 
could contribute to inherit the property of the enclosed area with good accuracy and perhaps ensures stability in some 
sense (see Theorem 3.2 and Corollary 3.4). See Appendix A for a time discretization that inherits the time evolution law of 
the enclosed area.
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(b) Runge–Kutta method

Fig. 10. Comparison between our method and the Runge–Kutta method for the mean curvature flow with uniform time step size �t = 0.01: (a) our method 
(t ≤ 0.09); (b) the Runge–Kutta method (the dotted curve represents the numerical solution after one step).
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Fig. 11. The behavior of numerical solution by our method for the mean curvature flow for t ≥ 0.09 with uniform time step size �t = 0.01.

6. Concluding remarks

In this paper, we proposed the fully discrete polygonal evolution law that inherits the curve-shortening property for 
planar moving boundary problems. The key to the derivation is to devise the definitions of tangential velocities, normal 
velocities, tangent vectors and normal vectors at each vertex in an implicit manner. The proposed evolution law exhibited 
qualitatively nice behavior even if relatively large time step sizes were employed. In particular, the curve-shortening property 
was corroborated numerically. Though only three flows were considered as illustrative examples in this paper, the proposed 
method is applicable to other flows such as the Helfrich flow.

We note several directions for future work. It would be interesting to extend our method to higher dimensional cases 
and more smooth boundary curves. From the numerical analysis viewpoints, we are also currently attempting to achieve a 
higher order temporal discretization.
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Fig. 12. Comparison between our method and the Runge–Kutta method for the mean curvature flow without initial redistribution: (a) our method (the time 
step size is controlled adaptively); (b) the Runge–Kutta method (�t = 0.1N−2).
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Appendix A. An area-preserving/dissipative fully discrete polygonal evolution law for (1.1)

We show that an area-preserving/dissipative fully discrete polygonal evolution law can be constructed by applying a 
canonical Runge–Kutta method to the semi-discrete evolution law (3.1).

The polygonal evolution law (3.1) can be written as a system of ordinary differential equations:

dX t

dt
= F (X t), t > 0, (A.1)

where

X t := ((X t
1)

T, . . . , (X t
N)T)T ∈R2N ,

F (X t) := ( f 1(X t)T, . . . , f N(X t)T)T ∈R2N , f i(X t) := V t
i N t

i + W t
i T t

i ∈ R2.

In this section, the unit tangent and the unit outward normal vectors on vertices are defined in the same manner to 
Section 3. For the solution to an s-stage Runge–Kutta method

Y i = (Y T
i,1, . . . , Y T

i,N)T = Xn + �tn
s∑

j=1

aij F (Y j), i = 1,2, . . . , s,

Xn+1 = Xn + �tn
s∑

i=1

bi F (Y i),

we have

A[�n+1] −A[�n]
�tn

= 1

2

N∑ J Xn+1
i−1 · Xn+1

i − J Xn
i−1 · Xn

i

�tn

i=1
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= 1

2

N∑
i=1

⎡
⎣ s∑

k=1

bk J (Y k,i−1 − Y k,i+1) · f i(Y k) + �tn
s∑

j,k=1

(bkb j − b ja jk − bkakj) J f i−1(Y k) · f i(Y j)

⎤
⎦

=
s∑

k=1

bk

N∑
i=1

vi(Y k)ri(Y k) +
s∑

k=1

bkerrA,k + �tn

2

s∑
j,k=1

(bkb j − b ja jk − bkakj) J f i−1(Y k) · f i(Y j), (A.2)

where

errA,k :=
N∑

i=1

(
W i(Y k)si(Y k) − vi+1(Y k) − vi(Y k)

2

)
ri+1(Y k) − ri(Y k)

2
,

where si(Y k) = sinϕi,k/2 and ϕi,k denotes the signed angle between the ith edge and the (i + 1)th edge of �(Y k). Note that 
the last equality in (A.2) follows from a similar calculation to (3.4).

If the distribution of initial vertices is uniform and we apply the asymptotic uniform distribution method for computing 
tangential velocities, then errA,k ≡ 0 for all k. Moreover, if we assume the condition

b ja jk + bkakj = bkb j, j,k = 1,2, . . . , s, (A.3)

then the last term in (A.2) also vanishes. Summarizing the above, we obtain the following theorem.

Theorem A.1. Suppose that the initial vertices are allocated uniformly, i.e. r0
i = const. and that the tangential velocities are set based 

on the asymptotic uniform distribution method. Then, for the polygonal curve �n that evolves according to an s-stage Runge–Kutta 
method applied to (A.1) with the coefficients satisfying (A.3), it follows that

A[�n+1] −A[�n]
�tn

=
s∑

k=1

bk

N∑
i=1

vi(Y k)ri(Y k).

Namely, a discrete analogue of the formula for the time derivative of the enclosed area holds.

Remark A.2. A Runge–Kutta method whose coefficients satisfy the condition (A.3) is called canonical or symplectic (see, 
e.g. [41,21,42]). Such a Runge–Kutta method preserves any quadratic invariants of ordinary differential equations [43]. In 
this sense, the above theorem looks obvious because the area is a quadratic quantity. But we have presented the calculation 
(A.2) to discuss the effect of tangential velocities.

The simplest example of a canonical Runge–Kutta method is the mid-point rule: s = 1, a11 = 1/2 and b1 = 1. Since 
the second-order convergence is usually expected for the mid-point rule, the rule could be a suitable choice when spatial 
discretization is of second-order.
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[9] M. Kolář, M. Beneš, D. Ševčovič, Numerical solution of constrained curvature flow for closed planar curves, in: Numerical Mathematics and Advanced 

Applications—ENUMATH 2015, in: Lect. Notes Comput. Sci. Eng., vol. 112, Springer, Cham, 2016, pp. 539–546.
[10] J. Zhang, Q. Du, Numerical studies of discrete approximations to the Allen-Cahn equation in the sharp interface limit, SIAM J. Sci. Comput. 31 (2009) 

3042–3063.
[11] N. Požár, On the self-similar solutions of the crystalline mean curvature flow in three dimensions, arXiv:1806 .02482, 2018.
[12] C.L. Epstein, M. Gage, The curve shortening flow, in: Wave Motion: Theory, Modelling, and Computation, Berkeley, Calif., 1986, in: Math. Sci. Res. Inst. 

Publ., vol. 7, Springer, New York, 1987, pp. 15–59.
[13] T.Y. Hou, J.S. Lowengrub, M.J. Shelley, Removing the stiffness from interfacial flows with surface tension, J. Comput. Phys. 114 (1994) 312–338.
[14] M. Kimura, Accurate numerical scheme for the flow by curvature, Appl. Math. Lett. 7 (1994) 69–73.
[15] M. Kimura, Numerical analysis of moving boundary problems using the boundary tracking method, Jpn. J. Ind. Appl. Math. 14 (1997) 373–398.
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