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Including terrain in atmospheric models gives rise to mesh distortions near the lower 
boundary that can degrade accuracy and challenge the stability of transport schemes. 
Multidimensional transport schemes avoid splitting errors on distorted, arbitrary meshes, 
and method-of-lines schemes have a low computational cost because they perform recon-
structions at fixed points.
This paper presents a multidimensional method-of-lines finite volume transport scheme, 
“cubicFit”, which is designed to be numerically stable on arbitrary meshes. Stability 
conditions derived from a von Neumann stability analysis are imposed during model 
initialisation to obtain stability and improve accuracy in distorted regions of the mesh, and 
near steeply-sloping lower boundaries. Reconstruction calculations depend upon the mesh 
only, needing just one vector multiply per face per time-stage irrespective of the velocity 
field.
The cubicFit scheme is evaluated using three, idealised numerical tests. The first is a variant 
of a standard horizontal transport test on severely distorted terrain-following meshes. The 
second is a new test case that assesses accuracy near the ground by transporting a tracer 
at the lower boundary over steep terrain on terrain-following meshes, cut-cell meshes, and 
new, slanted-cell meshes that do not suffer from severe time-step constraints associated 
with cut cells. The third, standard test deforms a tracer in a vortical flow on hexagonal–
icosahedral meshes and cubed-sphere meshes. In all tests, cubicFit is stable and largely 
insensitive to mesh distortions, and cubicFit results are more accurate than those obtained 
using a multidimensional linear upwind transport scheme. The cubicFit scheme is second-
order convergent regardless of mesh distortions.

Crown Copyright © 2017 Published by Elsevier Inc. This is an open access article under 
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Numerical simulations of atmospheric flows solve equations of motion that result in the transport of momentum, tem-
perature, water species and trace gases. The numerical representation of Earth’s terrain complicates the transport problem 
because the mesh is necessarily distorted next to the lower boundary. As new atmospheric models use increasingly fine 
mesh spacing, meshes are able to resolve steep, small-scale slopes. Numerical schemes in operational weather forecast mod-
els can perform poorly over large mountain ranges, exhibiting small-scale numerical noise in momentum [1], temperature, 
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humidity [2] and potential vorticity fields [3], or even violating the Courant–Friedrich–Lewy stability constraint resulting in 
so-called ‘grid-point storms’ [4]. A transport scheme is desired that yields stable and accurate solutions, particularly near the 
surface where the weather affects us directly. We present a new transport scheme which is numerically stable on arbitrary 
meshes and which is generally insensitive to mesh distortions created by steep slopes. It has a low computational cost since 
most calculations are not repeated every time-step because they depend upon the mesh geometry only.

There are two main methods for representing terrain in atmospheric models: terrain-following layers and cut cells. Both 
methods modify regular meshes to produce distorted meshes with cells that are aligned in columns. Most operational 
models use terrain-following layers in which horizontal mesh surfaces are moved upwards to accommodate the terrain. 
A vertical decay function is chosen so that mesh surfaces slope less steeply with increasing height. The most straightforward 
is the linear decay function used by the basic terrain-following transform [5] (also called the sigma coordinate), but many 
atmospheric models suffer from large numerical errors on such meshes [2,6,7]. To reduce such errors, more complex decay 
functions have been developed so that mesh surfaces are smoother [8,2,9,6].

An alternative to terrain-following layers is the cut cell method. Cut cell meshes are constructed by ‘cutting’ a regular 
mesh with a piecewise-linear representation of the terrain. New vertices are created where the terrain intersects mesh 
edges, and cell volumes that lie beneath the ground are removed. Cut cell meshes can have arbitrarily small cells that 
impose severe time-step constraints on explicit transport schemes. Several techniques have been developed to alleviate 
this problem, known as the ‘small-cell problem’: small cells can be merged with adjacent cells [10], cell volumes can be 
artificially increased [11], or an implicit scheme can be used near the ground with an explicit scheme used aloft [12].

Another method for avoiding the small-cell problem was proposed by Shaw and Weller [13] in which cell vertices are 
moved vertically so that they are positioned at the terrain surface. We refer to this alternative method as the slanted cell 
method in order to distinguish it from the traditional cut cell method. Slanted cell meshes do not suffer from arbitrarily 
small cells because the horizontal cell dimensions are not modified by the presence of terrain.

Smoothed terrain-following layers, cut cells and slanted cell methods all reduce the amount of mesh distortion but any 
mesh that represents sloping terrain must necessarily be distorted, at least near the ground. Even when distortions are 
minimal, transport across mesh surfaces tends to be more common near steep slopes, and this misalignment between the 
flow and mesh surfaces increases numerical errors [14,2,13]. A huge variety of transport schemes have been developed for 
atmospheric models, but few are able to account for distortions associated with steep terrain because they treat horizontal 
and vertical transport separately [15], resulting in numerical errors called ‘splitting errors’. Such errors can be reduced by 
explicitly accounting for transverse fluxes when combining fluxes [16], but splitting errors are still apparent in flows over 
steep terrain where meshes are highly distorted and metric terms in a terrain-following coordinate transform are large [17].

Transport schemes are often classified as dimensionally-split or multidimensional. Dimensionally-split schemes such as 
[18,19] calculate transport in each dimension separately before the flux contributions are combined. Such schemes are com-
putationally efficient and allow existing one-dimensional high-order methods to be used. When dimensionally-split schemes 
are used for horizontal transport, quadrilateral meshes are needed because the mesh dimensions are inherently separable. 
Special treatment is required at the corners of cubed-sphere panels where local coordinates differ [20,19]. Dimensional 
splitting is often used for vertical transport and, for similar reasons, dimensionally-split schemes have only been used with 
terrain-following coordinate transforms and not cut cells. Perhaps confusingly, dimensionally-split schemes are sometimes 
called multidimensional, too, because they use one-dimensional techniques for multidimensional transport.

Unlike dimensionally-split schemes, multidimensional schemes consider transport in two or three dimensions together. 
There are several subclasses of multidimensional schemes that include semi-Lagrangian finite volume schemes (also called 
conservative mesh remapping), swept-area schemes (also called flux-form semi-Lagrangian, incremental remapping, or 
forward-in-time), and method-of-lines schemes (also called Eulerian schemes). Two-dimensional semi-Lagrangian finite vol-
ume schemes such as [21,22] integrate over departure cells that are found by tracing backward the trajectories of cell 
vertices. These schemes are conservative because departure cells are constructed so that there are no overlaps or gaps, 
which requires that cell areas are simply-connected domains [23]. SLICE-3D is a three-dimensional semi-Lagrangian finite 
volume scheme for latitude–longitude meshes that applies separate conservative remappings in each dimension [24]. Swept 
area schemes such as [25–28] calculate the flux through a cell face by integrating over the upstream area that is swept 
out over one time-step. Such schemes differ in their choice of area approximation, sub-grid reconstruction, and spatial in-
tegration method. Because swept area schemes integrate over the reconstructed field, they typically require a matrix–vector 
multiply per face per time-stage [28,26]. Method-of-lines schemes such as [29,30] use a spatial discretisation to reduce 
the transport PDE to an ODE that is typically solved using a multi-stage time-stepping method. A method-of-lines scheme 
using a spectral element reconstruction was recently developed to achieve accurate solutions near the surface of cut cell 
meshes [31]. Unlike semi-Lagrangian finite volume schemes, swept-area and method-of-lines schemes achieve conservation 
for small-scale rotational flows. Such flows can twist the departure domain to such an extent that the domain intersects 
itself [27]. In two dimensions, a self-intersecting departure domain has a bowtie or hourglass shape. There are many more 
types of atmospheric transport schemes, but all can be classified according to their treatment of the three spatial dimen-
sions. A more comprehensive overview is presented by Lauritzen et al. [32].

For transport schemes that are ordinarily classified as ‘multidimensional’, a further distinction ought to made be-
tween horizontally-multidimensional and three-dimensional schemes. Most multidimensional schemes are only horizontally-
multidimensional because, while the two horizontal dimensions are considered together, horizontal and vertical transport 
are still treated separately. This separate treatment becomes less justifiable as atmospheric models are using increasingly fine 
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horizontal mesh spacings that resolve small-scale steep slopes, resulting in greater mesh distortion and possible splitting 
errors [15]. Three-dimensional schemes avoid any splitting errors over steep slopes, but only a few conservative three-
dimensional schemes have been used in atmospheric models. The multi-moment constrained finite volume scheme [33]
is a three-dimensional scheme that has been used to simulate nonhydrostatic flows over orography with terrain-following 
coordinates on a x–z plane [34]. Simulations of subcritical flow around a cylinder have also been performed on a three-
dimensional hexahedral–prismatic hybrid mesh [35]. The Multidimensional Positive Definite Advection Transport Algorithm 
(MPDATA) is another three-dimensional scheme that is suitable for arbitrary meshes. It has been used on triangular unstruc-
tured meshes to simulate two-dimensional nonhydrostatic flows over orography [36], and in three-dimensional transport 
tests [37]. Most recently, MPDATA has been extended to enable semi-implicit integrations of the compressible Euler equa-
tions on arbitrary meshes [38]. The three-dimensional method-of-lines scheme developed by Weller and Shahrokhi [39]
has been used in two-dimensional flows over orography on Cartesian x–z planes with distorted meshes [13,17]. This finite 
volume scheme uses a moving least-squares reconstruction that makes it suitable for arbitrary meshes. This least-squares 
approach has been applied previously to shallow water flows [40], aeronautic [41] and porous media [42] simulations.

In this paper, we present a new multidimensional method-of-lines scheme, “cubicFit”, that improves the stability of 
the Weller and Shahrokhi scheme [39] and avoids all splitting errors. To reconstruct values at cell faces, the scheme fits 
a multidimensional cubic polynomial over an upwind-biased stencil using a least-squares approach. The implementation 
uses stability conditions derived from a von Neumann stability analysis to select appropriate polynomial fits for stencils 
in highly-distorted mesh regions. Almost all of the least-squares procedure depends upon the mesh geometry only and 
reconstruction weights can be precomputed without knowledge of the velocity field or tracer field. Hence, the computational 
cost of the cubicFit scheme is lower than most swept-area schemes that require a matrix–vector multiply per face per 
time-stage. Instead, the computational cost is more comparable to dimensionally-split schemes, with the cubicFit scheme 
requiring only n multiplies per face per time-stage where n is the size of the stencil. Based on numerical experiments, the 
scheme is found to be conditionally stable up to maximum Courant numbers of about 1.3 to 3.3.

The remainder of this paper is organised as follows. Section 2 starts by discretising the transport equation using a 
method-of-lines approach before describing the cubicFit transport scheme and a multidimensional linear upwind transport 
scheme. Section 3 evaluates the cubicFit scheme using three idealised numerical tests. The first test follows Schär et al. [2], 
transporting a tracer horizontally above steep mountains on two-dimensional, highly-distorted terrain-following meshes. 
The second is a new test case designed to assess numerical accuracy next to a mountainous lower boundary. In this test, 
a tracer placed at the ground is transported over steep slopes by a terrain-following velocity field on terrain-following, cut 
cell and slanted cell meshes. The third is a standard test of deformational flow on a single-layer spherical Earth, speci-
fied by Lauritzen et al. [43], which we use to assess the cubicFit transport scheme on hexagonal–icosahedral meshes and 
cubed-sphere meshes. Concluding remarks are made in section 4.

2. Transport schemes for arbitrary meshes

The transport of a dependent variable φ in a prescribed, non-divergent velocity field u is given by the equation

∂φ

∂t
+ ∇ · (uφ) = 0 . (1)

The time derivative is discretised using a two-stage, second-order Heun method,

φ� = φ(n) + �t g(φ(n)) (2a)

φ(n+1) = φ(n) + �t

2

[
g(φ(n)) + g(φ�)

]
(2b)

where g(φ(n)) = −∇ · (uφ(n)) at time level n. The same time-stepping method is used for both the cubicFit scheme and the 
multidimensional linear upwind scheme. Although the Heun method is unstable for a linear oscillator [44] and for solving 
the transport equation using centred, linear differencing, it is stable when it is used for transport schemes with sufficient 
upwinding.

Using the finite volume method, the velocity field is prescribed at face centroids and the dependent variable is stored at 
cell centroids. The divergence term in equation (1) is discretised using Gauss’s theorem,

∇ · (uφ) ≈ 1

Vc

∑
f ∈ c

u f · S f φF (3)

where subscript f denotes a value stored at a face and subscript F denotes a value approximated at a face using surrounding 
values. Vc is the cell volume, u f is a velocity vector prescribed at a face, S f is the surface area vector with a direction 
outward normal to the face and a magnitude equal to the face area, φF is an approximation of the dependent variable 
at the face, and 

∑
f ∈ c denotes a summation over all faces f bordering cell c. Note that equation (3) is a second-order 

approximation of the divergence term which limits the cubicFit transport scheme to second-order numerical convergence.
This discretisation is applicable to arbitrary meshes. A necessary condition for stability is given by the multidimensional 

Courant number,
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Fig. 1. Upwind-biased stencils for faces far away from the boundaries of two-dimensional (a) rectangular and (b) hexagonal meshes. The stencil is used to 
fit a multidimensional polynomial to cell centre values, φc , marked by grey circles, in order to approximate the value φF at the face centroid marked by 
an open circle. φu and φd are the values at the centroids of the upwind and downwind cells neighbouring the target face, drawn with a heavy line. The 
velocity vector u f is prescribed at face f and determines the choice of stencil at each time-step.

Coc = �t

2Vc

∑
f ∈ c

|u · S f | (4)

such that, for all cells c in the domain, Coc is less than or equal to some constant that depends upon the spatial and 
temporal discretisation. Hence, stability is constrained by the maximum Courant number of any cell in the domain.

The accurate approximation of the dependent variable at the face, φF , is key to the overall accuracy of the transport 
scheme. The cubicFit scheme and multidimensional linear upwind scheme differ in their approximations, and these approx-
imation methods are described next.

2.1. Cubic fit transport scheme

The cubicFit scheme approximates the value of the dependent variable at the face, φF , using a least-squares fit over a 
stencil of surrounding known values. To introduce the approximation method, we will consider how an approximate value 
is calculated for a face that is far away from the boundaries of a two-dimensional uniform rectangular mesh. For any mesh, 
every interior face connects two adjacent cells. The velocity direction at the face determines which of the two adjacent cells 
is the upwind cell. Since the stencil is upwind-biased and asymmetric, two stencils must be constructed for every interior 
face, and the appropriate stencil is chosen depending on the velocity direction at each face for every time-step.

The upwind-biased stencil for a face f is shown in Fig. 1(a). The wind at the face, u f , is blowing from the upwind cell 
cu to the downwind cell cd . To obtain an approximate value at f , a polynomial least-squares fit is calculated using the 
stencil values. The stencil has 4 points in x and 3 points in y, leading to a natural choice of polynomial that is cubic in x
and quadratic in y,

φ = a1 + a2x + a3 y + a4x2 + a5xy + a6 y2 + a7x3 + a8x2 y + a9xy2 . (5)

A least-squares approach is needed because the system of equations is overconstrained, with 12 stencil values but only 9 
polynomial terms. The stencil geometry is expressed in a local coordinate system with the face centroid as the origin so 
that the approximated value φF is equal to the constant coefficient a1. The stencil is upwind-biased to improve numerical 
stability, and the multidimensional cubic polynomial is chosen to improve accuracy in the direction of flow [14].

The remainder of this subsection generalises the approximation technique for arbitrary meshes and describes the meth-
ods for constructing stencils, performing a least-squares fit with a suitable polynomial, and ensuring numerical stability of 
the transport scheme.

2.1.1. Stencil construction
For every interior face, two stencils are constructed, one for each of the possible upwind cells. Stencils are not constructed 

for boundary faces because values of φ at boundaries are calculated from prescribed boundary conditions. For a given 
interior face f and upwind cell cu , we find those faces that are connected to cu and ‘oppose’ face f . These are called the 
opposing faces. The opposing faces for face f and upwind cell cu are determined as follows. Defining G to be the set of faces 
other than f that border cell cu , we calculate the ‘opposedness’, Opp, between faces f and g ∈ G , defined as

Opp( f , g) ≡ −S f · Sg

|S f |2 (6)

where S f and Sg are the surface area vectors pointing outward from cell cu for faces f and g respectively. Using the fact 
that a · b = |a| |b| cos(θ) we can rewrite equation (6) as

Opp( f , g) = −|Sg |
|S f | cos(θ) (7)
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Fig. 2. A fourteen-point, upwind-biased stencil for face f connecting the pentagonal upwind cell, cu , and the downwind cell cd . The dashed lines denote 
the two faces of cell cu that oppose f , and black circles mark the centroids of the internal cells that are connected to these two opposing faces. The stencil 
is extended outwards by including cells that share vertices with the three internal cells, where black squares mark these vertices. Four stencil boundary 
faces, marked by black triangles, are also included. The local coordinate system (x, y) has its origin at the centroid of face f , marked by an open circle, 
with x normal to f and y perpendicular to x.

where θ is the angle between faces f and g . In this form, it can be seen that Opp is a measure of the relative area of g
and how closely it parallels face f .

The set of opposing faces, OF, is a subset of G , comprising those faces with Opp ≥ 0.5, and the face with the maximum 
opposedness. Expressed in set notation, this is

OF( f , cu) ≡ {g : Opp( f , g) ≥ 0.5} ∪ {g : max
g ∈ G

(Opp( f , g))} . (8)

On a rectangular mesh, there is always one opposing face g , and it is exactly parallel to the face f such that Opp( f , g) = 1.
Once the opposing faces have been determined, the set of internal and external cells must be found. The internal cells

are those cells that are connected to the opposing faces. Note that cu is always an internal cell. The external cells are those 
cells that share vertices with the internal cells. Note that cd is always an external cell. Finally, the stencil boundary faces are 
boundary faces having Dirichlet boundary conditions1 that share a vertex with the internal cells. Having found these three 
sets, the stencil is constructed to comprise all internal cells, external cells and stencil boundary faces.

Fig. 2 illustrates a stencil construction for face f connecting upwind cell cu and downwind cell cd . The two opposing 
faces are denoted by thick dashed lines and the centres of the three adjoining internal cells are marked by black circles. The 
stencil is extended outwards by including the external cells that share vertices with the internal cells, where the vertices 
are marked by black squares. A boundary at the far left has Dirichlet boundary conditions, and so the four stencil boundary 
faces are also included in the stencil, where the boundary face centres are marked by black triangles. The resultant stencil 
contains fourteen points.

2.1.2. Least-squares fit
To approximate the value of φ at a face f , a least-squares fit is calculated from a stencil of surrounding known values. 

First, we will show how a polynomial least-squares fit is calculated for a face on a rectangular mesh. Second, we will make 
modifications to the least-squares fit that are necessary for numerical stability.

For faces that are far away from the boundaries of a rectangular mesh, we fit the multidimensional polynomial given by 
equation (5) that has nine unknown coefficients, a = a1 . . .a9, using the twelve cell centre values from the upwind-biased 
stencil, φ = φ1 . . . φ12. This yields a matrix equation⎡⎢⎢⎢⎢⎣

1 x1 y1 x2
1 x1 y1 y2

1 x3
1 x2

1 y1 x1 y2
1

1 x2 y2 x2
2 x2 y2 y2

2 x3
2 x2

2 y2 x2 y2
2

...
...

...
...

...
...

...
...

...

1 x12 y12 x2
12 x12 y12 y2

12 x3
12 x2

12 y12 x12 y2
12

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

a1
a2
...

a9

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
φ1
φ2
...

φ12

⎤⎥⎥⎥⎦ (9)

which can be written as

Ba = φ . (10)

1 Boundary faces with Neumann boundary conditions would require extrapolated boundary values to be calculated. This would create a feedback loop 
in which boundary values are extrapolated from interior values, then interior values are transported using stencils that include boundary values. We have 
not considered how such an extrapolation could be made consistent with the multidimensional polynomial reconstruction. Hence, boundary faces with 
Neumann boundary conditions are excluded from the set of stencil boundary faces.
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The rectangular matrix B has one row for each cell in the stencil and one column for each term in the polynomial. B is 
called the stencil matrix, and it is constructed using only the mesh geometry. A local coordinate system is established in 
which x is normal to the face f and y is perpendicular to x. The coordinates (xi, yi) give the position of the centroid of 
the ith cell in the stencil. A two-dimensional stencil is also used for the tests on spherical meshes in section 3.3. In these 
tests, cell centres are projected perpendicular to a tangent plane at the face centre. Previous studies found that results were 
largely insensitive to the projection method [30,25].

The unknown coefficients a are calculated using the pseudo-inverse, B+ , found by singular value decomposition,

a = B+φ . (11)

Recall that the approximate value φF is equal to the constant coefficient a1, which is a weighted mean of φ ,

a1 =

⎡⎢⎢⎢⎣
b+

1,1
b+

1,2
...

b+
1,12

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎣
φ1
φ2
...

φ12

⎤⎥⎥⎥⎦ (12)

where the weights b+
1,1 . . .b+

1,12 are the elements of the first row of B+ . Note that the majority of the least-squares fit 
procedure depends on the mesh geometry only. An implementation may precompute the pseudo-inverse for each stencil 
during model initialisation, and only the first row needs to be stored. Since each face has two possible stencils depending on 
the orientation of the velocity relative to the face, the implementation stores two sets of weights for each face. Knowledge 
of the values of φ is only required to calculate the weighted mean given by equation (12), which is evaluated once per face 
per time-stage.

In the least-squares fit presented above, all stencil values contributed equally to the polynomial fit. It is necessary for 
numerical stability that the polynomial fits the cells connected to face f more closely than other cells in the stencil, as 
shown by [25,26]. To achieve this, we allow each cell to make an unequal contribution to the least-squares fit. We assign 
an integer multiplier to each cell in the stencil, m = m1 . . .m12, and multiply equation (10) to obtain

B̃a = m · φ (13)

where B̃ = MB and M = diag(m). The constant coefficient a1 is calculated from the pseudo-inverse, B̃+ ,

a1 = b̃+
1 · m · φ (14)

where b̃+
1 = b̃+

1,1 . . . b̃+
1,12 are the elements of the first row of B̃+ . Again, a1 is a weighted mean of φ , where the weights are 

now b̃+
1 · m. Values for m are chosen so that the cells connected to face f make a greater contribution to the least-squares 

fit, as discussed later in section 2.1.4.
For faces of a non-rectangular mesh, or faces that are near a boundary, the number of stencil points and number of 

polynomial terms may differ: a stencil will have one or more points and, for two-dimensional meshes, its polynomial will 
have between one and nine terms. Additionally, the polynomial cannot have more terms than its stencil has points because 
this would lead to an underconstrained system of equations. The procedure for choosing suitable polynomials is discussed 
next.

2.1.3. Polynomial generation
The majority of faces on a uniform two-dimensional mesh have stencils with more than nine cells. For example, a 

rectangular mesh has 12 points (Fig. 1(a)), and a hexagonal mesh has 10 points (Fig. 1(b)). In both cases, constructing a 
system of equations using the nine-term polynomial in equation (5) leads to an overconstrained problem that can be solved 
using least-squares. However, this is not true for faces near boundaries: stencils that have fewer than nine cells (Fig. 3(a)) 
would result in an underconstrained problem, and stencils that have exactly nine cells may lack sufficient information to 
constrain high-order terms. For example, the stencil in Fig. 3(b) lacks sufficient information to fit the x3 term. In such cases, 
it becomes necessary to perform a least-squares fit using a polynomial with fewer terms.

For every stencil, we find a set of candidate polynomials that do not result in an underconstrained problem. In two 
dimensions, a candidate polynomial has some combination of between one and nine terms from equation (5). There are 
two additional constraints that a candidate polynomial must satisfy.

First, high-order terms may be included in a candidate polynomial only if the lower-order terms are also included. More 
precisely, let

M(x, y) = xi y j : i, j ≥ 0 and i ≤ 3 and j ≤ 2 and i + j ≤ 3 (15)

be the set of all monomials of degree at most 3 in x, y. A subset S of M(x, y) is “dense” if, whenever xa yb is in S , then 
xi y j is also in S for all 0 ≤ i ≤ a, 0 ≤ j ≤ b. For example, the polynomial φ = a1 +a2x +a3 y +a4xy +a5x2 +a6x2 y is a dense 
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Fig. 3. Upwind-biased stencils for faces near the lower boundary of a rectangular x–z mesh, with (a) a 3 × 2 stencil for the face immediately adjacent to 
the lower boundary, and (b) a 3 × 3 stencil for the face immediately adjacent to the face in (a). Each stencil belongs to the face marked by a thick line. The 
local coordinate system is shown, having an x direction normal to the face a y direction tangent to the face. For both stencils, attempting a least-squares 
fit using the nine-term polynomial in equation (5) would result in an underconstrained problem. There is no normal flow at the lower boundary.

subset of M(x, y), but φ = a1 + a2x + a3 y + a4x2 y is not because x2 y can be included only if xy and x2 are also included. In 
total there are 26 dense subsets of the two-dimensional polynomial in equation (5).

Second, a candidate polynomial must have a stencil matrix B that is full rank. The matrix is considered full rank if its 
smallest singular value is greater than 1 × 10−9. Using a polynomial with all nine terms and the stencil in Fig. 3(b) results 
in a rank-deficient matrix and so the nine-term polynomial is not a candidate polynomial.

The candidate polynomials are all the dense subsets of M(x, y) that have a cardinality greater than one with a stencil 
matrix that is full rank. The final stage of the cubicFit transport scheme selects a candidate polynomial and ensures that the 
least-squares fit is numerically stable.

2.1.4. Stabilisation procedure
So far, we have constructed a stencil and found a set of candidate polynomials. Applying a least-squares fit to any of 

these candidate polynomials avoids creating an underconstrained problem. The final stage of the transport scheme chooses 
a suitable candidate polynomial and appropriate multipliers m so that the fit is numerically stable.

The approximated value φF is equal to a1 which is calculated from equation (14). The value of a1 is a weighted mean 
of φ where w = b̃+

1 · m are the weights. If the cell centre values φ are assumed to approximate a smooth field then we 
expect φF to be close to the values of φu and φd , and expect φF to be insensitive to small changes in φ . When the weights 
w have large magnitude then this is no longer true: φF becomes sensitive to small changes in φ which can result in large, 
numerically unstable departures from the smooth field φ .

To avoid numerical instabilities, a simplified, one-dimensional von Neumann analysis was performed, presented in Ap-
pendix A. The analysis is used to impose three stability conditions on the weights w,

0.5 ≤ wu ≤ 1 (16a)

0 ≤ wd ≤ 0.5 (16b)

wu − wd ≥ max
p ∈ P

(|w p|) (16c)

where wu and wd are the weights for the upwind and downwind cells respectively. The peripheral points P are the cells in 
the stencil that are not the upwind or downwind cells, and w p is the weight for a given peripheral point p. The upwind, 
downwind and peripheral weights sum to one such that wu + wd + ∑

p∈P w p = 1.
The stabilisation procedure comprises three steps. In the first step, the set of candidate polynomials is sorted in prefer-

ence order so that candidates with more terms are preferred over those with fewer terms. If there are multiple candidates 
with the same number of terms, the minimum singular value of B is calculated for each candidate, and an ordering is im-
posed such that the candidate with the larger minimum singular value is preferred. This ordering ensures that the preferred 
candidate is the highest-order polynomial with the most information content.2

In the second step, the most-preferred polynomial is taken from the list of candidates and the multipliers are assigned 
so that the upwind cell and downwind cell have multipliers mu = 210 and md = 210 respectively, and all peripheral points 
have multipliers mp = 1. These multipliers are very similar to those used by [25], leading to a well-conditioned matrix B̃
and a least-squares fit in which the polynomial passes almost exactly through the upwind and downwind cell centre values.

2 Note that singular values are used for two purposes: first, to test if the matrix B is full-rank and, second, to impose an ordering on candidates. We have 
used the minimum singular value, σmin(B), for both purposes. Alternatively, we could use the condition number, cond(B), which is the ratio of smallest 
to largest singular value. Experiments revealed that only the candidate ordering was sensitive to the choice of σmin or cond. The most suitable choices of 
singular value calculations could be explored in future.
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Fig. 4. One-dimensional least-squares fits with a stencil of five points using (a) a cubic polynomial with multipliers mu = 1024, md = 1024 and mp = 1, (b) a 
quadratic polynomial with the same multipliers, and (c) a quadratic polynomial with multipliers mu = 1024, md = 1 and mp = 1. Notice that the curves in 
(a) and (b) fit almost exactly through the upwind and downwind points immediately adjacent to the y-axis, but in (c) the curve fits almost exactly only 
through the upwind point immediately to the left of the y-axis. The point data are labelled with their respective weights. Points that have failed one of the 
stability conditions in equation (16) are marked with italicised labels and are coloured red in the web version of this article. The upwind point is located 
at (−1, 1.8) and the downwind point at (0.62, 1.9), and the peripheral points are at (−2.8, 2.4), (−1.6, 2.7) and (−1.2, 2.2). The stabilisation procedure 
(section 2.1.4) calculates weights using only x positions, and values of φ are included here for illustration only.

In the third step, we calculate the weights w and evaluate them against the stability conditions given in equation (16). 
If any condition is violated, the value of md is halved and the conditions are evaluated with the new weights. This step 
is repeated until the weights satisfy the stability conditions, or md becomes smaller than one. In practice, the conditions 
are satisfied when md is either small (between 1 and 4) or equal to 210. The upwind multiplier mu is fixed at 210 and the 
peripheral multipliers mp are fixed at 1. If the conditions are still not satisfied, then we start again from the second step 
with the next polynomial in the candidate list.

Finally, if no stable weights are found for any candidate polynomial, we revert to an upwind scheme such that wu = 1
and all other weights are zero. In our experiments we have not encountered any stencil for which this last resort is required. 
Furthermore, our experiments show that the stabilisation procedure only modifies the least squares fit for stencils near 
boundaries and for stencils in distorted mesh regions. For stencils in the interior of a uniform rectangular mesh, the least 
squares fit includes all terms in equation (5) with mu = md = 210.

To illustrate the stabilisation procedure, Fig. 4(a) presents a one-dimensional example of a cubic polynomial fitted 
through five points, with the weight at each point printed beside it. The stabilisation procedure only uses the x posi-
tions of these points and does not use the values of φ themselves. The φ values are included here for illustration only. 
Hence, for a given set of x positions, the same set of weights are chosen irrespective of the φ values.

For a one-dimensional cubic polynomial fit, the list of candidate polynomials in preference order is

φ = a1 + a2x + a3x2 + a4x3 , (17)

φ = a1 + a2x + a3x2 , (18)

φ = a1 + a2x , (19)

φ = a1 . (20)

We begin with the cubic equation (17). The multipliers are chosen so that the polynomial passes almost exactly through the 
upwind and downwind points that are immediately to the left and right of the y-axis respectively. The stability condition 
on the upwind point is violated because wu = 1.822 > 1 (equation (16a)). Reducing the downwind multiplier does not help 
to satisfy the stability condition, so we start again with the quadratic equation (18), and the new fit is presented in Fig. 4(b). 
Again, the multipliers are chosen to force the polynomial through the upwind and downwind points, but this violates the 
stability condition on the downwind point because wd = 0.502 > 0.5 (equation (16b)). This time, however, stable weights 
are found by reducing md to one (Fig. 4(c)) and these are the weights that will be used to approximate φF , where the 
polynomial intercepts the y-axis.

2.1.5. Future extension to three dimensions
All the procedures used in the cubicFit scheme generalise to three dimensions. The stencil construction procedure de-

scribed in section 2.1.1 creates a stencil with 12 cells for a face in the interior of a two-dimensional rectangular mesh. 
In three dimensions, the same procedure creates a stencil with 3 × 12 = 36 cells. A three-dimensional stencil has three 
times as many cells as its two-dimensional counterpart if the mesh has prismatic cells arranged in columns. Hence, the 
computational cost during integration increases three-fold when moving from two dimensions to three dimensions.

To extend the least squares fit to three dimensions, the two-dimensional polynomial in equation (5) is replaced with its 
three-dimensional counterpart,
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φ = a1 + a2x + a3 y + a4z + a5x2 + a6xy + a7 y2 + a8xz + a9 yz + a10z2+
+ a11x3 + a12x2 y + a13xy2 + a14x2z + a15xz2 + a16 yz2 + a17 y2z + a18xyz . (21)

The procedure for generating candidate polynomials described in section 2.1.3 results in 26 dense subsets in two dimensions 
and 842 dense subsets in three dimensions. Note that the combinatorial explosion of dense subsets in three dimensions does 
not increase the computational cost during integration.

The stabilisation procedure described in section 2.1.4 requires further numerical experiments to verify that it is sufficient 
for three-dimensional flows and arbitrary polyhedral meshes. An initial three-dimensional test with uniform flow and a 
uniform Cartesian mesh obtained a numerically stable result. For stencils in the interior of the domain, the least squares fit 
includes all polynomial terms in equation (21) with mu = md = 210. The stabilisation procedure does not modify the least 
squares fit for these stencils, but we have not explored the three-dimensional extension of cubicFit any further.

2.2. Multidimensional linear upwind transport scheme

The multidimensional linear upwind scheme, called “linearUpwind” hereafter, is documented here since it provides a 
baseline accuracy for the experiments in section 3. The approximation of φF is calculated using a gradient reconstruction,

φF = φu + ∇c φ · (x f − xc
)

(22)

where φu is the upwind value of φ, and x f and xc are the position vectors of the face centroid and cell centroid respectively. 
The gradient ∇c φ is calculated using Gauss’ theorem:

∇c φ = 1

Vc

∑
f ∈ c

φ̃F S f (23)

where φ̃F is linearly interpolated from the two neighbouring cells of face f . The resulting stencil comprises all cells sharing 
a face with the upwind cell, including the upwind cell itself. For a face in the interior of a two-dimensional rectangular 
mesh, the stencil for the linearUpwind scheme is a ‘+’ shape with 5 cells. On the same mesh, the stencil for the cubicFit 
scheme is more than twice the size with 12 cells. For cells adjacent to boundaries having zero gradient boundary conditions, 
the boundary value is set to be equal to the cell centre value before equation (23) is evaluated. This implementation of the 
multidimensional linear upwind scheme is included in the OpenFOAM software distribution [45].

3. Results

Three idealised numerical tests are performed to compare the accuracy of the cubicFit transport scheme with the mul-
tidimensional linear upwind scheme and with other transport schemes in the literature. The first test transports a tracer 
horizontally on two-dimensional, highly-distorted terrain-following meshes, following Schär et al. [2]. The second is a new 
test case that modifies the velocity field and tracer position from the first test in order to challenge the stability and accuracy 
of the transport schemes near mountainous lower boundaries. The third test evaluates the cubicFit scheme on hexagonal–
icosahedral meshes and cubed-sphere meshes with deformational flow on a spherical Earth, as specified by Lauritzen et 
al. [43].

We have implemented the cubicFit transport scheme and the numerical test cases using the OpenFOAM CFD library 
because it enables a like-for-like comparison between mesh types and transport schemes. We provide source code archives 
for the OpenFOAM implementation of the cubicFit scheme [46], the ASAM cut cell mesh generator [47] and associated 
OpenFOAM converter [48], and the hexagonal–icosahedral mesh generator [49]. For the numerical test cases presented here 
we also supply the source code [50] and result data [51].

3.1. Horizontal transport over mountains

A two-dimensional transport test was developed by Schär et al. [2] to study the effect of terrain-following coordinate 
transformations on numerical accuracy. In this standard test, a tracer is positioned aloft and transported horizontally over 
wave-shaped mountains. The test challenges transport schemes because the tracer must cross mesh layers, which acts to 
reduce numerical accuracy [2,13]. Here we use a more challenging variant of this test that has steeper mountains and 
highly-distorted terrain-following meshes. Convergence results are compared using the linearUpwind and cubicFit transport 
schemes.

The domain is defined on a rectangular x–z plane that is 301 km wide and 25 km high as measured between parallel 
boundary edges. Boundary conditions are imposed on the tracer density φ such that φ = 0 kg m−3 at the inlet boundary, 
and a zero normal gradient ∂φ/∂n = 0 kg m−4 is imposed at the outlet boundary. There is no normal flow at the lower and 
upper boundaries. A range of mesh spacings are chosen so that �x : �z = 2 : 1 to match the original test specification from 
Schär et al. [2].



J. Shaw et al. / Journal of Computational Physics 344 (2017) 86–107 95
The terrain is wave-shaped, specified by the surface elevation h such that

h(x) = h� cos2(αx) (24a)

where

h�(x) =
{

h0 cos2(βx) if |x| < a
0 otherwise

(24b)

where a = 25 km is the mountain envelope half-width, h0 = 6 km is the maximum mountain height, λ = 8 km is the 
wavelength, α = π/λ and β = π/(2a). Note that, in order to make this test more challenging, the mountain height h0 is 
double the mountain height used by [2].

A basic terrain-following (BTF) mesh is constructed by using the terrain profile to modify the uniform mesh. The BTF 
method uses a linear decay function so that mesh surfaces become horizontal at the top of the model domain [5],

z(x) = (H − h(x))
(
z�/H

) + h(x) (25)

where z is the geometric height, H is the height of the domain, h(x) is the surface elevation and z� is the computational 
height of a mesh surface. If there were no terrain then h = 0 and z = z� .

A velocity field is prescribed with uniform horizontal flow aloft and zero flow near the ground,

u(z) = u0

⎧⎪⎨⎪⎩
1 if z ≥ z2

sin2
(

π
2

z−z1
z2−z1

)
if z1 < z < z2

0 otherwise

(26)

where u0 = 10 m s−1, z1 = 7 km and z2 = 8 km.
A tracer with density φ has the shape

φ(x, z) = φ0

{
cos2

(
πr
2

)
if r ≤ 1

0 otherwise
(27a)

with radius r given by

r =
√(

x − x0

Ax

)2

+
(

z − z0

Az

)2

(27b)

where Ax = 25 km, Az = 3 km are the horizontal and vertical half-widths respectively, and φ0 = 1 kg m−3 is the maximum 
density of the tracer. At t = 0 s, the tracer is centred at (x0, z0) = (−50 km, 12 km) so that the tracer is upwind of the 
mountain, in the region of uniform flow above z2.

Tests are integrated for 10 000 s using time-steps chosen for each mesh so that the maximum Courant number is about 
0.4. This choice yields a time-step that is well below any stability limit, as recommended by Lauritzen et al. [43]. By the 
end of integration the tracer is positioned downwind of the mountain. The analytic solution at t = 10000 s is centred at 
(x0, z0) = (50 km, 12 km). Error norms are calculated by subtracting the analytic solution from the numerical solution,

�2 =
√∑

c (φ − φT )2 Vc∑
c

(
φ2

T Vc
) (28)

�∞ = maxc |φ − φT |
maxc |φT | (29)

where φ is the numerical value, φT is the analytic value, 
∑

c denotes a summation over all cells c in the domain, and maxc

denotes a maximum value of any cell.
Tests were performed using the linearUpwind and cubicFit schemes at mesh spacings between �x = 250 m and �x =

5000 m. Numerical convergence in the �2 and �∞ norms is plotted in Fig. 5. The linearUpwind and cubicFit schemes are 
second-order convergent at all but the coarsest mesh spacings where errors are saturated for both schemes.

The cubicFit scheme achieves a given �2 error using a mesh spacing that is almost twice as coarse as that needed by 
the linearUpwind scheme. Doubling the mesh spacing results in a coarser mesh with four times fewer cells because the 
�x : �z aspect ratio is fixed. Recall that the stencil for the cubicFit scheme has about twice as many cells as the stencil for 
the linearUpwind scheme. Hence, for a given �2 error, the computational cost during integration of the cubicFit scheme is 
about half the computational cost of the linearUpwind scheme.

This test demonstrates that the cubicFit scheme is second-order convergent in the domain interior irrespective of mesh 
distortions. In the next test, we assess the numerical accuracy of the transport schemes near a distorted, mountainous lower 
boundary.
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Fig. 5. Numerical convergence of the two-dimensional horizontal transport test over mountains. �2 errors (equation (28)) and �∞ errors (equation (29)) are 
marked at mesh spacings between 5000 m and 250 m using linearUpwind and cubicFit transport schemes on basic terrain-following meshes.

Fig. 6. Two dimensional x–z meshes created with the (a) basic terrain-following, (b) cut cell, and (c) slanted cell methods, and used for the tracer transport 
tests in section 3.2. Cell edges are marked by thin black lines. The peak mountain height h0 = 5 km. The velocity field is the same for all mesh types with 
streamlines marked on each panel by thick lines that are coloured red in the web version of the article. The velocity field (equation (30)) follows the lower 
boundary and becomes entirely horizontal above H1 = 10 km. Only the lowest 10 km for the central region of the domain is shown. The entire domain is 
301 km wide and 25 km high.

3.2. Transport over a mountainous lower boundary

The horizontal transport test in the previous section is useful for assessing numerical accuracy on terrain-following 
meshes, but it presents no particular challenge on cut cell meshes because there is no flow through the distorted cut cells 
near the ground [52]. Here we present another variant of the standard horizontal transport test that challenges transport 
schemes on all mesh types. By positioning the tracer next to the ground and modifying the velocity field, we can assess 
the accuracy of the cubicFit scheme near the lower boundary. Results using the cubicFit scheme are compared with the 
linearUpwind scheme on basic terrain-following, cut cell and slanted cell meshes.

Cut cell meshes are constructed using the ASAM grid generator [53,54]. Slanted cell meshes are constructed following 
the approach by Shaw and Weller [13]: vertices that are underground are moved up to the surface and zero-area faces and 
zero-volume cells are removed. Unlike [13], vertices are never moved downwards.

Following Schär et al. [2], the domain is 301 km wide and 25 km high as measured between parallel boundary edges, 
with a mesh spacing of �x = 1000 m and �z = 500 m. The boundary conditions are the same as those used in section 3.1. 
Cell edges in the central region of the domain are shown in Fig. 6 for each of the three mesh types. Cells in the BTF mesh 
are highly distorted over steep slopes (Fig. 6(a)) while the cut cell mesh (Fig. 6(b)) and slanted cell mesh (Fig. 6(c)) are 
orthogonal everywhere except for cells nearest the ground.

Similar to the approach by [13], a velocity field is chosen that follows the terrain at the surface and becomes entirely 
horizontal aloft. A streamfunction 
 is used so that the discrete velocity field is non-divergent, such that
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Table 1
Time-steps (s) for the two-dimensional transport test over a mountainous 
lower boundary. The time-steps were chosen so that the maximum Courant 
number was between 0.36 and 0.46.

Mesh type Peak mountain height h0 (km)

0 3 4 5 6

BTF 40 16 10 8 5
Cut cell 40 1.6 1.6 0.5 1.5
Slanted cell 40 8 6.25 5 4


(x, z) = −u0 H1
z − h

H1 − h
(30)

where u0 = 10 m s−1, which is the horizontal velocity where h(x) = 0. There is no normal flow at the lower and upper 
boundaries. The velocity field becomes purely horizontal above H1 = 10 km and, elsewhere, the flow is predominantly 
horizontal, with non-zero vertical velocities only above sloping terrain. The horizontal and vertical components of velocity, 
u and w , are given by

u = −∂


∂z
= u0

H1

H1 − h
, w = ∂


∂x
= u0 H1

dh

dx

H1 − z

(H1 − h)2
, (31)

dh

dx
= −h0

[
β cos2 (αx) sin (2βx) + α cos2 (βx) sin (2αx)

]
. (32)

Unlike the horizontal transport test in [2], the velocity field presented here extends from the top of the domain all the way 
to the ground.

The flow is deliberately misaligned with the BTF, cut cell and slanted cell meshes away from the ground (Fig. 6) to ensure 
that flow always crosses mesh surfaces in order to challenge the transport scheme. The value of H1 is chosen to be much 
smaller than the domain height H in equation (25) so that flow crosses the surfaces of the BTF mesh. This is evident in 
Fig. 6(a) where the velocity streamlines are tangential to the mesh only at the ground.

The tracer is again defined by equation (27b) but is now positioned at the ground with (x0, z0) = (−50 km, 0 km) with 
half-widths Ax = 25 km and Az = 10 km. Tests are integrated forward for 10 000 s. The time-step was chosen for each mesh 
so that the maximum Courant number was about 0.4 (Table 1). An analytic solution at 10 000 s is obtained by calculating 
the new horizontal position of the tracer. Integrating along the trajectory yields t , the time taken to move from the left side 
of the mountain to the right [13],

dt = dx/u(x) (33)

t =
x∫

0

H − h(x)

u0 H
dx (34)

t = x

u0
− h0

16u0 H

[
4x + sin 2(α + β)x

α + β

sin 2(α − β)x

α − β
+ 2

(
sin 2αx

α
+ sin 2βx

β

)]
(35)

By solving this equation we find that x(t = 10 000 s) = 54342.8 m when h0 = 5 km.
The tracer density boundary conditions are the same as those in the previous test. Since the cubicFit transport scheme 

uses values at boundaries with Dirichlet boundary conditions, the cubicFit scheme uses only inlet boundary values in this 
test case.

Three series of tests were performed using similar configurations. The first series uses a peak mountain height of h0 =
5 km to examine errors on different mesh types using the two transport schemes. The second series varies the peak 
mountain height to examine the sensitivity of the transport schemes to mesh distortions. The third series verifies accuracy 
at Courant numbers close to the limit of stability, and examines the longest stable time-step for different mesh types.

For the first series of tests with h0 = 5 km, tracer contours at the initial time t = 0 s, half-way time t = 5000 s, and end 
time t = 10 000 s are shown in Fig. 7 using the cubicFit scheme on the BTF mesh. As apparent at t = 5000 s, the tracer 
is distorted by the terrain-following velocity field as it passes over the mountain, but its original shape is restored once it 
has cleared the mountain by t = 10 000 s. A small phase lag is apparent when the numerical solution marked with solid 
contour lines is compared with the analytic solution marked with dotted contour lines.

Numerical errors are more clearly revealed by subtracting the analytic solution from the numerical solution. Error fields 
are compared between BTF, cut cell and slanted cell meshes using the linearUpwind scheme (Figs. 8(a), 8(b) and 8(c) re-
spectively) and the cubicFit scheme (Figs. 8(d), 8(e) and 8(f) respectively). Results are least accurate using the linearUpwind 
scheme on the slanted cell mesh (Fig. 8(c)). The final tracer is slightly distorted and does not extend far enough towards 
the ground. The �∞ error magnitude is reduced by using the linearUpwind scheme on the cut cell mesh (Fig. 8(b)), but 
the shape of the error remains the same. The cubicFit scheme is less sensitive to the choice of mesh with similar error 
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Fig. 7. Evolution of the tracer in the two-dimensional transport test over a mountainous lower boundary. The tracer is transported to the right over the 
wave-shaped terrain. Tracer contours are every 0.1 kg m−3. The result obtained using the cubicFit scheme on the basic terrain-following mesh is shown at 
t = 0 s, t = 5000 s and t = 10 000 s with solid black contours. The analytic solution at t = 10 000 s is shown with dotted contours. The shaded box indicates 
the region that is plotted in Fig. 8.

Fig. 8. Tracer contours at t = 10 000 s for the two-dimensional tracer transport tests over a mountainous lower boundary. A region in the lee of the 
mountain is plotted corresponding to the shaded area in Fig. 7. Results are presented on BTF, cut cell and slanted cell meshes (shown in Fig. 6) using the 
linearUpwind and cubicFit transport schemes. The numerical solutions are marked by solid black lines. The analytic solution is marked by dotted lines. 
Contours are every 0.1 kg m−3.

magnitudes on the BTF mesh (Fig. 8(d)), cut cell mesh (Fig. 8(e)) and slanted cell mesh (Fig. 8(f)). Errors using the cubicFit 
scheme on cut cell and slanted cell meshes are much smaller than the errors using the linearUpwind scheme on the same 
meshes.

To further examine the performance of the cubicFit scheme in the presence of steep terrain, a second series of tests 
were performed in which the peak mountain height was varied from 0 km to 6 km keeping all other parameters constant. 
Results were obtained on BTF, cut cell and slanted cell meshes using the linearUpwind scheme and cubicFit scheme. Again, 
the time-step was chosen for each test so that the maximum Courant number was about 0.4 (Table 1). The �2 error was 
calculated by subtracting the analytic solution from the numerical solution (Fig. 9). Note that the analytic solution is a 
function of mountain height, with the tracer travelling farther over higher mountains due to non-divergent flow through a 
narrower channel. In all cases, error increases with increasing mountain height because steeper slopes lead to greater mesh 
distortions. Errors are identical for a given transport scheme when h0 = 0 km and the ground is entirely flat because the 
BTF, cut cell and slanted cell meshes are identical. Compared with the cubicFit scheme, the linearUpwind scheme is more 
sensitive to the mesh type and mountain height. The linearUpwind scheme is unstable on the slanted cell mesh with a peak 
mountain height h0 = 6 km despite using a Courant number of 0.428. In contrast, the cubicFit scheme is less sensitive to 
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Fig. 9. Error measures for the two-dimensional tracer transport tests over a mountainous lower boundary. Peak mountain heights h0 are from 0 km to 
6 km. Results are compared on BTF, cut cell and slanted cell meshes using the linearUpwind and the cubicFit schemes. At h0 = 0 km the terrain is entirely 
flat and the BTF, cut cell and slanted cell meshes are identical. At h0 = 6 km the linearUpwind scheme is unstable on the slanted cell mesh.

Fig. 10. (a) Longest stable time-steps, �tmax, and (b) largest stable maximum Courant numbers, max(Co), for the two-dimensional tracer transport test over 
a mountainous lower boundary. Results were obtained on basic terrain-following, cut cell and slanted cell meshes at mesh spacings between �x = 5000 m 
and �x = 250 m. The largest stable maximum Courant numbers were calculated from the corresponding longest stable time-steps using equation (4).

the mesh type and errors grow more slowly with increasing mountain height. The cubicFit scheme yields stable results in 
all tests.

A final series of tests were performed to determine the stability limit of the cubicFit scheme with the two-stage Heun 
time-stepping scheme (equation (2b)). The tracer was transported on BTF, slanted cell and cut cell meshes with a variety of 
mesh spacings between �x = 5000 m and �x = 250 m. �z was chosen so that a constant aspect ratio is preserved such 
that �x/�z = 2. For each test, the time-step was increased until the result became unstable. The largest stable time-steps, 
�tmax, are presented in Fig. 10(a). BTF meshes permit the longest time-steps of all three mesh types since cells are almost 
uniform in volume. As expected, the longest stable time-step scales linearly with BTF mesh spacing. There is no such linear 
scaling on cut cell meshes because these meshes can have arbitrarily small cells. The time-step constraints on cut cell 
meshes are the most severe of the three mesh types. Slanted cell meshes have a slightly stronger time-step constraint than 
BTF meshes but still exhibit similar linear scaling with mesh spacing. Furthermore, a dynamical model that uses slanted cell 
meshes instead of BTF meshes is expected to calculate pressure gradients more accurately [13].

Fig. 10(b) presents the largest stable maximum Courant numbers, max(Co), which were calculated by substituting �t =
�tmax into equation (4). On basic terrain following meshes, the maximum Courant number tends towards about 1.3 with 
finer mesh spacings. No such trend is found on cut cell or slanted cell meshes. Cut cell meshes permit the largest maximum 
Courant numbers of around 3, but the largest stable time-steps on cut cell meshes are still smaller than corresponding 
time-steps on basic terrain following and slanted cell meshes.
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This paper focuses on the spatial discretisation of the cubicFit scheme, but the stability limit depends also upon the 
choice of time-stepping. As such, we have not calculated a theoretical Courant number limit, although such an analysis 
should be possible using the techniques in [55].

The transport tests presented in this section demonstrate that the cubicFit scheme is suitable for flows over very steep 
terrain on two-dimensional terrain-following, cut cell and slanted cell meshes. The cubicFit scheme is less sensitive to the 
mesh type and mountain steepness compared to the linearUpwind scheme. The linearUpwind scheme becomes unstable 
over very steep slopes but the cubicFit scheme is stable for all tests. The accuracy of the cubicFit scheme was largely insen-
sitive to the choice of time-step. In the next section, we evaluate the cubicFit scheme using more complex, deformational 
flows on icosahedral meshes and cubed-sphere meshes.

3.3. Deformational flow on a sphere

The tests so far have used flows that are mostly uniform on meshes that are based on rectangular cells. To ensure that 
the cubicFit transport scheme is suitable for complex flows on a variety of meshes, we use a standard test of deformational 
flow on a spherical Earth, as specified by Lauritzen et al. [43]. Results are compared between linearUpwind and cubicFit 
schemes using hexagonal–icosahedral meshes and cubed-sphere meshes. Hexagonal–icosahedral meshes are constructed by 
successive refinement of a regular icosahedron following the approach by [28,56,57] without any mesh twisting. Cubed-
sphere meshes are constructed using an equi-distant gnomic projection of a cube having a uniform Cartesian mesh on each 
panel [58].

Following appendix A9 in [32], the average equatorial spacing �λ is used as a measure of mesh spacing. It is defined as

�λ = 360◦ �x

2π Re
(36)

where �x is the mean distance between cell centres and Re = 6.3712 × 106 m is the radius of the Earth.
The deformational flow test specified by Lauritzen et al. [43] comprised six elements:

1. a convergence test using a Gaussian-shaped tracer
2. a “minimal” resolution test using a cosine bell-shaped tracer
3. a test of filament preservation
4. a test using a “rough” slotted cylinder tracer
5. a test of correlation preservation between two tracers
6. a test using a divergent velocity field

We assess the cubicFit scheme using the first two tests only. We do not consider filament preservation, correlation preser-
vation, or the transport of a “rough” slotted cylinder because no shape-preserving filter has yet been developed for the 
cubicFit scheme. Stable results were obtained when testing the cubicFit scheme using a divergent velocity field, but no 
further analysis is made here.

The first deformational flow test uses an infinitely continuous initial tracer that is transported in a non-divergent, time-
varying, rotational velocity field. The velocity field deforms two Gaussian ‘hills’ of tracer into thin vortical filaments. Half-way 
through the integration the rotation reverses so that the filaments become circular hills once again. The analytic solution at 
the end of integration is identical to the initial condition. A rotational flow is superimposed on a time-invariant background 
flow in order to avoid error cancellation. The non-divergent velocity field is defined by the streamfunction 
 ,


(λ, θ, t) = 10Re

T
sin2 (

λ′) cos2 (θ) cos

(
πt

T

)
− 2π Re

T
sin (θ) (37)

where λ is a longitude, θ is a latitude, λ′ = λ − 2πt/T , and T = 12 days is the duration of integration. The time-step is 
chosen such that the maximum Courant number is about 0.4.

The initial tracer density φ is defined as the sum of two Gaussian hills,

φ = φ1(λ, θ) + φ2(λ, θ) . (38)

An individual hill φi is given by

φi(λ, θ) = φ0 exp

(
−b

( |x − xi|
Re

)2
)

(39)

where φ0 = 0.95 kg m−3 and b = 5. The Cartesian position vector x = (x, y, z) is related to the spherical coordinates (λ, θ)

by

(x, y, z) = (Re cos θ cosλ, Re cos θ sinλ, Re sin θ) . (40)

The centre of hill i is positioned at xi . In spherical coordinates, two hills are centred at
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Fig. 11. Tracer fields for the deformational flow test using initial Gaussian hills. The tracer is deformed by the velocity field before the rotation reverses to 
return the tracer to its original distribution: (a) the initial tracer distribution at t = 0 s; (b) by t = T /2 the Gaussian hills are stretched into a thin S-shaped 
filament; (c) at t = T the tracer resembles the initial Gaussian hills except for some distortion and diffusion due to numerical errors. Results were obtained 
with the cubicFit scheme on a hexagonal–icosahedral mesh with an average equatorial mesh spacing of �λ = 0.542◦ .

Fig. 12. Numerical convergence of the deformational flow test on the sphere using initial Gaussian hills. �2 errors (equation (28)) and �∞ errors (equa-
tion (29)) are marked at mesh spacings between 8.61◦ and 0.271◦ using the linearUpwind scheme (dotted lines) and the cubicFit scheme (solid lines) on 
hexagonal–icosahedral meshes and cubed-sphere meshes.

(λ1, θ1) = (5π/6,0) (41)

(λ2, θ2) = (7π/6,0) (42)

The results in Fig. 11 are obtained using the cubicFit scheme on a hexagonal–icosahedral mesh with �λ = 0.542◦ . The 
initial Gaussian hills are shown in Fig. 11(a). At t = T /2 the tracer has been deformed into an S-shaped filament (Fig. 11(b)). 
By t = T the tracer has almost returned to its original distribution except for some slight distortion and diffusion that are 
the result of numerical errors (Fig. 11(c)).

To determine the order of convergence and relative accuracy of the linearUpwind and cubicFit schemes, the same test 
was performed at a variety of mesh spacings between �λ = 8.61◦ and �λ = 0.271◦ on hexagonal–icosahedral meshes and 
cubed-sphere meshes. The results are shown in Fig. 12. The solution is slow to converge at coarse resolutions, and this 
behaviour agrees with the results from Lauritzen et al. [43]. Both linearUpwind and cubicFit schemes achieve second-order 
accuracy at finer mesh spacings. For any given mesh type and mesh spacing, the cubicFit scheme is more accurate than the 
linearUpwind scheme. Results are more accurate using hexagonal–icosahedral meshes compared to cubed-sphere meshes. 
It is not known whether the larger errors on cubed-sphere meshes are due to mesh non-uniformities at panel corners but 
there is no evidence of grid imprinting in the error fields (not shown).

A slightly more challenging variant of the same test is performed using a quasi-smooth tracer field defined as the sum 
of two cosine bells,

φ =

⎧⎪⎨⎪⎩
b + cφ1(λ, θ) if r1 < r,

b + cφ2(λ, θ) if r2 < r,

b otherwise.

(43)

The velocity field is the same as before. This test is used to determine the “minimal” resolution, �λm , which is specified by 
Lauritzen et al. [43] as the coarsest mesh spacing for which �2 ≈ 0.033.
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Table 2
Minimal resolutions for the cubicFit and linearUpwind schemes in the test of deformational flow using cosine 
bells. Italicised values have been extrapolated using the second-order convergence obtained at coarser mesh spac-
ings. For comparison with existing models, some results are also included for unlimited versions of the transport 
schemes from the intercomparison by Lauritzen et al. [32].

Transport scheme Mesh type Minimal resolution (◦)

linearUpwind Cubed-sphere 0.15
FARSIGHT, grid-point semi-Lagrangian [59] Cubed-sphere 0.1875
linearUpwind Hexagonal–icosahedral 0.2
SLFV-SL, swept-area scheme [60] Hexagonal–icosahedral 0.25
cubicFit Cubed-sphere 0.25
cubicFit Hexagonal–icosahedral 0.3
ICON-FFSL, swept-area scheme [60] Triangular–icosahedral 0.42

The minimal resolution for the cubicFit scheme on a hexagonal–icosahedral mesh is about �λm = 0.3◦ . Tests were not 
performed at mesh spacings finer than �λ = 0.271◦ but approximate minimal resolutions have been extrapolated from the 
second-order convergence that is found at fine mesh spacings. These minimal resolutions are presented in Table 2 along 
with a selection of transport schemes having similar minimal resolutions from the model intercomparison by Lauritzen et 
al. [32].

The series of deformational flow tests presented here demonstrate that the cubicFit scheme is suitable for transport on 
spherical meshes based on quadrilaterals and hexagons. The cubicFit scheme is largely insensitive to the mesh type, and 
results are more accurate compared to the linearUpwind scheme for a given mesh type and mesh spacing. Neither scheme 
requires special treatment at the corners of cubed-sphere panels.

4. Conclusion

Atmospheric models are using increasingly fine horizontal mesh spacings that resolve steep slopes in terrain resulting 
in highly-distorted meshes, increased numerical errors and numerical instabilities. We have presented a new multidimen-
sional method-of-lines transport scheme, cubicFit, that enforces stability conditions derived from a von Neumann stability 
analysis to make the scheme stable over steep terrain on highly-distorted, arbitrary meshes. The scheme has a low compu-
tational cost at runtime, requiring only n multiplies per face per time-stage using a stencil with n cells. Stability condition 
calculations are pre-computed during model initialisation since they depend upon the mesh geometry only.

The cubicFit scheme was compared to a multidimensional linear upwind scheme using three idealised numerical tests. 
The first test transported a tracer horizontally above steep slopes on highly-distorted, two-dimensional terrain-following 
meshes. The cubicFit scheme was second-order convergent regardless of mesh distortions. The second test transported a 
tracer over a mountainous lower boundary using terrain-following, cut cell and slanted cell meshes. The cubicFit scheme 
was generally insensitive to the type of mesh and less sensitive to terrain steepness compared to the multidimensional linear 
upwind scheme, and the scheme maintained accuracy up to its stability limit. The third test evaluated the transport schemes 
in a standard deformational flow field on hexagonal–icosahedral meshes and cubed-sphere meshes. In all tests, compared 
to the multidimensional linear upwind scheme, the cubicFit transport scheme was more stable and more accurate.
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Appendix A. One-dimensional von Neumann stability analysis

Two analyses are performed in order to find stability conditions that are used to constrain the weights w = b̃+
1 · m as 

appear in equation (14). The first analysis uses a two-cell approximation to derive separate stability conditions involving 
the upwind weight wu and downwind weight wd . The second analysis uses three cells to derive a stability condition that 
involves all weights in a stencil.

Two-cell analysis
We start with the conservation equation for a dependent variable φ that is discrete-in-space and continuous-in-time

∂φ j

∂t
= −v

φR − φL

�x
(44)
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where v is the velocity, and the left and right fluxes, φL and φR , are weighted averages of the neighbouring cell centres. 
Assuming that v is positive

φL = αuφ j−1 + αdφ j (45)

φR = βuφ j + βdφ j+1 (46)

where φ j−1, φ j, φ j+1 are cell centre values, and j denotes a cell centre position x = j�x where �x is a uniform mesh spac-
ing. αu and βu are the upwind weights and αd and βd are the downwind weights for the left and right fluxes respectively, 
and αu + αd = 1 and βu + βd = 1.

At a given time t = n�t at time-level n and with a time-step �t , we assume a wave-like solution with an amplification 
factor A, such that

φ
(n)
j = Anei jk�x (47)

where φ(n)
j denotes a value of φ at position j and time-level n. Using this to rewrite the left-hand side of equation (44)

∂φ j

∂t
= ∂

∂t

(
At/�t) eijk�x = ln A

�t
Aneikj�x (48)

hence equation (44) becomes

ln A

�t
= − v

�x

(
βu + βdeik�x − αue−ik�x − αd

)
(49)

ln A = −c (βu − αd + βd cos k�x + iβd sin k�x − αu cos k�x + iαu sin k�x) (50)

where the Courant number c = v�t/�x. Let 
 = βu − αd + βd cos k�x − αu cos k�x and � = βd sin k�x + αu sin k�x, then

ln A = −c (
 + i�) (51)

A = e−c
e−i c� (52)

and the complex modulus of A is

|A| = e−c
 = exp (−c (βu − αd + (βd − αu) cos k�x)) . (53)

For stability we need |A| ≤ 1 and, imposing the additional constraints that αu = βu and αd = βd , then

(αu − αd) (1 − cos k�x) ≥ 0 ∀k�x (54)

and, given 0 ≤ 1 − cos k�x ≤ 2, then

αu − αd ≥ 0 . (55)

Additionally, we do not want more damping than a first-order upwind scheme (where αu = βu = 1, αd = βd = 0), having an 
amplification factor, Aup, so we need |A| ≥ ∣∣Aup

∣∣, hence

exp (−c (αu − αd) (1 − cos k�x)) ≥ exp (−c (1 − cos k�x)) ∀k�x (56)

therefore

αu − αd ≤ 1 . (57)

Now, knowing that αu + αd = 1 (or αd = 1 − αu) then, using equations (55) and (57), we obtain the first two stability 
conditions,

0.5 ≤ αu ≤ 1 and (58)

0 ≤ αd ≤ 0.5 . (59)

Three-cell analysis
We start again from equation (44) but this time approximate φL and φR using three cell centre values,

φL = αuuφ j−2 + αuφ j−1 + αdφ j (60)

φR = αuuφ j−1 + αuφ j + αdφ j+1 (61)

having used the same weights αuu , αu and αd for both left and right fluxes. Substituting equation (47) into equation (44)
we find
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A = exp
(
−c

[
αuu

(
e−ik�x − e−2ik�x

)
+ αu

(
1 − e−ik�x

)
+ αd

(
eik�x − 1

)])
(62)

so that, if the complex modulus |A| ≤ 1 then

αu − αd + (αuu − αu + αd) cos k�x − αuu cos 2k�x ≥ 0 . (63)

If k�x = π then cos k�x = −1 and cos 2k�x = 1 and αu −αd ≥ αuu . If k�x = π/2 then cos k�x = 0 and cos 2k�x = −1 and 
αu − αd ≥ −αuu . Hence we find that

αu − αd ≥ |αuu| . (64)

When the same analysis is performed with four cells, αuuu , αuu , αu and αd , by varying k�x we find that equation (64)
holds replacing |αuu | with max(|αuu | , |αuuu|). Hence, we generalise equation (64) to obtain the final stability condition

αu − αd ≥ max
p ∈ P

|αp| (65)

where the peripheral cells P is the set of all stencil cells except for the upwind cell and downwind cell, and αp is the 
weight for a given peripheral cell p. We hypothesise that the three stability conditions (equations (58), (59) and (64)) are 
necessary but not sufficient for a transport scheme on arbitrary meshes.

The stability of the one-dimensional transport equation discretised in space and time could be analysed using existing 
techniques [55], but we have only analysed the spatial stability of the cubicFit scheme. Numerical experiments presented 
in section 3.2 demonstrate that the cubicFit scheme is generally insensitive to the time-step, provided that it is below a 
stability limit.

Appendix B. Mesh geometry on a spherical Earth

The cubicFit transport scheme is implemented using the OpenFOAM CFD library. Unlike many atmospheric models that 
use spherical coordinates, OpenFOAM uses global, three-dimensional Cartesian coordinates with the z-axis pointing up 
through the North pole. In order to perform the experiments on a spherical Earth presented in section 3.3, it is neces-
sary for velocity fields and mesh geometries to be expressed in these global Cartesian coordinates.

Velocity field specification
The non-divergent velocity field in section 3.3 is specified as a streamfunction 
(λ, θ). Instead of calculating velocity 

vectors, the flux u f · S f through a face f is calculated directly from the streamfunction,

u f · S f =
∑
e ∈ f

e · xe
(e) (66)

where e ∈ f denotes the edges e of face f , e is the edge vector joining the two vertices of the edge, xe is the position 
vector of the edge midpoint, and 
(e) is the streamfunction evaluated at the same position. Edge vectors are directed in a 
counter-clockwise orientation.

Spherical mesh construction
Since OpenFOAM does not support two-dimensional spherical meshes, instead, we construct meshes that have a single 

layer of cells that are 2000 m deep, having an inner radius r1 = Re − 1000 m and an outer radius r2 = Re + 1000 m. By 
default, OpenFOAM meshes comprise polyhedral cells with straight edges and flat faces. This is problematic for spherical 
meshes because face areas and cell volumes are too small. For tests on a spherical Earth, we override the default config-
uration and calculate our own face areas, cell volumes, face centres and cell centres that account for the mesh curvature. 
Note that the new centres are no longer centroids, but they are consistent with the horizontal transport tests on a sphere 
presented in section 3.3.

A face is classified as either a surface face or radial face. A surface face has any number of vertices, all of equal radius. 
A radial face has four vertices with two different radii, r1 and r2, and two different horizontal coordinates, (λ1, θ1) and 
(λ2, θ2). A radial face centre is modified so that it has a radius Re . The latitudinal and longitudinal components of a radial 
face centre need no modification. The face area A f for a radial face f is the area of the annular sector,

A f = d

2

∣∣∣r2
2 − r2

1

∣∣∣ (67)

where d is the great-circle distance between (λ1, θ1) and (λ2, θ2).
To calculate the centre of a surface face f , a new vertex is created that is positioned at the mean of the face vertices. 

Note that this centre position, c̃ f , is used in intermediate calculations and it is not the face centre position. Next, the surface 
face is subdivided into spherical triangles that share this new vertex [61]. The face centre direction and radius are calculated 
separately. The face centre direction r̂ is the mean of the spherical triangle centres weighted by their solid angle,
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r̂ =
∑

t ∈ f �t
(
xt,1 + xt,2 + c̃ f

)∣∣∣∑t ∈ f �t
(
xt,1 + xt,2 + c̃ f

)∣∣∣ (68)

where t ∈ f denotes the spherical triangles t of face f , �t is spherical triangle’s solid angle which is calculated using 
l’Huilier’s theorem, xt,1 and xt,2 are the positions of the vertices shared by the face f and spherical triangle t , and c̃ f is the 
position of the centre vertex shared by all spherical triangles of face f . The face centre radius r is the mean radius of the 
face vertices, again weighted by the solid angle of each spherical triangle,

r =
∑

t∈ f �t
(∣∣xt,1

∣∣ + ∣∣xt,2
∣∣)/2

� f
(69)

where the solid angle � f of face f is the sum of the solid angles of the constituent spherical triangles,

� f =
∑
t∈ f

�t . (70)

We use equations (68) and (69) to calculate the centre c f of the face f ,

c f = r r̂ (71)

The area vector S f of the surface face f is the sum of the spherical triangle areas [61],

S f = r2� f r̂ . (72)

Cell centres and cell volumes are corrected by considering faces that are not normal to the sphere such that(
S f · c f

)2∣∣S f
∣∣2 ∣∣c f

∣∣2
> 0 . (73)

Let F be the set of faces satisfying equation (73). Then, the cell volume Vc is

Vc = 1

3

∑
f ∈ F

S f · c f (74)

which can be thought of as the area A integrated between r1 and r2 such that 
∫ R

0 A(r) dr = ∫ r2
r1

r2� dr = 1
3 � 

(
r3

2 − r3
1

)
. The 

cell centre is modified so that it has a radius Re , which is consistent with radial faces.
Edges can be classified in a similar manner to faces where surface edges are tangent to the sphere and radial faces are 

normal to the sphere. The edge midpoints xe are used to calculate the face flux for non-divergent velocity fields (equa-
tion (66)). For transport tests, corrections to edge midpoints are unnecessary. Due to the choice of r1 and r2 during mesh 
construction, the midpoint of a radial edge is at a radial distance of Re which is necessary for the correct calculation of 
non-divergent velocity fields. The position of surface edge midpoints is unimportant because these edges do not contribute 
to the face flux since e · xe = 0. Edge lengths are the straight-line distance between the two vertices and not the great-circle 
distance. Again, the edge lengths are not corrected because it makes no difference to the face flux calculation.
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