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A numerical study of several time integration methods for solving the three-dimensional
Boussinesq thermal convection equations in rotating spherical shells is presented. Implicit
and semi-implicit time integration techniques based on backward differentiation and
extrapolation formulae are considered. The use of Krylov techniques allows the implicit
treatment of the Coriolis term with low storage requirements. The codes are validated with
a known benchmark, and their efficiency is studied. The results show that the use of high-
order methods, especially those with time step and order control, increase the efficiency of
the time integration, and allows to obtain more accurate solutions.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The study of the thermal convection in rotating spherical geometries is fundamental to explain many geophysical and
astrophysical phenomena, such as the generation of the magnetic fields, or the differential rotation observed in the atmo-
sphere of the major planets. The difficulties related to the experimental studies enhance the importance of three-dimen-
sional numerical simulations in these fields. For this reason the development and improvement of the numerical
techniques is basic for this research.

Most of the numerical papers dealing with spherical geometries (see [1–4], among others), employ second-order time inte-
grators to find periodic, quasi-periodic, or even chaotic attractors by direct numerical simulation (DNS). The exclusive use of
time integrations is not sufficient to establish the origin of the laminar flows and their dependence on the parameters, specially
in the case of subcritical or multicritical transitions. In these situations pseudo-arclength continuation methods [5–7], and the
linear stability analysis of the time dependent solutions [8,9] provide powerful instruments to clarify the dynamics. In
addition, the computation of Liapunov exponents is used to assess if a system is chaotic. All these tools have been historically
applied to low-dimensional systems, but the increase in computational power, and the advances in numerical linear algebra
have motivated their use in high dimensional systems. However, these techniques require to find accurate solutions, and, in
finding these, higher order time integration methods may prove advantageous. In fact, even if one is only interested in low
precision time evolutions, high-order methods can sometimes be more efficient than low-order ones.
. All rights reserved.
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For the spatial discretization of the equations on the sphere, many of the above mentioned codes use pseudo-spectral
methods based on spherical harmonics basis functions, which provide high-accurate solutions with relatively few grid points
[10]. These methods are based on transformations from the spectral to the physical space [11]. The calculation of the qua-
dratic terms, appearing in the truncated equations, is performed in the physical space.

For time integration, some authors [12,2,13], among others, use semi-implicit integration methods, namely, they treat the
linear terms (except the Coriolis term) implicitly with a Crank–Nicholson scheme, and the non-linear and the Coriolis terms
explicitly with an Adams–Bashforth method [14]. In [2], a mixed Euler and integrating factor technique is also considered.
Others, as in [15] use a modified second-order accurate Runge–Kutta method. In all these methods the linear systems of
equations to be solved at every step can be separated into spherical harmonic components, which can be solved indepen-
dently, so that only a set of small linear systems must be solved at each time step. At high rotation rates, though, when
the Coriolis force dominates over the viscous forces, stability considerations lead to extremely small time steps. To avoid this
situation, the Coriolis term can be treated implicitly [14,15]. Then the equations for a given spherical harmonic of order m are
coupled for all degrees l. This implies that a large block-banded linear system has to be solved for each order m. As it was
described in [15], solving them by means of direct factorization methods becomes prohibitive if relatively high resolutions
are employed.

In this paper we study the efficiency of several time integration methods, with the Coriolis term treated either as semi-
implicit or as fully implicit, giving rise to the different algorithms presented. We show that (preconditioned) Krylov or Ar-
noldi iterative methods can be used to solve the Coriolis-implicit linear system, reducing considerably the amount of mem-
ory required.

The time integration methods we use are based on the backward differentiation formulae (BDF) implemented both with
constant stepsize and variable stepsize and variable order (VSVO). The BDF are widely used in very stiff problems [16]. Being
fully implicit methods, they are usually implemented with a Newton–Krylov method for solving the non-linear equations
[17]. In real geophysical and astrophysical flows, however, the non-linear terms are very costly to evaluate, and thus, in
our time integration codes, we apply semi-implicit backward differentiation-extrapolation (IMEX-BDF) formulae, where
the non-linear terms of the equations are treated explicitly.

The rest of the article is organized as follows. In Section 2, the formulation of the problem and the spatial discretization of
the equations are introduced. In Section 3, the time discretization schemes and some details of their implementation are de-
scribed. Section 4 contains a comparison with a previous benchmark [13]. In Section 5 the results of the study are presented,
that is, the efficiency of the time integrators is compared and analyzed, the differences between the constant stepsize meth-
ods are shown, and the study of the implicit and semi-implicit variable stepsize and variable order methods is reported. Fi-
nally, the paper closes in Section 6 with a brief summary of the main conclusions.
2. Mathematical model and spatial discretization

We consider the thermal convection of a spherical fluid shell differentially heated, rotating about an axis of symmetry
with constant angular velocity X = Xk, and subject to radial gravity g = �cr, where c is a constant and r the position vector.
The mass, momentum and energy equations are written, in a rotating frame of reference with angular velocity X, using the
same formulation and non-dimensional units as in [18]. The units are the gap width, d = ro � ri, for the distance, m2/cad4 for
the temperature, and d2/m for the time, ri and ro being the inner and outer radii, respectively, m the kinematic viscosity, and a
the thermal expansion coefficient.

The velocity field is expressed in terms of toroidal, W, and poloidal, U, potentials
v ¼ r� ðWrÞ þ r�r� ðUrÞ: ð1Þ
Consequently, the equations for both potentials, and the temperature perturbation, H = T � Tc, from the conduction state
v = 0, T = Tc(r), with r = krk2, are
@t �r2
� �

L2 � 2E�1@u

h i
W ¼ �2E�1QU� r � r � ðx� vÞ; ð2Þ

@t �r2
� �

L2 � 2E�1@u

h i
r2Uþ L2H ¼ 2E�1QWþ r � r �r� ðx� vÞ; ð3Þ

r@t �r2
� �

H� Rgð1� gÞ�2r�3L2U ¼ �ðv � rÞH; ð4Þ
where x =r� v is the vorticity.
The parameters of the problem are the Rayleigh number R, the Prandtl number r, the Ekman number E, and the radius

ratio g. They are defined by
R ¼ caDTd4

jm
; E ¼ m

Xd2 ; r ¼ m
j
; g ¼ ri

ro
; ð5Þ
where j is the thermal diffusivity, and DT the difference of temperature between the inner and outer boundaries.
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The operators L2 and Q are defined by L2 � �r2 r2 + @r(r2@r), Q � r cos hr2 � ðL2 þ r@rÞðcos h@r � r�1 sin h@hÞ, (r,h,u) being
the spherical coordinates, with h measuring the colatitude, and u the longitude. In non-dimensional units the conduction
state reads Tc(r) = T0 + Rg/r(1 � g)2r.

Non-slip perfect thermally conducting boundaries U = @rU = W = H = 0 are used.
A standard treatment of the spatial dependence of the equations is used, so we comment only on the basic points (see e.g.,

[12,2], for details). The functions X = (W,U,H) are expanded in spherical harmonic series up to degree L, namely
Xðt; r; h;uÞ ¼
XL

l¼0

Xl

m¼�l

Xm
l ðr; tÞY

m
l ðh;uÞ; ð6Þ
with W�m
l ¼ Wm

l ; U�m
l ¼ Um

l ; H�m
l ¼ Hm

l ; W0
0 ¼ U0

0 ¼ 0 to uniquely determine the two scalar potentials, and Ym
l ðh;uÞ ¼

Pm
l ðcos hÞeimu; Pm

l being the normalized associated Legendre functions of degree l and order m. The Eqs. (2)–(4) written for
the complex coefficients become
@tW
m
l ¼ DlW

m
l þ

1
lðlþ 1Þ 2E�1ðimWm

l � ½QU�ml Þ � ½r � r � ðx� vÞ�ml
h i

; ð7Þ

@tDlU
m
l ¼ D2

l U
m
l �Hm

l þ
1

lðlþ 1Þ 2E�1 imDlU
m
l þ ½QW�ml

� �
þ ½r � r �r� ðx� vÞ�ml

h i
; ð8Þ

@tH
m
l ¼ r�1DlH

m
l þ r�1lðlþ 1ÞRgð1� gÞ�2r�3Um

l � ½ðv � rÞH�
m
l ; ð9Þ
with boundary conditions
Wm
l ¼ Um

l ¼ @rU
m
l ¼ Hm

l ¼ 0: ð10Þ
The spherical harmonic coefficients of the operator Q ¼ Qu þQl are
½Quf �ml ¼ �lðlþ 2Þcm
lþ1Dþlþ2f m

lþ1; ½Qlf �ml ¼ �ðl� 1Þðlþ 1Þcm
l Dþ1�lf

m
l�1; ð11Þ

with Dþl ¼ @r þ
l
r
; cm

l ¼
l2 �m2

4l2 � 1

 !1=2

; and Dl ¼ @2
rr þ

2
r
@r �

lðlþ 1Þ
r2 : ð12Þ
In the radial direction, a collocation method on a Gauss–Lobatto mesh of Nr + 1 points is employed (Nr � 1 being the inner
number of points).

The spherical harmonic coefficients of the non-linear terms in Eqs. (7)–(9) are obtained following [12]. The velocity and
vorticity fields are computed first on a collocation mesh in the three coordinates (r,h,u) with the help of dealiased Legendre
and fast Fourier transforms [19]. The cross product is computed on the mesh, and, finally, transformed to the spectral space.
The computation of the coefficients of the non-linear terms of Eq. (9) requires the evaluation of the inner product (v�r)H on
the collocation mesh, and then to transform back to the spectral space.

The mode m = l = 0 is only nonzero for H, and the amplitudes for m = 0 are real. With these considerations, a large system
of ordinary differential equations of dimension N = (3L2 + 6L + 1)(Nr � 1) must be integrated in time.

3. Time integration methods

In order to simplify the notation, Eqs. (7)–(9) are written in the form
L0 _u ¼ LuþNðuÞ; ð13Þ
where u ¼ ðWm
l ðriÞ;Um

l ðriÞ;Hm
l ðriÞÞ is the vector containing the values of the spherical harmonic coefficients at the inner radial

collocation points, and L0 and L are linear operators including the boundary conditions. The former is invertible. It is the
identity for Wm

l and Hm
l , and the operator Dl for Um

l (see the time derivatives in Eqs. (7)–(9)). The operator L includes the
terms DlW

m
l ;D2

l U
m
l �Hm

l , and r�1DlH
m
l þ r�1lðlþ 1ÞRgð1� gÞ�2r�3Um

l of Eqs. (7)–(9), respectively, in any of the schemes
used, and part of the Coriolis terms to be specified below. The operator N , which will be treated explicitly in the IMEX-
BDF formulae, will always contain the non-linear, and the rest of the Coriolis terms.

Time integration methods look for approximations un � u(tn) to solutions of (13) at time levels tn = tn�1 + Dtn�1,
n = 1,2, . . . , . The IMEX-BDF formulae mentioned before are related to the backward differentiation formulae (BDF) [20,16].
These are collocation multistep methods, which obtain un+1 from the previous approximations un�j, j = 0,1, . . . ,k � 1, k being
the number of steps in the formula, in the way we now describe. Consider first the interpolating polynomial qn, k of degree at
most k, such that qn, k(tn�j) = un�j, for j = � 1,0, . . . ,k � 1, where the unknown un+1 is included. The value of the latter is deter-
mined by requiring that qn, k satisfies the differential equation at t = tn+1, that is, L0 _qn;kðtnþ1Þ ¼ Lunþ1 þNðunþ1Þ. In order to
avoid solving a full non-linear problem at every step, in the IMEX-BDF formula [21] the term Nðunþ1Þ is replaced by the
extrapolated value
L0 _qn;kðtnþ1Þ ¼ Lunþ1 þ pn;k�1ðtnþ1Þ; ð14Þ
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where pn, k�1 is the interpolating polynomial of degree at most k � 1, such that pn;k�1ðtn�jÞ ¼ N ðun�jÞ, for j = 0,1, . . . ,k � 1. It is
useful to express qn, k(t) as the sum qn;kðtÞ ¼ q0

n;kðtÞ þ unþ1ln;kðtÞ, where ln, k is the polynomial of degree at most k taking value 1
at tn+1, and 0 at tn�j, for j = 0,1, . . . ,k � 1. Consequently q0

n;k coincides with qn, k at tn�j, for j = 0,1, . . . ,k � 1, and takes value 0 at
tn+1. Then, the linear system to be solved in order to find un+1 can be expressed as
Fig. 1.
origin.
I � Dtn

c0ðnÞ
L�1

0 L
� �

unþ1 ¼ Dtn

c0ðnÞ
L�1

0 pn;k�1ðtnþ1Þ �
_q0

n;kðtnþ1Þ
_ln;kðtnþ1Þ

; ð15Þ
where I is the identity operator, and c0ðnÞ ¼ _ln;kðtnþ1ÞDtn. The practical computation of c0(n), _q0
n;kðtnþ1Þ=_ln;kðtnþ1Þ, etc. can be

done systematically and easily by following ideas in [22, S III.5].
When the time steps are constant (Dtn = Dt) the expressions (14) and (15) become simpler. For example, (15) becomes
I � Dt
c0
L�1

0 L
� �

unþ1 ¼
Xk�1

i¼0

ai

c0
un�i þ

Xk�1

i¼0

biDt
c0
L�1

0 Nðun�iÞ; ð16Þ
where the coefficients ai, bj and c0 do not depend on n, and are listed, for instance, in [6]. It is well known that, if the step
number k satisfies that k 6 6, and the time steps are constant or the ratios Dtn/D tn�1 are kept adequately bounded (see e.g.
[22, S III.3]), the BDF formulae are 0-stable, i.e., they propagate the errors in a stable way. If k P 7 they are unstable and use-
less for time integration. It is also known that for k 6 6 the k-step formula is convergent of order k, that is, the errors
u(tn) � un are O((max06j6n�1Dtj)k). Therefore the k-step formula is also termed the kth order formula. Their regions of abso-
lute stability are shown in Fig. 1. A point z = kDt is in the absolute stability region of a numerical time integration method, if
when it is applied to the equation y0 = ky, k 2 C, with fixed stepsize Dt, the numerical solution yn is bounded as n ?1. For
the BDF formulas, the regions are the exterior of the closed curves shown in Fig. 1a. Fig. 1(b) shows a detail of them close to
the origin. Their knowledge helps to understand the behaviors described in Section 5.

Notice that contrary to the variable stepsize case (15), the matrix in the system to be solved at every step in (16) is con-
stant for all n, being this property one of the main attractions of constant stepsize formulae. On the other hand, the main
reason to use variable stepsizes is to maintain local (time integration) errors below a desired tolerance, with the aim of main-
taining a given accuracy along all the time interval considered. Changing the stepsize can also be combined with using for-
mulae of different orders (step numbers) k, while maintaining accuracy. In this way, the integration can be started with k = 1
(and small Dt0), when the lack of previously computed values precludes the use of higher order formulae, and then increase
the order (and the stepsize) as the integration advances and previous approximations un�j are available. The strategy of var-
iable stepsize and variable order (VSVO) codes we have used is outlined in the following paragraph. Let us mention first that
for the fixed stepsize codes, the starting values uj, j = 1, . . . ,k � 1 are obtained by time integration from tj�1 to tj with a VSVO
code and sufficiently small tolerances ea and er (see (18) below for the meaning of these values).

As explained in [22, S III.7] the local error of the k-step BDF can be estimated as Dtn½ _qn;kþ1ðtnþ1Þ � _qn;kðtnÞ�, so that, in a sim-
ilar way, that of the k-step IMEX-BDF formula can be estimated as
ESTnðkÞ ¼ Dtn L�1
0 ðpn;kðtnþ1Þ � pn;k�1ðtnþ1ÞÞ � ð _qn;kþ1ðtnþ1Þ � _qn;kðtnÞÞ

� 	
: ð17Þ
The corresponding factor for the stepsize, i.e., the factor by which Dtn is multiplied to obtain the next time stepsize D tn+1, is
f nðkÞ ¼min fmaxðkÞ; max
i¼1;...;N

er junþ1
i j þ ea

ESTn
i ðkÞ

� �1=ðkþ1Þ !
; ð18Þ
where ea and er are, respectively, the tolerances below which the absolute and relative values of the local (time discretiza-
tion) errors are required, i indexes the components of the vectors, and fmax(k) are upper bounds for the time step ratio Dtn+1/
Dtn, which are used in practical implementations of the BDF methods to enhance their stability properties (see [22, S III.5]).
They depend on the order k, and we have taken fmax(k) = 5,4,3,2,1.6,1.4 for k = 1, . . . ,6, after diverse numerical experiments.
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If fn(k) < 1, it is assumed that the local error is unacceptably large, and the computed value un+1 is rejected and recom-
puted with a smaller stepsize, namely, Dt0n ¼ 0:9f nðkÞDtn (0.9 being a safety factor). If, on the contrary, fn(k) > 1, un+1 is con-
sidered sufficiently accurate, so that the integration can proceed to find a new approximation un+2. Before doing so, the
estimations ESTn(k � 1) and ESTn(k + 1) of the local error of the (k � 1)-step and (k + 1)-step formulae are obtained, together
with their corresponding factors fn(k � 1) and fn(k + 1). The value k0 = k � 1,k, or k + 1 corresponding to the largest factor is
chosen for the next step (always with k0 not larger than a previously fixed maximum allowed order), and un+2 is computed
with the k0-step formula, and with stepsize equal to Dtn+1 = 0.9fn(k0)Dtn.

Whether the k-step IMEX-BDF formula is used with variable or constant stepsizes, the linear systems (15) or (16) have to
be solved to compute un+1. In the sequel, we will represent these systems as
Hunþ1 ¼ vn; ð19Þ
H being the radial discretization of I � hL�1
0 L with h = D tn/c0(n) or h = Dt/c0, and we comment now on their effective solu-

tion. We first notice that once vn is evaluated, Eq. (19) decouples for each azimuthal wave number m, thus, at every time step,
L + 1 linear systems of the form
HmUm ¼ Vm; m ¼ 0; . . . ; L ð20Þ
have to be solved. The vectors Um and Vm contain, respectively, the unknowns and the right hand side of (19) with azimuthal
wave number m. The structure of the matrices Hm depend on which terms of Eqs. (7)–(9) are included in the operator L, that
is, on which terms are treated implicitly (of course they depend also on the way the unknowns are ordered). We describe
now the main features of these matrices for all the methods tested. They are summarized in Tables 1 and 2. The full details
have been left to the Appendix A.

The inclusion in L of the diagonal parts of the Coriolis term (from now on referred to as Cd) containing imWm
l and imUm

l

(see Eqs. 7, 8), and of Q in N , gives block-diagonal matrices Hm, whose memory requirements are OðN2
r ðLþ 1ÞðLþ 2ÞÞ due to

the triangular truncation (6), namely, quadratic in the spherical harmonic truncation order. From now on, the time discret-
ization with this treatment of the operators will be called the Q-explicit method.

Several authors (see [12,2], and [15] in the low rotation method section, among others) take the Coriolis term fully ex-
plicit in their codes, then the linear systems (19) decouple also for the spherical harmonic degree l, and all the Hm are equal.
They have block-diagonal structure, each block depending on l. This means that matrices of dimension N2

r must be inverted
using LU factorizations for each degree l. This approach is efficient in memory requirements since only a storage OðN2

r ðLþ 1ÞÞ
is needed. However, at low Ekman and high Rayleigh numbers (those with realistic significance) very small time steps are
needed to satisfy the CFL condition.

Taking into account that, in principle, the more implicit the method is, the larger the stepsize can be, and that, for the
problem we are considering, the evaluation of the non-linear terms is expensive in CPU time, it could be computationally
efficient to include other parts of the Coriolis term in the linear operator L.

By adding Qu or Ql (see Eq. (11)) to L, the matrices Hm become upper or lower block-Hessenberg matrices, respectively.
They can be solved with the same memory requirements and number of operations as the Q-explicit method, becauseQu and
Ql must be evaluated in any case. The systems (20) are solved by using backward or forward block substitution, by inverting
the same diagonal submatrices as in the Q-explicit method. In order to implement this possibility in a symmetric way, the
two options are used alternately, that is, one step is performed with Qu implicit and Ql explicit, and vice versa in the follow-
ing step. From now on, this time discretization will be called the Q-splitting method.

By setting Q totally implicit the operator N only includes the non-linear terms. Using this scheme the matrices Hm be-
come block-tridiagonal. A direct block method for solving these linear systems involves a big amount of memory storage.
A LU factorization requires the storage of block matrices with a memory size OðN2

r ðL�mþ 1Þ2Þ for each m = 0, . . . ,L, due
to the change of the inner block structure during the Gaussian elimination. Therefore, the total amount of memory needed
is cubic in the spherical harmonic truncation parameter L. The storage of these matrices becomes prohibitive for high
resolutions when dealing with direct solvers [14,15]. However it will be seen that matrix-free methods based on Krylov
Table 1
Summary of methods tested for the equation L0 _u ¼ LuþNðuÞ. The second and third columns
indicate which part of the Coriolis terms are treated implicitly (included in L) and explicitly
(included in N ), respectively. The operators Cd , Ql and Qu represent, respectively, the
diagonal part of the Coriolis terms, and the lower and upper parts of the operator Q. The last
column contains the symbols and lines used in Figs. 2–4 to label each method.

Method Terms in L Terms in N Symbol, line

Q-explicit Cd Qland Qu +, solid

Q-splitting Cd , Qland Qu Quand Ql �, dotted

alternately alternately
Q-implicit Cd , Ql and Qu *, dashed

Q-explicit VSVO Cd Ql and Qu +, solid

Q-implicit VSVO Cd , Ql and Qu *, dashed

DLSODPK fully implicit �, dash-dotted



Table 2
Summary of solvers used for the linear systems with matrix H ¼ I � hL�1

0 L and h = D tn/c0(n) or h = Dt/c0 (see Eqs. 15, 16). The second column indicates if the
time step and the order are fixed or variable, the third indicates the linear solver, and the fourth the preconditioner used if the solver is iterative.

Method Step and order Linear solver Preconditioner

Q-explicit fixed block-diag. LU
Q-splitting fixed back and forward

block substitution
Q-implicit fixed GMRES block-diag. LU
Q-explicit VSVO variable GMRES block-diag. LU
Q-implicit VSVO variable GMRES block-diag. LU
DLSODPK variable GMRES block-diag. LU
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techniques [23], GMRES [24] in our case, can be used efficiently, to solve the block-tridiagonal linear systems with the same
memory requirements as in the Q-explicit case. The increase of the cost in solving the linear systems (20) may be offset by
the increase of the time stepsize. The initial approximation for the solution of the linear system is obtained by extrapolation
from the previous steps, as is usually done in the implementations of the BDF. From now on this method will be called the
Q-implicit method.

The key point for using Krylov methods efficiently is to have a good preconditioner. It has to resemble as much as possible
the original matrix, and the linear system with the preconditioning matrix must be easy to solve. We have used the block-
diagonal, or the upper or lower block-triangular parts of Hm as preconditioners. All of them can be solved by an adapted di-
rect LU method. We have concluded that adding the non-diagonal blocks does not improve significantly the convergence,
and then only the results for the block-diagonal preconditioner will be reported.

As it is well known, time integration with a constant stepsize can be unnecessarily expensive because the stepsize has to
be taken small enough to cope with possible fast transients. VSVO methods [22], though, do not suffer from this shortcoming.
The price to pay is that the matrices of the linear systems to be solved at every step depend on the current time step, which
changes during the integration. In order to avoid doing a massive number of factorizations, Krylov methods can be used with
a preconditioning matrix depending on a fixed time stepsize Dt*. At each step, the number of iterations needed by the iter-
ative method will (partly) depend on how close the current Dt is to Dt*. When the convergence of the iterative linear solver
degrades the preconditioning matrix can be updated with the current time step. This is the strategy we have followed for all
the VSVO algorithms employed (see the Appendix A for more details). In the case of the IMEX-BDF methods, the precondi-
tioner is updated if the number of iterations of the linear solver exceeds a certain number (10 in all the calculations
described).

All the semi-implicit methods described before have been implemented with constant stepsize, and with variable time
stepsize and order using our own codes (except the Q-splitting VSVO method, which has been used only with constant step-
sizes). From now on, the VSVO implementations of the Q-explicit and Q-implicit methods will be called Q-explicit VSVO and
Q-implicit VSVO, respectively.

The last option considered is to take also the non-linear terms implicitly with a VSVO formulation of the BDF. This leads to
the solution of a non-linear system of equations at each step. Due to the stiffness of the problem, it cannot be efficiently
solved by fixed point iteration, and it is then solved by an inexact Newton’s method. At each Newton’s iteration, linear sys-
tems of similar structure to (19), but now including the Jacobian of the non-linear operator N , have to be solved. The matrix
products by the Jacobian are computed by finite differencing, and the linear systems are solved by a Krylov method. See [17]
for further details. From now on this method will be called fully implicit method. We used the DLSODPK code of the ODE-
PACK package [17]. In this case the matrices depend not only on the current time step, but also on the current solution. As
before, they can be preconditioned by the block-diagonal, or by the upper or lower block-triangular matrices computed with
a fixed time step Dt*. Again, a criterion for recomputing the LU factorizations must be established. In our implementation,
the preconditioner is updated only if the ratio between the current Dt and Dt* exceeds 10 or is smaller than 1/10.

Observe that the fully implicit method requires one evaluation of the non-linear terms per iteration of the linear solver,
and a further one per iteration in Newton’s method. Since, in this particular and other computational fluid dynamics prob-
lems the evaluation of the non-linear terms is expensive, semi-implicit are likely to outperform fully implicit methods de-
spite the smaller stepsizes Dt they may be forced to take due to their poorer stability properties.

Finally it must be stressed that besides preconditioning techniques, the efficiency of Newton–Krylov methods can be im-
proved by using weighted norms in all error-like vectors, i.e., using vectorial tolerances to control the convergence. This has
proved useful in our calculations only for the fully implicit method (see [17] for details of the implementation). The weights
we have used are given in Section 5.

Tables 1 and 2 summarize, for future reference, the main features of the methods tested, and the linear solvers and pre-
conditioner used for each one.
4. Comparison with the benchmark

To check our new non-linear code we have compared our results with the non-magnetic data of [13], where several re-
search groups present the results of a benchmark study for a convection-driven dynamo problem in a rotating spherical shell.
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Although the benchmark deals with the convergence and accuracy of several spatial discretizations of the problem, and not
with the time integration, we have used the same parameters because they are well known to the community of people
working on convection in spherical geometry, and because the kind of computation we are interested in (computation of
periodic orbits and their stability, for instance) are always close to regimes which are not yet chaotic. Therefore, a transient
to a periodic regime such as that of [13] is a good test for our purposes.

The values of the parameters in [13] are g = 0.35, r = 1, E = 10�3 and RB = 100, RB being the Rayleigh number defined in
[13]. Taking into account the different non-dimensional units of both formulations, it turns out that R = (1 � g)rTa1/2RB,
so R = 65000. In addition, the relation between the temperatures is T = Rr�1TB, TB being the temperature scaled as in [13].
The initial condition recommended is velocity v = 0, and temperature
TBðr; h;uÞ ¼
riro

r
� ri þ

2Affiffiffiffiffiffiffi
2p
p ð1� x2Þ3Pm

mðhÞ cos mu; ð21Þ
with A = 0.1, x = 2r � ri � ro, m = 4, and Pm
mðhÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mþ 1Þ!!=2ð2mÞ!!

p
sinm h the normalized associated Legendre function of or-

der and degree m. By starting from it the solution tends, after an abrupt transient, to an azimuthal traveling wave of wave
number m = 4.

In table 4 of [13] the authors provide the values and the estimated errors of some data corresponding to the reference
solution, which can be considered that obtained with the pseudo-spectral code of Christensen, Wicht and Glatzmaier
(CWG). They are the precession frequency x, the mean kinetic energy density
Ekin ¼
1

2Vs

Z
Vs

v2 dV ; ð22Þ
Vs being the volume of the fluid shell, and the temperature TB and the azimuthal velocity vu at the point r = (ri + ro)/2, h = p/2,
whose u-coordinate is given by vr(r,h,u) = 0 and @u vr(r,h,u) > 0. Their values are
x ¼ 0:1824	 0:0050; Ekin ¼ 58:348	 0:050; TB ¼ 0:42812	 0:00012; and vu ¼ �10:1571	 0:0020: ð23Þ
We have integrated with the spatial resolution which corresponds to the code by CWG, i.e., with Nr = 24, and a triangular
truncation of the spherical harmonics (6) with L = 32. The total number of equations is N = 75095. From now on, the test case
with this resolution, and the parameters of the benchmark will be called C1.

Most of the groups in [13] used a second-order Crank–Nicholson scheme for the implicit terms, and a second-order
Adams–Bashforth method for the explicit ones. Therefore, to compare our solutions, it is enough to integrate using order
k = 2. However we have checked that all the solutions described in Section 5, for the C1 case, give values inside the intervals
(23), although in the case of VSVO methods only when local error tolerances were taken smaller than 10�2. These results are
not surprising because our codes are based on the same spatial discretization than those of the CWG group, who obtained the
benchmark reference data, and we use at least second-order time integrators.

5. Results

To compare the time integration schemes presented in Section 3 we integrate the C1 case of the previous section, and a
second test also with g = 0.35 and r = 1, but with E = 10�4, R = 800000, m = 7, Nr = 48 and L = 63 (from now on it will be called
the C2 case). The total number of equations is now N = 577442. The higher resolution is needed to properly solve the problem
with a lower Ekman number. The solution tends now to a traveling wave with m = 7. In both tests R ’ 1.78Rc has been se-
lected to be at the same relative distance to the critical Rayleigh number, Rc, at which the convection sets in.

Since at the initial condition (21) the norm k@tuk2 is extremely large, there is a strong initial transient. This produces large
irregular errors when the equations are integrated with a constant stepsize method. Therefore the very initial transient has
been discarded to make our comparisons, and all the test runs of the time-stepping codes are started with the same initial
condition obtained after the solution has smoothed by a short time integration t0. To obtain it, the Q-implicit VSVO method
with very low tolerances has been used. Then the system (7)–(10) is evolved from the new initial condition at time t0 to a
final time tf, at which the solution, u(t), is close to the periodic regime. As the limit solution is a wave, kuk2 tends to a con-
stant. In the C1 case, t0 = 0.053 and tf = 0.253, and, in the C2 case, t0 = 0.0112 and tf = 0.12. The time t0 has been selected as the
first time at which ku(t0)k2 ’ ku(tf)k2. After t0, the norm of u increases until it reaches a maximum, and then finally decreases
to a constant value close to ku(tf)k2.

To check the efficiency of the different schemes the relation between the relative error, and the run time in seconds, rt, is
studied. The former is defined as
eðuÞ ¼ ku� urk2

kurk2
; ð24Þ
where u = u(tf) is the solution we want to check, and ur = ur(tf) is an accurate reference solution obtained with the Q-implicit
VSVO method, with tolerances for the relative and absolute errors set to er = ea = 10�14 and 10�13 in the C1 and C2 tests,
respectively.

The decrease of the relative error (24) is achieved by decreasing the stepsize in the case of fixed stepsize methods, or by
decreasing the tolerances for the local errors in the case of the VSVO methods. In our implementation of the semi-implicit
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VSVO methods we demand fn(k) in (18) to satisfy fn(k) < 1. In the test we show below we have taken ea = er, since we checked
that other choices of ea do not significantly alter the efficiency of the methods.

On the other hand, the fully implicit DLSODPK can use component-dependent tolerances ea
i for each component ei of the

estimated local error. In fact, if N is the size of the vector u = (u1, . . . ,uN)T, DLSODPK requires
Fig. 2.
(d) Sam
Q-expli
1
N

XN

i¼1

jeij
er

i juij þ ea
i

� �2
 !1=2

< 1; ð25Þ
which is in general less demanding than having fn(k) < 1 as in our semi-implicit methods. For the tests we present below, we
have taken the ea

i proportional to er in the following way: ea
i ¼ fwer ; ea

i ¼ f/er and ea
i ¼ fHer , for the blocks corresponding to the

variables W, U and H, respectively. The factors used are fw = 10, f/ = 1, and fH = 104, which correspond to the orders of magni-
tude of the variables. We checked that the efficiency of the method was improved only marginally if other values of ea

i were used.
All the calculations have been performed on a cluster of Pentium IV personal computers using a single processor at

3.4 GHz, with 2 Mb of cache memory. The FFT routines used to evaluate the non-linear terms are those of the FFTW3 library
[25]. The action of the linear operators required by the linear solvers, the computation of the non-linear terms, and the
Legendre transforms have been implemented as matrix–matrix products using the GotoBLAS library [26] to increase the effi-
ciency of the codes. The block structure of some of the matrices is used to minimize the number of operations. For instance,
when matrix products by Hm in any of its variants are required, they are computed by using matrix–matrix subroutines for
their sub-blocks (see the Appendix A). It is easy to see that each sub-matrix of dimension Nr � 1 of Hm always multiplies the
real and imaginary parts of the same spherical harmonic coefficient of one of the functions W, U or H. These products and
any other for which it is possible, are grouped to optimize the memory transfers.

Fig. 2(a) and (b) show the dependence of loge(u) against the logarithm of the constant time step Dt for the cases C1 and C2,
respectively. The order of the methods can be seen in the slopes of the curves, and it is indicated beside. For every order k in
Fig. 2(a) and (b), the largest values of Dt in each curve are those in the limit of (absolute) stability of the corresponding kth
order formula, that is, the largest value in the increasing sequences of Dt, which we tried, that did not produced an overflow
due to instability. The negative slopes at the left of the k = 5 curves correspond to the accumulation of rounding errors, which
grows as Dt decreases. We have checked that, for very low Dt, the slope corresponds to a power �1, as is expected when the
accumulated rounding error is proportional to the number of time steps, i.e., to Dt�1 (See e.g., [27, S 1.4–2]). The combination
of the Crank–Nicholson and Adams–Bashforth schemes used by some authors would be comparable to the k = 2 case.
Although the coefficient of the leading term of the local truncation error is lower for the Crank–Nicholson method (1/12)
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than for the second-order BDF formula (2/9), the former requires an additional evaluation of the linear terms of the equa-
tions. Moreover if the Crank–Nicholson method is used with fixed time step, oscillations due to eigenvalues of large and neg-
ative real parts inherent to the scheme are not damped [28, S 3.6]. To solve this, usually, either an average between
consecutive steps is done from time to time, or the first steps of the integration are performed with a smaller time-step size.

With respect to the size of the error for a given Dt, we notice both in Fig. 2(a) and (b) that the Q-implicit method is in
general more accurate than the other two, more markedly so in Fig. 2(b). With respect to the largest stepsize the methods
can use for a given order k, Fig. 2(a) shows that, in the C1 case, the Q-implicit method can take larger stepsizes than the other
two methods for all the orders. In the C2 case, as the Ekman number is smaller, the Q-term starts to be dominant, and, as
expected, the relative differences of the upper limit of Dt among the methods are larger. Surprisingly, and as opposed to
the C1 case, for the orders k = 3 and k = 4 in the C2 case, the Q-splitting method can use larger stepsizes than the Q-implicit.
This may be partially explained as follows. For the smaller Ekman number, the eigenvalues k of the Q-term are close to the
imaginary axis and their imaginary parts grow as E decreases (see [29,30,9]). Then, if Dt is not very small, the product kDt is
outside the absolute stability region of orders k = 3 and k = 4 (see Fig. 1(b)). This may render the Q-implicit unstable and,
hence, limit the range of available stepsizes for these orders. Except for this two cases, the upper limit of Dt is lower for
the Q-splitting method, and even lower for the Q-explicit. Notice also that in Fig. 2(b) the slope of the longest curve corre-
sponds to the Q-implicit method with order k = 2. For this order, the stability region of the second-order BDF contains a larger
portion of the imaginary axis, and this may allow the method to take significantly larger stepsizes.

Fig. 2(c) and (d) show the dependence of e(u) against er for the VSVO methods (recall er = ea). These two plots show that,
for a given er, the ratio of the error e (u) of DLSODPK over that of the Q-implicit VSVO method is, in average, Oð

ffiffiffiffi
N
p
Þ. This is

because our error control is much more restrictive than that of DLSODPK as was explained before. The figures also indicate
the high accuracy of the reference solution, since in this plot we compare it with that obtained by a standard integrator, and
e(u) can be made smaller than 10�12. On the other hand, the fact that the errors of the Q-explicit are slightly larger than those
of the Q-implicit method simply indicates that the latter is a more accurate method.

Fig. 3(a–d) contains the efficiency curves for all the methods considered. The logarithm of the relative error e(u) is plotted
against the logarithm of the run time rt, with rt expressed in seconds. Fig. 3(a) and (b) show the results for the constant time
stepsize methods of orders 2 to 5, and Fig. 3(c) and (d) those for the VSVO codes together with the constant time stepsize Q-
splitting method for comparison purposes. As before, plots (a) and (c) correspond to the C1 case, and (b) and (d) to the C2 case.
Each point in Fig. 3 has its corresponding one in Fig. 2, but notice that the smaller the values of Dt and er in Fig. 2 the larger
the corresponding run times in Fig. 3.
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In order to understand the results, the computational cost of the most expensive processes involved in the time integration
with constant stepsize has been considered in the formulae defined below. The initial integration with a VSVO method has not
been included, but it is negligible because the integration time, tf � t0, was chosen to be large enough. The computational cost
of a single step of the Q-explicit and the Q-splitting methods are essentially the same, so only the former will be described.

The run time of the integration with the Q-explicit and Q-implicit methods, during the interval [t0, tf], and using time steps
DtQ exp and DtQ imp, respectively, can be estimated by
CQ exp ¼ NS expðCNL þ CQ þ CLSÞ;
CQ imp ¼ NS impðCNL þ ðNGMR þ 1ÞðCMP þ CLSÞÞ;
where CNL, CQ, CLS, and CMP are, respectively, the costs of the evaluation of the non-linear terms, the evaluation of the operator
Q, the solution of the block-diagonal linear systems (20) in the case of taking Q explicitly, and the matrix products by the
block-tridiagonal matrices Hm when Q is taken implicitly. The integer NGMR is the average number of iterations performed by
the linear iterative solver (GMRES in our case). Each iteration involves a matrix product and an application of the precondi-
tioner, that is, a solution with the block-diagonal matrix. An additional unit is added to NGMR to take into account the initial
evaluation of the residual, and the final preconditioner application. The numbers of steps are NS exp = (tf � t0)/DtQ exp, and
NS imp = (tf � t0)/DtQ imp. As CNL is the highest cost, the rest of them are written as a fraction of it as CQ = fQCNL, CLS = fLSCNL,
and CMP = fMPCNL. In this way
CQ exp ¼ NS expCNLð1þ fQ þ fLSÞ; ð26Þ
CQ imp ¼ NS impCNLð1þ ðNGMR þ 1ÞðfMP þ fLSÞÞ: ð27Þ
The cost CNL, in seconds, and the factors fQ, fLS, and fMP only depend on the spatial resolution employed, and not on the param-
eters of the problem. Their ranges of variation are 0.1 6 CNL 6 3.42, 0.043 6 fQ 6 0.053, 0.22 6 fLS 6 0.33, and
0.19 6 fMP 6 0.33 when the truncation parameters vary in the intervals 24 6 Nr 6 70, and 32 6 L 6 90. We have checked that
the differences between the real run time, and the estimation obtained by the above formulae are so small that they model
accurately the run time of the integrations.

Fig. 3(a) and (b) show that for approximately e(u) < 10�9, the k = 5 method is the most efficient. The corresponding curves
cannot be extended to the left (higher Dt) due to stability reasons. If e(u) > 10�9 the most efficient methods vary from order 2
to 4 depending on the error required.

In the ranges of run time for which all the methods of a given order are available, and for a given run time, all the methods
of the same order have similar efficiency, except for the case C2 with k = 2 (see Fig. 3(b)).

For a given constant stepsize, the Q-explicit and the Q-splitting methods of all the orders have almost the same compu-
tational cost, and therefore the higher order methods should be preferred.

At first sight it could seem from (26)–(27), and the values of the factors given above, that the computational cost of the Q-
implicit method is much higher than for the others, and that it does not depend on the order. However, as the order in-
creases, the predictions of the solution at the end of each step, based on extrapolation using the order of the integrator,
are better, and then the number of iterations NGMR to solve the linear system during the corrections is lower. Moreover,
the stepsize required for a given e(u) is larger, and then NS imp is lower than for the other methods. All this makes its com-
putational cost comparable to the rest of constant stepsize methods.

In the low-cost regions (left of the plots), not all the methods are available due to the constraints of stability. If very small
errors are not required, the Q-splitting method, with orders 2 and 3 in the C1 case, and 3 and 4 in the C2 case, is the most effi-
cient of the constant stepsize methods. Determining which are the optimal order and stepsize requires some experiments. If
many computations are going to be performed with a fixed spatial resolution, and in a relatively small region of parameters, it
is worth making these initial experiments. As stated before the cost of the Q-explicit and the Q-splitting methods is essentially
the same, but the latter has shown to be more stable, allowing for larger stepsizes, and hence, better efficiency.

In Fig. 3(c) and (d) the VSVO methods are compared with the Q-splitting of orders from 2 to 5, which is the best of the con-
stant stepsize methods, except in some regions of very low error. The fully implicit method using DLSODPK is always more
expensive than the Q-implicit VSVO methods because each iteration of the linear solver, and of the Newton’s method requires
an expensive evaluation of the non-linear terms. The Q-explicit VSVO method is also less expensive than DLSODPK, except for
the higher e(u), for which the cost of the former increases due to the increase of the number of rejections, and of iterations of
the linear solver. The factor fLS indicates that an evaluation of the non-linear terms is between 3 and 4 times more expensive
than a block-diagonal linear solving. Therefore DLSODPK will never be more efficient than the Q-implicit VSVO method, unless
the former could take much larger time steps. Our numerical experiments suggest that this is not the case, especially for very
low values of the Ekman number, where very rapid time scales must be resolved to maintain the accuracy.

Fig. 3(c) shows that the Q-implicit VSVO method is the best option for the C1 case. Some constant stepsize methods can be
more efficient, but at the price of doing some previous experiments to find out the optimal stepsize. In the C2 case (Fig. 3(d)),
there are more eigenvalues of larger imaginary part, and small and negative real part, as explained before. Therefore, in order
to keep the local error below a given tolerance, the Q-implicit VSVO method is forced to use the BDF of order 2 in the left part
of the curve shown in Fig. 3(d), and 5 in the right part, depending on the tolerance, as can be seen in Fig. 4(b), where the
average order, kav, is plotted versus the relative tolerance, er, for the semi-implicit VSVO methods. The only curve with a
jump is that corresponding to the Q-implicit VSVO method in the C2 case. At the jump the order increases, the stepsize
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becomes larger, and the cost for a given error decreases. The jump reflects the shape of the stability regions of the BDF for
constant stepsizes (shown in Fig. 1) which, as commented above, for orders 3 and 4 contain a smaller portion of the imag-
inary axis around to the origin. This abrupt transition between the two parts prevents the Q-implicit VSVO method from
being as efficient as the Q-splitting method in the region of intermediate errors.

6. Conclusions

We have compared three semi-implicit time integration methods, both with constant stepsize and VSVO implementa-
tions (this last option only for two of them), and a fully implicit VSVO method. The semi-implicit methods differ among them
in the treatment of the Coriolis term of the equation, which, at very low Ekman numbers (E), dominate the dynamics.

In view of the difficulties of treating the Coriolis term implicitly, it could be thought that writing the equations in an iner-
tial frame of reference could be competitive. In this case there are two possibilities. The first consists in writing the solution
of (13) as u = uh + ubc, uh and ubc satisfying, respectively, homogeneous and non-homogeneous boundary conditions, the lat-
ter coming from the solid-body rotation of the two spheres. The function ubc can be expressed in terms only of the spherical
harmonic Y0

1 for the potential W and would be proportional to E�1. After substituting u into (13) some new linear terms
would appear coming from the non-linear operators with a structure at least as complicated as that of the Coriolis terms.
These new terms would be dominant for low E, and one would be again interested in treating them implicitly to cope with
Courant restrictions of the time step. The second option consists in using non-homogeneous boundary conditions for u. This
affects only the boundary conditions for the coefficient W0

1 of the spherical harmonic Y0
1 in the expansion of W. In this case E

enters not only in the boundary conditions, but also hidden in the non-linear terms preventing the use of semi-implicit
methods. There is another reason to avoid the equations in the inertial frame. The solutions after the first bifurcation from
the conductive state are azimuthal waves of high azimuthal wave number, and drifting frequency x usually positive and
below that of the spheres X. Then, integrating in the inertial frame implies coping with the typical limitation of the time
step of high oscillatory problems, no matter the order of the method employed (see [28, S 3.7]). In our case, if one is inter-
ested in computations close to this waves, it could be beneficial to write the equations for the deviations from the waves.

We have shown that when integrating the thermal convection equations of fast rotating fluid spherical shells, it is pos-
sible to handle the Coriolis term, and even the non-linear term, implicitly, if iterative Krylov methods are used to solve the
corresponding linear systems. This is due to the low memory requirements of these iterative linear solvers. We have also
shown that taking the Coriolis term implicitly results in a more efficient time integration for low values of the Ekman num-
ber. On the other hand, for the high resolutions needed to resolve the Ekman boundary layers, using adapted LU decompo-
sitions to solve the linear systems in semi-implicit or fully implicit methods is not viable, due to the prohibitive amounts of
memory this would require.

We have checked our new time integration codes with a known benchmark [13]. We have found that to get relative errors
of size 10�3, of the order of those of the benchmark results, the most efficient methods are the fully implicit DLSODPK and
the Q-implicit VSVO, with �a = 10�2.

The results show that high-order methods can be used not only to compute high-accurate solutions, but to obtain the
same accuracy as with lower order ones but more efficiently. In practice, the most efficient method depends on the value
of the Ekman number E, on the precision wanted, and even on the type of solution. For instance, if one is just interested
in obtaining smooth solutions by DNS, the best choice is to implement a plain Q-explicit or, better, a third or fourth-order
Q-splitting method. However, if the time integration is part of a continuation process, and/or one is interested in calculating
the stability of the solutions, small time integration errors must be obtained. In this case, the Q-implicit VSVO method will
probably be the most efficient option. Moreover, since the lowest run times correspond to the Q-implicit VSVO method with
large tolerances, this method may also be useful for passing long uninteresting transients, where having a control of the time
stepsize might be important.
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It must be pointed out that, since the results obtained depend on the solution integrated, and in this case it was smooth,
the constant stepsize methods have made accurate computations with relatively large stepsizes. However, had the selected
test solution been irregular, including for instance repeated transients [31] or bursts [32], it is reasonable to assume that in
order to obtain similar accuracy the constant stepsize methods would have had to use a very small step, and then the Q-im-
plicit VSVO method would have been the most efficient method under any circumstances.

With regard to possible parallel implementations, the main difference between the methods is in the relative number of
evaluations of the linear and non-linear terms. Evaluating or solving the linear terms is highly parallelizable and is not dif-
ficult to implement. The evaluation of the non-linear terms is completely different. Their parallelization is complex, mainly
due to the triangular expansion in spherical harmonics. In the fully implicit method, actions of the full Jacobian are required,
which imply evaluations of the non-linear terms or their linearizations. Therefore it would be more sensitive to any ineffi-
ciency in the parallelization process. The rest of the methods would experience very similar speedups if implemented in par-
allel because they require a similar number of evaluation of the non-linear terms.

Finally, the results we have obtained are also relevant in other situations, when the partial differential equations to be
solved have linear diffusion terms, which can be treated implicitly because the resulting linear systems are relatively easy
to solve, and other terms expensive to compute, and whose inclusion in a fully implicit scheme is impossible or very difficult.
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Appendix A

The structure of the matrices Hm appearing in Eq. (20) is detailed here. Recall that Hunþ1 ¼ vn, with H ¼ I � hL�1
0 L and

h = Dtn/c0(n) or h = Dt/c0, is the system to be solved to obtain the solution at time tn+1, un+1, once the right hand side of Eq.
(15) or (16), vn, has been computed. When this equation is separated into its azimuthal components the systems HmUm = Vm,
m = 0, . . . ,L are obtained.

If the functions W, U, and H are expanded in spherical harmonics as in Eq. (6), we define the vectors U0
0 ¼ ðRH0

0Þ
>,

U0
l ¼ ðRW0

l ;RU0
l ;RH0

l Þ
>, and Um

l ¼ ðRWm
l ; IW

m
l ;RUm

l ; IU
m
l ;RHm

l ; IH
m
l Þ
> if m – 0, where R and I indicate real and imaginary

parts, respectively. Then the vector of all amplitudes for a given order m, Um, and the vector of all unknowns, u, are
Um ¼ ðUm
m;U

m
mþ1; . . . ;Um

L�1;U
m
L Þ
>
; and u ¼ ðU0;U1; . . . ;UL�1;ULÞ>:
Suppose now that all the linear terms, included Cd, Ql and Qu, are treated implicitly in the operator L. With the ordering gi-
ven to Um, the matrix Hm has dimension 6(L �m + 1)(Nr � 1) and the block-tridiagonal structure
Hm ¼

Am
m Bm

m 0 . . . 0
Cm

mþ1 Am
mþ1 Bm

mþ1 . . . 0

..

. ..
. . .

. ..
. ..

.

0 0 . . . 0 Bm
L�1

0 . . . 0 Cm
L Am

L

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; ð28Þ
where the blocks of dimension 6(Nr � 1), which also have sub-block structure, are
Am
l ¼

ðAlÞw am
l I 0 0 0 0

�am
l I ðAlÞw 0 0 0 0

0 0 ðAlÞ/ am
l I ðElÞ/ 0

0 0 �am
l I ðAlÞ/ 0 ðElÞ/

0 0 Fl 0 ðAlÞH 0

0 0 0 Fl 0 ðAlÞH

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; ð29Þ

Bm
l ¼

0 0 ðBm
l Þ

/ 0 0 0

0 0 0 ðBm
l Þ

/ 0 0

ðBm
l Þ

w 0 0 0 0 0

0 ðBm
l Þ

w 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA
; ð30Þ
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and Cm
l has the same structure as Bm

l with ðBm
l Þ

/ substituted by ðCm
l Þ

/, etc. The sub-blocks of dimension Nr � 1 are
ðAlÞw ¼ I � hðDlÞw; ðAlÞ/ ¼ I � hðD�1
l Þ

/ðD2
l Þ

/
; ðAlÞH ¼ I � ðh=rÞðDlÞH;

ðBm
l Þ

w ¼ �ðlþ 2Þ
ðlþ 1Þ2hE�1cm

lþ1ðD
�1
l Þ

/ðDþlþ2Þ
w
; ðBm

l Þ
/ ¼ �ðlþ 2Þ

ðlþ 1Þ2hE�1cm
lþ1ðD

þ
lþ2Þ

/
;

ðCm
l Þ

w ¼ �ðl� 1Þ
l

2hE�1cm
l ðD

�1
l Þ

/ðDþ1�lÞ
w
; ðCm

l Þ
/ ¼ �ðl� 1Þ

l
2hE�1cm

l ðD
þ
1�lÞ

/
:

ðElÞ/ ¼ hðD/
l Þ
�1, Fl ¼ �ðh=rÞlðlþ 1ÞRgð1� gÞ�2Diagðr�3

i Þ, am
l ¼ 2hE�1m=lðlþ 1Þ, and I is the identity matrix of dimension

Nr � 1. The superscripts w, / or H over a radial operator denote to which function they are applied. The corresponding
boundary conditions are different and are included in the matrices.

The diagonals of Hm with blocks Bm
l and Cm

l are the discretization of the operators Qu and Qd, respectively, and the matri-
ces Am

l include that of the rest of the linear terms. Therefore, the matrices Hm of Eq. (28) correspond to the Q-implicit or the Q-
implicit VSVO methods, depending on the value of h. If all the non-diagonal blocks Bm

l and Cm
l are set to zero, the resulting

block-diagonal matrices correspond to the Q-explicit or Q-explicit VSVO algorithms. If only Bm
l or Cm

l are set to zero, Hm are
the lower or upper block-Hessenberg matrices of the Q-splitting method.

The LU decomposition is performed only for the diagonal blocks Am
l , either to solve the block-diagonal or block-Hessen-

berg systems in the Q-explicit or Q-splitting methods, or to be used as preconditioners for the iterative solvers in the rest of
algorithms (see Table 2). As can be seen in Eq. (29), the Am

l can be separated in two sub-blocks of dimensions 2(Nr � 1) and
4(Nr � 1), for which a tailored block-LU decomposition is performed.

When the block-diagonal is used as preconditioner, a frozen value h* is set instead of the exact h. In the case of the Q-
implicit method with fixed time stepsize, Dt is constant and known in advance and then h* = h. For the VSVO methods,
the value of h* is selected at the first step, and the corresponding block-LU decomposition is computed. The updating of
h* and the preconditioner are performed, as explained in Section 3, when the linear solver requires too many iterations to
converge or h* is very different from h, depending on the method employed. The number of updates during the integrations
used to be very small. In most of our calculations it was below 10. The higher values corresponded to the higher tolerances
for the local errors. In these cases the range of Dt used during the time evolution was wider and this forced more updates.
Therefore, except for the calculations for which high-order methods are not required, the time spent in preparing the pre-
conditioner was negligible.
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